高考一轮总复习人教A版数学2-1
人教A版高考总复习一轮数学精品课件 第二章 一元二次函数、方程和不等式 第二节 基本不等式 (2)
≥2+2
2
2
·=4,当且仅当
1
∴0<a<1.∵a+≥2
错误.
2
2
2,当且仅当
1
a=b= 时,等号成立,故
2
1
1
1
1
B 错误; + =(a+b) +
1
a=b=2时,等号成立,故
1
·=2,当且仅当
A正
=2+ +
C 错误;∵a>0,b>0,a+b=1,
1
a=1 时,等号成立,∴a+取不到
2ab
(a,b∈R),当且仅当a=b时,等号成立.
(2)a+b≥2 (a>0,b>0),当且仅当 a=b 时,等号成立.
+ 2
(3)ab≤
(a,b∈R),当且仅当 a=b 时,等号成立.
2
2
+ 2 2 +
(4)
≤
(a,b∈R),当且仅当 a=b 时,等号成立.
2
2
3.利用基本不等式求最值
1
(x+y) + 的形式,再展开利用基本不等式求得最值.即将欲求最值的目标
式中的常数用变量替换,构造符合基本不等式应用的条件.
对点训练3(2021重庆八中高三月考)若实数x,y满足x>2y>0,且xy=1,则
2 + 42
的最小值是
-2
.
答案 4
解析 x,y 满足 x>2y>0,且
2
C.若 + ≥2,则必有 a>0,b>0
人教A版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算 (2)
第一节 平面向量的概念及线性运算
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.通过力和力的分析等实例,了解向量的实
际背景,理解平面向量和相等向量的含义,
1.平面向量
理解向量的几何表示.
的有关概念
2.通过实例,掌握向量的加、减运算,并理解 2.平面向量
其几何意义.
+
4
2
4
4
A.
=
1
1
+ 2
2
=
1
1
+ 4
2
3
1
+
,所以
4
4
=
3
4
=
1
+
2
1
− 4 ,故选
方法总结平面向量的线性运算的求解策略
对点训练 2(2021 广东梅州二模)设 P 是△ABC 所在平面内的一点, +
=2,则(
)
A. + =0
B. + =0
C. + =0
D. + + =0
答案 B
解析 + =2移项得 + -2=0, − + − = +
=0.故选 B.
考向2.向量加、减运算的几何意义
典例突破
例3.设非零向量a,b满足|a+b|=|a-b|,则(
满足=3 ,CD 与 AE 交于点 M.若=x +y ,则 x+y=(
5
A.2
人教A版高考总复习一轮文科数学精品课件 第2章 函数的概念与性质 第2节 函数的单调性与最值 (2)
B.
D.
3
,+∞
2
3
,4
2
)
答案:(1)B (2)D
解析:(1)f(x)=|x2-3x+2|=
2 -3 + 2, ≤ 1 或 ≥ 2,
-( 2 -3 + 2),1 < < 2.
如图所示,函数的单调递增区间是
3
1, 2
和[2,+∞).
(2)要使 f(x)=ln(4+3x-x2)有意义,需 4+3x-x2>0,解得 x∈(-1,4).
断)这两个函数的单调性,最后根据复合函数“同增异减”的规则进
行判断
对点训练2(1)(2021广西贵港模拟)下列关于函数f(x)=|x-1|-1的结论,正确的
是(
)
A.f(x)在(0,+∞)上单调递增
B.f(x)在(0,+∞)上单调递减
C.f(x)在(-∞,0]上单调递增
D.f(x)在(-∞,0]上单调递减
1,为有理数,
例如:函数 f(x)=
它的定义域为 R,但不具有单调性.
0,为无理数,
2.函数的最值
前提
条件
结论
设函数y=f(x)的定义域为I,如果存在实数M满足
①对于任意x∈I,都有 f(x)≤M ; ③对于任意x∈I,都有 f(x)≥M ;
②存在x0∈I,使得 f(x0)=M
④存在x0∈I,使得 f(x0)=M
故函数f(x)的最大值为2.
突破技巧求函数最值的五种常用方法及其思路
单调性法
图象法
基本不等
式法
导数法
换元法
先确定函数的单调性,再由单调性求最值
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
2024届新高考一轮复习人教A版 第1章 第2讲 充分条件与必要条件 课件(50张)
题组一 走出误区 1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)p是q的充分不必要条件等价于q是p的必要不充分条件.( √ ) (2)已知集合A,B,则(A∪B)⊆(A∩B)的充要条件是A=B.( √ ) (3)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)在△ABC中,A>B是sin A>sin B的充要条件.( √ )
[解析] 当a>b时,若c2=0,则ac2=bc2, 所以a>b ac2>bc2, 当ac2>bc2时,c2≠0,则a>b, 所以ac2>bc2⇒a>b, 即“a>b”是“ac2>bc2”的必要不充分条件.
4.(必修1P23T5改编)使-2<x<2成立的一个充分条件是( B )
A.x<2
B.0<x<2
C.-2≤x≤2
D.x>0
题组三 走向高考 5.(2022·浙江卷)设x∈R,则“sin x=1”是“cos x=0”的( A ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
[解析] 解法一:由 sin x=1,得 x=2kπ+π2(k∈Z),则 cos2kπ+π2= cos π2=0,故充分性成立;又由 cos x=0,得 x=kπ+π2(k∈Z),而 sinkπ+π2 =1 或-1,故必要性不成立.所以“sin x=1”是“cos x=0”的充分不 必要条件,故选 A.
题组二 走进教材 2 . (必 修 1P22 练 习 T1 改 编 )“x- 3 =0” 是 “(x- 3)(x- 4) = 0” 的 __充__分__不__必__要___ 条 件 . ( 选 填 “ 充 分 不 必 要 ”“ 必 要 不 充 分 ”“ 充 要”“既不充分也不必要”) 3.(必修1P22习题T2改编)“a>b”是“ac2>bc2”的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
【创新设计】(江苏专用)高考数学一轮复习 第二章 第1讲 函数及其表示配套课件 理 新人教A版
【训练3】 求下列函数的值域: (1)y=x2x-2-x+x 1;(2)y=2x-1- 13-4x. 解 (1)法一 (配方法)
∵y=1-x2-1x+1,又 x2-x+1=x-122+34≥34,
∴0<x2-1x+1≤43,∴-13≤y<1.
∴函数的值域为-13,1.
法二 (判别式法) 由 y=x2x-2-x+x 1,x∈R. 得(y-1)x2+(1-y)x+y=0. ∵y=1 时,x∈∅,∴y≠1.
考向一 函数与映射的概念
【例1】 (1)(2012·临沂调研)已知a,b为两个不相等的实 数,集合M={a2-4a,-1},N={b2-4b+1,-2}, f:x―→x表示把M中的元素x映射到集合N中仍为x, 则a+b等于________. (2)已知映射f:A―→B.其中A=B=R,对应关系f: x―→y=-x2+2x,对于实数k∈B,在集合A中不存在 元素与之对应,则k的取值范围是________.
又∵x∈R,∴Δ=(1-y)2-4y(y-1)≥0,解得-13≤y≤1. 综上得-13≤y<1.∴函数的值域为-13,1.
(2)法一 (换元法) 设 13-4x=t,则 t≥0,x=13-4 t2, 于是 f(x)=g(t)=2·13-4 t2-1-t =-12t2-t+121=-12(t+1)2+6, 显然函数 g(t)在[0,+∞)上是单调递减函数,
[方法总结] (1)当所给函数是分式的形式,且分子、分母是 同次的,可考虑用分离常数法;(2)若与二次函数有关, 可用配方法;(3)若函数解析式中含有根式,可考虑用换 元法或单调性法;(4)当函数解析式结构与基本不等式有 关,可考虑用基本不等式求解;(5)分段函数宜分段求 解;(6)当函数的图象易画出时,还可借助于图象求解.
2024届新高考一轮复习人教A版 第二章 第1节 函数的概念及其表示 课件(38张)
C )
g(x)=
C.f(x)= 与 g(x)=|x|
0
D.f(x)=1,x∈R 与 g(x)=x
解析:A选项中函数f(x)的定义域为[1,+∞),g(x)的定义域为R,定义域不同,不是同
一个函数;B选项中函数f(x)的定义域为R,g(x)的定义域为(-∞,0)∪(0,+∞),定义
域不同,不是同一个函数;C选项中函数f(x),g(x)的定义域均为R,对应法则也相同,
2
所以函数 f(x)的解析式为 f(x)=x -x+3.
义域.
求函数的解析式
1.(2022·黑龙江哈尔滨月考)已知 f( +1)=lg x,则 f(x)的解析式为
解析:令 +1=t(t>1),则 x=
所以 f(t)=lg
所以 f(x)=lg
(t>1),
-
(x>1).
-
答案:f(x)=lg
(x>1)
பைடு நூலகம்-
,
-
.
2.若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为
所以f(x)的定义域为[-5,5],所以f(1-2x)满足-5≤1-2x≤5,所以-2≤x≤3,
所以函数f(1-2x)的定义域为[-2,3].
3.若函数f(x)的定义域为[0,2],则函数f(x-1)的定义域为
解析:因为f(x)的定义域为[0,2],
所以0≤x-1≤2,即1≤x≤3,
所以函数f(x-1)的定义域为[1,3].
