平方差公式和完全平方公式基础拔高练习(含答案)
平方差公式与完全平方公式试题含答案
仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。
解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。
解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。
解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式提高测试卷(含答案)
平方差公式提高测试卷(含答案) 平方差公式提高测试卷时间:90分钟,总分100分。
一、选择题(本大题共10小题,共30.0分)1.下列各式中,能运用平方差公式进行计算的是()。
A。
(2a+3a)(2a−3a)B。
(−a+0.5)(−a−0.5)C。
(a+a)(−a−a)D。
(2a2+a2)(2a2+a2)2.计算2009×2011−的结果是()。
A。
1B。
−1C。
2008D。
−20083.下列算式能用平方差公式计算的是()。
A。
(2a+a)(2a−a)B。
(−2a−1)(−2a−1)C。
(3a−a)(−3a+a)D。
(−a−a)(−a+a)4.下列式子可以用平方差公式计算的是()。
A。
(a−4)(4−a)B。
(−a−3)(3−a)C。
(a+a)(−a−a)D。
(−a−a)(−a+a)5.下列运算正确的是()。
A。
a2⋅a2=2a2B。
a2−a2=(a+a)(a−a)C。
(1+2a)2=1+2a+4a2D。
(2a+3)(2a−3)=4a2−96.下列各式能用平方差公式计算的是()。
A。
(2a+a)(2a−a)B。
a2+a2=a4C。
(−a−a)(−a+a)D。
(−a+1)(a+1)=1−a27.与(7a−a2)之积等于a4−49a2的因式为()。
A。
(7a−a2)B。
(7a+a2)C。
(−7a−a2)D。
(a2−7a)8.计算(a4+1)(a2+1)(a+1)(a−1)的结果是()。
A。
a8+1B。
a8−1C。
(a+1)8D。
(a−1)89.如果一个正整数能表示为两个正整数的平方差,那么这个正整数称为“智慧数”,按你的理解,下列4个数中不是“智慧数”的是()。
A。
2002B。
2003C。
2004D。
200510.下列计算不正确的是()。
A。
(2a+1)(2a−1)=4a2−1B。
(a+3)(a−3)=a2−9C。
(−a−a)(−a+a)=a2−a2D。
(3a−a)(−3a+a)=9a2−a2二、填空题(本大题共10小题,共30.0分)11.如果a2=5,a2=3,那么(a+a)(a−a)=______。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2=x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵+(a∵2=+b a 例2.已知解:∵+(a ∴-+2)(b a ∵8=+b a 例3:计算解:19992=19992-(例4:已知解:a 2+b 2(a-b)2例5:已知的积得来解:因为例6(2-1)和解:(2+1)=(2-1)(2=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。
例7.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2=1002+2⨯100⨯3+32=10000+600+9=10609(2)1982=(200-2)2=2002-2⨯200⨯2+22=40000-800+4=39204例8.计算(1)(a +4b -3c )(a -4b -3c )(2)(3x +y -2)(3x -y +2)解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-(y 2-4y +4)=9x 2-y 2+4y -4例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。
(完整版)平方差公式与完全平方公式提高训练
教学过程提高训练一、选择1.若(x+a)(x+b)=x2-kx+ab,则k的值为( )A.a+b B.-a-b C.a-b D.b-a2.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 3.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=q B.p=±q C.p=-q D.无法确定4.若0<x<1,那么代数式(1-x)(2+x)的值是( )A.一定为正B.一定为负C.一定为非负数D.不能确定5.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2)B.2(a2-2)C.2a3D.2a66.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=407.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=21.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.若a2+a+1=2,则(5-a)(6+a)=__________.4.当k=__________时,多项式x-1与2-kx的乘积不含一次项.5. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .二、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);(3)(a -2b +3c -1)(a +2b -3c -1); (4)(s -2t )(-s -2t )-(s -2t )2;(4)(5)(t -3)2(t +3)2(t 2+9)2.例1、完全平方式1、若k x x ++22是完全平方式,则k =2、。
最新平方差公式和完全平方公式基础拔高练习(含答案)
1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为() A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98 (2)234×314(3)-2.7×3.3(4)1007×993 (5)1213×1123(6)-1945×2015(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-13.10.运用平方差公式计算:(1)220052005200042006-⨯;(2)99×101×10 001.11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.◆拓展提升13.若a+b=4,a2-b2=12,求a,b的值.1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计算:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.下列计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算结果为1-2ab2+a2b4的是()A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)28.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-110.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2(4)(13a+15b)2(5)(-a-b)2(6)(-a+12)2(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-12n2)2(10)1012(11)1982(12)19.92 11.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12)2-(x-1)(x-2)12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.13.若(a+b)2+M=(a-b)2,则M=_____.14.已知(a-b)2=8,ab=1,则a2+b2=_____.15.已知x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?17.已知x+1x=3,试x2+21x和(x-1x)2的值.第一套平方差公式参考答案1.a2 b2 a4-b4 2.-3y2 2x2 9y4-4x43.2323202(23)2 399594.10 0.7 10 0.7 •100 0.49 5.A 6.D7.(1)9996 (2)81516(3)-8.91 (4)999 951(5)14389(6)-399.96 (7)9a2-ab-3b2(8)a4-5a2+4(9)2a2-5b2(10)21y2-3x2(11)-12m2-16 (12)4a2-b2 8.b-3a b-a+m9.3a2+5a+5 11 310.(1)2005 (2)99 999 99911.(1)x=-172(2)x=-212.-48xy-32ax+16bx13.a=3.5,b=0.5第二套完全平方公式参考答案1.a2+2ab+b2 a2-2ab+b2和(或差)平方和这两个数乘积的2倍2.(•1)•2a •2a 1 1 4a2+4a+1 (2)2x 2x 3y 3y 4x2-12xy+9y23.a+6b 2a-3b 4.-•2 •4 5.16 46.C 7.A 8.A 9.A10.(1)a2+6a+9 (2)25x2-20x+4 (3)9a2-6a+1 •(4)19a2+215ab+125b2(5)a2+2ab+b2(6)a4-a2+14(7)x2y4+8xy2+16 (8)2a+1 (9)4m4+2m2n2+1 4 n4(10)10 201 (11)39 204 (12)396.0111.(1)-2ab-5b2(2)2x-7 412.x<11 • • 13.•-4ab 14.1017.7 5。
