第7章相交线和平行线习题

合集下载

冀教版七年级下册数学第七章 相交线与平行线含答案解析

冀教版七年级下册数学第七章 相交线与平行线含答案解析

冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,能表示点B到直线AC的距离的线段是()A.BCB.BDC.BAD.AD2、如图,已知∠1 = ∠2 ,∠3 = 65° ,那么∠4 的度数是()A.65°B.95°C.105°D.115°3、如图,则下列判断错误的是()A.因为∠1=∠2,所以a∥bB.因为∠3=∠4,所以a∥bC.因为∠2=∠3,所以c∥dD.因为∠1=∠4,所以c∥d4、给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条。

其中真命题的有()A.0个B.1个C.2个D.3个5、下列说法正确是( )A.同旁内角互补B.在同一平面内,若a⊥b,b⊥c,则a⊥cC.对顶角相等D.一个角的补角一定是钝角6、如图,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,AD= ,BD= ,则点B到直线AD的距离为()A. B. C.3 D.47、已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在8、如果∠A和∠B是两平行直线中的同旁内角,且∠A比∠B的2倍少30º,则∠B的度数是()A.30ºB.70ºC.110ºD.30º或70º9、下列命题中,是真命题的是()A.内错角相等B.邻补角相等C.同旁内角相等两直线平行D.平行于同一直线的两直线平行10、下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行11、如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A.11B.10C.9D.812、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°13、如图,平面内直线,点分别在直线上,平分,并且满足,则关系正确的是()A. B. C. D.14、如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠FB.∠AGFC.∠AEFD.∠D15、如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、下列说法:① ;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ________17、如图所示,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:∵AB∥DC(已知)∴∠1=∠CFE(________)∵AE平分∠BAD(已知)∴∠1=∠2 (角平分线的定义)∵∠CFE=∠E(已知)∴∠2=________(等量代换)∴AD∥BC (________)18、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于________.19、在平面直角坐标系中,将点P(2,1)向下平移3个单位长度,再向左平移1个单位长度得到点Q,则点Q的坐标为________20、已知:如图,AB∥CD,∠A=∠D,试说明AC∥DE 成立的理由.(下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.)解:∵AB∥CD (已知)∴∠A=________(两直线平行,内错角相等)又∵∠A=∠D(________ )∴∠________=∠________ (等量代换)∴AC∥DE(________ )21、如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2是________22、如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=________(等量代换)∴________∥________.(________)∴∠ABD+∠D=180°.(________)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)23、如图,在6×4的正方形网格中,点A、B、C、D、E、F都在格点上.连接点A、B得线段AB.(1)连接C、D、E、F中的任意两点,共可得________ 条线段,在图中画出来;(2)在(1)中所连得的线段中,与AB平行的线段是________ ;(3)用三角尺或量角器度量、检验,AB及(1)中所连得的线段中,互相垂直的线段有几对?(请用“⊥”表示出来)________ .24、同一平面内的任意三条直线a、b、c,其交点的个数有________ .25、为纪念戍边英雄,某班设计了《致敬英雄》主题宣传板报,黑板是一块长为2a米,宽为a米的长方形,版面设计如图所示,将它分割成两块边长均为a米的正方形和正方形,分别以点为圆心,正方形边长为半径画弧.阴影部分用图画展示英雄形象,空白部分用文字宣传英雄事迹.阴影部分的面积为________平方米(用含a的代数式表示).三、解答题(共5题,共计25分)26、如图,已知,∠ ,求、、的度数.27、如图,△ABC中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长.28、已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.29、如图,∠1=60°,∠2=60°,∠3=80°,求∠4的度数.30、如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数。

(精练)冀教版七年级下册数学第七章 相交线与平行线含答案

(精练)冀教版七年级下册数学第七章 相交线与平行线含答案

冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()A.30°B.40°C.60°D.90°2、如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作EF∥AB 交 BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:① ∠AOB=90°+ ②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC的中点;④若 OD=a,CE+CF=2b,则S△CEF=ab其中正确的是( )A.①②B.③④C.①②④D.①③④3、如图所示,下列推理及所注理由正确的是()A.因为∠1=∠3,所以AB∥CD(两直线平行,内错角相等)B.因为AB∥CD,所以∠2=∠4(两直线平行,内错角相等) C.因为AD∥BC,所以∠3=∠4(两直线平行,内错角相等) D.因为∠2=∠4,所以AD∥BC (内错角相等,两直线平行)4、如图,已知∠1=36°,∠2=36°,∠3=140°,则∠4的度数等于()A.40°B.36°C.44°D.100°5、如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.1B.C.1.5D.6、如图所示,△ABC中AD⊥BC,AE是△ABD的角平分线,则下列线段中最短的是()A.ABB.AEC.ADD.AC7、如图,把一块含有45°角的直角三角板的两个锐角项点放在直尺的对边上,若,那么的度数是()A.20°B.25°C.60°D.65°8、如图,a∥b,∠1=130°,则∠2=()A.50°B.130°C.70°D.120°9、如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,- )C.(,-)D.(- ,)10、下列四个命题中,是真命题的是()A.同位角相等B. 是的一个平方根C.若点在坐标轴上,则D.若,则11、如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中正确的个数为()①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是B点到AC的距离.A.2B.3C.4D.512、如图,已知AD//BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°13、如图,在平行四边形中,,E为垂足.如果,则()A. B. C.  D.14、如图,已知直线AB,线段CO⊥AB于点O,∠AOD= ∠BOD,∠COD的度数为()A.15°B.25°C.30°D.45°15、如图,△ABC中BD、CD平分∠ABC、∠ACB过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系是()A.EF=BE+CFB.EF>BE+CFC.EF<BE+CFD.不能确定二、填空题(共10题,共计30分)16、如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=________度.17、如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件________,使△ABC≌△DEF.18、如图,若直线,,,则的度数为________.19、若点向下平移4个单位后点的坐标是________.20、如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是________ .21、如图,已知∠1+∠2=180°,∠3=108°,则∠4=________22、已知等边三角形ABC的边长为6,有从点A出发每秒1个单位且垂直于AC 的直线m交三角形的边于P 和Q两点且由A向C平移,点G从点C出发每秒4个单位沿C→B→P→Q→C路线运动,如果直线m和点G同时出发,则点G回到点C的时间为________.23、如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB是否与铅锤线重合.若门框AB垂直于地面,则AB 会重合于AE,否则AB与AE不重合.你能说出这里面的道理吗?________.24、如图,直线AB∥CD∥EF,那么∠α+∠β﹣∠γ=________度.25、已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,AB∥CD,BE和DE相交于E.证明:∠ABE=∠D+∠E28、如图,∠B=∠C,AB∥EF,求证:∠BGF=∠C.29、已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.30、写出每组直线的位置关系.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A5、B6、C7、D8、B9、B10、C11、A12、A13、B14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