答案:[1,3]
人教A版高考总复习一轮数学精品课件 第六章 数列 第二节 等差数列 (2)
故数列{an}的通项公式为an=2n.
(3)解 不等式 λ·
2 >n-5 对任意的正整数 n 恒成立,即
n
恒成立.设
-5
bn= 2 ,显然当
-4
-5
时,bn+1-bn= +1 −
2
2
的最大项是
=
-5
λ> 2 对任意的正整数
n
n≤5 时 bn≤0,当 n>5 时 bn>0,则当 n≥5
=
2 -7
2
=
(-7)
,因此当
2
n>7
方法总结解决等差数列基本量运算的思想方法
(1)方程思想:等差数列的基本量为首项a1和公差d,通常利用已知条件及通
项公式或前n项和公式列方程
(组)求解,等差数列中包含a1,d,n,an,Sn五个量,可“知三求二”.
(2)整体思想:当所给条件只有一个时,可将已知和所求都用a1,d表示,寻求两
.
答案 (1)13 (2)an=-2n+22
解析 (1)设数列{an}的公差为d,则S3=3a2=9,a2=3,所以
a3+a4=3+d+3+2d=12,解得d=2,所以a7=a2+5d=3+5×2=13.
(2)由
6×5
S6=6a1+ d=6a1+15d=90,得
2
2a1+5d=30.由72 =a3a9,得
数列Sm,S2m-Sm,S3m-S2m,…(m∈N*)也是等差数列,公差为m2d.
(4)若数列{an}是等差数列,Sn 是{an}的前 n 项和,则{ }也是等差数列,其首项
走向高考--2015高考一轮总复习人教A版数学2-1
基础巩固强化一、选择题1.(文)若函数f (x )的定义域是[0,4],则函数g (x )=f (2x )x 的定义域是( )A .[0,2]B .(0,2)C .(0,2]D .[0,2)[答案] C[解析] ∵⎩⎪⎨⎪⎧0≤2x ≤4,x ≠0.∴0<x ≤2,故选C.(理)(2013·湖北荆门期末)函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) [答案] D[解析] 要使函数f (x )有意义,必须且只需⎩⎪⎨⎪⎧x ≠0,x 2-3x +2≥0,x 2-3x +2+-x 2-3x +4>0,解得-4≤x <0或0<x <1.故选D.2.(文)(2012·江西文,3)设函数f (x )=⎩⎨⎧x 2+1,x ≤1,2x ,x >1.则f (f (3))=( )A.15 B .3 C.23 D.139[答案] D[解析] 本题考查分段函数求值问题, 由条件知f (3)=23, f (f (3))=f (23)=(23)2+1=139.(理)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,f (x -3),x >0,则f (2014)等于( )A .-1B .1C .-3D .3[答案] C[解析] f (2014)=f (2011)=f (2008)=……=f (1)=f (-2)=2×(-2)+1=-3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B.45 C .2 D .9[答案] C[解析] ∵f (0)=20+1=2,f (f (0))=4a , ∴22+2a =4a ,∴a =2.4.(2013·银川模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) [答案] A[解析] 由题意知f (1)=3,故原不等式可化为⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3,或⎩⎪⎨⎪⎧x <0,x +6>3,解之得-3<x <1或x >3, ∴原不等式的解集为(-3,1)∪(3,+∞),故选A. 5.(文)函数f (x )=22x -2的值域是( )A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞)[答案] D[解析] 1f (x )=2x -1-1>-1,结合反比例函数的图象可知f (x )∈(-∞,-1)∪(0,+∞).(理)若函数y =f (x )的值域是[12,3],则函数F (x )=f (x )+1f (x )的值域是( )A .[12,3]B .[2,103]C .[52,103]D .[3,103][答案] B[解析] 令t =f (x ),则12≤t ≤3,由函数g (t )=t +1t 在区间[12,1]上是减函数,在[1,3]上是增函数,且g (12)=52,g (1)=2,g (3)=103,可得值域为[2,103],选B.6.a 、b 为实数,集合M ={ba ,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有ba =1,与集合元素的互异性矛盾,∴f (ba )=0,∴b =0,∴a +b =1. 二、填空题7.(文)函数y =16-x -x 2的定义域是________. [答案] (-3,2)[解析] 由6-x -x 2>0,得x 2+x -6<0, 即{x |-3<x <2}.(理)(2013·福州模拟)函数f (x )=(x +1)2x +1-1-x 的定义域为________.[答案] (-∞,-1)∪(-1,1][解析] ∵要使函数f (x )=(x +1)2x +1-1-x 有意义,∴⎩⎪⎨⎪⎧ 1-x ≥0,x +1≠0,∴⎩⎪⎨⎪⎧x ≤1,x ≠-1, ∴函数f (x )的定义域为{x |x ≤1,且x ≠-1}.[失误与防范] 本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.防范错误的有效方法是每一步变形时观察一下是否为等价变换,否则应附加限制条件保持等价.8.(文)如果函数f (x )=1-x 21+x 2,那么f (1)+f (2)+…f (2012)+f (12)+f (13)+…+f (12012)的值为________.[答案] 0[解析] 由于f (x )+f (1x )=1-x21+x 2+1-(1x )21+(1x )2=1-x 21+x 2+x 2-1x 2+1=0,f (1)=0,故该式值为0.(理)规定记号“⊕”表示一种运算,且a ⊕b =ab +a +b +1,其中a 、b 是正实数,已知1⊕k =4,则函数f (x )=k ⊕x 的值域是________.[答案] (2,+∞)[解析] 1⊕k =k +k +2=4,解之得k =1,∴f (x )=x +x +2,由于“⊕”的运算对象是正实数,故x >0,∴f (x )>2.9.(2012·辽宁辽南协作体期中)已知f (x -2)=⎩⎪⎨⎪⎧1+x 2, x >2,2-x, x ≤2,则f (1)=________.[答案] 10[解析] f (1)=f (3-2)=1+32=10. 三、解答题10.(2012·北京海淀期中)某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:t)满足函数关系式C =10 000+20x ,每日的销售额R (单位:元)与日产量x 的函数关系式为R =⎩⎨⎧-130x 3+ax 2+290x ,0<x <120,20 400,x ≥120.已知每日的利润y =R -C ,且当x =30时,y =-100.(1)求a 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.[解析] (1)∵当x =30时,y =-100,∴-100=-130×303+a ×302+270×30-10 000, ∴a =3.(2)当0<x <120时,y =-130x 3+3x 2+270x -10 000. 令y ′=-110x 2+6x +270=0, 可得:x 1=90,x 2=-30(舍去),所以当x ∈(0,90)时,原函数是增函数,当x ∈(90,120)时,原函数是减函数.∴当x =90时,y 取得极大值14 300. 当x ≥120时,y =10 400-20x ≤8 000.所以当日产量为90t 时,每日的利润可以达到最大值14 300元.能力拓展提升一、选择题11.(文)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (1)+f (a )=2,则a 的值为( )A .1B .2C .4D .4或1 [答案] C[解析] ∵f (1)=0,∴f (a )=2,∴log 2a =2(a >0)或2a =2(a ≤0),解得a =4或a =1(舍),故选C.(理)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2) (-1<x <0),e x -1 (x ≥0).若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .1,-22 C .-22 D .1,22[答案] B [解析] f (1)=1,当a ≥0时,f (a )=e a -1,∴1+e a -1=2, ∴a =1,当-1<a <0时,f (a )=sin(πa 2), ∴1+sin(πa 2)=2, ∴πa 2=π2+2k π(k ∈Z ),∵-1<a <0,∴a =-22,故选B.12.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a (x <1),log a x (x ≥1).是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[35,3) D .(1,3)[答案] D[解析] 解法1:由f (x )在R 上是增函数,∴f (x )在[1,+∞)上单增,由对数函数单调性知a >1,① 又由f (x )在(-∞,1)上单增,∴3-a >0,∴a <3,②又由于f (x )在R 上是增函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最大值3-5a 要小于等于f (x )在[1,+∞)上的最小值0,才能保证单调区间的要求,∴3-5a ≤0,即a ≥35,③ 由①②③可得1<a <3.解法2:令a 分别等于35、0、1,即可排除A 、B 、C ,故选D. [点评] f (x )在R 上是增函数,a 的取值不仅要保证f (x )在(-∞,1)上和[1,+∞)上都是增函数,还要保证x 1<1,x 2≥1时,有f (x 1)<f (x 2).二、填空题[答案] -1或1 [解析]14.(2013·四川省内江市第一次模拟)设函数f (x )=|x |x +bx +c ,则下列命题中正确命题的序号有________.