高一数学集合与不等式测试题
高一数学集合试题及答案
高一数学集合试题及答案一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆ B .M N ⊆ C .M ND .M N ⋂=∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}1,2A =,{}2,3,4B =,则A B =( ) A .{}2B .{}3C .{}1,3D .{}1,24.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.已知集合{A x y ==,{}2B x x =<,则A B =( ) A .RB .∅C .[]1,2D .[)1,26.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-7.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,48.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2}C .{0,2}D .{0,1,2}9.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅10.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞11.已知:2{|560}A x x x =-+>,{|24}xB x =<,记{|,}A B x x A x B -=∈∉,则A B -=( ) A .(3,)+∞ B .(,2](3,)-∞+∞ C .(,2)(3,)-∞⋃+∞D .[3,)+∞12.设集合{A x y ==,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂13.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-14.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.18.已知集合 {}N 24x x A =∈<,{}220x x x B -<=则集合A B 的子集个数为___________.19.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.20.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.21.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.22.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.23.写出集合{1,1}-的所有子集______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.27.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.28.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.已知全集为U ,集合A ,B ,C 都是U 的子集,用集合U ,A ,B ,C 表示图中的阴影部分.【参考答案】一、单选题 1.A 【解析】 【分析】利用集合的基本关系求解 【详解】解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z ,当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆. 故选:A . 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】根据集合的交集运算,即可求得答案. 【详解】集合{}1,2A =,{}2,3,4B =, 则{2}A B =, 故选:A 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.D 【解析】 【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答. 【详解】由y =1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D 6.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 7.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 8.C 【解析】 【分析】先求{}2,B k k n n Z ==∈,再求交集即可. 【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =. 故选:C . 9.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D 11.A 【解析】 【分析】先求出集合,A B ,再按照给的定义计算A B -即可. 【详解】由题意知:|2{A x x =<或3}x >,{|2}B x x =<,故A B -={|3}x x >. 故选:A. 12.C 【解析】 【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解. 【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集,所以A C ⋂=∅,B C =∅,{}|2=<A x x R,{}|2⋂=<B A x x R ,A B C =∅,故选:C 13.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 14.D 【解析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 18.2 【解析】 【分析】先求出A B 然后直接写出子集即可. 【详解】{}{}N 240,1x x A ∈<==,{}{}22002x x x B x x -<=<<={}1A B =,所以集合A B 的子集有∅,{}1.子集个数有2个. 故答案为:2.19.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤20. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可.【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 21.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞22.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.23.∅,{}1-,{1},{1,1}- 【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意.故答案为:3.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解,(2)分C =∅和C ≠∅两种情况求解(1) 因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2)当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞27.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 28.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解; (2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤,所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2) 解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦【解析】【分析】根据韦恩图,利用交集,并集与补集的概念及运算求解.【详解】根据韦恩图可知:阴影部分为:()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦.。
高一数学集合试题答案及解析
高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。
3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。
【考点】本题主要考查函数的概念,指数函数的图象和性质。
点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。
4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。
点评:简单题,借助于数轴求集合的并集。
5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。
22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章 一元二次函数、方程和不等式
第一章集合与常用逻辑用语第二章一元二次函数、方程和不等式(全卷满分150分,考试用时120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021北京东城高一上期末)已知集合A={-1,0,1},集合B={x∈N|x2=1},那么A∩B=()A.{1}B.{0,1}C.{-1,1}D.{-1,0,1}2.(2021湖北武汉部分高中高一上期末联考)已知p:a≥0;q:∀x∈R,x2-ax+a>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021北京顺义高一上期末)已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是()A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b4.(2021陕西宝鸡高三上期末)已知集合A={x|x2+2x-8>0},B={x|x-a>0},若B⊆A,则实数a的取值范围为 ()A.a≥2B.a>2C.a≥4D.a>45.(2021山西大学附属中学高一上期中)已知命题“∃x∈R,使2x2+(a-1)x+12≤0”是假命题,则实数a的取值范围是()A.-3≤a≤1B.-3<a<1C.a≤-1或a≥3D.-1<a<36.(2021浙江嘉兴高一上期末)已知a>0,b>0,且2a+1b =1,则2a+b的最小值为()A.2√2B.3C.8D.97.(2021全国八省(市)高三上联考)关于x的方程x2+ax+b=0,有下列四个命题:①x=1是该方程的根;②x=3是该方程的根;③该方程两根之和为2;④该方程两根异号.如果只有一个是假命题,则该命题是()A.①B.②C.③D.④8.(2021浙江丽水五校高一上检测)已知关于x的不等式a(x+1)(x-3)+1>0(a≠0)的解集是{x|x1<x<x2}(x1<x2),则下列结论中一定错误的是 ()A.x1+x2=2B.x1x2<-3C.x2-x1>4D.-1<x1<x2<3二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.(2021福建福州四十中、十中高一上期末联考) 下列结论正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.不等式x2-4x+5>0的解集为RC.“x>1”是“(x-1)(x+2)>0”的充分不必要条件D.∀x∈R,√x2=x10.(2021重庆育才中学高一上期中)下列不等式中一定成立的是()A.a3+b3≥a2b+ab2(a,b∈R)B.x2+3>2x(x∈R)C.y=x2+2x2-1≥2√2+1D.a2+b2≥2(a-b-1)11.(2021福建龙溪高一上期中)设全集U={x|x>0},集合M={x|y=√x-1},N={y|y=x2+2},则下列结论正确的是()A.M∩N={x|x>2}B.M∪N={x|x>1}C.(∁U M)∪(∁U N)={x|0<x<2}D.(∁U M)∩(∁U N)={x|0<x<1}12.