鲁教版六年级数学下册第七章《相交与平行线》单元卷

鲁教版六年级数学下册第七章《相交与平行线》单元卷

鲁教版六年级数学下册第七章《相交线与平行线》单元测试卷(完卷试卷:90分钟满分:150分)一.选择题(共8小题,满分32分)1.如图,从A到B有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,这是因为()A.两条直线相交只有一个交点B.两点之间线段最短C.两点确定一条直线D.其他的路行不通2.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行3.如图,直线AB与CD相交于点P,F是∠APD内的一点,已知FP⊥AB于P,且∠FPD =50°,则∠CPA的度数是()A.30°B.40°C.50°D.60°4.如图,平行线AB,CD被直线MN所截,交点为E,F,且HE⊥MN,若∠HEB=40°,则∠DFN的度数为()A.30°B.40°C.50°D.60°5.如图,直线AB、CD、EF相交于点O,∠1的邻补角是()A.∠BOC B.∠BOC和∠AOF C.∠AOF D.∠BOE和∠AOF 6.如图,点E在CD的延长线上,下列条件中能判定AB∥CD的是()A.∠C=∠5B.∠C+∠BDC=180°C.∠1=∠2D.∠3=∠47.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个8.在下列各题中,属于尺规作图的是()A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画45°的角D.用圆规在已知直线上截取一条线段等于已知线段二.填空题(共8小题,满分32分)9.对顶角的性质:;邻补角的性质:.10.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有.(填序号即可)11.如图1,将一条两边互相平行的纸袋折叠.(1)若图中α=70°,则β=°(2)在图1的基础上继续折叠,使得图1中的CD边与CB边重合(如图2),若继续沿CB边折叠,CE边恰好平分∠ACB,则此时β的度数为度.12.如图,在直线a的同侧有P、Q、R三点,若PQ∥a,QR∥a,则P、Q、R三点(填“在”或“不在”)同一条直线上.13.如图,平面内两条直线相交有一个交点,三条直线相交最多有三个交点,四条直线相交最多有六个交点,那么,平面内有10条直线相交最多有个交点.14.如图,下列条件①∠1=∠4,②∠2=∠3,③∠A+∠ABD=180°,④∠A+∠ACD=180°,⑤∠A=∠D,能判断AB∥CD的是.(填序号)15.如图,直线AB和CD相交点O,CO⊥OE,OF平分∠AOE,∠EOF=64°,则∠BOD的大小为.16.平面内有两两相交的4条直线,如果最多有m个交点,最少有n个交点,那么m ﹣n=.三.解答题(共7小题,满分86分)17.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠BOD的对顶角为,∠DOE的邻补角为;(2)若∠AOC=80°,且∠BOE:∠EOD=2:3,求∠AOE的度数.18.如图,直线AB、CD相交于点O,OE平分∠BOD,OE⊥OF.(1)若∠DOE=32°,求∠BOF的度数;(2)若∠COE:∠COF=8:3,求∠AOF的度数.19.如图,AB∥CD,CD∥EF,BC∥ED,∠B=70°,求∠C,∠D和∠E的度数.20.如图,AB∥EF∥CD,∠ABC=54°,∠CEF=142°,求∠BCE的度数.21.同一平面内1条直线把平面分成两个部分(或区域);2条直线最多可将平面分成几个部分?3条直线最多可将平面分成几个部分?4条直线最多可将平面分成几个部分?请分别画出图来.由此可知n条直线最多可将平面分成几个部分?22.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.23.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)参考答案一.选择题(共8小题,满分32分)1.解:从A到B有多条道路,人们会走中间的直路,这是因为两点之间,线段最短.故选:B.2.解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故选:C.3.解:∵FP⊥AB,∴∠APF=90°,∵∠FPD=50°,∴∠DPB=180°﹣∠APF﹣∠FPD=40°,∴∠CPA=∠DPB=40°,故选:B.4.解:∵HE⊥MN,∴∠HEN=90°,∵∠HEB=40°,∴∠BEN=∠HEN﹣∠HEB=90°﹣40°=50°,∵AB∥CD,∴∠DFN=∠BEN=50°,故选:C.5.解:因为构成∠1的两边与直线AB和EF有关;从直线AB来看,∠1的邻补角是∠EOB,从直线EF来看,∠1的邻补角是∠AOF,∴∠1的邻补角有∠EOB,∠AOF,故选:D.6.解:A、当∠C=∠5时,可得:AC∥BD,不合题意;B、当∠C+∠BDC=180°时,可得:AC∥BD,不合题意;C、当∠1=∠2时,可得:AC∥BD,不合题意;D、当∠3=∠4时,可得:AB∥CD,符合题意.故选:D.7.解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误;(2)根据平行公理的推论,正确;(3)线段的长度是有限的,不相交也不一定平行,故错误;(4)应该是“在同一平面内”,故错误.正确的只有一个,故选A.8.解:A、用直尺画一工件边缘的垂线,不属于尺规作图;B、用直尺和三角板画平行线,不属于尺规作图;C、利用三角板画45°的角,不属于尺规作图;D、用圆规在已知直线上截取一条线段等于已知线段,属于尺规作图.故选:D.二.填空题(共8小题,满分32分)9.解:对顶角的性质:对顶角相等邻补角的性质:邻补角之和等于180°,故答案为:邻补角之和等于180°.10.解:①以O为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线AB是由A向B向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角∠AOB,使∠AOB等于已知∠1,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形ABC的顶点C作它的对边AB 的平行线,所以叙述正确.所以正确的有③⑤.故答案为:③⑤.11.解:(1)根据上下边互相平行可知,α=∠OAD ,∵α=70°,∴∠OAD =70°.又∠OAD +2β=180°,∴β=55°.故答案为:55.(2)根据折叠的性质可知,折叠两次后形成的三个角都相等,根据题意可知,折叠两次后形成的三个角与折叠后的∠ACE 都相等,而这四个角的和为180°,故每个角为45°,∴∠ACB =90°,即α=90°,由(1)中可得,β=(180°﹣90°)=45°.故答案为:45.12.解:∵PQ ∥a ,QR ∥a (已知),∴P ,Q ,R 三点在同一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:在.13.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点,故答案为:45.14.解:①若∠1=∠4,则AB ∥CD ,符合题意;②若∠2=∠3,则AC ∥BD ,不符合题意;③若∠A +∠ABD =180°,则AC ∥BD ,不符合题意;④若∠A +∠ACD =180°,则AB ∥CD ,符合题意;⑤若∠A =∠D ,无法得到AB ∥CD ,不符合题意.故能判断AB ∥CD 的是①④.故答案为:①④.15.解:∵CO ⊥OE ,∴∠COE =90°,∵∠EOF =64°,∴∠COF =26°,OF 平分∠AOE ,∴∠AOF =∠EOF =64°,∴∠AOC =64°﹣26°=38°,∵∠AOC 与∠BOD 是对顶角,∴∠BOD =38°.故答案为:38°.16.解:如图所示:4条直线两两相交,有3种情况:4条直线经过同一点,有一个交点;3条直线经过同一点,被第4条直线所截,有4个交点;4条直线不经过同一点,有6个交点.故平面内两两相交的4条直线,最多有6个交点,最少有1个交点;即m =6,n =1,则m ﹣n =5.故答案为:5.三.解答题(共7小题,满分86分)17.解:(1)∠BOD的对顶角为∠AOC,∠DOE的邻补角为∠EOC,故答案为:∠AOC,∠EOC;(2)∵∠AOC=80°,∴∠BOD=80°,∠AOD=180°﹣80°=100°,又∵∠BOE:∠EOD=2:3,∴∠DOE=80°×=48°,∴∠AOE=∠AOD+∠DOE=100°+48°=148°,答:∠AOE的度数为148°.18.解:(1)∵OE平分∠BOD,∴∠DOE=∠EOB,∵∠DOE=32°,∴∠EOB=32°,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=∠EOF﹣∠EOB=90°﹣32°=58°;(2)∵∠COE:∠COF=8:3,∴设∠COE=8x,∠COF=3x,∴∠EOF=5x,∵OE⊥OF,∴∠EOF=90°,∵5x=90°,∴x=18°,∴∠COF=3x=54°,∴∠DOE=180°﹣∠COF﹣∠FOE=180°﹣54°﹣90°=36°,∵OE平分∠BOD,∴∠DOB=72°,∴∠AOC=72°,∴∠AOF=∠AOC+∠COF=72°+54°=126°.19.解:∵AB∥CD,CD∥EF,∴AB∥CD∥EF,∴∠C=∠B=70°,∠E=∠D,又∵BC∥DE,∴∠C+∠D=180°,∴∠B+∠E=180°,∴∠E=110°.答:∠C,∠D和∠E的度数分别是70°、110°、110°.20.解:∵AB∥CD,∴∠ABC=∠BCD=54°,∵EF∥CD,∴∠CEF+∠ECD=180°,∵∠CEF=142°,∴∠ECD=38°,∴∠BCE=∠BCD﹣∠ECD=54°﹣38°=16°.21.解:2条直线最多可将平面分成4个部分,如图:;三条直线最多分成可将平面分成7个部分,如图:;四条直线最多分成可将平面分成11个部分,如图:;n条直线最多分成可将平面分成2+2+3+4+…+n=个部分.22.解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.23.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.。