①函数f (x )在R 上有最小值;②当b >0时,函数在R 上是单调增函数; ③函数f (x )的图象关于点(0,c )对称;④当b <0时,方程f (x )=0有三个不同实数根的充要重要条件是b 2>4|c |;⑤方程f (x )=0可能有四个不同实数根. [答案] ②③④[解析] f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≥0)-x 2+bx +c (x <0)取b =0知,①⑤错; 容易判断②,③正确;b <0时,方程f (x )=0有三个不同实数根,等价于c -b 24<0且c +b 24>0,∴b 2>4c 且b 2>-4c ,∴b 2>4|c |,故填②、③、④.三、解答题15.(文)函数f (x )=x 2+x -14.(1)若定义域为[0,3],求f (x )的值域;(2)若f (x )的值域为[-12,116],且定义域为[a ,b ],求b -a 的最大值.[解析] ∵f (x )=(x +12)2-12, ∴对称轴为x =-12. (1)∵3≥x ≥0>-12, ∴f (x )的值域为[f (0),f (3)], 即[-14,474];(2)∵x =-12时,f (x )=-12是f (x )的最小值, ∴x =-12∈[a ,b ],令x 2+x -14=116, 得x 1=-54,x 2=14,根据f (x )的图象知当a =-54,b =14时,b -a 取最大值14-(-54)=32.(理)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. [解析] (1)设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎪⎨⎪⎧ a =12,b =12.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12(x 2-32)2-18,当x 2=32时,y 取最小值-18. ∴函数y =f (x 2-2)的值域为[-18,+∞). 16.(文)某地区预计2014年的前x 个月内对某种商品的需求总量f (x )(万件)与月份x 的近似关系式是f (x )=175x (x +1)(19-x ),x ∈N *,1≤x ≤12,求:(1)2014年的第x 月的需求量g (x )(万件)与月份x 的函数关系式.(2)求第几个月需求量g (x )最大.[解析] (1)第x 月的需求量为g (x )=f (x )-f (x -1)=175x (x +1)(19-x )-175(x -1)x (20-x )=125x (13-x ).(2)g (x )=125(-x 2+13x )=-125[42.25-(x -6.5)2],因此当x =6或7时g(x)最大.第6、7月需求量最大.(理)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系如图所示:该商品在30天内日销售量Q(件)与时间t(天)之间的关系如表所示:(1)根据提供的图象,写出该商品每件的销售价格P与时间t的函数关系式;(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *),-t +100 (25≤t ≤30,t ∈N *). (2)图略,Q =40-t (t ∈N *).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧ -t 2+20t +800 (0<t <25,t ∈N *),t 2-140t +4000 (25≤t ≤30,t ∈N *). 即y =⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *),(t -70)2-900 (25≤t ≤30,t ∈N *). 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大.考纲要求1.了解构成函数的要素;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.4.会求一些简单函数的定义域.5.了解求函数值域的方法,会求一些简单函数的值域.6.会求一些简单函数的解析式.补充说明1.掌握几类题型:求定义域,分段函数求值、解不等式,已知分段函数值求自变量的值及函数的图象变换.2.函数的定义域是一个集合,应该用集合或区间表示,有几段时,要用“∪”连接,函数解析式是几个代数式的和时,定义域是使各部分有意义的x 的集合的交集.3.了解求函数解析式的常见类型及方法(1)配凑法当已知函数表达式比较简单时,可直接应用此法.即根据具体解析式凑出复合变量的形式,从而求出解析式.(2)换元法已知f [g (x )]是关于x 的函数,即f [g (x )]=F (x ),求f (x )的解析式,通常令g (x )=t ,由此能解出x =φ(t ).将x =φ(t )代入f [g (x )]=F (x )中,求得f (t )的解析式,再用x 替换t ,便得f (x )的解析式.注意,换元后要确定新元t 的取值范围.[例1] 已知f (2x +1)=lg x ,求f (x )的解析式.[解析] 令2x +1=t ,由于x >0,∴t >1且x =2t -1, ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1). (3)待定系数法若已知函数的结构形式,则可用此法.[例2] (2012·德州模拟)设二次函数f (x )满足f (x -2)=f (-x -2)且图象在y 轴上的截距为1,在x 轴上截得的线段长为22,求f (x )的解析式.[解析] ∵二次函数f (x )满足f (x -2)=f (-x -2),∴f (x )的图象关于直线x =-2对称,故可设f (x )=a (x +2)2+c ,∵f (x )的图象在y 轴上的截距为1,∴f (0)=1,∴4a +c =1,①又f (x )的图象在x 轴上截得线段长为22,∴-2+2与-2-2是方程a (x +2)2+c =0的两根,∴2a +c =0②由①、②解得,a =12,c =-1,∴f (x )=12(x +2)2-1,即f (x )=12x 2+2x +1.(4)消元法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其它未知量,如f (-x )、f ⎝ ⎛⎭⎪⎫1x 等,必须根据已知等式再构造其它等式组成方程组,通过解方程组求出f (x ).[例3] 已知函数f (x )满足条件:f (x )+2f (-x )=x ,则f (x )=________.[分析] 由于难以判断f (x )是何种类型的函数,故不可能先设出f (x )的表达式,但如果把条件中的x 换成-x ,即得f (-x )+2f (x )=-x ,把f (x )、f (-x )作为一个整体量,实际上得到了这两个量的方程组.[解析] 用-x 代换条件方程中的x 得f (-x )+2f (x )=-x ,把它与原条件式联立.⎩⎪⎨⎪⎧f (x )+2f (-x )=x , ①f (-x )+2f (x )=-x . ② ②×2-①得,f (x )=-x .[答案] -x[点评] 充分抓住已知条件式的结构特征,运用x 取值的任意性获得②式是解决此题的关键.若已知2f (x )-f (-1x )=2x -1,你会求f (x )吗?(5)赋值法此类解法的依据是:如果一个函数关系式中的变量对某个范围内的一切值都成立,则对该范围内的某些特殊值必成立,结合题设条件的结构特点,给变量适当取值,从而使问题简单化、具体化,进而获解.[例4] 已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ).[解析] 令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1再令-b =x 得:f (x )=x 2+x +1.[点评] 赋值法的关键环节是“赋值”,赋值的方法灵活多样,既要照顾到已知条件的运用和待求结论的产生,又要考虑所给关系式的结构特点.如本题另解:令b =a ,则1=f (0)=f (a )-a (2a -a +1)=f (a )-a (a +1)=f (a )-a 2-a ,∴f (a )=a 2+a +1,∴f (x )=x 2+x +1.(6)转化法已知f (x )在某个区间上的表达式及f (x )具有某种性质(如奇偶性、对称性等),求f (x )在另一个区间上的表达式,常用转化法求解.[例5] 已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2.5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论函数f (x )在[-3,3]上的单调性.[解析] (1)由f (-1)=kf (1),f (2.5)=1k f (12)知需求f (12)和f (1),f (1)=-1,f (12)=12×(12-2)=-34,∴f (-1)=-k ,f (2.5)=-34k(2)∵0≤x ≤2时,f (x )=x (x -2),设-2≤x <0,则0≤x +2<2,∴f (x )=kf (x +2)=k (x +2)x ;设-3≤x <-2,则-1≤x +2<0,∴f (x )=kf (x +2)=k 2(x +4)(x +2);设2<x ≤3,则0<x -2≤1,∵f (x )=kf (x +2),∴f (x -2)=kf (x ),∴f (x )=1k f (x -2)=1k (x -2)(x -4).综上可知,f (x )=⎩⎪⎨⎪⎧ k 2(x +2)(x +4) -3≤x <-2,kx (x +2) -2≤x <0,x (x -2) 0≤x ≤2,1k (x -2)(x -4) 2<x ≤3.∵k <0,∴由二次函数的知识知:f (x )在[-3,-2)上是增函数,在[-2,-1)上是增函数,在[-1,0)上是减函数,在[0,1)上是减函数,在[1,2]上是增函数,在(2,3]上是增函数,又各区间都可以是闭区间,∴f(x)在[-3,-1]上是增函数,在[-1,1]上是减函数,在[1,3]上是增函数.[点评]可用导数讨论单调性.备选习题1.值域为{2,5,10},对应关系为y=x2+1的函数个数为()A.1 B.8C.27 D.39[答案] C[解析]本题的关键是寻找满足条件的定义域有多少种情况.