(2021湖南益阳高二上期末)若a>0,b>0,且a+b=4,则下列不等式成立的是()A.√ab≤2B.a2+b2≥8C.1a +1b≥1 D.0<1ab≤14三、填空题(本题共4小题,每小题5分,共20分)13.(2021上海洋泾中学高一上期中)已知关于x的不等式组{x2-2x-8>0,2x2+(2k+7)x+7k<0仅有一个整数解,则实数k的取值范围为.14.(2021山东烟台高一上期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方的子集,则称两个集合构成“蚕食”.已知集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为.15.(2021四川成都树德中学高二阶段性测试)若关于x的不等式ax2>-ax-1对任意实数x都成立,则实数a的取值范围是.16.(2021湖北荆州沙市中学高一上期中)已知正数x,y满足2x+y=xy+a,当a=0时,x+y的最小值为;当a=-2时,x+y的最小值为.(第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021广东深圳高一上期中)已知集合A={x|a<x<a+1},B={x||x+1|≤1}.(1)若a=1,求A∪B;(2)在①A∪B=B,②(∁R B)∩A=⌀,③B∪(∁R A)=R这三个条件中任选一个作为已知条件,求实数a的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)18.(12分)(2021重庆彭水第一中学高一上期中)已知命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题.(1)求实数m的取值集合A;(2)若q:-4<m-a<4是¬p的充分不必要条件,求实数a的取值范围.19.(12分)(2020内蒙古包头高一下期末)已知x>y>0,z>0,求证:(1)zx <zy ;(2)(x+y)(x+z)(y+z)>8xyz.20.(12分)(2020山东青岛高一上期中)(1)若关于x的不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},求a,b的值;(2)解关于x的不等式ax2-3x+2>5-ax(a∈R).21.(12分)(2021北京丰台高三上期中)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地x2+40x+3 200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.表示为y=12(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2 300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?22.(12分)(2021山东潍坊安丘实验中学、青云学府高一上联考)已知关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.(1)若M=R,求k的取值范围;(2)若存在两个不相等的负实数a、b,使得M={x|x<a或x>b},求实数k的取值范围;(3)是否存在实数k,满足“对于任意n∈N*,都有n∈M,对于任意的负整数m,都有m∉M”?若存在,求出k的值;若不存在,说明理由.答案全解全析1.A 由题意,集合A ={-1,0,1},B ={x ∈N|x 2=1}={1},所以A ∩B ={1}. 故选A .2.B ∵q :∀x ∈R,x 2-ax +a >0, ∴Δ=(-a )2-4a <0,解得0<a <4. 设A ={a |a ≥0},B ={a |0<a <4}, ∵B ⫋A ,∴p 是q 的必要不充分条件. 故选B .3.A 对于选项A,由题中数轴可得b <a <0,不等号两边同乘1ab ,可得1b >1a ,A 正确; 对于选项B,∵b <a <0,∴a 2<b 2,B 错误; 对于选项C,∵b <a ,∴b -a <0,C 错误;对于选项D,∵b <0,a <0,∴|b |a =-ab ,|a |b =-ab ,即|b |a =|a |b ,D 错误. 故选A .4.A 易得A ={x |x >2或x <-4},因为B ={x |x >a },所以若B ⊆A ,则a ≥2. 故选A .5.D ∵命题“∃x ∈R,使2x 2+(a -1)x +12≤0”是假命题,∴2x 2+(a -1)x +12>0对x ∈R 恒成立,即方程2x 2+(a -1)x +12=0无实根, ∴Δ=(a -1)2-4×2×12<0,解得-1<a <3,故实数a 的取值范围是-1<a <3. 故选D .6.D 2a +b =(2a +b)(2a +1b )=5+2ab +2ab ≥5+2√2ab ·2ab =9,当且仅当{ab =1,2a +1b =1,即{a =13,b =3时取等号, ∴2a+b 的最小值为9.故选D .7.A 若①是假命题,则②③④是真命题,则关于x 的方程x 2+ax +b =0的一根为3,由于两根之和为2,则该方程的另一根为-1,两根异号,符合题意;若②是假命题,则①③④是真命题,则x =1是方程x 2+ax +b =0的一个根,由于两根之和为2,则另一个根也为1,两根同号,不符合题意;若③是假命题,则①②④是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根同号,不符合题意;若④是假命题,则①②③是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根之和为4,不符合题意.综上所述,命题①为假命题. 故选A .8.D 由不等式a (x +1)(x -3)+1>0(a ≠0)的解集是{x |x 1<x <x 2}(x 1<x 2), 可知a <0,且a (x +1)(x -3)+1=0(a ≠0)的两根为x 1、x 2,不妨设y =a (x +1)(x -3)(a ≠0),则y =a (x +1)(x -3)(a ≠0)的图象与直线y =-1的交点的横坐标为x 1、x 2,由图易得x 1<-1,x 2>3,因此D 中结论一定错误. 故选D .9.ABC 易知选项A 正确;对于选项B,x 2-4x +5=(x -2)2+1>0的解集为R,故正确; 对于选项C,解不等式(x -1)(x +2)>0,得x <-2或x >1, 设A ={x |x >1},B ={x |x <-2或x >1},则A ⫋B ,∴“x >1”是“(x -1)(x +2)>0”的充分不必要条件,故正确; 对于选项D,√x 2=|x |,若x <0,则√x 2≠x ,故错误. 故选ABC .10.BD ∵a 3+b 3-a 2b -ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ),(a -b )2≥0,a +b 的符号不定,∴a 3+b 3与a 2b +ab 2的大小关系不确定,A 错误; ∵x 2-2x +3=(x -1)2+2≥2>0, ∴x 2+3>2x ,B 正确;y =x 2+2x 2-1=x 2-1+2x 2-1+1,当x 2-1<0时,y <0,C 错误;a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故a 2+b 2≥2(a -b -1),D 正确. 故选BD .11.CD ∵M ={x |y =√x -1}={x |x ≥1},N ={y |y =x 2+2}={y |y ≥2}, ∴M ∩N ={x |x ≥2},M ∪N ={x |x ≥1},故A,B 均不正确; 易得∁U M ={x |0<x <1},∁U N ={y |0<y <2},∴(∁U M )∪(∁U N )={x |0<x <2},(∁U M )∩(∁U N )={x |0<x <1},故C,D 均正确. 故选CD .12.ABC 对于选项A,由基本不等式可得√ab ≤a+b 2=2,当且仅当a =b =2时,等号成立,A 正确;对于选项B,2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=16,∴a 2+b 2≥8,当且仅当a =b =2时,等号成立,B 正确; 对于选项C,1a +1b=a+b 4(1a+1b)=14(b a+a b+2)≥14(2√b a·ab+2)=1,当且仅当a =b =2时,等号成立,C正确;对于选项D,由A 可知√ab ≤2,即0<ab ≤4,∴1ab ≥14,D 错误. 故选ABC .13.答案 -5≤k <3或4<k ≤5解析 由不等式x 2-2x -8>0,解得x <-2或x >4, 解方程2x 2+(2k +7)x +7k =0,得x 1=-72,x 2=-k ,当-k <-72,即k >72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-k <x <-72},若不等式组只有一个整数解,则-5≤-k <-4,解得4<k ≤5;当-k >-72,即k <72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-72<x <-k}, 若不等式组只有一个整数解,则-3<-k ≤5,解得-5≤k <3. 综上可得,实数k 的取值范围是-5≤k <3或4<k ≤5. 14.答案 {0,12,2}解析 当a =0时,B =⌀,此时B ⫋A ,满足题意;当a >0时,B ={-√2a ,√2a },则集合A ,B 只能构成“蚕食”, 所以-√2a =-1或√2a =2, 解得a =2或a =12.故a 的取值集合为{0,12,2}.15.答案 0≤a <4解析 当a =0时,不等式ax 2>-ax -1即0>-1,对任意实数x 都成立,符合题意; 当a ≠0时,关于x 的不等式ax 2>-ax -1,即ax 2+ax +1>0对任意实数x 都成立, 等价于{a >0,Δ=a 2-4a <0,解得0<a <4.综上所述,a 的取值范围为0≤a <4. 16.答案 3+2√2;7解析 当a =0时,2x +y =xy ,则2y +1x =1, ∴x +y =(x +y )·(2y+1x)=3+2x y+yx≥3+2√2x y·yx=3+2√2,当且仅当x =1+√2,y =2+√2时等号成立,故此时x +y 的最小值为3+2√2.当a =-2时,2x +y =xy -2,若x =1,则等式不成立,故x ≠1,则y =2(x+1)x -1>0,∴x >1,x +y =x +2(x+1)x -1=x +2+4x -1=x -1+4x -1+3≥2√4x -1·(x -1)+3=4+3=7,当且仅当x =3时取等号,此时x +y 的最小值为7.17.解析 (1)由题意得A ={x |1<x <2},B ={x ||x +1|≤1}={x |-2≤x ≤0}, (3分) ∴A ∪B ={x |-2≤x ≤0或1<x <2}. (5分)(2)选①.∵A ∪B =B ,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选②.∵(∁R B )∩A =⌀,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选③.∵B ∪(∁R A )=R,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0,(8分)解得-2≤a≤-1.(9分)∴实数a的取值范围为{a|-2≤a≤-1}. (10分)18.解析(1)∵命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题, ∴¬p:“∀x∈R,不等式x2-2x-m>0恒成立”是真命题, (1分)∴方程x2-2x-m=0无实根, (3分)∴Δ=4+4m<0,解得m<-1, (5分)即实数m的取值集合A={m|m<-1}.(6分)(2)∵-4<m-a<4,即a-4<m<a+4,∴q:a-4<m<a+4, (8分)由(1)可知¬p:m<-1,若q:a-4<m<a+4是¬p的充分不必要条件,则4+a≤-1,解得a≤-5.(11分)故实数a的取值范围是{a|a≤-5}.(12分)19.证明(1)因为x>y>0,所以xy>0,1xy>0, (2分)于是x·1xy >y·1xy,即1y>1x, (4分)由z>0,得zx <zy.(6分)(2)因为x>0,y>0,z>0,所以x+y≥2√xy,x+z≥2√xz,y+z≥2√yz, (9分) 所以(x+y)(x+z)(y+z)≥2√xy×2√xz×2√yz=8xyz, (10分)当且仅当x=y=z时,等号同时成立, (11分)又x>y,所以(x+y)(x+z)(y+z)>8xyz.