冀教版七年级数学下册 第七章 相交线和平行线 练习(含答案)

冀教版七年级数学下册 第七章 相交线和平行线 练习(含答案)

第七章相交线与平行线一、单选题1.下列语句是命题的有()①两点之间线段最短;①不平行的两条直线有一个交点;①x 与y 的和等于0 吗?①对顶角不相等;①互补的两个角不相等;①作线段AB.A.1B.2C.3D.42.如图,从位置P到直线公路MN有四条小道,其中路程最短的是()A.PA B.PB C.PC D.PD3.如图,直线,a b被直线c所截,则1∠与2∠是()A.同位角B.内错角C.对顶角D.同旁内角4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.5.下列说法正确的是()①平面内,不相交的两条直线是平行线;①平面内,过一点有且只有一条直线与已知直线垂直;①平面内,过一点有且只有一条直线与已知直线平行;①相等的角是对顶角;①P是直线a外一点,A、B、C分别是a上的三点,P A=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个6.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等7.如图,已知①3=①4,那么在下列结论中,正确的是()A.①C=①A B.①1=①2C.AB①CD D.AD①BC8.已知l1①l2,一个含有30°角的三角尺按照如图所示位置摆放,则①1+①2的度数为()A .90°B .120°C .150°D .180°9.如图所示,14∠=∠,再从①//AB CD ;①12∠=∠;①34∠=∠;①BAD CDA ∠=∠中选取一个条件就可以得出23∠∠=,这个条件可以是( )A .仅①B .仅①C .仅①①D .①①①① 10.如图,长方形 ABCD 中,AB =6,第一次平移长方形 ABCD 沿 AB 的方向向右平移 5 个单位长度,得到长方形 1111D C B A ,第 2次平移长方形1111D C B A 沿 11A B 的方向向右平移 5个单位长度,得到长方形2222A B C D ,…,第n 次平移长方形1111n n n n A B C D ----沿11n n A B --的方向向右平移 5 个单位长度,得到长方形n n n n A B C D (n >2),若 n AB 的长度为 2026,则 n 的值为( )A .407B .406C .405D .404二、填空题11.如图,直线ABCD 相交于点O,EO①AB 于点O,①EOD=45°,则①BOC 的度数为_____12.如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图 2 所示,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,直线AB 即为所求,则小颖的作图依据是________.13.如图,已知AB,CD,EF互相平行,且①ABE=70°,①ECD=150°,则①BEC=________°.14.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则至少需要购买地毯_______平方米,花费_______元.三、解答题15.如图,直线AB,CD,EF相交于点O.(1)写出①COE的邻补角;(2)分别写出①COE和①BOE的对顶角;(3)如果①BOD=60°,①BOF=90°,求①AOF和①FOC的度数.16.如图,已知OC①AB,垂足为点O,①COD:①DOE=1:2,①BEF=120°,说明EF①OD 的理由.17.如图,GM①HN,EF分别交AB、CD于点G、H,①BGH、①DHF的平分线分别为GM、HN,求证:AB①CD.18.如图,已知射线AB与直线CD交于点O,OF平分①BOC,OG①OF于点O,AE①OF,且①A=30°.(1)求①DOF的度数;(2)试说明OD平分①AOG.19.(1)如图1,AB①CD,①A=35°,①C=40°,求①APC的度数.(提示:作PE①AB).(2)如图2,AB①DC,当点P在线段BD上运动时,①BAP=①α,①DCP=①β,求①CPA与①α,①β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在射线DM上运动,请你直接写出①CPA与①α,①β之间的数量关系______.答案1.D 2.B 3.A 4.B 5.B 6.A 7.D 8.A 9.C10.D11.13512.内错角相等,两直线平行13.4014.16.8 50415.(1)①COE的邻补角为①COF和①EOD;(2)①COE和①BOE的对顶角分别为①DOF和①AOF;(3)①①BOF=90°,①AB①EF①①AOF=90°,又①①AOC=①BOD=60°①①FOC=①AOF+①AOC=90°+60°=150°.16.①OC①AB,垂足为点O(已知)①①COB=90°.(垂直意义)①①COD:①DOE=1:2(已知)①①DOE=60°.(等式性质)①①BEF+①AEF=180°(平角意义)又①①BEF=120°,(已知)①①AEF=60°(等式性质)①①DOE=①AEF(等式性质)①EF①OD(内错角相等,两直线平行)17.证明:①GM①HN,①①MGH=①NHF,①①BGH、①DHF的平分线分别为GM、HN,①①BGH=2①MGH,①DHF=2①NHF,①①BGH=①DHF,①AB①CD.18.解:(1)①AE①OF,①①BOF=①A=30°,①OF平分①BOC,①①COF=①BOF=30°,①DOF=180°-①COF=150°;(2)由(1)知①COF=①BOF=30°,①①BOC=60°,①AOD=①BOC=60°,①OG①OF,①①BOG=90°-①BOF=60°,①①DOG=180°-①BOC-①BOG=180°-60°-60°=60°,①①AOD=①DOG=60°,①OD平分①AOG.19.解:(1)如图1,过P作PE①AB,①AB①CD,①PE①AB①CD,①①A=①APE,①C=①CPE,①①A=35°,①C=40°,①①APE=35°,①CPE=40°,①①APC=①APE+①CPE=35°+40°=75°;(2)①APC=①α+①β,理由是:如图2,过P作PE①AB,交AC于E,①AB①CD,①AB①PE①CD,①①APE=①PAB=①α,①CPE=①PCD=①β,①①APC=①APE+①CPE=①α+①β;(3)如图3,过P作PE①AB,交AC于E,①AB①CD,①AB①PE①CD,①①PAB=①APE=①α,①PCD=①CPE=①β,①①APC=①APE-①CPE,①①APC=①α-①β。