当y=2,即x2=1时,x=1,-1或±1有三种情况,同理当y=5,10时,x的值各有三种情况,由分步乘法计数原理知,共有3×3×3=27种可能.故选C.2.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如下图所示,则函数g(x)=a x+b的图象是()[答案] A[解析] ∵f (x )=(x -a )(x -b )的两个零点为a 和b 且a >b ,由图象知0<a <1,b <-1,∴g (x )=a x +b 单调减,且g (0)=1+b <0,故选A.3.函数f (x )=|log 12x |的定义域是[a ,b ],值域为[0,2],对于区间[m ,n ],称n -m 为区间[m ,n ]的长度,则[a ,b ]长度的最小值为( )A.154B .3C .4D.34 [答案] D[解析] 令f (x )=0得,x =1,令f (x )=2得,log 12x =±2,∴x =14或4,∴当a =14,b =1时满足值域为[0,2],故选D.4.设函数f (x )=⎩⎪⎨⎪⎧21-x -1 (x <1),lg x (x ≥1).若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10)[答案] A[解析] 由条件知,⎩⎪⎨⎪⎧ x 0<1,21-x 0-1>1,或⎩⎨⎧x 0≥1,lg x 0>1. ∴x 0<0或x 0>10.5.(2012·东北三校二模)函数y =x ln(-x )与y =x ln x 的图象关于( )A.直线y=x对称B.x轴对称C.y轴对称D.原点对称[答案] D[解析]若点(m,n)在函数y=x ln x的图象上,则n=m ln m,所以-n=-m ln[-(-m)],可知点(-m,-n)在函数y=x ln(-x)的图象上,反之亦然,而点(m,n)与点(-m,-n)关于原点对称,所以函数y=x ln x与y=x ln(-x)的图象关于原点对称,故选D.6.如图,动点P在正方体ABCD-A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M、N.设BP=x,MN=y,则函数y=f(x)的图象大致是()[答案] B[解析]解法1:取AA1、CC1的中点E、F,EF交BD1于O,则EF ∥AC ,∵AC ⊥BD ,AC ⊥BB 1,∴AC ⊥平面BDD 1B 1,∴EF ⊥平面BDD 1B 1,∴平面BED 1F ⊥平面BDD 1B 1,过点P 作MN ∥EF ,则MN ⊥平面BDD 1B 1,MN 交BE 、BF 于M 、N ,则BP BO =MN EF ,∴MN =EF BO ·BP ,不难看出当P 在BO 上时,y 是x 的一次增函数,当P 在OD 1上时,y 是x 的一次减函数,故选B.解法2:连接AC ,A 1C 1,则MN ∥AC ∥A 1C 1,当且仅当P 为BD 1的中点O 时,MN =AC 取得最大值,故答案A ,C 错,又当P 为BO中点时,MN =12AC ,故答案D 错,所以选B.7.已知函数f (x )的值域为[0,4],(x ∈[-2,2]),函数g (x )=ax -1,x ∈[-2,2],∀x 1∈[-2,2],总∃x 0∈[-2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围是______.[答案] ⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫52,+∞ [解析] 只需要函数f (x )的值域是函数g (x )值域的子集即可.(1)当a >0时,g (x )=ax -1单调递增,∵x ∈[-2,2],∴-2a -1≤g (x )≤2a -1,要使条件成立,只需⎩⎪⎨⎪⎧-2a -1≤02a -1≥4,∴a ≥52.(2)当a <0时,g (x )=ax -1单调递减.∵x ∈[-2,2],∴2a -1≤g (x )≤-2a -1,要使条件成立,只需⎩⎪⎨⎪⎧ 2a -1≤0-2a -1≥4,∴⎩⎪⎨⎪⎧ a ≤12a ≤-52,∴a ≤-52.综上,a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫52,+∞. 8.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x 元(7≤x ≤10)时,一年的产量为(11-x )2万件,若该企业所生产的产品全部售出,则称该企业正常生产,但为了保护环境,用于治理污染的费用与产量成正比,比例系数为常数a (1≤a ≤3).(1)求该企业正常生产一年的利润L (x )与出厂价x 的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.[解析] (1)依题意,L (x )=(x -3)(11-x )2-a (11-x )2=(x -3-a )(11-x )2,x ∈[7,10].(2)因为L ′(x )=(11-x )2-2(x -3-a )·(11-x )=(11-x )(11-x -2x +6+2a )=(11-x )(17+2a -3x ).由L ′(x )=0,得x =11∉[7,10]或x =17+2a 3.因为1≤a ≤3,所以193≤17+2a 3≤233.①当193≤17+2a 3≤7,即1≤a ≤2时,L ′(x )在[7,10]上恒为负,则L (x )在[7,10]上为减函数,所以L (x )max =L (7)=16(4-a ).②当7<17+2a 3≤233,即2<a ≤3时,L (x )max =L (17+2a 3)=427(8-a )3.当1≤a ≤2时,在每件产品出厂价为7元时,年利润最大,为16(4-a )万元.当2<a ≤3时,在每件产品出厂价为17+2a 3元时,年利润最大,为427(8-a )3万元.。
高考数学一轮复习第二章函数3函数的奇偶性与周期性课件新人教A版2
对于B选项,|f(-x)|g(-x)=|f(x)|g(x),|f(x)|g(x)为偶函数,故B错误;
对于C选项,f(-x)|g(-x)|=-f(x)·
|g(x)|,f(x)|g(x)|为奇函数,故C正确;
对于D选项,|f(-x)g(-x)|=|f(x)·
g(x)|,|f(x)g(x)|是偶函数,故D错误.
(6)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.( × )
-7知识梳理
双基自测
1
2
2.下列函数为奇函数的是(
A.y=√
C.y=cos x
3
4
5
)
B.y=|sin x|
D.y=ex-e-x
关闭
令y=f(x),选项A,定义域为[0,+∞),不关于原点对称,所以为非奇非偶函数;
利用待定系数法求解,根据f(x)±f(-x)=0得到关于待求参数的恒等
式,由系数的对等性得参数的值或方程(组),进而得出参数的值.
-20考点1
考点2
考点3
考点4
(4)解不等式
利用奇偶性与单调性,将抽象函数不等式转化为关于未知数的不
等式,进而得出未知数的取值范围.
(5)画函数图象和判断单调性
利用奇偶性可画出另一对称区间上的图象及判断另一区间上的
1
1
A. 0, e
B. e ,e
1
D. 0, e ∪(e,+∞)
(3)若f(x)是R上的奇函数,且当x>0时,f(x)=x3-8,则{x|f(x-2)>0}=
( B )
A.{x|-2<x<0或x>2}
B.{x|0<x<2或x>4}
高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件
.
OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10
高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版
解法一:因为 f(x)=2sinx+sin2x=2sinx(1+cosx),所以[f(x)]2=4sin2x(1 +cosx)2=4(1-cosx)(1+cosx)3,设 cosx=t,则 y=4(1-t)(1+t)3(-1≤t≤1), 所以 y′=4[-(1+t)3+3(1-t)(1+t)2]=4(1+t)2(2-4t),所以当-1<t<21时, y′>0;当21<t<1 时,y′<0。所以函数 y=4(1-t)(1+t)3(-1≤t≤1)在-1,21 上单调递增,在12,1上单调递减,所以当 t=12时,ymax=247;当 t=±1 时, ymin=0。所以 0≤y≤247,即 0≤[f(x)]2≤247,所以-32 3≤f(x)≤32 3,所以 f(x)的最小值为-32 3。
(ⅱ)当 0<2a<1,即 0<a<2 时,由 f′(x)>0,得 0<x<a2或 x>1; 由 f′(x)<0,得a2<x<1。 则函数 f(x)的单调递增区间为0,a2,(1,+∞), 函数 f(x)的单调递减区间为a2,1。 (ⅲ)当2a=1,即 a=2 时,f′(x)≥0 恒成立,则函数 f(x)的单调递增区 间为(0,+∞)。
2.函数的极值与导数
(1)函数的极小值
若函数 y=f(x)在点 x=a 处的函数值 f(a)比它在点 x=a 附近其他点的函数
值 都小
,且 f′(a)=0,而且在点 x=a 附近的左侧 f′(x)<0 ,右
侧 f′(x)>0 ,则 x=a 叫做函数的极小值点,f(a)叫做函数的极小值。
(2)函数的极大值
1.函数 f(x)在区间(a,b)上递增,则 f′(x)≥0,“f′(x)>0 在(a,b)上成 立”是“f(x)在(a,b)上单调递增”的充分不必要条件。
人教A版高考总复习文科数学精品课件 第3章 导数及其应用 第2节 第1课时 利用导数研究函数的单调性
(2)由题意 f'(x)=e
∵f(x)=e
x
∴f'(x)=e
x
- 2,
+ 在[1,2]上单调递增,
- 2 ≥0
x
在 x∈[1,2]时恒成立,即 a≤x2ex 在 x∈[1,2]时恒成立,令
g(x)=x2ex,g'(x)=2xex+x2ex=xex(x+2)>0,
∴g(x)=x2ex在[1,2]上单调递增,
条件
恒有
f'(x)>0
函数f(x)在某个区
f'(x)<0
间内可导
f'(x)=0
结论
函数y=f(x)在这个区间内 单调递增
函数y=f(x)在这个区间内 单调递减
函数y=f(x)在这个区间内是 常数函数
微点拨讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,
要坚持“定义域优先”原则.
(2)单调性到导数
∴g(x)≥g(1)=e,∴a≤e,故答案为(-∞,e].