平方差公式和完全平方公式基础拔高练习(含答案)
平方差公式和完全平方公式基础拔高练习(含答案)平方差公式◆基础训练1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.-2005×2007的计算结果为()A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b)C.(b+2a)(b-8a)D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98(2)21241(4)1007×993(5)12×11(6)-19×20353531×3(3)-2.7×3.344(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a -2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)-1-(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)◆综合应用8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.19.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),个中a=-.310.运用平方差公式计算:(1)11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.-2-2005;(2)99×101×10 001.2006◆拓展晋升13.若a+b=4,a2-b2=12,求a,b的值.完整平方公式◆基础训练1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计较:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.以下计较精确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算成效为1-2ab2+a2b4的是()A.(-1+ab2)2B.(1+ab2)2C.(-1+a2b2)2D.(-1-ab2)28.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-110.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2-3-111(4)(a+b)2(5)(-a-b)2(6)(-a+)2352(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-122n)2(10)1012(11)1982(12)19.9211.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.◆综合应用13.若(a+b)2+M=(a-b)2,则M=_____.14.(a-b)2=8,ab=1,则a2+b2=_____.15.x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径削减4cm后,这个圆的面积削减几何平方厘米?◆拓展提升17.已知x+111=3,试x2+2和(x-)2的值xxx-4-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式
◆基础训练
1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为()
A.1 B.-1 C.2 D.-2
6.在下列各式中,运算结果是b2-16a2的是()
A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)
C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.
(1)102×98 (2)23
4
×3
1
4
(3)-2.7×3.3
(4)1007×993 (5)121
3
×11
2
3
(6)-19
4
5
×20
1
5
(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)
(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)
(11)(2m-5)(5+2m)+(-4m-3)(4m-3)
(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)
◆综合应用
8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.
9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-1
3
.
10.运用平方差公式计算:
(1)
22005
2005200042006
-⨯
;(2)99×101×10 001.
11.解方程:
(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x
(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.
◆拓展提升
13.若a+b=4,a2-b2=12,求a,b的值.
完全平方公式
◆基础训练
1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.
2.计算:
(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;
(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.
4.(3x+A)2=9x2-12x+B,则A=_____,B=______.
5.m2-8m+_____=(m-_____)2.
6.下列计算正确的是()
A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2
C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b2
7.运算结果为1-2ab2+a2b4的是()
A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为()
A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是()
A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算:
(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2
(4)(1
3
a+
1
5
b)2(5)(-a-b)2(6)(-a+
1
2
)2
(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-1
2
n2)2
(10)1012(11)1982(12)19.92 11.计算:
(1)(a+2b)(a-2b)-(a+b)2(2)(x-1
2
)2-(x-1)(x-2)
12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.
◆综合应用
13.若(a+b)2+M=(a-b)2,则M=_____.
14.已知(a-b)2=8,ab=1,则a2+b2=_____.
15.已知x+y=5,xy=3,求(x-y)2的值
16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?
◆拓展提升
17.已知x+1
x
=3,试x2+
2
1
x
和(x-
1
x
)2的值。