七下第七章相交线与平行线难题训练(有答案)

七下第七章相交线与平行线难题训练(有答案)

七下第七章相交线与平行线难题训练一、选择题1.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A. 1个B. 2个C. 3个D. 4个2.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a//b,b//c,则a//c.A. 1个B. 2个C. 3个D. 4个3.如图,已知AB//CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是()A. ∠E=∠FB. ∠E+∠F=180°C. 3∠E+∠F=360°D. 2∠E−∠F=90°4.已知:如图AB//EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A. ∠β=∠α+∠γB. ∠α+∠β+∠γ=180°C. ∠α+∠β−∠γ=90°D. ∠β+∠γ−∠α=90°5.若∠α与∠β是内错角,且∠α=50°时,则∠β的度数为()A. 50°B. 130°C. 50°或130°D. 无法确定6.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2过平面内一点有且只有一条直线与已知直线平行;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(5)不相交的两条直线叫做平行线(6)垂直于同一条直线的两条直线平行。

其中正确的有()A. 0个B. 1个C. 2个D. 3个7.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH 折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带①的边线平行,纸带②的边线不平行B. 纸带①的边线不平行,纸带②的边线平行C. 纸带①、②的边线都平行D. 纸带①、②的边线都不平行8.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF−∠1=∠2,则在图中相等的角共有()A. 5对B. 6对C. 7对D. 8对二、填空题9.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=______.10.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是______度,再沿BF折叠成图c,则图c中的∠DHF的度数是______.11.如果∠A的两边分别与∠B的两边平行,且∠A比∠B的3倍少40°,则这两个角的度数分别为______ .12.如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=______°.13.如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°证明的过程如下,请将括号内的理由填写完整。

冀教版七年级下册数学第七章 相交线与平行线含答案(附解析)

冀教版七年级下册数学第七章 相交线与平行线含答案(附解析)

冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则点N的坐标为()A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1)2、下列说法正确的有()①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点可以向一条射线或线段所在的直线作垂线;⑥若,则是的垂线,不是的垂线.A.2个B.3个C.4个D.5个3、如图,直线c与直线a、b相交,且a//b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠3=∠2中正确的个数为()A.0B.1C.2D.34、在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,若点A的对应点是点C(3,a),点B的对应点是点D(b,1),则a﹣b的值是()A.﹣1B.0C.1D.25、如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是( )A.60°B.50°C.40°D.30°6、如图OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠AOD的度数是()A.30°;B.40 °;C.60° ;D.90°.7、如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20 °B.40 °C.50°D.70°8、下列命题:①同旁内角互补,两直线平行;②两个锐角互余的三角形是直角三角形;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等,其中真命题的序号是()A.①②B.①③C.②③D.①②③9、如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A.7B.14C.21D.2810、下列命题中,①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a≥1.其中正确的个数有()A.1个B.2个C.3个D.4个11、如图,已知∠1=120°,则∠2的度数是()A.120°B.90°C.60°D.30°12、如图,下列条件中,不能判断直线∥ 的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°13、如图,下列说法正确的是()A.如果∠1和∠2互补,那么l1∥l2B.如果∠2=∠3,那么l1∥l2C.如果∠1=∠2,那么l1∥l2D.如果∠1=∠3,那么l1∥l214、如图,四边形, 是延长线上一点,下列推理正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么15、如图所示,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABC D.AB∥DE二、填空题(共10题,共计30分)16、如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是________.17、如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC 沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).18、如图,矩形ABCD中,E,F分别为AB,CD的中点.G为AD上一点,将△ABC沿BG翻折,使A点的对应点恰好落在EF上,则∠ABG=________.19、如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=________.20、如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DE∥AC,DF∥AB,则四边形DEAF的周长为________.21、如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是________.22、将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a上,含90°角的顶点落在直线b上.若a∥b,∠2=2∠1,则∠1=________°.23、如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为________.24、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=60°,则∠2等于________25、已知直线,a与b之间的距离为5,a与b之间有一点P,点P到a 的距离是2,则点P到b的距离是________.三、解答题(共5题,共计25分)26、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.27、每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.28、如图,点B、C、E、F都在同一直线上,与DE的延长线交于点G,,,求证:.29、如图,在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)作出△ABC中AB边上的高;(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF.30、如图,在由若干个小正方形组成的网格图中,点A,B,C,P都在网格图的格点上,按要求完成下列各小题.①点A表示的是小鹏家,线段BC表示一条马路,请你在图中画出小鹏从家走到这条马路的最短距离(即AD);②在①的基础上,连接AC,若在该网格中平移三角形ADC,使得点D移到点P 的位置上,请你在图中画出平移后的三角形EPF(点A与点E对应)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、B6、C7、B8、A9、B10、B11、A12、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。