(12分)20.解析(1)∵不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},∴a>0,且1,b是一元二次方程ax2-3x+2=0的两个实数根, (2分)∴{1+b=3a,1×b=2a,a>0,解得{a=1,b=2.(5分)(2)不等式ax2-3x+2>5-ax等价于ax2+(a-3)x-3>0,即(ax-3)(x+1)>0.(6分)当a=0时,原不等式的解集为{x|x<-1}; (7分)当a≠0时,方程(ax-3)(x+1)=0的两根为x1=-1,x2=3a,当a>0时,原不等式的解集为{x|x<-1或x>3a}, (8分)当a<0时,①若3a >-1,即a<-3,则原不等式的解集为{x|-1<x<3a}, (9分)②若3a <-1,即-3<a<0,则原不等式的解集为{x|3a<x<-1}, (10分)③若3a=-1,即a=-3,则原不等式的解集为⌀.(11分)综上所述,当a>0时,原不等式的解集为{x|x<-1或x>3a};当a=0时,原不等式的解集为{x|x<-1};当-3<a<0时,原不等式的解集为{x|3a<x<-1};当a=-3时,原不等式的解集为⌀;当a<-3时,原不等式的解集为{x|-1<x<3a}. (12分)21.解析(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为yx =x2+3200x+40,x∈[70,100].(2分)又x2+3200x+40≥2√x2·3200x+40=2×40+40=120,当且仅当x2=3200x,即x=80时,等号成立, (3分)所以该企业日加工处理量为80吨时,日加工处理每吨厨余垃圾的平均成本最低.(4分) 因为100<120,所以此时该企业处理1吨厨余垃圾处于亏损状态.(5分)(2)若该企业采用第一种补贴方案,设该企业每日获利为y1元,由题可得y 1=100x-(12x2+40x+3200)+2 300=-12x2+60x-900=-12(x-60)2+900.(7分)因为x∈[70,100],所以当x=70时,企业获利最大,最大利润为850元.(8分) 若该企业采用第二种补贴方案,设该企业每日获利为y2元,由题可得y 2=130x-(12x2+40x+3200)=-12x2+90x-3 200=-12(x-90)2+850. (10分)因为x∈[70,100],所以当x=90时, 企业获利最大,最大利润为850元.(11分)答案示例1:因为两种方案所获最大利润相同,所以选择两种方案均可.(12分)答案示例2:因为两种方案所获最大利润相同,但第一种补贴方案只需要企业日加工处理量为70吨即可获得最大利润,所以选择第一种补贴方案.(12分)答案示例3:因为两种方案所获最大利润相同,但第二种补贴方案能够为社会做出更大的贡献,所以选择第二种补贴方案.(12分)22.解析(1)当k2-2k-3=0时,k=-1或k=3,若k=-1,则原不等式化为1>0,恒成立,满足题意,若k=3,则原不等式化为4x+1>0,解得x>-14,不满足题意,舍去.(2分)当k2-2k-3≠0时,则{k 2-2k -3>0,(k +1)2-4(k 2-2k -3)<0, 解得k >133或k <-1.综上可知,k 的取值范围为k ≤-1或k >133. (4分)(2)根据不等式解集的形式可知k 2-2k -3>0,解得k >3或k <-1. ∵不等式解集的两个端点就是对应方程的实数根,∴(k 2-2k -3)x 2+(k +1)x +1=0(k ∈R)有两个不相等的负实数根, (6分) ∴{ (k +1)2-4(k 2-2k -3)>0,-k+1k 2-2k -3<0,1k 2-2k -3>0,解得3<k <133, ∴k 的取值范围为3<k <133. (8分)(3)存在.根据题意可得M ={x |x >t },-1≤t <1, 当k 2-2k -3=0时,解得k =3或k =-1,若k =-1,则原不等式为1>0,恒成立,不满足条件,若k =3,则原不等式的解集是{x|x >-14},满足条件; (10分)当k 2-2k -3>0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件; 当k 2-2k -3<0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件. 综上,满足条件的k 的值为3. (12分)。
高一数学集合测试题
高一数学集合测试题一、选择题(每题5分,共30分)1. 下列集合中,表示空集的是()A. {0}B. {x|x²+1 = 0,x∈R}C. {x|x² - 1 = 0,x∈R}D. {x|x < -1且x > 1}咱先看A选项哈,{0}这里面有个元素0呢,可不是空集哦。
再瞅B选项,对于方程x²+1 = 0,在实数范围内,x²肯定是大于等于0的,那x²+1就永远不可能等于0,所以这个集合里啥元素都没有,就是空集啦。
C选项呢,x² - 1 = 0,那x可以是1或者 - 1,这个集合有元素呢。
D选项,x既小于 - 1又大于1,这在实数里是不存在这样的数的,但这不是空集的标准表示,这叫无解区间。
所以这题答案就是B。
2. 已知集合A = {1,2,3},B = {2,3,4},则A∩B =()A. {1,2,3,4}B. {2,3}C. {1}D. {4}A∩B呢,就是求既在集合A里又在集合B里的元素。
集合A有1、2、3,集合B有2、3、4,那共同的元素就是2和3呗,所以答案是B。
3. 若集合A = {x|x > 1},B = {x|x < 3},则A∪B =()A. {x|1 < x < 3}B. {x|x > 1}C. {x|x < 3}D. RA∪B就是把集合A和集合B里的所有元素都放一块。
集合A里是大于1的数,集合B里是小于3的数,那合起来就是所有的实数啦,就像把从1往右的数和往左到3的数都算上,那就是整个数轴了,所以答案是D。
4. 设集合M = {x|x = 3k,k∈Z},N = {x|x = 6k,k∈Z},则()A. N⊆MB. M⊆NC. M = ND. M∩N = ∅咱看哈,集合M里的元素x = 3k,k是整数,那就是3的倍数。
集合N里的元素x = 6k,k是整数,这就是6的倍数。
高一数学不等式部分经典习题及答案
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
集合、常用逻辑用语与不等式-高一数学必修一(满分训练卷)
集合、常用逻辑用语与不等式(满分训练卷)考试时间:120分钟试卷总分:150分班级姓名:一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|280}A x x x =--<,{2B =,3,4,5},则(A B = )A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.若指数函数()()1xf x m =-是R 上的单调减函数,则m 的取值范围是A.2m < B.2m > C.12m << D.01m <<3.已知集合{}2|20A x N x x =∈-≤,{}|12B x x =-≤≤,则A B 的子集个数为A.3B.4C.7D.84.已知:11p m x m -<<+,()():260q x x --<,且q 是p 的必要不充分条件,则实数m 的取值范围为()A .35m <<B .35m ≤≤C .5m >或3m <D .5m >或3m ≤5.设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .106.已知不等式组x 2−4x +3<0x 2−6x +8<0的解集是关于x 的不等式x 2−3x +a <0解集的子集,则实数a 的取值范围是( )A.a <0B.a ≤0C.a ≤2D.a <27.已知0x >,0y >,且22x y +=,则321x y+的最小值为()A .24B .25C .26D .278.已知集合A ={x |-3≤x ≤-2},集合B ={x |m -1≤x ≤2m +1},且A ∪B =A ,则实数m 的取值范围是()A.-4≤m ≤32-B.-4<m <32-C.m ≤32-D.m ≥32-二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若集合2{|P x y x ==,}x R ∈,集合2{|T y y x ==,}x R ∈,则()A .0P∈B .1T-∉C .P T =∅D .P T=10.已知全集U =R ,集合{}|27A x x =-≤≤,{}|121B x m x m =+≤≤-,则使U A B ⊆ð成立的实数m 的取值范围可以是()A.{}|610m m <≤ B.{}|22m m -<<C.1|22m m ⎧⎫-<<-⎨⎬⎩⎭D.{}|58m m <≤11.下列命题中真命题的是( )A.若a >b ,则a 2>b 2B.若ac 2>bc 2,则a >b >0C.若a <b <0,则a 2>ab >b 2D.若a <b <0,则1a >1b 12.设a >1,b >1且ab −(a +b)=1,那么( )A.a +b 有最小值2+22B.a +2b 有最小值7C.ab 有最大值1+2D.ab 有最小值3+22三、填空题:(本题共4小题,每小题5分,共20分)13.命题“0x ∃∈R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.14.不等式2x−1x≥3的解集为______.15.若14a <<,24b -<<,则2a b -的取值范围是.16.正数a ,b 满足191a b+=,若不等式2414a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围.四、解答题:(本题共6小题,共70分。
高一数学集合与不等式练习题
高一数学集合与不等式练习题一、选择题1*.设a,b ∈R ,集合{1,a+b,a}={0,ab,b},则b-a 等于( ) A. 1 B.-1 C.2 D.-2 2*.设P 和Q 是两个集合,定义集合P-Q={x|Q x P x 且,},如果P={x|x<0},Q={x||x-2|<1}.那么P-Q 等于() A.}10|{x x B.}10|{x x C.}21|{x x D.}32|{x x 3*.已知集合A={x|x<a},B={x|1<x<2}.且.)(R B C A u 则实数a 的取值范围是( )A.a 2B.a<1C.a 2D.a>2二、非选择题(解答题做在背面)4.已知集合A={x|01832x x },B={x|(x-k)(x-k-1)0},若B A , 则k 的范围是__.5*.已知集合M={R a x ax R x ,023|2}.(1)若集合M 中只有一个元素,求a 的值,并求出这个元素;(2)若集合M 中至多只有一个元素,求a 的取值范围。
6.设全集U=R ,集合M={m|方程012x mx 有实数根},集合N={m|方程0m 2x x 有实数根},求NM C )(u 7*.重点题(1)若方程07)1(82m x m x 有两个负根,求实数m 的取值范围。
(2)若方程07)5(32xm x 的一个根大于4,一个根小于4,求m 的取值范围。
(3)若方程01222t tx x 的两个实根都在-2和4之间求t 的取值范围。
8.设A={x|1<x<3}.又设B 是关于x 的不等式组的解集,试确定a,b 的取值范围,使得B A. 9*.设关于x 的二次方程02)13(722k k x k x 有两根21,x x ,且满足,21021x x 求K 的取值范围。
集合与常用逻辑用语、一元二次函数、方程和不等式单元测试答