考点四
导数在研究函数单调性中的应用(多考向探究)
考向1比较大小
例 4 已知函数
||
f(x)= || ,记
e
A.a>c>b
B.a>b>c
C.c>a>b
D.c>b>a
a=f(log32),b=f(log53), c=f
1
ln
e
,则(
)
答案:D
而引起分类讨论;
3.求导后,f'(x)=0有实数根,f'(x)=0的实数根也落在定义域内,但不清楚这些
【走向高考】(2013春季发行)高三数学第一轮总复习 2-1函数及其表示 新人教A版
2-1函数及其表示基础巩固强化1.(2011·浙江嘉兴一中模拟)设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )[答案] B[解析] 函数的定义要求定义域内的任一变量都有唯一的函数值与之对应,A 中x ∈(0,2]时没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2.(文)(2011·广州市综合测试)函数y =1-2x 的定义域为集合A ,函数y =ln(2x +1)的定义域为集合B ,则A ∩B 等于( )A .(-12,12B .(-12,12)C .(-∞,-12)D .[12[答案] A[解析] 由⎩⎪⎨⎪⎧1-2x ≥0,2x +1>0,得⎩⎪⎨⎪⎧x ≤12x >-12.∴-12<x ≤12,故A ∩B =(-12,12.(理)(2010·湖北文,5)函数y =1log 0.54x -3的定义域为( )A.⎝⎛⎭⎫34,1 B.⎝⎛⎭⎫34 C .(1,+∞) D.⎝⎛⎭⎫341∪(1,+∞) [答案] A[解析] log 0.5(4x -3)>0=log 0.51,∴0<4x -3<1, ∴34<x <1. 3.(2011·山东潍坊模拟)已知f (x )=⎩⎪⎨⎪⎧12x,x ≥3,f x +1,x <3.则f (log 23)的值是( )A.112B.124C .24D .12[答案] A[解析] ∵1<log 23<2,∴3<log 23+2<4, ∴f (log 23)=f (log 23+1) =f (log 23+2)=f (log 212) =(12)log 212=112.4.(2011·福建文,8)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a的值等于( )A .-3B .-1C .1D .3[答案] A[解析] ∵f (1)=21=2,∴由f (a )+f (1)=0知 f (a )=-2. 当a >0时 2a=-2不成立.当a <0时a +1=-2,a =-3.5.(文)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2x x ∈-∞,2],log 2x x ∈2,+∞.则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2.当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x -1 x <1,lg x x ≥1.若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧x 0<1,21-x 0-1>1,或⎩⎪⎨⎪⎧x 0≥1,lg x 0>1.⇒x 0<0或x 0>10.6.(2012·山东聊城市质检)具有性质f (1x)=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①[答案] B[解析] ①f (1x )=1x-x =-f (x )满足.②f (1x )=1x+x =f (x )不满足.③0<x <1时,f (1x)=-x =-f (x ),x =1时,f (1x)=0=-f (x ),x >1时,f (1x )=1x=-f (x )满足.故选B.7.(文)(2011·济南模拟)已知函数f (x )=x -1x +1f (x )+f (1x)=________. [答案] 0[解析] ∵f (1x )=1x-11x+1=1-x 1+x , ∴f (x )+f (1x )=x -1x +1+1-x1+x=0.(理)若f (a +b )=f (a )·f (b )且f (1)=1,则f 2f 1+f 3f 2+f 4f 3+…+f 2012f 2011=________.[答案] 2011 [解析] 令b =1,则f a +1f a =f (1)=1,∴f 2f 1+f 3f 2+f 4f 3+…+f 2012f 2011=2011.8.(文)(2011·武汉模拟)已知f (2x+1)=lg x ,则f (x )=________. [答案] lg2x -1(x >1) [解析] 令2x +1=t ,∵x >0,∴t >1,则x =2t -1,∴f (t )=lg2t -1,f (x )=lg 2x -1(x >1). (理)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是__________.[答案] 1[解析] 结合f (x )与g (x )的图象,h (x )=⎩⎪⎨⎪⎧log 2x 0<x ≤2-x +3 x >2,易知h (x )的最大值为h (2)=1.9.(文)(2011·广东文,12)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.[答案] -9[解析] 令g (x )=x 3cos x ,则f (x )=g (x )+1,g (x )为奇函数.f (a )=g (a )+1=11,所以g (a )=10,f (-a )=g (-a )+1=-g (a )+1=-9.(理)(2011·安徽省淮南市高三第一次模拟)已知定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,若f (1)=2,则f (2011)=________.[答案]132[解析] ∵f (x +4)=13f x +2=1313f x f (x ),∴函数f (x )的周期为4,所以f (2011)=f (4×502+3)=f (3)=13f 1=132. 10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12, -1<x <0,e x -1 x ≥0.若f (1)+f (a )=2,求a 的值.[解析] ∵f (1)=e 1-1=1,又f (1)+f (a )=2, ∴f (a )=1.若-1<a <0,则f (a )=a 2+12=1,此时a 2=12,又-1<a <0,∴a =-22. 若a ≥0,则f (a )=e a -1=1,∴a =1. 综上所述,a 的值是1或-22. 能力拓展提升11.(文)(2011·天津一中)若函数f (x )=x -4mx 2+4mx +3R ,则实数m 的取值范围是( )A .(-∞,+∞)B .(0,34)C .(34,+∞)D .[0,34)[答案] D[解析] ①m =0时,分母为3,定义域为R . ②由⎩⎪⎨⎪⎧m ≠0,Δ<0得0<m <34.综上得0≤m <34.(理)(2011·黑龙江哈尔滨模拟)如果函数f (x )对于任意实数x ,存在常数M ,使得不等式|f (x )|≤M |x |恒成立,那么就称函数f (x )为有界泛函.下面有4个函数:①f (x )=1; ②f (x )=x 2; ③f (x )=(sin x +cos x )x; ④f (x )=xx 2+x +1.其中有两个属于有界泛函,它们是( ) A .①② B .②④ C .①③ D .③④[答案] D[解析] 由|f (x )|≤M |x |对x ∈R 恒成立,知|f x x|max ≤M . ①中⎪⎪⎪⎪f x x =|1x|∈(0,+∞),故不存在常数M 使不等式恒成立; ②中⎪⎪⎪f x x =|x |∈[0,+∞),故不存在常数M 使不等式恒成立; ③中⎪⎪⎪⎪f x x =|sin x +cos x |=2|sin(x +π4)|≤2,故存在M 使不等式恒成立;④中⎪⎪⎪⎪f x x =⎪⎪⎪⎪1x 2+x +1=⎪⎪⎪⎪⎪⎪⎪⎪1x +122+34≤43 故存在M 使不等式恒成立.[点评] 作为选择题判断①后即排除A 、C ,判断②后排除B ,即可选出D.12.(文)(2011·海南海口模拟)对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a a <b ,b a ≥b ,函数f (x )=min{12x ,-|x -1|+2}(x ∈R )的最大值为________.[答案] 1[解析] y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.(理)(2011·山东烟台模拟)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K , f x >K .取函数f (x )=a -|x |(a >1).当K =1a时,函数f K (x )在下列区间上单调递减的是( )A .(-∞,0)B .(-a ,+∞)C .(-∞,-1)D .(1,+∞)[答案] D[解析] 当K =1a 时,f K(x )=⎩⎪⎨⎪⎧a -|x |,a -|x |≤1a ,1a ,a -|x |>1a.=⎩⎪⎨⎪⎧1a |x |,x ≤-1或x ≥1,1a ,-1<x <1.∵a >1,∴0<1a<1,如图,作出函数f K (x )的图象可得其单调减区间为(1,+∞).13.(文)(2011·上海交大附中月考)函数f (x )=x 2x 2+1,则f (14)+f (13)+f (12)+f (1)+f (2)+f (3)+f (4)=________.[答案]72[解析] f (1)=12,f (x )+f (1x )=x 2x 2+1+1x 21x2+1=x 2x 2+1+11+x 2=1,则f (14)+f (13)+f (12)+f (1)+f (2)+f (3)+f (4)=3+12=72.(理)(2011·襄樊检测)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4 [答案] C[解析] 法一:若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-42+b ·-4+c =c ,-22+b ·-2+c =-2,解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x >0.当x ≤0时,由f (x )=x ,得x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.法二:由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数y =f (x )的图象与y =x 的图象的交点的个数,所以有3个解.14.(2011·洛阳模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.[答案] 5 [解析] 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.[点评] 数对(a ,b )的取值必须能够使得|x |的取值最小值为0,最大值为2,才能满足f (x )的值域为[0,1]的要求.15.(文)已知函数f (x )=x ax +b(ab ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.[解析] 由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得xax +b=x ,变形得x (1ax +b-1)=0, 解此方程得x =0或x =1-ba,又因方程有唯一解,∴1-ba=0,解得b =1,代入2a +b =2得a =12,∴f (x )=2x x +2. (理)(2011·广东普宁模拟)已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.