2021-2022学年冀教版七年级数学下册《第7章相交线与平行线》单元综合测试题(附答案)

2021-2022学年冀教版七年级数学下册《第7章相交线与平行线》单元综合测试题(附答案)

2021-2022学年冀教版七年级数学下册《第7章相交线与平行线》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.在下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点3.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角.其中说法正确的有()A.0个B.1个C.2个D.3个4.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm5.观察如图,并阅读图形下面的相关文字:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;4条直线相交,最多有6个交点……像这样,20条直线相交,交点最多的个数是()A.100个B.135个C.190个D.200个6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°7.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°8.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°二.填空题(共8小题,满分40分)9.一个角的大小为60°13′25'',则这个角的余角的大小为.10.如图,A、O、D在一条直线上,且∠AOB:∠BOD=2:7,若BO⊥CO,OE平分∠AOB,则∠COE的度数为.11.如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED=40°,则∠A的度数是.12.把一块直尺与一块直角三角板如图放置,若∠1=38°,则∠2的度数为.13.如图,AB∥CD,∠A=75°,∠C=30°,∠E的度数为.14.如图所示,AB∥DE,∠1=130°,∠2=36°,则∠3=度.15.如图,AB∥CD,Rt△EFG的直角顶点E在直线AB上,且EF交CD于点P,若∠BEG =52°,则∠CPF的度数为.16.如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC平分∠DCE.下列结论中正确的是.A.AC⊥BCB.AE∥CDC.∠1+∠B=90°D.∠BDC=2∠1三.解答题(共5小题,满分40分)17.如图,直线AB、CD相交于点O,过点O作OE⊥AB,OF平分∠BOD.(1)直接写出∠AOC的补角;(2)若∠AOC=40°,求∠EOF的度数.18.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.19.如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.21.如图,直线HD∥GE,点A在直线HD上,点C在直线GE上,点B在直线D、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.参考答案一.选择题(共8小题,满分40分)1.解:A、∠1与∠2不是对顶角;B、∠1与∠2是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2不是对顶角;故选:B.2.解:A、射线OP无限长,所以A选项不符合题意;B、量出A、B点的距离,所以B选项不符合题意;C、射线OA不需要延长,只能反向延长射线OA,所以C选项不符合题意;D、用直尺可以连接A、B两点,所以D选项符合题意.故选:D.3.解:如图所示,①∠B和∠1是同旁内角,故说法错误;②∠1和∠3不是对顶角,故说法错误;③∠2和∠4是内错角,故说法正确;④∠A和∠BCD不是同旁内角,故说法错误.综上所述,说法正确的结论有1个.故选:B.4.解:从点A作直线l的垂线,垂足为C点,当A、B、C三点共线时,线段AB的长为7﹣3=4cm,其它情况下大于4cm,当A、B在直线l的两侧时,AB>4cm,故选:D.5.解:2条直线相交最多有1个交点,1=×1×2,3条直线相交最多有3个交点,3=1+2=×2×3,4条直线相交最多有6个交点,6=1+2+3=×3×4,5条直线相交最多有10个交点,10=1+2+3+4=×4×5,…n条直线相交最多有交点的个数是:n(n﹣1).20条直线相交最多有交点的个数是:n(n﹣1)=×20×19=190.故选:C.6.解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.7.解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选:D.8.解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.二.填空题(共8小题,满分40分)9.解:根据余角的定义:若一个角是60°13′25'',则这个角的余角的大小为90°﹣60°13′25''=29°46'35''.故答案为29°46'35''.10.解:∵∠BOE=××180°=20°,∠BOC=90°,∴∠COE的度数为:90°+20°=110°,故答案为:110°.11.解:∵AB∥CD,∴∠B=∠BED=40°.∵BE⊥AF,∴∠AEB=90°,∴∠A=180°﹣∠AEB﹣∠B=180°﹣90°﹣40°=50°.故答案为:50°.12.解:如图,∵∠1=∠3=38°,∴∠2=90°+∠3=90°+38°=128°.故答案为:128°.13.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,EF∥CD,∴∠AEF=∠A=75°,∠CEF=∠C=30°,∴∠AEC=∠AEF﹣∠CEF=75°﹣30°=45°.故答案为:45°.14.解:过点C作CM∥AB,则CM∥DE,∵CM∥DE,∠2=36°,∴∠MCD=∠2=36°,∵AB∥CM,∠1=130°,∴∠MCB+∠1=180°,∴∠MCB=50°;∴∠BCD=∠MCB+∠MCD=50°+36°=86°.故答案为:86.15.解:∵∠BEG=52°,∠GEF=90°,∴∠AEF=180°﹣∠GEF﹣∠BEG=38°,∵AB∥CD,∴∠CPF=∠AEF=38°,故答案为:38°.16.解:∵BC平分∠DCF,且AC平分∠DCE,∴∠FCB=∠DCB=∠FCD,∠ECA=∠1=∠ECD,∵∠ECD+∠FCD=180°,∴∠1+∠DCB=×180°=90°=∠ACB,∴AC⊥BC,故①正确,符合题意;∵AC平分∠DCE,∴∠1=∠ECA,∵∠EAC=∠ECA,∴∠1=∠EAC,∴AE∥CD,故②正确,符合题意;∵AC⊥BC,∴∠1+∠DCB=90°,∵BC平分∠DCF,∴∠FCB=∠DCB,∴∠1+∠FCB=90°,∵AB∥EF,∴∠B=∠FCB,∴∠1+∠B=90°,故③正确,符合题意;∵AC平分∠DCE,∴∠1=∠ECA,∵AB∥EF,∴∠ECA=∠CAD,∴∠1=∠CAD,∴∠BDC=∠1+∠CAD=2∠1,故④正确,符合题意.故选:ABCD.三.解答题(共5小题,满分40分)17.解:(1)∠AOC的补角是∠AOD,∠BOC;(2)∵∠AOC=40°,∴∠BOD=∠AOC=40°,∵OF平分∠BOD,∴∠BOF=20°,∵OE⊥AB,∴∠EOB=90°,∴∠EOF=90°﹣20°=70°.18.解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.19.(1)证明:∵∠ENC+∠CMG=180°,∠FMB=∠CMG,∴∠ENC+∠ENC=180°,∴DE∥FG,∴∠3=∠BFG,∵AB∥CD,∴∠BFG=∠2,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∠1=∠B,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠ACB+∠1=180°,即∠1+70°+42°+∠1=180°,解得:∠1=34°,∴∠B=∠1=34°.故答案为:34°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.21.解:(1)过点B作BM∥HD,则HD∥GE∥BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP∥HD∥GE,过F作FQ∥HD∥GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣120°=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK∥HD∥GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN==90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即,∠N=90°﹣∠HAP.。