高一数学必修一第一、二章测试题一、单选题(每小题5分,共40分)1.若集合A ={x ∈N |x ≤ 2 020 },a =22 ,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈A D .a ∉A 分析选D.因为A ={x ∈N |x ≤ 2 020 },所以A 中元素全是整数,因为a =22 ,所以a ∉A .2.设全集为R ,集合A ={1,2,3},B ={x |y =x -2 },则A ∩(R B )=( ) A .{1,2} B .{1} C .{1,3} D .{1,2,3}分析选B.因为B ={x |x ≥2},所以R B ={x |x <2},且A ={1,2,3}, 所以A ∩(R B )={1}.3.已知集合A ={x |(x -1)(x +2)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪x x -1>0 ,则A ∩B =( )A .{x |-2<x <0}B .{x |1<x <2}C .{x |0<x <1}D .R分析选A.因为集合A ={x |(x -1)(x +2)<0}={x |-2<x <1},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1>0 ={x |x <0或x >1},所以A ∩B ={x |-2<x <0}. 4.设a =x 2+y 2-2x +2y +1,b =-4,则实数a ,b 的大小关系( ) A .a <b B .a >b C .a =b D .与x ,y 取值有关分析选B.a -b =x 2+y 2-2x +2y +5=(x -1)2+(y +1)2+3>0,所以a >b . 5.已知t >0,则函数y =2t 2-t +2t的最小值为( )A .-2B .12C .3D .2分析选C.因为t >0,则函数y =2t 2-t +2t =2t +2t-1≥22t ·2t-1=3,当且仅当t =1时取等号.所以函数y =2t 2-t +2t的最小值为3.6.若不等式kx 2-6kx +k +8≥0的解集为R ,则实数k 的取值范围是( ) A .0≤k ≤1B .0<k ≤1C .k <0或k >1D .k ≤0或k ≥1分析选A.由于不等式kx 2-6kx +k +8≥0的解集为R ,分以下两种情况讨论:①当k =0时,则有8≥0,合乎题意;②当k ≠0时,则有⎩⎪⎨⎪⎧k >0Δ=36k 2-4k (k +8)=32k (k -1)≤0 , 解得0<k ≤1.综上所述,0≤k ≤1.7.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等.假设今明两年该物品的价格分别为p 1,p 2(p 1≠p 2),则这两种方案中平均价格比较低的是( ) A .甲B .乙C .甲、乙一样D .无法确定解:甲方案:每年购买的数量相等;乙方案:每年购买的金额相等. 设甲每年购买的数量x ;乙每年购买的金额y . 因为今明两年该物品的价格分别为p 1,p 2(p 1≠p 2), 则甲的平均价格甲==,①乙的平均价格乙==,②两式作商可得=>=1,故乙的平均价格比较低,故选:B .8.某公司从2018年起每人的年工资主要由三个项目组成并按下表规定实施:项目 计算方法基础工资 2018年1万元,以后每年逐增10%住房补贴 按工龄计算:400元×工龄 医疗费每年1 600元固定不变若该公司某职工在2020年将得到的住房补贴与医疗费之和超过基础工资的25%,到2020年底这位职工的工龄至少是( )A .2年B .3年C .4年D .5年分析选C.设这位职工工龄至少为x 年,则400x +1 600>10 000·(1+10%)2×25%, 即400x +1 600>3 025,即x >3.562 5,所以至少为4年.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.下列命题中,正确的是( ) A .若a b >,则22ac bc > B .若a b >,则33a b >C .若0a b >>,0m >,则b m ba m a+>+ D .若15a -<<,23b <<,则43a b -<-<分析选BCD : 取0c,代入验证A,有00>,错误,故A 不正确;对于B :记()3f x x =,则()f x 为增函数,所以a b >时有()()f a f b >,故B 正确; 对于C :记()(0,0)b xf x a b x a x+=>>≥+,易证()f x 为增函数,所以0m >时有()()0f m f >,即b m ba m a+>+成立,故C 正确; 对于D :23,32b b <<∴-<-<-,又有15a -<<,利用同向不等式相加,有:43a b -<-<,故D正确.故选:BCD10.下列不等式不一定正确的是( ) A .|x +1x |≥2B .x 2+y 2xy ≥2C .x 2+y 22>xyD .|x +y |2≥|xy |分析选BCD.因为x 与1x 同号,所以⎪⎪⎪⎪⎪⎪x +1x =|x |+1|x | ≥2,A 正确; 当x ,y 异号时,B 不正确;当x =y 时,x 2+y 22=xy ,C 不正确;当x =1,y =-1时,D 不正确. 10.有以下说法,其中正确的为( )A .“x ,y 为无理数”是“xy 为无理数”的充分条件B .“若x ∈A ∩B ”则“x ∈A ”的否定是“若x ∈A ∩B ”则“x ∉∈A ”C .“x 2-2x -3=0”是“x =3”的必要条件D .“x >1”是“1x<1”的充分不必要条件分析选CD.对于A ,2 是无理数,但2 ×2 =2是有理数,故A 不正确;对于B ,“若x ∈A ∩B ”则“x ∈A ”是全称量词命题,它的否定是“∃x ∈A ∩B ”则“x ∉∈A ”,故B 不正确;对于C ,x =3⇒x 2-2x -3=0,反之不成立,因此“x 2-2x -3=0”是“x =3”的必要条件,故C 正确;对于D ,1x<1⇒x >1或x <0,因此“x >1”是“1x<1”的充分不必要条件,故D 正确.12.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的取值可以是( ) A .4 B .5 C .6 D .7分析选CD.设y =x 2-6x +a ,其图象为开口向上,对称轴为x =3的抛物线,如图所示.关于x 的一元二次不等式x2-6x +a ≤0的解集中有且仅有3个整数,a 需满足⎩⎪⎨⎪⎧22-6×2+a ≤012-6×1+a >0 ,解得5<a ≤8,又a ∈Z ,所以a 的取值是6,7,8. 三、填空题(每小题5分,共20分)13.命题∀x ∈R ,∃n ∈N ,2n>x 2的否定为________.分析存在量词命题的否定是全称量词命题,所以该命题的否定为 答案:∃x ∈R , ∀n ∈N ,2n≤x2 14.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为____________.分析:由(x -m )2>3(x -m ),得(x -m )(x -m -3)>0,解得x >m +3或x <m . 所以p :x >m +3或x <m .由x 2+3x -4<0,解得-4<x <1,即q :-4<x <1. 因为p 是q 成立的必要不充分条件,所以q ⇒p ,p ⇒q , 所以{x |-4<x <1}{x |x >m +3或x <m }.结合数轴可知m +3≤-4或m ≥1,解得m ≤-7或m ≥1.答案:m ≤-7或m ≥1 15.已知不等式axx -1<1的解集为{x |x <1或x >2},则a =______.分析由(1)101a x x -+<-,即[](1)1(1)0a x x -+-<,由不等式的解与方程的关系,(1)210a -⨯+=所以,a =1216.已知正实数a ,b 满足ab -b +1=0,则1a +4b 的最小值是________,此时b =________.分析由ab -b +1=0可得a =b -1b ,由a =b -1b>0,得b >1, 所以1a +4b =b b -1 +4b =1b -1 +4(b -1)+5,因为1b -1 +4(b -1)≥4,所以1a +4b ≥9,当且仅当a =13 ,b =32 时等号成立.答案:9 32四、解答题(共70分)17.(10分)设全集为R ,集合A ={x |x 2-2x -3>0},B ={x |a -1<x <2a +3}. (1)若a =-1,求(R A )∩B ;(2)在①A ∪B =A ,②A ∩B =B ,③(R A )∩B =∅,这三个条件中任选一个作为已知条件,求实数a 的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)分析(1)全集为R ,集合A ={x|x 2-2x -3>0}={x|x <-1或x >3},所以R A ={x|-1≤x ≤3}; 又a =-1时,集合B ={x|a -1<x <2a +3}={x|-2<x <1},所以(R A)∩B ={x|-1≤x <1}.(2)选择①A ∪B =A 作为已知条件.(选择②,③的解法同①)因为A ∪B =A ,所以B ⊆A , 又由A ={x|x <-1或x >3}得当B =∅时a -1≥2a +3,解得a ≤-4;当B ≠∅时⎩⎪⎨⎪⎧a -1<2a +32a +3≤-1 或⎩⎪⎨⎪⎧a -1<2a +3a -1≥3 ,所以⎩⎪⎨⎪⎧a >-4a ≤-2 或⎩⎪⎨⎪⎧a >-4a ≥4,所以-4<a ≤-2或a ≥4.综上,可得a 的取值范围为a ≤-2或a ≥4. 18.(12分)解关于x 的不等式x 2-(3m +1)x +2m 2+2m <0.分析:x 2-(3m +1)x +2m 2+2m<0,即x 2-(3m +1)x +2m(m +1)=(x -2m)(x -m -1)<0, 令(x -2m)(x -m -1)=0,解得x =2m 或x =m +1, 当2m >m +1,即m >1时,解集为{x|m +1<x<2m}, 当2m <m +1,即m <1时,解集为{x|2m<x<m +1}, 当m =1时,解集为∅.综上所述,当m =1时,解集为∅;当m>1时,解集为{x|m +1<x<2m};当m<1时,解集为{x|2m<x<m +1}. 19.(12分)(1) 若x>3,求y =4x +2+13x -的最小值. (2)已知0,0a b >>,且1a b +=,4141M a b =++求M 的最大值.解(1)因为x>3,所以x -3>0.又因为y =4(x -3)+1x -3 +1414(3)14183x x ≥-⨯=- 当且仅当14(3)3x x -=-,即132x -=时,72x =等号成立,故y 的最小值是18. (2)2(4141)4()22(41)(41)4()2(41)(41)8()423M a b a b a b a b a b a b =+++=+++++≤++++++=++=,当4a+1=4b+1时取等号,此时a=b=12∴M 的最大值是3 20.(12分)已知命题p :“∃x ∈R ,x 2-2x +a =0”;命题q :“∀x ∈{x |1≤x ≤2},x 2+ax -8≤0” 若p,q 至少有一个为假命题,求实数a 的取值范围.分析命题p :“∃x ∈R ,x 2-2x +a =0”为假命题,可得方程x 2-2x +a =0无实数解,即有Δ=4-4a <0,解得a >1;命题q :“∀x ∈{x|1≤x ≤2},x 2+ax -8≤0”为真命题,可得⎩⎪⎨⎪⎧1+a -8≤04+2a -8≤0 ,解得a ≤2,命题q 为假a ≥2.综上可得,a 的取值范围是a >1. 21.(12分)()1已知x ,y 都是正数.求证:()()()2233338.x y x y x y x y +++≥()2已知a ,b ,c 为正数,且满足1a b c ++=.证明:164149a b c++≥.21.(1)证明:由基本不等式可知()()()(()(22332x y x yxy xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号). (2)∵1a b c ++=,∴()16411641a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭16416421b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21≥+21168449=+++= 当且仅当47a =,27b =,17c =时,上式等号成立. 22.(12分)第一机床厂投资A 生产线500万元,每万元可创造利润1.5万元.该厂通过引进先进技术,在A 生产线的投资减少了x (x >0)万元,且每万元创造的利润变为原来的(1+0.005x )倍.现将在A 生产线少投资的x 万元全部投入B 生产线,且每万元创造的利润为1.5(a -0.013x )万元,其中a >0. (1)若技术改进后A 生产线的利润不低于原来A 生产线的利润,求x 的取值范围; (2)若B 生产线的利润始终不高于技术改进后A 生产线的利润,求a 的最大值. 分析(1)由题意得1.5(1+0.005x)(500-x)≥1.5×500,整理得x 2-300x ≤0, 解得0≤x ≤300,又x >0,故0<x ≤300.(2)由题意知,B 生产线的利润为 1.5(a -0.013x)x 万元,技术改进后,A 生产线的利润为 1.5(1+0.005x)(500-x)万元,则1.5(a -0.013x)x ≤1.5(1+0.005x)(500-x)恒成立,又x >0, 所以a ≤x 125 +500x +1.5恒成立.又x 125 +500x +1.5≥2x 125·500x+1.5=5.5, 当且仅当x 125 =500x ,即x =250时,等号成立,又a>0,所以0<a ≤5.5,所以a 的最大值为5.5.。