[解析] (1)由x +a x -2>0,得x 2-2x +ax >0,a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞). a =1时,定义域为{x |x >0且x ≠1},0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +ax-2在[2,+∞)上是增函数. ∴f (x )=lg(x +a x -2)在[2,+∞)上是增函数.∴f (x )=lg(x +ax -2)在[2,+∞)上的最小值为f (2)=lg a2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2,而h (x )=3x -x 2=-(x -32)2+94在x ∈[2,+∞)上是减函数,∴h (x )max =h (2)=2,∴a >2.16.某自来水厂的蓄水池存有400t 水,水厂每小时可向蓄水池中注水60t ,同时蓄水池又向居民小区不间断供水,t h 内供水总量为1206t t ,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨? (2)若蓄水池中水量少于80t 时,就会出现供水紧张现象,请问在一天的24h 内,有几小时出现供水紧张现象.[解析] (1)设t h 后蓄水池中的水量为y t , 则y =400+60t -1206t (0≤t ≤24)令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6h 时,蓄水池水量最少,只有40t. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8h 供水紧张.1.(2011·江西文,3)若f (x )=1log 122x +1f (x )的定义域为( )A .(-12,0)B .(-12,+∞)C .(-12,0)∪(0,+∞)D .(-12,2)[答案] C[解析] 要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>02x +1≠1,所以⎩⎪⎨⎪⎧x >-12x ≠0.故选C.2.值域为{2,5,10},对应关系为y =x 2+1的函数个数为( ) A .1 B .8 C .27 D .39[答案] C[解析] 本题的关键是寻找满足条件的定义域有多少种情况.当y =2,即x 2=1时,x =1,-1或±1有三种情况,同理当y =5,10时,x 的值各有三种情况,由分步乘法计数原理知,共有3×3×3=27种可能.故选C.3.水池有2个进水口,1个出水口,每个水口的进出水速度如下图(1)(2)所示.某天0点到6点,该水池的蓄水量如下图(3)所示(至少打开一个水口).给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的论断是( )A .①B .①②C .①③D .①②③[答案] A[解析] 由(1)、(2)两图得到每一个进水口的速度是出水口的速度的一半,在(3)图中从0点到3点进了6个单位水量,因此这段时间是只进水不出水,故①对;从3点到4点水量下降了1个单位,故应该是一个进水口开着,一个出水口开着,故②不正确;从4点到6点蓄水量保持不变,一种情况是不进水不出水,另一种情况是2个进水口与1个出水口同时开着,进水量和出水量相同,故③不一定正确.4.设函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,log 12-x , x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) [答案] C[解析] 解法1:由图象变换知函数f (x )图象如图,且f (-x )=-f (x ),即f (x )为奇函数,∴f (a )>f (-a )化为f (a )>0,∴当x ∈(-1,0)∪(1,+∞),f (a )>f (-a ),故选C.解法2:当a >0时,由f (a )>f (-a )得,log 2a >log 12a ,∴a >1;当a <0时,由f (a )>f (-a )得,log 12(-a )>log 2(-a ),∴-1<a <0,故选C.5.a 、b 为实数,集合M ={ba,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有b a=1,与集合元素的互异性矛盾,∴f (b a)=0,∴b =0,∴a +b =1.6.(2011·温州十校二模)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310] C .y =[x +410]D .y =[x +510][答案] B[解析] 当x 除以10的余数为0,1,2,3,4,5,6时,由题设知y =[x10],且易验证此时[x 10]=[x +310]. 当x 除以10的余数为7,8,9时,由题设知y =[x10+1,且易验证知此时[x10]+1=[x +310].综上知,必有y =[x +310].故选B.7.设函数f (x )、g (x )的定义域分别为F 、G ,且F G .若对任意的x ∈F ,都有g (x )=f (x ),且g (x )为偶函数,则称g (x )为f (x )在G 上的一个“延拓函数”.已知函数f (x )=⎝⎛⎭⎫12x(x ≤0),若g (x )为f (x )在R 上的一个延拓函数,则函数g (x )的解析式为( )A .g (x )=2|x |B .g (x )=log 2|x |C .g (x )=⎝⎛⎭⎫12|x |D .g (x )=log 12|x |[答案] A[解析] 由延拓函数的定义知,当x ≤0时,g (x )=⎝⎛⎭⎫12x ,当x >0时,-x <0,∴g (-x )=⎝⎛⎭⎫12-x =2x , ∵g (x )为偶函数,∴g (x )=2x, 故g (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x x ≤02x x >0,即g (x )=2|x |.8.(2011·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x ≤0,f x -1+1,x >0.则f (2011)等于( )A .2008B .2009C .2010D .2011[答案] D[解析] 当x >0时,f (x )-f (x -1)=1,∴f (2011)=[f (2011)-f (2010)]+[f (2010)-f (2009)]+…+[f (1)-f (0)]+f (0) =1+1+…+12011个+f (0)=2011+log 21=2011. 9.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的AP 的长为l ,弦AP 的长为d ,则函数d =f(l)的图象大致是( )[答案] C[解析] 函数在[0,π]上的解析式为 d =12+12-2×1×1×cos l =2-2cos l =4sin 2l 2=2sin l 2.在[π,2π]上的解析式为d =2-2cos 2π-l =2sin l2d =2sin l2,l∈[0,2π].[点评] 这类题目解决的基本方法通过分析变化趋势或者一些特殊的点,采用排除法;或求函数解析式.10.某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x)2+1192·(60-x)万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元),前5年的利润和为7958×5=39758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x)万元用于外地区的销售投资,则其总利润为 W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x)×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值, 从而10年的总利润为39758+4950(万元).∵39758+4950>1000, ∴该规划方案有极大实施价值.。
高考数学一轮复习 第二章 函数、导数及其应用 第1节 函数的概念及其表示练习 新人教A版-新人教A版
第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。
2025届高考数学一轮总复习课时跟踪练三十一数系的扩充与复数的引入理含解析新人教A版
课时跟踪练(三十一)A 组 基础巩固1.(2024·全国卷Ⅲ)(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-iD .3+i解析:(1+i)(2-i)=2-i +2i -i 2=3+i. 答案:D2.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:由已知可得⎩⎪⎨⎪⎧m +3>0,m -1<0,⇒⎩⎪⎨⎪⎧m >-3,m <1,⇒-3<m <1. 答案:A3.(2024·武邑模拟)设i 是虚数单位,复数a +i2-i是纯虚数,则实数a =( )A .2 B.12 C .-12D .-2解析:因为a +i 2-i =(a +i )(2+i )5=(2a -1)+(a +2)i5是纯虚数,所以2a -1=0且a +2≠0,所以a =12.答案:B4.(2024·全国卷Ⅰ)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2解析:因为x ,y ∈R ,(1+i)x =1+y i ,所以x +x i =1+y i ,所以⎩⎪⎨⎪⎧x =1,y =1,所以|x +y i|=|1+i|=12+12= 2.答案:B5.(2024·株洲二模)设i 为虚数单位,1-i =2+a i 1+i,则实数a =( )A .2B .1C .0D .-1解析:因为1-i =2+a i 1+i =(2+a i )(1-i )(1+i )(1-i )=2+a 2+a -22i ,所以2+a 2=1,且a -22=-1,解得a =0.答案:C6.(2024·安庆二模)已知复数z 满意:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( )A.15-35iB.15+35iC.13-i D.13+i 解析:由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,所以z —=15+35i. 答案:B7.(2024·深圳二模)设i 为虚数单位,则复数|1-3i|1+i =( )A .-1+iB .-2+2iC .1-iD .2-2i解析:|1-3i|1+i =21+i =2(1-i )(1+i )(1-i )=1-i.答案:C8.(2024·九江联考)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z 等于( )A .1+iB .-1-iC .-1+iD .1-i解析:因为复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,所以z =1-i. 答案:D9.(2024·天津十二所重点中学毕业班联考)已知复数3i -ai 的实部与虚部相等(i 为虚数单位),那么实数a =________.解析:因为3i -a i =-3-a i-1=3+a i 的实部与虚部相等,所以a =3. 答案:310.[一题多解](2024·江苏卷)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.解析:法一 因为z =(1+i)(1+2i)=1+2i +i -2=-1+3i , 所以|z |=(-1)2+32=10.法二 |z |=|1+i||1+2i|=2×5=10. 答案:1011.(2024·江苏卷)若复数z 满意i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.解析:因为i·z =1+2i ,所以z =1+2i i =(1+2i )(-i )i ×(-i )=2-i.所以复数z 的实部为2. 答案:212.已知复数z =x +y i ,且|z -2|=3,则yx的最大值为________. 