相交线与平行线练习题(附答案)

相交线与平行线练习题(附答案)

相交线与平行线练习题(附答案)【知识积累】一、相交线1、邻补角:如下图,∠1和∠2(或∠3和∠4、或∠5和∠6、或∠7和∠8、或∠1和∠3、或∠2和∠4、或∠5和∠7、或∠6和∠8)有一条公共边,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。

2、对顶角:如上图,∠1和∠4(或∠2和∠3、或∠5和∠8、或∠6和∠7)有一个公共顶点,并且∠1的两边分别是∠4的两边的反向延长线(∠1和∠4相等),具有这种位置关系的两个角,互为对顶角。

3、同位角:如上图,∠1和∠5(或∠3和∠7、或∠2和∠6、或∠4和∠8),这两个角分别在直线的同一侧,即左侧(或左侧、或右侧、或右侧),并且在另外两条直线的同一方,即上方(或下方、或上方、或下方),具有这种位置关系的一对角叫做同位角。

4、内错角:如上图,∠3和∠6(或∠4和∠5),这两个角都在两条直线之间,并且分别在中间直线的两侧,具有这种位置关系的一对角叫做内错角。

5、同旁内角:如上图,∠3和∠5(或∠4和∠6),这两个角都在两条直线之间,并且分别在中间直线的同侧,具有这种位置关系的一对角叫做同旁内角。

二、垂直1、定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB⊥CD,垂足为O。

垂直定义的两层含义:(1)∵∵AOC=90°(已知),∵AB∵CD(垂直的定义)(2)∵AB∵CD(已知),∵∵AOC=90°(垂直的定义)2、性质:(1)过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

三、平行1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∵b。

冀教版七年级下《第七章相交线与平行线》全章过关测试卷含答案

冀教版七年级下《第七章相交线与平行线》全章过关测试卷含答案

冀教版七年级数学(shùxué)第七章相交线与平行线全章过关(guò〃guān)测试卷一、选择题1.下列(xiàliè)图中,∠1和∠2是对顶角的有( )个.A.1个B.2个C.3个D.4个2.下列(xiàliè)说法正确的是()A.两点之间的距离(jùlí)是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个(yīɡè)人从A点出发向北偏东60°方向(fāngxiàng)走到B点,再从B 点出发向南偏西15°方向(fāngxiàng)走到C点,那么∠ABC等于(děngyú)(). A.75° B.105° C.45° D.135°7.下列(xiàliè)说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.平行用符号表示,直线AB与CD平行,可以记作为.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向(fāngxiàng)是________,移动的距离是________.12.如图所示,请写出能判断(pànduàn)CE∥AB的一个(yīɡè)条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB∥CD,CE,AE分别(fēnbié)平分∠ACD,∠CAB,则∠1+∠2=________.14.同一平面内的三条(sān tiáo)直线a,b,c,若a⊥b,b⊥c,则a________c.若a ∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.北乙北甲16.如图所示,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示(biǎoshì)点到直线(或线段(xiànduàn))的距离(jùlí)的线段有条.三、解答(jiědá)题17.把图中的互相平行(píngxíng)的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分(bù fen)都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点(yī diǎn).(1)画图(huà tú):①过点P画BC的垂线(chuí xiàn),垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于(děngyú)∠B吗?为什么?【答案与解析】一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】C;【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.4. 【答案(dáàn)】D;【解析(jiě xī)】因为不知道直线AB和CD是否(shì fǒu)平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案(dáàn)】D【解析(jiě xī)】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A 错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C 正确.8.【答案】C【解析(jiě xī)】分析:两个(liǎnɡɡè)能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个(yīɡè)角度的多边形)完全重合在一起,只有两个(liǎnɡɡè)点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案(dáàn)】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度.12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.13.【答案】90°;【解析】∠BAC+∠ACD=180°,,即∠1+∠2=90°.14.【答案】∥,∥,⊥;15.【答案(dáàn)】48°;【解析】内错角相等(xiāngděng),两直线平行.16.【答案(dáàn)】8;【解析】表示点到直线或线段(xiànduàn)距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答(jiědá)题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由(lǐyóu):因为PE∥BC(已知),所以(suǒyǐ)∠AEP=∠B(两直线平行(píngxíng),同位角相等).又因为(yīn wèi)PF∥AB(已知),所以(suǒyǐ)∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).内容总结(1)说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D。

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。

A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。

A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。

A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。

答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。

答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。

()答案:正确7. 垂直于同一直线的两条直线一定平行。

()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。

证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。

9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

因此,直线m平行于直线p。

五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。

证明:首先,我们可以将两个方程联立求解。

\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。

11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

2022年鲁教版(五四)六年级数学下册第七章相交线与平行线同步测试练习题(无超纲)

2022年鲁教版(五四)六年级数学下册第七章相交线与平行线同步测试练习题(无超纲)