高一数学不等式试题
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
高一数学集合单元测试题(含答案)
高一数学集合测试题第一卷一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =I ( ) A .{}1,2 B .{}3,4 C .{}1 D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .A B U B .A B I C .()()U U C A C B U D .()()U U C A C B I8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅I ,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2答题卷 总分150分二、填空题:(共4题,每题5分)11.满足{}{}1,21,2,3B =U 的所有集合B 的集合为 。
新高一数学集合不等式预习作业
1.1集合及其表示法1、由下列对象组成的集体,其中为集合的是________(填序号).①不超过2π的正整数; ②高一数学课本中的所有难题; ③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考540分以上的学生. 2、用符号∈或∉填空:(1)2______N (2Q(3)0____∅(4)0______{}0(5)b ______{},,a b c (6)0______*N3、用描述法表示下列集合:(1)被5除余1的正整数所构成的集合答:(2)平面直角坐标系中第一、第三象限的点构成的集合答:(3)函数221y x x =-+的图像上所有的点答:4、用列举法表示下列集合: (1)(){},|5,,x y x y x y +=∈∈N N 答: (2){}2230,x x x x --=∈R 答: (3){}2230,x x x x -+=∈R答:(3)12,5xx x ⎧⎫∈∈⎨⎬-⎩⎭N Z答:5、设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a =( )-3或2.6、已知集合A ={x | (a 2-1)x 2+(a +1)x +1=0 ,x ∈R}中有且仅有一个元素,求a 的值.a =1或53.7、若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2014+b 2013的值.8、设正整数的集合A 满足:“若x ∈A ,则10-x ∈A ”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?1.2集合之间的关系1、易混符号:①“∈”与“⊆”②{}0与∅用适当的符号填空: (1). 2 N ; {2} N ; ∅ A; ∅ {}0; 0 ∅; (2).已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N},则A B ; A C ; {2} C ; 2 C2、写出集合{,}a b 的所有子集,并指出哪些是它的真子集。
高一数学集合的运算试题
高一数学集合的运算试题1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.若集合,,则等于()A.B.C.D.【答案】B【解析】,所以答案选.【考点】集合间的运算.3.已知集合,,,.(1)求;(2)若,求实数的取值范围.【答案】(1),(2).【解析】(1)根据全集,先求出集合的补集,再求;(2)由知,集合与有公共元素,所以.试题解析:(1)因为,集合,所以,又因为,结合数轴可知(2)结合数轴可知:当时,.【考点】集合的基本运算(A∩B)=________.4.设全集U=R,A={x|x≥1},B={x|-1≤x<2},则∁U【答案】{x|x<1或x≥2}【解析】求出集合A∩B在求解其补集.把集合B化简,然后取交集.根据题意,由于全集U=R,A={x|x≥1},B={x|-1≤x<2},则A∩B={x|1≤x<2},那么结合数轴法可知∁U(A∩B)= {x|x<1或x≥2},故答案为{x|x<1或x≥2}。
【考点】交、并、补集点评:本题考查了交、并、补集的混合运算,解答时注意正确运用数轴,是基础题.5.若,则( )A.B.C.D.【答案】D【解析】根据题意,由于,那么借助于数轴标根法可知,,选D【考点】集合的并集点评:主要是考查了集合的并集的运算,属于基础题。
6.已知全集,集合,则()A.B.C.D.【答案】D【解析】根据题意,由于全集={0,2,1,3,4},集合,那么根据补集的定义可知,,选D【考点】集合的运算点评:主要是考查了集合的补集的运算,属于基础题。
7.设集合,,分别求满足下列条件的实数的取值范围:(1);(2).【答案】(1)(2)【解析】解:∵, 4分(1)当时,有, 6分解得∴ 8分(2)当时,有,应满足或 10分解得或∴ 12分【考点】集合的交集和并集点评:解决的关键是根据集合的交集和并集的定义,以及一元二次不等式来得到集合关系,结合数轴法求解,属于基础题。
集合与不等式测试题
高一数学集合与不等式测试题 一、选择题(每小题5分,共50分 )1、如果S={a ,b ,c ,d ,f,e},M={a ,c ,d},N={b ,f},那么(C S M )⋂(C S N ) 等于 (A )Φ (B ){e ,a} (C ){e} (D ){b ,f}2.已知集合}1,1{-=A ,}1|{==mx x B (m ≠0),且A B A =⋃,则m 的值为 ( ) (A ).1 (B ).—1 (C ).1或—1 (D )1或—1或03.设集合{}212≤≤-=x x M ,{}k x x N 2≤=,若MN M =,则k 的取值范围( )(A )-12 ≤k ≤2 (B )k >1 (C )k ≥1 (D) -12 <k<24.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( )A 、 ()M P SB 、 ()M P SC 、 ()u M P C SD 、 ()u M P C S5、已知集合{}13M x x =-<,集合{}260N x x x =--<,则A B =( ) A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {}34x x <<6. 已知集合{}{},,141|53|+≤≤+=≤≤-=a x a x B x x A 且A B B ⋂=, B ≠φ,则实数a 的取值范围是( )(A) a ≤1 (B) 0 ≤a ≤1 (C) a ≤0 (D) -4 ≤a ≤17、不等式012262≥---x x x 的解集是 (A)⎭⎬⎫⎩⎨⎧≥<≤-23212|x x x 或 (B)⎭⎬⎫⎩⎨⎧≤<-≤23212|x x x 或(C)⎭⎬⎫⎩⎨⎧≤<-≤22123|x x x 或 (D)⎭⎬⎫⎩⎨⎧≤≤-232|x x8、已知2|32|≤-x 的解集与{}0|2≤++b ax x x 的解集相同,则 (A) 45,3-==b a (B) 45,3=-=b a (C) 45,3==b a (D) 417=+b a9不等式)0(02322<<+-a a ax x 的解集是( )}2|){(a x a x A << }2|){(a x a x B <<}2,|){(a x a x x C <<或 },2|){(a x a x x D <<或10、设P Q x x x P x x x Q 则},2)1(|{},034|{2>-=<+-=为( )}3|){(>x x A }21|){(<<-x x B }32|){(<<x x C }21|){(<<x x D二、填空题(每小题5分,共50分 )11.若集合S={}23,a ,{}|03,T x x a x Z =<+<∈且S ∩T={}1,P=S ∪T,求集合P 的所有子集个数12.已知集合A ={1,2},B ={x x A ⊆},则集合B= .13.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .14.不等式2(1)(2)0(4)x x x x +-≥+的解集为15、解不等式03||22>--x x 的解集是 .16、对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是三、解答题(17题8分,18-19题各10分,20、21题各12分,22题18分,共70分) 17.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围.18、已知集合A={y|y=x 2-4x+5},B={x|y=χ23-}求A ∩B,A ∪B .19.已知A211=且-|},{|{2,求实数m的取值范围.310},++x≥xmxBmxBx=≤+A⊆-≤20、函数Y= (5-4a-a2)2x-(2a-1)x-3的值恒为负值,求a的取值范围。
高一数学集合与不等式测试题
高一级数学单元测试题集合与不等式一、选择题:(4×10)1、设{}|7M x x =≤,x =那么以下关系中正确的选项是 〔 〕 A xM B x M ∉ C {}x M ∈ D {}x M2、设全集U={(x ,y )R y x ∈,},集合M={(x ,y )122=-+x y },N={(x ,y )4-≠x y },那么 〔C U M 〕(C U N )等于〔 〕A {〔2,-2〕}B {〔-2,2〕}C φD C U N 3、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},那么〔C U A 〕⋃〔C U B 〕= 〔 〕 A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 4、{1,2,3}A φ,那么集合A 的个数〔 〕A 5B 6C 7D 8 5、假设x 2-ax -b <0的解集是{x |2<x <3},那么bx 2-ax -1>0的解集为〔 〕 A .11{|}23x x -≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23x x -≤≤- 6、以下不等式中,与32<-x 的解集相同的是 〔 〕 A 0542<--x x B051≤-+x x C 0)1)(5(<+-x x D 0542<-+x x 7、设集合{}212,12x A x x a B xx ⎧-⎫=-<=<⎨⎬+⎩⎭,假设A B ⊆,那么a 的取值范围是〔 〕 A .{}01a a << B .{}01a a <≤ C . {}01a a ≤≤ D .{}01a a ≤< 8、集合M={直线},N={圆},那么M ∩N 中的元素个数为( )A 0个B 0个或1个或2个C 无数个D 无法确定9、设全集U=R,P={|()0,x f x x R =∈},Q={|()0,x g x x R =∈},S={|()0,x x x R ϕ=∈},那么方程22()()0()f xg x x ϕ+=的解集为( ) A P Q S B P Q C ()U P Q C S D ()P Q S10、假设集合A={x |x 2-5x +6<0}, B={x |x 2-4ax +3a 2<0},且A ⊆B ,那么实数a 的取值范围( ).A 12a <<B 12a ≤≤C 13a <<D 13a ≤≤ 二、填空题〔5分×5=25分〕11、集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},那么A ∪B= ;12、假设A={x |x 2+x -6=0}, B={x |mx +1=0}且A ∪B =A 那么m 的取值集合为______ 13、经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,问两门都不喜欢的有 名学生.14、集合A ={a |关于x 的方程22-+x ax =1有唯一实数解},用列举法表示集合A 为______________.三.