解析:因为|z -2|=(x -2)2+y 2=3,所以(x -2)2+y 2=3. 由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 答案: 3B 组 素养提升13.(2024·江西八所重点中学联考)设复数z 满意z =|2+i|+2i i (i 为虚数单位),则|z |=( )A .3 B.10 C .9 D .10解析:z =|2+i|+2i i =5+2i i =(5+2i )(-i )i·(-i )=2-5i ,则|z |=|2-5i|=4+5=3. 答案:A14.(2024·河南百校联盟模拟)已知复数z 的共轭复数为z —,若(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z 所对应的点位于( )A .第一象限B .其次象限C .第三象限D .第四象限解析:设z =a +b i(a ,b ∈R),z =a -b i ,则3z 2+z-2=2a +b i , 故2a +b i =5-2i 1-22i=1+2i ,故a =12,b = 2.则在复平面内,复数z 所对应的点的坐标为⎝ ⎛⎭⎪⎫12,2,位于第一象限.答案:A15.(2024·三湘名校教化联盟联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A .z 的共轭复数为75-4i5B .z 的虚部为85C .|z |=3D .z 在复平面内对应的点在第一象限解析:因为z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,所以z 的共轭复数为45-7i 5,z 的虚部为75,|z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限.答案:D16.已知i 为虚数单位,若复数z =1-a i1+i (a ∈R)的实部为-3,则|z |=________.解析:因为z =1-a i 1+i =(1-a i )(1-i )(1+i )(1-i )=1-a -(a +1)i2的实部为-3,所以1-a 2=-3,解得a =7.所以z =-3-4i ,故|z |=(-3)2+(-4)2=5. 答案:5。
2024年高考总复习优化设计一轮用书数学配人教A版(适用于新教材)课时规范练40
课时规范练40《素养分级练》P374基础巩固组1.(2023·山东青岛模拟)设集合A={(x ,y )|y=2x-3},B={(x ,y )|4x-2y+5=0},则A ∩B= ( )A.⌀B.{(118,14)} C.{(18,-114)} D.{(-18,-134)} 答案:A解析:由直线4x-2y+5=0,得y=2x+52.因为直线y=2x+52与直线y=2x-3的斜率相等,截距不相等,所以两直线相互平行,故A ∩B=⌀. 2.(2023·江苏无锡高三检测)在平面直角坐标系xOy 中,点(0,4)关于直线x-y+1=0的对称点为( ) A.(-1,2) B.(2,-1) C.(1,3) D.(3,1)答案:D解析:设点(0,4)关于直线x-y+1=0的对称点是(a ,b ),则{a 2-b+42+1=0,b -4a=-1,解得{a =3,b =1.3.(多选)(2023·山东青岛高三开学考试)已知直线l 1:4x-3y+4=0,l 2:(m+2)x-(m+1)y+2m+5=0(m ∈R ),则( )A.直线l 2过定点(-3,-1)B.当m=1时,l 1⊥l 2C.当m=2时,l 1∥l 2D.当l 1∥l 2时,两直线l 1,l 2之间的距离为1 答案:ACD解析:对于A,l 2:(m+2)x-(m+1)y+2m+5=0(m ∈R )变形为m (x-y+2)+2x-y+5=0,令{x -y +2=0,2x -y +5=0,则{x =-3,y =-1,因此直线l 2过定点(-3,-1),故A 正确;对于B,当m=1时,l 1:4x-3y+4=0,l 2:3x-2y+7=0,4×3+(-3)×(-2)≠0,故两直线不垂直,故B 错误;对于C,当m=2时,l 1:4x-3y+4=0,l 2:4x-3y+9=0,44=-3-3≠94,故两直线平行,故C 正确;对于D,当l 1∥l 2时,则满足m+24=-(m+1)-3≠2m+54⇒m=2,此时l 1:4x-3y+4=0,l 2:4x-3y+9=0,则两直线间的距离为√42+(-3)=1,故D 正确.故选ACD .4.已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.3√3 B.6 C.2√10 D.2√5答案:C解析:由题意直线AB 的方程为x+y=4,设P 关于直线AB 的对称点Q (a ,b ),则{ba -2=1,a+22+b2=4,解得{a =4,b =2,即Q (4,2).又P 关于y 轴的对称点为T (-2,0),所以光线所经过的路程为|QT|=√(-2-4)2+(0-2)2=2√10.5.(2023·福建福州高三检测)若直线ax+2y+1=0与直线x cos 2π3+y-1=0互相垂直,则a= . 答案:4解析:由题意得a2·cos 2π3=-1,解得a=4.6.已知直线l 过点P (-1,2),且点A (2,3),B (-4,5)到直线l 的距离相等,则直线l 的方程为 . 答案:x+3y-5=0或x=-1解析:(方法1)当直线l 的斜率存在时,设直线l 的方程为y-2=k (x+1),即kx-y+k+2=0.由题意知√k 2+1=√k 2+1,即|3k-1|=|-3k-3|,解得k=-13,所以直线l 的方程为y-2=-13(x+1),即x+3y-5=0.当直线l 的斜率不存在时,直线l 的方程为x=-1,符合题意.故所求直线l 的方程为x+3y-5=0或x=-1.(方法2)当AB ∥l 时,直线l 的斜率k=k AB =-13,则直线l 的方程为y-2=-13(x+1),即x+3y-5=0.当直线l 过AB 的中点(-1,4)时,直线l 的方程为x=-1.故所求直线l 的方程为x+3y-5=0或x=-1.综合提升组7.(2023·湖北武汉模拟)某菱形的一组对边所在的直线方程分别为x+2y+1=0和x+2y+3=0,另一组对边所在的直线方程分别为3x-4y+c 1=0和3x-4y+c 2=0,则|c 1-c 2|=( ) A.2√3 B.2√5 C.2 D.4答案:B解析:设直线x+2y+1=0与直线3x-4y+c 2=0的交点为A ,联立{x +2y +1=0,3x -4y +c 2=0,解得{x =-c 2+25,y =c 2-310,故A -c 2+25,c 2-310.同理,设直线x+2y+1=0与直线3x-4y+c 1=0的交点为B ,则B -c 1+25,c 1-310,设直线x+2y+3=0与直线3x-4y+c 1=0的交点为C ,则C -c 1+65,c 1-910,设直线x+2y+3=0与直线3x-4y+c 2=0的交点为D ,则D -c 2+65,c 2-910.由菱形的性质可知AC ⊥BD ,且AC ,BD 的斜率均存在,所以k AC ·k BD =-1,则c 2-310-c 1-910-c 2+25+c 1+65·c 1-310-c 2-910-c 1+25+c 2+65=-1,即36-(c 2-c 1)24[16-(c 2-c 1)2]=-1,解得|c 1-c 2|=2√5.8.(2023·河北大名高三检测)已知点P (-2,2),直线l :(λ+2)x-(λ+1)y-4λ-6=0,则点P 到直线l 的距离的取值范围为 . 答案:[0,4√2)解析:把直线l :(λ+2)x-(λ+1)y-4λ-6=0化为(2x-y-6)+λ(x-y-4)=0,联立{2x -y -6=0,x -y -4=0,解得{x =2,y =-2,即直线l 过定点M (2,-2).又k PM =-2-22-(-2)=-1,且λ+2λ+1×(-1)≠-1,所以直线PM 与l 不垂直,所以点P 到直线l 的距离的最大值小于|PM|=√(2+2)2+(-2-2)2=4√2,即点P 到直线l 的距离的取值范围为[0,4√2).9.(2023·四川成都七中高三检测)已知△ABC 的顶点B (5,1),AB 边上的高所在的直线方程为x-2y-5=0.(1)求直线AB 的方程.(2)在①②两个条件中任选一个,补充在下面问题中,并解答. ①角A 的平分线所在直线方程为x+2y-13=0; ②BC 边上的中线所在的直线方程为2x-y-5=0.,求直线AC 的方程.解:(1)因为AB 边上的高所在的直线方程为x-2y-5=0,所以直线AB 的斜率为k=-2. 又因为△ABC 的顶点B (5,1),所以直线AB 的方程为y-1=-2(x-5),即2x+y-11=0.(2)若选①:角A 的平分线所在直线方程为x+2y-13=0, 由{2x +y -11=0,x +2y -13=0,解得{x =3,y =5,所以点A (3,5).设点B 关于x+2y-13=0的对称点B'(x 0,y 0),则{y 0-1x 0-5×(-12)=-1,x 0+52+2×y 0+12-13=0,解得{x 0=375,y 0=295,所以B'375,295.又点B'375,295在直线AC 上,所以k AC =5-2953-375=211.所以直线AC 的方程为y-5=211(x-3),即2x-11y+49=0. 若选②:BC 边上的中线所在的直线方程为2x-y-5=0, 由{2x +y -11=0,2x -y -5=0,解得{x =4,y =3,所以点A (4,3).设点C (x 1,y 1),则BC 的中点在直线2x-y-5=0上,所以2×5+x 12−1+y 12-5=0,即2x 1-y 1-1=0,所以点C 在直线2x-y-1=0上.又点C 在直线x-2y-5=0上,由{x -2y -5=0,2x -y -1=0,解得{x =-1,y =-3,即C (-1,-3),所以k AC =-3-3-1-4=65.所以直线AC 的方程为y-3=65(x-4),即6x-5y-9=0.创新应用组10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点A (2,0),B (0,4),C (-4,0),则其欧拉线方程为 . 答案:x-y+2=0解析:设△ABC 的重心为G ,垂心为H ,由重心坐标公式得x=2+0+(-4)3=-23,y=0+4+03=43,所以G -23,43.由题,△ABC 的边AC 上的高线所在直线方程为x=0,直线BC :y=x+4,A (2,0),所以△ABC 的边BC上的高线所在直线方程为y=-x+2,联立{x =0,y =-x +2⇒H (0,2).所以欧拉线GH 的方程为y-2=2-430-(-23)x ,即x-y+2=0.。
人教A版选修2-1高中数学《第一章常用逻辑用语复习课》ppt课件
【自主解答】(1)选C.由题意p与q均为假命题,故p∧q为假. (2)若p为真命题,则-2-a<1<a,解得a>1. 若q为真命题,则-2-a<2<a,解得a>2. 依题意得p与q一真一假,若p真q假,则 若p假q真,则
a 1 , a 2, , a 1 即1<a≤2. a 2,
即x2+mx+1>0恒成立有Δ=m2-4<0,所以-2<m<2.
所以当r(x)为真,s(x)为假时,m<- 2 ,
同时m≤-2或m≥2,即m≤-2. 当r(x)为假,s(x)为真时,m≥- 2 且-2<m<2,即综上,实数m的取值范围是m≤-2或2≤m<2. 2 ≤m<2.
【强化训练】 1.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四 个命题中,真命题的个数是( A.0 B.2 C.3 D.4 )
q是p的“必要不充分条件”; ②若“p⇔q”,则p是q的“充要条件”,同时q是p的“充要条件”; ③若p q,则p是q的“既不充分也不必要条件”,同时q是p的
“既不充分也不必要条件”.
(2)等价命题法 利用互为逆否的两个命题间的等价关系判断. (3)用集合法判断充分条件、必要条件 若p以集合A的形式出现,q以集合B的形式出现,即 A={x|p(x)},B={x|q(x)},则: ①若A=B,则p是q的充要条件; ②若A ③若B B,则p是q的充分不必要条件; A,则p是q的必要不充分条件;
【解析】选B.原命题为假命题,而逆命题“若A=B,则A⊆B”是 真命题,所以在四种命题中真命题有两个.