六年级数学下册第七章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果∠A 的两边分别垂直于∠B 的两边,那么∠A 和∠B 的数量关系是( )A .相等B .互余或互补C .互补D .相等或互补2、如图,直线AB 、CD 相交于点O ,OE CD ⊥于点O ,∠1=40°,则AOD ∠的度数( )A .40°B .50°C .130°D .140°3、如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒4、如图,直线AB 与CD 相交于点E ,45CEB ∠=︒,EF AE ⊥,则DEF ∠的度数为( )A .125︒B .135︒C .145︒D .155︒5、如图,将军要从村庄A 去村外的河边饮马,有三条路AB 、AC 、AD 可走,将军沿着AB 路线到的河边,他这样做的道理是( )A .两点之间,线段最短B .两点之间,直线最短C .两点确定一条直线D .直线外一点与直线上各点连接的所有线段中,垂线段最短6、如图,直线a ∥b ,直线AB ⊥AC ,若∠1=52°,则∠2的度数是( )A.38°B.42°C.48°D.52°7、如图,点A,O,B在一条直线上,OE⊥AB,∠1与∠2互余,那么图中相等的角有()A.2对B.3对C.4对D.5对8、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为()A.140°B.100°C.80°D.40°9、下列四幅图中,∠1和∠2是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(2)(3)(4)10、已知直线m∥n,如图,下列哪条线段的长可以表示直线m与n之间的距离()A.只有AB B.只有AE C.AB和CD均可D.AE和CF均可第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)2、如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段AC 直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.3、垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的______,它们的交点叫做______.4、如图所示方式摆放纸杯测量角的基本原理是 _____.5、如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是____度,你的根据是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,在高速公路l 的同一侧有A 、B 两座城市.(1)现在要以最低成本在A 、B 两座城市之间修建一条公路,假设每公里修建的成本相同,试在图中画出这条公路的位置,并简要说明你的依据;(2)若要在高速公路l 边建一个停靠站C ,使得A 城市的人到该停靠点最方便(即距离最近),请在图中标出C 的位置,并简要说明你的依据.2、如图,已知CF AB ⊥于点F ,ED AB ⊥于点D ,12∠=∠,求证180BCA FGC ∠+∠=︒.3、按下列语句完成作图:已知:如图,点A 是射线OB 外一点.(1)画射线OA ;(2)在射线OB 上截取OC =OA ;(3)画∠AOC 的角平分线OD ;(4)在射线OD上确定一点P,使得AP+CP的值最小(保留作图痕迹).4、根据要求画图或作答:如图所示,已知A、B、C三点.(1)连结线段AB;(2)画直线AC和射线BC;(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.5、如图,已知∠MON=60°,点A在射线OM上,点B在射线ON下方.请选择合适的画图工具按要求画图并回答问题.(要求:不写画法,保留画图痕迹)(1)过点A作直线l,使直线l只与∠MON的一边相交;(2)在射线ON上取一点C,使得OC=OA,连接AC,度量∠OAC的大小为°;(精确到度)(3)在射线ON上作一点P,使得AP+BP最小,作图的依据是.-参考答案-一、单选题1、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可. 【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.2、B【解析】结合题意,根据平角和角度和差运算的性质计算,即可得到答案.【详解】∵OE CD ⊥∴90DOE ∠=︒∴1801180409050AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒故选:B .【点睛】本题考查了角的知识;解题的关键是熟练掌握角度和差运算的性质,从而完成求解.3、A【解析】【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、∠1与∠3是对顶角,故原题说法正确,符合题意;B 、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C 、∠2与∠4是同位角,只有a //b 时,∠2=∠4,故原题说法错误,不符合题意;D 、∠3与∠4是同旁内角,只有a //b 时,∠3+∠4=180°故原题说法错误,不符合题意; 故选:A .【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.4、B【分析】由EF⊥AB可确定∠FEA的度数,再由对顶角相等可确定∠AED的度数,∠AED+∠AEF即是∠DEF的度数.【详解】解:∵EF⊥AB,∴∠AEF=∠FEB=90°,∵∠CEB=45°,∴∠AED=45°,∴∠DEF=∠DEA+∠AEF=90°+45°=135°,故选:B.【点睛】本题主要考查了垂直的概念,关键是要理解垂直的概念,知道对顶角相等.5、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.6、A【解析】【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.7、D【解析】【分析】根据垂直的定义、互为余角的两个角的和等于90°以及等角的余角相等解答即可.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠1+∠AOC=90°,∠2+∠BOD=90°,∵∠1与∠2互余,∴∠COD=∠1+∠2=90°,∴∠1=∠BOD,∠2=∠AOC,∠AOE=∠COD,∠BOE=∠COD,∴图中相等的角有5对.故选:D.【点睛】本题考查了垂直和互余的定义以及等角的余角相等的应用,是基础题,熟记概念并准确识图是解题的关键.8、B【解析】【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.9、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,由此即可求解.【详解】解:根据同位角的定义,图(1)、(2)中,1∠和2∠是同位角;图(3)中1∠、2∠的两边都不在同一条直线上,不是同位角;图(4)中1∠、2∠不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.10、C【解析】【分析】由平行线之间的距离的定义判定即可得解.解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,∴线段AB和CD都可以示直线m与n之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.二、填空题1、②③④【解析】【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∠=∠,∵34BC AD,∴//∴①不符合题意;∵∠C+∠ABC=180°,∴AB∥CD;∴②符合题意;∵∠A=∠CDE,∴AB∥CD;∴③符合题意;∵∠1=∠2,故答案为:②③④.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、两点之间,线段最短;垂线段最短【解析】【分析】根据两点之间线段最短以及垂线段最短即可判断.【详解】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.【点睛】本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.3、垂线垂足【解析】略4、对顶角相等【解析】【分析】利用对顶角的定义进行求解即可.【详解】图中的测量角的原理是:对顶角相等.故答案为:对顶角相等.【点睛】本题考查了对顶角,解题的关键是理解清楚对顶角的定义.5、 40 对顶角相等【解析】【分析】由题意知,一个破损的扇形零件的圆心角与其两边的反向延长线组的角是对顶角,根据对顶角的性质解答即可.【详解】解:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角,图中的量角器显示的度数是40°,∴扇形零件的圆心角40°;故答案为:40;对顶角相等.【点睛】本题主要考查了对顶角的性质,题目比较简单.掌握对顶角的性质:对顶角相等是解题的关键.三、解答题1、 (1)图见解析,两点之间,线段最短(2)图见解析,垂线段最短【解析】【分析】(1)根据两点之间,线段最短画图解答即可;(2)根据垂线段最短画图解答即可.(1)这条公路的位置如图所示,我的依据是“两点之间,线段最短”.(2)点C 的位置如图所示,我的依据是“垂线段最短”.【点睛】本题考查最短路径问题及垂线段最短,解题关键是掌握两点之间,线段最短及垂线段最短.2、见解析【解析】【分析】根据平行线的判定与性质,求解即可.【详解】证明:∵CF AB ⊥,ED AB ⊥,∴CF ED ∥,∴1BCF ∠=∠,∵12∠=∠,∴2BCF ∠=∠,∴FG BC ∥.∴180BCA FGC ∠+∠=︒.【点睛】此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.3、(1)图见解析;(2)图见解析;(3)图见解析;(4)图见解析.【解析】【分析】(1)根据射线的画法即可得;(2)以点O 为圆心、OA 长为半径画弧即可得;(3)用量角器画出AOC ∠的角平分线OD 即可;(4)根据两点之间线段最短可知,连接AC 交OD 于点P 即可.【详解】解:(1)如图,射线OA 即为所求;(2)如图,线段OC 即为所求;(3)如图,射线OD 即为所求;(4)如图,点P 即为所求.【点睛】本题考查了作射线、用量角器画角平分线、两点之间线段最短等知识点,熟练掌握射线和角平分线的作图方法是解题关键.4、(1)画图见解析;(2)画图见解析;(3)画图见解析,.AD【解析】【分析】(1)连接AB 即可;(2)过,A C 两点画直线即可,以B 为端点画射线BC 即可;(3)利用三角尺过B 画AC 的垂线,垂足为,D 可得,AD BD 从而可得点A 到直线BD 的距离是垂线段AD 的长度.【详解】解:(1)如图,线段AB 即为所求作的线段,(2)如图,直线AC 和射线BC 即为所求作的直线与射线,(3)如图,BD 即为所画的垂线,点A 到直线BD 的距离是线段AD 的长度.故答案为:.AD【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.5、 (1)见解析(2)见解析,60(3)见解析,两点之间,线段最短【解析】【分析】(1)根据相交线的定义(如果两条直线只有一个公共点时,我们称这两条直线相交)作图即可;(2)利用直尺先测量出OA 长度,然后以点O 为左端点,在射线ON 上找出点C ,连接AC ,利用量角器度量角的度数即可得;(3)连接AB 与射线ON 交于点P ,即为所求,依据两点之间线段最短确定.(1)解:过点A 作直线l 如图所示:(2)解:利用直尺先测量出OA 长度,然后以点O 为左端点,在射线ON 上找出点C ,连接AC ,如图所示; 经过测量:60OAC ∠=︒,故答案为:60;(3)解:连接AB,与射线ON交于点P,即为所求,依据两点之间线段最短确定,故答案为:两点之间线段最短.【点睛】题目主要考查相交线的定义、作一条线段等于已知线段、度量角度、两点之间线段最短等知识点,理解题意,综合运用这些知识点是解题关键.。