解做题(12分+13分+15分)15、不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.16、U={x |x 2-3x +2≥0}, A={x ||x -2|>1},B={x |21--x x ≥0}, 求A ∩B , A ∪B , (C U A )∪B , A ∩(C U B ).17、解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2) 0222>++mx x .集合与不等式参考答案DACBC ACACB11、{x |x ≤-7或x >1} 12、110,,32⎧⎫-⎨⎬⎩⎭13 、 4 14、A={-4914、解:由22-+x a x =1得⎪⎩⎪⎨⎧≠-=---.02,0222x a x x 由方程x 2-x -a -2=0得Δ=1+4(a +2)=0,解得a =-49,此时x =21满足②.∴A ={-49}. 15、解析: (1)当m 2-2m -3=0,即m =3或m =-1时, ①假设m =3,原不等式解集为R②假设m =-1,原不等式化为4x -1<0∴原不等式解集为{x |x <41},不合题设条件. (2)假设m 2-2m -3≠0,依题意有⎪⎩⎪⎨⎧<--+-=∆<--0)32(4)3(032222m m m m m即⎪⎩⎪⎨⎧<<-<<-35131m m ∴-51<m <3,综上,当-51<m ≤3时,不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R . 16、解:∵U ={x |x 2-3x +2≥0}={x |(x -2)(x -1)≥0}={x |x ≥2或x ≤1}, A ={x ||x -2|>1} ={x |x -2>1或x -2<-1}={x |x >3或x <1},B ={x |⎩⎨⎧≠-≥--020)2)(1(x x x }={x |x >2或x ≤1}.由图(1)可知,A ∩B ={x |x >3或x <1},A ∪B ={x |x >2或x ≤1}..AAB B123x图(1) 由图(2)可知U A ={x |2≤x ≤3或x =1}, 易知U B ={x |x =2}..A AUU123x图(2) 由图(3)可知,(U A )∪B ={x |x ≥2或x ≤1}=U ..A B B UU123x图(3) 由图(4)可知,A ∩(U B )=∅.BA AU123图(4)17、解析:(1)原不等式可化为:,0)1)((<--x a x 假设a >1时,解为1<x <a ,假设a <1时,解为a <x <1,假设a =1时,解为φ(2)△=162-m . ①当时或即440162>-<>-m m m ,△>0.方程0222=++mx x 有二实数根:.416,4162221-+-=---=m m x m m x∴原不等式的解集为.416416|22⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4 时,△=0,两根为.421mx x -== ①②假设,4=m 那么其根为-1,∴原不等式的解集为{}1,|-≠∈x R x x 且. 假设,4-=m 那么其根为1,∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时,方程无实数根.∴原不等式的解集为R .。
高一数学之不等式和集合小练习
高一数学之不等式和集合小练习一、选择题(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
)1.设a<b,则不等式组,x a x b >⎧⎨<⎩的解集是( )A.{x|x>a}B.{x|a<x<b}C.{x|x<b}D.{x|x>a 或x<b}2.已知≥2},则下列结论成立的是( )A.a ∈AB.{a}⊆AC.{a}∩A=∅D.{a}∪A=A 3.下列函数中,一次函数有( )①y=3x ;②y=2x+3;③y=12x2-1;④y=1-2x. A.1个 B.2个 C.3个 D.4个4.“4x =”是“216x =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.由全体实数组成的集合可表示为:①{实数};②{实数集};③R ;④{R},其中表示正确的个数是( )A.1个B.2个C.3个D.4个6.设集合M={x|-1<x<4},N={x|0≤x≤5},则M∪N=()A.{x|4<x≤5}B.{x|-1<x≤5}C.{x|0≤x<4}D.{x|-1<x≤0}7.已知集合A={x|x2-2x-3<0,x∈Z},则集合A的真子集个数为()A.3B.6C.7D.88.下列各组不等式中,是同解不等式的是()A.3x+2>2x+7与-x>-5B.x-13-1>x+32与2(x-1)-1>3(x+3)C.x2(x+1)>0与x+1>0D.(x2+1)(x-3)≤0与x-3≤09.如图所示是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图像,那么从图像中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45元C.约0.47元D.0.5元10.y =3-2x 2x -5的值域是 ( ) A.(-∞,-1)∪(-1,+∞) B.5,2⎛⎫-∞ ⎪⎝⎭∪5,2⎛⎫+∞ ⎪⎝⎭C.(-∞,0)∪(0,+∞)D.(-∞,1)∪(1,+∞)11.如果实数a ,b ,c 满足c <b <a ,那么“ac <0”是“ab >ac ”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数f (2x -1)=2x2-3,则f (-1)为 ( ) A.-23 B.23 C.-12 D.-113.不等式x (3-2x )≥0的解集是 ( ) A.203x x x ⎧⎫≥≤⎨⎬⎩⎭或 B.203x x ⎧⎫≤≤⎨⎬⎩⎭C.302x x ⎧⎫-≤≤⎨⎬⎩⎭D.{x |x ≥0}14.“a >0”是“a ≠0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题1.设集合{|3},5M x x m =≤-=-,则m 与集合M 的关系是 .2.已知A ={1,2,3},B ={3,4,5},则A ∪B = .3.不等式|x -2|<1表示的几何意义为 ,解集为 .4.不等式4x +3≥2x +7的解集是 .5.若函数f (x )=2x2-1,f (a )=7,则a = .6.若x >1,则x +9x -1的最小值为 . 7.函数f (x )=(x -2)0lg (6-2x )的定义域为 . 8.函数f (x )=-x2+ax -1的值域为(-∞,0],则a = .三、解答题(解答题应写出文字说明及演算步骤)1.写出满足{a,b}A⊆{a,b,c,d}的集合A.2.已知集合A={x|x2-3x+a-1=0},且A∪∅=∅,求实数a的取值范围.3.设a=(x2+1)2,b=x4+x2+1.(1)若x≠0,试比较a与b的大小;(2)若x∈R,试比较a与b的大小.4.解下列不等式:(1)3|-x|-1<8;(2)|x-1|≥5.5.若x>0,y>0,且2x+3y=3,求x·y的最大值.6.已知f(x)是二次函数,且满足f(0)=0,f(x+1)-f(x)=2x.求f(x)的解析式.7.已知不等式x2-ax+b<0的解集为{x|1<x<7},求不等式bx2+ax+1>0的解集.8.设全集U=R,已知集合M={x|3+2x-x2≥0},N={x||x+2|<9},求(∁UM)∩N.9.已知函数f(x)=3x2-2x-1.(1)求f(x-1)的解析式;(2)求使f(x)>0的x的取值范围;(3)若f (x )的定义域为[0,3],求函数的值域.10.已知二次函数f (x )=ax2+bx +c 的图象与x 轴有两个交点,它们之间的距离为6,且对称轴方程为x =1,与y 轴的交点坐标为(0,8).(1)求函数f (x )的解析式;(2)若点P (x,y )是此二次函数图象上任意一点,求u =y2+(x -1)2的最小值.答案一、选择题1.B2.C3.C 【提示】①②④都是一次函数.4.A 【提示】2416x x =⇒=,而216x=4x =,故选A.5.B6.B7.C8.D9.A10.A11.A12.A13.B14.A二、填空题1.m M ∈ 【提示】由集合与元素的关系可得.2.{1,2,3,4,5}3.数轴上实数x 的点到点2的距离小于1 {x|1<x<3}4.[2,+∞)【提示】2x ≥4⇒x ≥2.5.±2【提示】∵f (a )=2a2-1=7,∴a2=4,a =±2.6.77.5322x x x x ⎧⎫<≠≠⎨⎬⎩⎭且, 8.±2【提示】Δ=a2-4=0.三、解答题1.{a,b,c} {a,b,d} {a,b,c,d}2.a>1343.解:(1)∵a -b =(x2+1)2-(x4+x2+1)=x2.又∵x ≠0,∴x2>0,即a>b.(2)a ≥b.4.(1)(-3,3) (2)(-∞,-4)∪(6,+∞)5.解:∵x >0,y >0,∴2x +3y ≥22x ·3y =26xy , 26xy ≤3,两边同时平方得到xy ≤38,即xy 的最大值为38.6.解:设f (x )=ax2+bx +c.由f (0)=0,得c =0,∴f (x )=ax2+bx ,由f (x +1)-f (x )=2x 得a (x +1)2+b (x +1)-(ax2+bx )=2x ,化简得2ax +a +b =2x ,∵⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴解析式为f (x )=x2-x.7.解:∵不等式x2-ax +b<0的解集为{x|1<x<7},∴方程x2-ax +b =0的解为1,7,∴⎩⎪⎨⎪⎧1-a +b =0,49-7a +b =0,∴⎩⎪⎨⎪⎧a =8,b =7,∴不等式bx2+ax+1>0可知为7x2+8x+1>0,∴不等式的解集为{x|x<-1或x>-1 7}.8.解:∵M:x2-2x-3≤0,即(x-3)(x+1)≤0,解得-1≤x≤3,N:-9<x+2<9,即-11≤x<7,∴∁UM:x<-1或x>3,∴(∁UM)∩N={x|-11<x<-1或3<x<7}.9.解:(1)f(x-1)=3(x-1)2-2(x-1)-1 =3(x2-2x+1)-2x+2-1=3x2-8x+4.(2)由f(x)>0得3x2-2x-1>0,解得x<-13或x>1,∴使f(x)>0的x的取值范围为(-∞,-13)∪(1,+∞).(3)f(x)=3x2-2x-1=3(x-13)2-43,f(x)min=f(13)=-43,f(x)max=f(3)=20,∴值域为[-43,20].10.解(1)由题意得抛物线与x轴的交点坐标为(-2,0),(4,0),设二次函数解析式f(x)=a(x+2)(x-4),当x=0时,f(0)=-8a=8,得a=-1,∴二次函数解析式f(x)=-x2+2x+8.(另解由题意得抛物线与x 轴交点坐标(-2,0),(4,0)(2分)将(-2,0),(4,0),(0,8)代入计算得a,b,c及函数关系式.)(3分)(2)∵y=-x2+2x+8=-(x-1)2+9,∴(x-1)2=9-y(y≤9),u=y2+(x-1)2=y2+9-y=212y⎛⎫-⎪⎝⎭+354,∴当y=12∈(-∞,9]时,u有最小值354.。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
高一数学具体的不等式试题
高一数学具体的不等式试题1.记关于x的不等式的解集为P,不等式的解集为Q.(1)若a=3,求P(2)若求正数a的取值范围【答案】(1)(2)【解析】思路分析:(1)解得(2)化简由得得到。
解:(1)由得(2)由得所以,即的取值范围是【考点】集合的概念,集合的运算,简单不等式的解法。
点评:中档题,为进行集合的运算,首先化简集合,明确集合中的元素是什么。
2.不等式ax2+bx+2>0的解集是,则a+b的值是()A.10B.-10C.-14D.14【答案】C【解析】根据题意,由于不等式ax2+bx+2>0的解集是,那么说明了是ax2+bx+2=0的两个根,然后利用韦达定理可知则a+b的值是-14,故选C.【考点】一元二次不等式的解集点评:主要是考查了二次不等式的解集的运用,属于基础题。
3.关于x的不等式:的解集为 .【答案】【解析】根据题意,由于等价于,故可知不等式的解集为。
【考点】不等式的求解点评:主要是考查了不等式的求解,属于基础题。
4.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.5.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
6.不等式的解集是,【答案】【解析】根据题意,由于不等式,故可知答案为【考点】一元二次不等式的解法点评:本试题主要是考查了一元二次不等式的解集的求解,属于基础题。