2.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标 原点”的( ) B.必要不充分条件 D.既不充分也不必要条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A版 ·高考一轮总复习
路漫漫其修远兮 吾将上下而求索
走向高考 ·高考一轮总复习 ·人教A版 ·数学
第二章
函
数
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
●命题趋势 1.高考命题对函数的考查是全方位、多层次的,既有 中低档的选择、填空题,也有变换角度,在知识交汇处综合 的大题,近两年注重了对函数与导数知识的结合.
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
考 查 的 重 点 依 旧 是 函 数 的 概 念 、 性 质 及 其 应 用 ; 考 查 的 热 点 是 函 数 模 型 的 应 用 、 函 数 的 图 象 与 性 质 、 函 数 与 其 他 章 节 知 识 (如 数 列 、 方 程 、 不 等 式 、 解 析 几 何 等 知 识 汇 . 在 考 查 函 数 知 识 的 同 时 , 又 考 查 运 用 函 数 的 思 想 、 数 形 结 合 思 想 和 分 类 讨 论 思 想 解 决 问 题 的 能 力 . )的 交
第二章
函
数ห้องสมุดไป่ตู้
走向高考 ·高考一轮总复习 ·人教A版 ·数学
重 点 训 练 :
①求 函 数 的 定 义 域 , 特 别 是 幂 、 指 、 对 、 一 ②求 函 数 的 值 (或 值 域 ), 特 别
次 、 二 次 、 三 角 的 复 合 问 题 ;
是 幂 、 指 、 对 、 一 次 、 二 次 与 分 段 函 数 、 函 数 的 奇 偶 、 周 期 结 合 的 题 目 ; ③指 数 函 数 、 对 数 函 数 的 图 象 、 性 质 与 分 类 讨 ④函 数 的 单 调 性 、 极
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
2.函数 ( 1 ) 定义:设A、B是 非 空 的 数 集 , 如 果 按 照 某 种 确 定 的 对 应关系f,使对于集合A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和 它 对 应 , 那 么 就 称 的一个函数,记作y=f(x),x∈A. 从映射的角度看,函数是由一个_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 的映射. ( 2 ) 函数的表示法有:_ _ _ _ _ _ _ _ 、_ _ _ _ _ _ _ _ 、_ _ _ _ _ _ _ _ . 到另一个 f:A→B为集合A到集合B
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
伸 . 因 此 命 题 会 主 要 集 中 在 指 数 、 对 数 的 运 算 性 质 , 指 、 对 函 数 的 图 象 与 性 质 及 数 值 大 小 比 较 等 问 题 上 , 与 数 形 结 合 、 分 类 讨 论 、 函 数 与 方 程 的 思 想 相 结 合 予 以 考 查 , 与 方 等 式 、 分 段 函 数 、 数 列 、 导 数 、 三 角 函 数 等 相 联 系 , 仍 将 是 命 题 的 重 点 . 程 、 不
训 练 , 达 到 培 养 数 学 能 力 的 目 的 . 给 出 一 个 背 景 问 题 象), 求 出 解 析 式 , 然 后 依 据 解 析 式 讨 论 有 关 性 质 的 问 题 应 重 点 训 练 .
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
4.基本初等函数(Ⅰ)的复习,重点掌握指数幂的运算法 则,对数的定义、性质与运算法则及对数恒等式、换底公 式,指数函数的图象与性质,加强指对函数单调性与比较大 小,奇偶性与图象对称特征,图象过定点,单调性应用,对 数函数定义域,互为反函数的两个函数图象、定义域、值域 的关系及与二次函数、分式、指数复合的训练,加强客观题 训练,难度不宜过大,适度进行综合训练.加强数形结合思 想的训练.
论 、 数 形 结 合 、 字 母 运 算 结 合 的 题 目 ; 值 与 导 数 结 合 的 题 目 ; 数 、 导 数 、 不 等 式 的 小 综 合 .
⑤函 数 、 导 数 、 数 列 的 小 综 合 , 函
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
3. 针 对 函 数 实 际 应 用 题 、 探 索 性 问 题 、 代 数 推 理 问 题 以 及 与 其 他 知 识 交 汇 的 综 合 题 , 应 加 大 训 练 力 度 , 通 过 实 战 (或 图
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
④当 函 数 由 实 际 问 题 给 出 时 , 函 数 的 值 域 应 结 合 问 题 的 实 际 意 义 确 定 . ( 2 ) 基 本 初 等 函 数 的 值 域 ①y=kx+b(k≠0)的 值 域 为 R. ②y=ax2+bx+c(a≠0)的 值 域 是 : 当
夯 实 基 础 1.映 射
稳 固 根 基
( 1 ) 映 射 的 概 念 : 设 法 则 f, 对 于 集 合
A、B是 两 个 集 合 , 如 果 按 照 某 种 对 应 B中 都 有 A到
A中 的 ________一 个 元 素 , 在 集 合
________的 元 素 与 它 对 应 , 这 样 的 对 应 关 系 叫 做 从 集 合 集 合 B的 映 射 , 记 作 f:A→B.
第二章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
( 5 ) 求 定 义 域 的 一 般 步 骤 : ①写 出 函 数 式 有 意 义 的 不 等 式 ②解 不 等 式 (组); ③写 出 函 数 的 定 义 域 . (组);
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
4.函数的值域 ( 1 ) 确定函数值域的原则 ①当函数y=f(x)用 表 格 给 出 时 , 函 数 的 值 域 是 指 表 格 中 的值的集合. ②当函数y=f(x)用 图 象 给 出 时 , 函 数 的 值 域 是 指 图 象 在 轴上的投影对应的y的值的集合. ③当函数y=f(x)用 解 析 式 给 出 时 , 函 数 的 值 域 由 函 数 的 定义域及其对应法则唯一确定. y y
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
2. 指 数 函 数 、 对 数 函 数 是 新 课 标 考 查 的 重 要 方 面 . 指 数函 数 主 要 题 型 有 : 指 数 函 数 的 图 象 与 性 质 、 幂 值 的 大 小 比 较 、 由 指 数 函 数 复 合 而 成 的 综 合 问 题 . 对 数 是 常 考 常 变 的 内 容 , 主 要 题 型 是 对 数 函 数 的 图 象 性 质 、 对 数 运 算 法 则 、 对 数 函 数 定 义 域 . 幂 函 数 新 课 标 要 求 较 低 , 只 要 掌 握 幂 函 数 的 概 念 、 图 象 与 简 单 性 质 , 仅 限 于 几 个 特 殊 的 幂 函 数 . 反 函 数 新 课 标 比 原 大 纲 要 求 有 较 大 幅 度 降 低 , 只 要 知 道 指 数 函 数 与 对 数 函 数 互 为 反 函 数 及 定 义 域 、 图 象 的 关 系 即 可 , 不 宜 过 分 延
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
( 1 ) 函 数 的 概 念 与 函 数 的 定 义 域 、 值 域 单 独 命 题 时 , 一 般 在 根 式 、 分 式 、 对 数 等 知 识 点 求 函 数 的 定 义 域 及 简 单 的 函 数 求 值 和 复 合 函 数 值 域 问 题 . ( 2 ) 函 数 性 质 主 要 是 单 调 性 、 奇 偶 性 的 考 查 , 有 时 也 涉 及
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
3.函 数 的 定 义 域 及 其 求 法 ( 1 ) 根 据 函 数 解 析 式 求 函 数 定 义 域 的 依 据 有 : 母 不 得 为 _____;②偶 次 方 根 的 被 开 方 数 不 得 小 于 对 数 函 数 的 真 数 必 须 大 于 ①分 式 的 分 _____;③
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
( 2 ) 象 和 原 象 : 给 定 一 个 集 合 B, 如 果 元 素
A到B的 映 射 , 且
a∈A,b∈
a和 元 素 b对 应 , 那 么 我 们 把 元 素
b叫 做 元 素 a的
______, 元 素 a叫 做 元 素 b的________.
______;④指 数 函 数 和 对 数 函 数 的 y=a tn x
底 数 必 须 ______________;⑤三 角 函 数 中 的 正 切 函 数 定 义 域 为
xx∈R, 且 π x≠kπ+ ,k∈Z . 2
第二章
第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
●备 考 指 南 1. 深 刻 理 解 函 数 的 概 念 , 准 确 把 握 常 见 基 本 初 等 函 数 的 图 象 与 性 质 , 以 及 以 这 些 基 本 函 数 为 材 料 构 建 的 含 绝 对 值 的 函 数 、 分 段 函 数 等 , 并 能 灵 活 运 用 这 些 知 识 去 分 析 、 有 关 问 题 . 2. 注 重 基 础 知 识 的 落 实 , 主 干 知 识 的 强 化 , 交 汇 知 识 的 梳 理 , 常 用 数 学 思 想 、 方 法 、 技 能 、 解 题 规 律 的 总 结 . 解 决
第二章
函
数
走向高考 ·高考一轮总复习 ·人教A版 ·数学
5. 函 数 应 用 的 复 习 , 应 深 刻 理 解 方 程 的 根 与 函 数 零 点 的 关 系 , 掌 握 二 分 法 求 方 程 近 似 解 的 方 法 , 进 一 步 培 养 数 形 结 合 及 运 用 函 数 、 方 程 的 知 识 解 决 实 际 问 题 的 能 力 . 加 强 对 实 际 问 题 的 理 解 , 掌 握 建 立 数 学 模 型 的 基 本 方 法 . 注 意 归 纳 掌 握 常 见 实 际 问 题 的 数 学 模 型 .