七下第七章相交线与平行线难题训练(有答案)

七下第七章相交线与平行线难题训练(有答案)

七下第七章相交线与平行线难题训练(有答案)七下第七章相交线与平行线难题训练一、选择题1.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A. 1个B. 2个C. 3个D. 4个2.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a//b,b//c,则a//c.A. 1个B. 2个C. 3个D. 4个3.如图,已知AB//CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是()A. ∠E=∠FB. ∠E+∠F=180°C. 3∠E+∠F=360°D. 2∠E?∠F=90°4.已知:如图AB//EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A. ∠β=∠α+∠γB. ∠α+∠β+∠γ=180°C. ∠α+∠β?∠γ=90°D. ∠β+∠γ?∠α=90°5.若∠α与∠β是内错角,且∠α=50°时,则∠β的度数为()A. 50°B. 130°C. 50°或130°D. 无法确定6.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2过平面内一点有且只有一条直线与已知直线平行;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(5)不相交的两条直线叫做平行线(6)垂直于同一条直线的两条直线平行。

其中正确的有()A. 0个B. 1个C. 2个D. 3个7.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH 折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带①的边线平行,纸带②的边线不平行B. 纸带①的边线不平行,纸带②的边线平行C. 纸带①、②的边线都平行D. 纸带①、②的边线都不平行8.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF?∠1=∠2,则在图中相等的角共有()A. 5对B. 6对C. 7对D. 8对二、填空题9.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=______.10.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是______度,再沿BF折叠成图c,则图c中的∠DHF的度数是______.11.如果∠A的两边分别与∠B的两边平行,且∠A比∠B的3倍少40°,则这两个角的度数分别为______ .12.如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=______°.13.如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°证明的过程如下,请将括号内的理由填写完整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章相交线和平行线习题
一、
填空题
1.若∠α与∠β是对顶角,且∠α+∠β=1000,则∠α=,∠β=
2.如图,和相交,和是______角,和是______角,
和是______角,和是______角.
(第2题)(第3题)(第4题)
3.如图:已知:,则
4.已知:,则
5如图,,则
. 6.
如图,∠A+∠D=180°,∠C-∠B=25°,
则∠B=________.
7、若,则它的余角是_________,它的补角是________.
8.两条直线相交,有_____对对顶角,三条直线两两相交,有_____对对顶角。

n条直线两两相交,有_____对对顶角
9.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____,•∠BOC=___ 。

10.已知:如图a∥b,∠α=
1
2
∠β,则∠β=________.
11如图,若=

=

=

+
∠1
,
65
,
1800
0则
C
B
A0,
∠2=0
第(11)题
2
1
D
C
B
A
12
.如图,AB∥CD,∠A=480,∠C=290
,则∠AEC= 度 13.如图,AB ∥CD ,∠A =38°,∠C =80°,那么∠M 等于________.
14.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,
若∠ABC=380,则∠AED= 0
二、选择题
1.两条直线被第三条直线所截,则( ).A .同位角必相等 B .内错角必相等 C .同旁内角必互补 D .同位角不一定相等
2.如图,

是对顶角的为( )
3.如图,下列条件中能判定 的是( ) A . B .
C .
D .
4.如图, ,则下列结论中,错误的是( ) A .
B .
C .
D .
5.如图,由已知条件推出的结论,正确的是( ). A .由 ,可推出 B .由 ,可推出 C .由
,可推出
D .由
,可推出
6、下列正确说法的个数是( )
①同位角相等 ②对顶角相等 ③等角的补角相等 ④两直线平行,同旁内角相等
A . 1, B. 2, C. 3, D. 4
E 第(12)题D C B A
E 第(14)题D C
B A
7.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )
A 、第一次右拐50°,第二次左拐130°
B 、第一次左拐50°第二次右拐50°
C 、第一次左拐50°,第二次左拐130°
D 、第一次右拐50°第二次右拐50° 8.如图,已知a ∥b ,01051=∠,01402=∠,则=∠3( )
A、550 B、600 C、650 D、700
9.∠1和∠2是两直线b a ,被直线m 所截,得到的同旁内角,若a ∥b ,则下列说法正确的是( )
A、∠1=∠2 B、∠1+∠2=900
C、 09022
1
121=∠+∠ D、09021=∠-∠
三、解答题
1.已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE 试说明∠1=∠2
2.如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数。

32
1b
a 第(8)题
F 2
1
G E D
C B A
3.如图,AB∥EF,∠B =1350,∠C=670,则求∠1的度数.
4.已知:DE⊥AO于E, BO⊥AO,∠CFB=∠EDO,证明:CF∥DO
B
A
证明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=900()
∴DE∥BO ()
∴∠EDO=∠DOF ()
又∵∠CFB=∠EDO()
∴∠DOF=∠CFB()
∴CF∥DO()B
D E
C
F O。

相关文档
最新文档