7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
高一数学集合试题及答案
高一数学集合试题及答案一、单选题1.设集合104x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()R A B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >2.已知集合{}0,1,2,3,4,5,6,7A =,{}1,2,4,6B =,则A B =( )A .{}2,4B .{}1,2,4C .{}1,2,4,6D .{}2,4,63.{}1,2,3A =,{}28x B x =<,则A B =( ) A .∅ B .{}1 C .{}1,2 D .{}1,2,34.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( ) A .{}0,1 B .{}0,1,2 C .{}1,2,3 D .{}1,2,3,45.若集合{}220A x x x =--<,{}21B x x =<,则A B =( ) A .A B .B C .()1,0- D .()0,26.若全集为R ,集合{2x A x =≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .3,22⎛⎫ ⎪⎝⎭ D .()2,+∞7.已知集合{|4}A x x =<,{0,1,2,3,4}B =,则A B =( )A .{0,1,2}B .{1,2,3}C .{2,3}D .{0,1,2,3}8.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 10.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( ) A .[0,2] B .[0,4] C .[2,2]- D .∅11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( )A .()(),25,-∞⋃+∞B .(][),25,-∞⋃+∞C .()2,5D .[]2,512.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( ) A .{}4a a ≤ B .{}4a a ≥ C .{}4a a ≤- D .{}4a a ≥-13.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( )A .3B .4C .5D .614.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( ) A .32 B .31 C .16 D .1515.设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()U A B =( )A .()1,2B .(]1,2C .[)1,2D .[]1,2二、填空题16.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______17.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题: ①{} 2,3,5,6,8,9,A B =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数;③A 、B 两个集合元素个数相等;④n A ∀∈,22n n ≥.其中真命题序号是______.18.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.19.集合{}33A x Z x =∈-<<的子集个数为______.20.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 21.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.22.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.23.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.若集合(){,|M x y y ==,(){},|1N x y x ==,则M N =______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.已知集合{23}M xx =-<≤∣, {}N x x a =≤∣. (1)当1a =时,求M N ⋂,M N ⋃,()R M N ;(2)当M N ⋂=∅时,求a 的取值范围.28.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.29.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-. (1)若3a =-,求出A 中其他所有元素;(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的元素30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.C【解析】【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<,所以(){}R 4A B x x ⋃=≥,故选:C2.C【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义知:{}1,2,4,6A B =.故选:C.3.C【解析】【分析】先求出集合B ,再按照交集的定义计算即可.【详解】 由题意知:{}3B x x =<,故A B ={}1,2.故选:C.4.C【解析】【分析】化简集合A ,根据集合B 中元素的性质求出集合B.【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且, {1,2,3}B ∴=,故选:C5.B【解析】【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可.【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<,解不等式21x <得11x -<<,故{}11B x x =-<<,所以A B ={}11x x B -<<=.故选:B6.C【解析】【分析】先求出集合A ,B ,再根据补集交集的定义即可求出.【详解】因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B x x ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C .7.D【解析】【分析】根据集合交集运算方法计算即可.【详解】因为{|4}A x x =<,{0,1,2,3,4}B =,∴A B ={0,1,2,3}.故选:D.8.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C9.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.10.A【解析】【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得.【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥则{|02}A B x x =≤≤.故选:A11.D【解析】【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可.【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --,因为存在[]12,1,2x x ∈,使得12()()f x g x =,则[4,2][0,1]a a --≠∅若[4,2][0,1]a a --=∅,则14a <-或02a >-,得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤,即实数a 的取值范围是[2,5],A ,B ,C 错,D 对.故选:D .12.C【解析】【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果.【详解】由题意可得220a +≤,解得4a ≤-,故选:C13.A【解析】【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数.【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<, 即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素.故选:A.14.B【解析】【分析】求出集合A ,利用集合的非空子集个数公式可求得结果.【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-, 即集合A 含有5个元素,则A 的非空子集有52131-=(个).故选:B.15.C【解析】【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答.【详解】 解不等式21-≤x 得:13x ≤≤,则[1,3]A =,解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)U B =-∞, 所以()[1,2)U AB =.故选:C二、填空题16.{}0,1-【解析】【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可.【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意;当0a ≠时,若集合A 中只有一个元素,则一元二次方程2210ax x 有二重根,即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.-故答案为:{}0,1.-17.①②③【解析】【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立.【详解】 因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.18.a <-4或a >2【解析】【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围.【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;.②当a ≤3即2a ≤a +3时,若A B ⊆, 则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3 综上,实数a 的取值范围是a <-4或a >2.故答案为:a <-4或a >219.32【分析】由n 个元素组成的集合,集合的子集个数为2n 个.【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=.故答案为:32.20.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:221.{}1,5,8【解析】【分析】 分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解.【详解】 由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=.故答案为:{}1,5,8.22.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:423.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解故答案为:3.24. 2a =-或23a =或0 30k -<≤ 【解析】【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】 已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-= 当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭, 因为B A ⊆,故得到21a =-或23a = 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立, 当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<<综上结果为:30k -<≤.故答案为:2a =-或23a =或0;30k -<≤ 25.(){}1,0【解析】【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故M N =(){}1,0.故答案为:(){}1,0.三、解答题26.103;23.【解析】【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少.【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.27.(1){}|21M N x x =-<≤,{}|3M N x x =≤,()(]1,3R M N ⋂=(2)(]2-∞-,【解析】【分析】(1)由集合的交集运算和并集运算、补集元素概念可得答案;(2)由集合间的关系可求得a 的取值范围.(1)当1a =时,{}|1N x x =≤,又{}|23M x x =-<≤,所以{}|21MN x x =-<≤,{}|3M N x x =≤; ()1,R N =+∞,则()(]1,3R M N ⋂=(2)当M N ⋂=∅时,则需2a ≤-,所以a 的取值范围(]2-∞-,. 28.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可;(2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤29.(1)11223-,, (2)0不是集合A 中的元素;可以取a =3,则A 中的元素还有:2-,13-,12 【解析】【分析】(1)根据定义直接计算即可得到A 中其他所有元素;(2)先假设0A ∈,依定义判断即可;取3a =,根据定义直接计算即可得到A 中其他所有元素.(1)由题意可知:3A -∈,则()()131132A +-=-∈--,11()12131()2A +-=∈--,1132113A +=∈-,12312A +=-∈-, 所以A 中其他所有元素为11223-,,; (2)假设0A ∈,则10110A +=∈-,而当1A ∈时,11a a+-不存在,假设不成立, 所以0不是A 的元素,取3a =,则13213A +=-∈-,1(2)11(2)3A +-=-∈--,11()13121()3A +-=∈--,1123112A +=∈-, 所以当3A ∈,A 中的元素是:3,2-,13-,12; 30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
高一数学不等式试题
高一数学不等式试题1.(本题满分12分)已知函数(1)当时,求不等式的解集(2)若关于的不等式的解集为R,求实数的取值范围(3)当时,若在内恒成立,求实数b的取值范围。
【答案】,,【解析】2.(文)若,则的最大值为.【答案】文 -4【解析】(文),当且仅当时等号成立,所以最小值为【考点】1.线性规划;2.均值不等式求最值3.对于任意实数x,一元二次不等式恒成立,则实数a取值范围是()A.B.C.(-2,2)D.【答案】C【解析】试题分析因为一元二次不等式,所以a-2≠0,a-2<04(a-2)2+16(a-2)<0解得-2<a<2。
故选C【考点】函数不等式的运用4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.(本题满分10分)解关于的不等式【答案】当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【解析】首先将原不等式通过十字相乘法分解因式得,然后得到两根与相同时参量的值,再根据与的大小分情况讨论进而借助一元二次函数解不等式.试题解析:原不等式可化为:,令,可得:∴当或时,,;当或时,,不等式无解;当或时, ,综上所述,当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【考点】(1)含参量一元二次不等式的解法;(2)不等式的基本性质.6.设变量x,y满足约束条件则z=3x-2y的最大值为A.0B.2C.4D.6【答案】C【解析】约束条件对应的可行域为直线围成的三角形区域,,当直线过交点时取得最大值4【考点】线性规划问题7.已知,则的最小值是()A.10B.C.12D.20【解析】,,当且仅当时取得等号.【考点】基本不等式.8.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式9.在约束条件下,目标函数取最大值时的最优解为_______.【答案】【解析】根据约束条件画出可行域,再由目标函数可得,平移直线可知在点处目标函数取得最大值.【考点】线性规划问题.10.已知满足且,则下列选项中一定成立的是()A.B.C.D.【答案】D【解析】因为满足,所以.又因为,所以,故选D.【考点】不等式的性质.【一题多解】根据题意令,代入A、B、C、D中,易知只有D成立,故选D.11.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.12.已知,,则下列不等式中成立的是()A.B.C.D.【解析】,【考点】不等式的性质13.三个数的大小顺序是()A.B.C.D.【答案】D【解析】由,,则大小顺序可知为:【考点】指数和对数函数性质的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合与不等
式测试题
Revised on November 25, 2020
高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分)
1、设{}|7M x x =≤,43x =,则下列关系中正确的是()
∈x M ∉{}x M ∈、下列不等式中一定成立的是().
A .x >0
B .x 2≥0
C .x 2>0
D .|x |>0
3、已知集合A =[-1,1],B =(-2,0),则A ∩B =()。
A .(-1,0)
B .[-1,0)
C .(-2,1)
D .(-2,1] 4、下列表示①{0}=∅、②{0}∅∈、③{0}∅⊆、④0∈∅中,正确的个数为()
5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )=()
A{0}B{0,1}C{0,1,4}D{0,1,2,3,4} 6、已知∪A ={1,2,3},则集合A 真子集的个数()
A5B6 C7D8
设U =[-3,5],C U A =[-3,0)∪(3,5]
7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的()。
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
8、不等式()()012<+-x x 的解集是()
A 、〔—1,2〕
B 、〔2,—1〕
C 、R
D 、空集
9、设、、均为实数,且<,下列结论正确的是()。
A.<
B.<
C.-<-
D.<
10、若x 2-ax -b <0的解集是{x |2<x <3},则bx 2-ax -1>0的解集为()
A .11{|}23x x -≤≤
B .11{|}23x x -<<
C .11{|}23
x x -<<-D .11{|}23
x x -≤≤- 11、一元二次方程x 2–mx+4=0有实数解的条件是m ∈( )
A.(-4,4)
B.[-4,4]
C.(-∞,-4)∪(4,+∞)
D.(-∞,-4]∪[4,+∞)
12、下列不等式中,与32<-x 的解集相同的是()
A 0542<--x x
B 051≤-+x x
C 0)1)(5(<+-x x
D 0542<-+x x
14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y )
12
2=-+x y },N={(x ,y )4-≠x y },那么
(C U M )(C U N )等于() A{(2,-2)}B{(-2,2)}C φD C U N
15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为()
A0个B0个或1个或2个C 无数个D 无法确定
二、填空题(5分×6=30分)
13、p :a 是整数;q :a 是自然数。
则p 是q 的。
14.{3,5}{5};2{x |x <1}。
(,,,,=)
15、已知集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},则A ∪B=;
16、若A={x |x 2+x -6=0},B={x |mx +1=0}且A ∪B =A 则m 的取值集合为______
17、经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,问两门都不喜欢的有名学生。
18、已知集合A ={a |关于x 的方程
2
2-+x a x =1有唯一实数解},用列举法表示集合A 为______________.
三.解答题(12分+13分+15分)
15、不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围. 16、已知U={x |x 2-3x +2≥0},A={x ||x -2|>1},B={x |2
1--x x ≥0},求A ∩B ,A ∪B , (C U A )∪B ,A ∩(C U B ).
17、解关于x 的不等式:(1)x 2-(a +1)x +a <0,(2)0222>++mx x .
DACBCACACB
11、{x |x ≤-7或x >1}12、110,,32⎧⎫-⎨⎬⎩⎭
13、414、A={-49,2,2-}. 14、解:由22-+x a x =1得⎪⎩⎪⎨⎧≠-=---.
02,0222x a x x 由方程x 2-x -a -2=0得Δ=1+4(a +2)=0, 解得a =-49,此时x =21满足②.∴A ={-4
9
}.
15、解析:(1)当m 2-2m -3=0,即m =3或m =-1时,
①若m =3,原不等式解集为R ②若m =-1,原不等式化为4x -1<0∴原不等式解集为{x |x <
41},不合题设条件. (2)若m 2-2m -3≠0,依题意有⎪⎩⎪⎨⎧<--+-=∆<--0)32(4)3(032222m m m m m 即⎪⎩⎪⎨⎧<<-<<-35131m m ∴ -
51<m <3,综上,当-5
1<m ≤3时,不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R . 16、解:∵U ={x |x 2-3x +2≥0}={x |(x -2)(x -1)≥0}={x |x ≥2或x ≤1},A ={x ||x -2|>1}
={x |x -2>1或x -2<-1}={x |x >3或x <1}, B ={x |⎩
⎨⎧≠-≥--020)2)(1(x x x }={x |x >2或x ≤1}.由图(1)可知,A ∩B ={x |x >3或x <1}, A ∪B ={x |x >2或x ≤1}.
图(1)
由图(2)可知
U A ={x |2≤x ≤3或x =1},易知U B ={x |x =2}.
①
图(2)
由图(3)可知,(U A )∪B ={x |x ≥2或x ≤1}=U .
图(3)
由图(4)可知,A ∩(U B )=∅.
图(4)
17、解析:(1)原不等式可化为:,0)1)((<--x a x 若a >1时,解为1<x <a ,若a <1时,
解为a <x <1,若a =1时,解为φ
(2)△=162-m .①当时或即440162>-<>-m m m ,△>0.
方程0222
=++mx x 有二实数根:.4
16,4162221-+-=---=m m x m m x ∴原不等式的解集为.416416|22⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4时,△=0,两根为.4
21m x x -== 若,4=m 则其根为-1,∴原不等式的解集为{}1,|-≠∈x R x x 且. 若,4-=m 则其根为1,∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时,方程无实数根.∴原不等式的解集为R .。