2014-2015(1)线性代数试题(B)
线性代数试题线性代数试卷及答案大全(173页大合集)
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
2014年10月04184自学考试线性代数试题(卷)与答案
2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为 【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛2115.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、 6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值范围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
14-15-1线代试题答案
2014-2015-1线性代数参考答案及评分标准一(每小题3分,共15分)1、32 2 、3 3 、1 4、2 5、0二(每小题3分,共15分)1 B2 B3 C4 A5 D三(5分)0321103221036666=D ……………………………………………………(2分) 40000400121011116---=…………………………………………… (2分)96-=……………………………………………………………(1分)四(10分)1-=A ,A 可逆…………………………………………………(1分) 121)(---=-=A A E A A B ……………………………………………………(4分)()⎪⎪⎪⎭⎫ ⎝⎛---→100100110010211001,E A⎪⎪⎪⎭⎫ ⎝⎛---=-1001102111A ……………………………………………………………(4分) ⎪⎪⎪⎭⎫ ⎝⎛=000000120B …………………………………………………………………(1分) 五(15分)()211111211112-=-----λλλλλλλ………………………………………………(5分) 0≠λ且2≠λ时,有唯一解…………………………………………………(2分)2=λ时()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-----=100051103111111111133111,b A3),(2)(=<=b A R A R ,方程组无解…………………………………………(3分)0=λ时,()⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000000001111111111111111,b A3),(1)(<==b A R A R 方程组有无穷多解,1321+--=x x x 取2312,c x c x ==得方程组通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=00110101121321c c x x x x ………………………(5分)六(12分)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=0000010000712100230102301085235703273812,,,,54321a a a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→00000100000121002301……………………………………(4分) 向量组秩为3,……………………………………………………………(2分) 一个最大无关组为:521,,a a a ……………………………………………(2分) 21323a a a +=………………………………………………………………(2分) 2152a a a -=…………………………………………………………………(2分) 七(10分)证明:设存在数1k ,2k ,3k ,使0332211=++βββk k k ………………(2分) 将1β,2β,3β带入并整理得0)32()()2(33212321131=+-+-+-++αααk k k k k k k k …………………(2分)由1α,2α,3α线性无关知⎪⎩⎪⎨⎧=+-=-+-=+03200232132131k k k k k k k k , 因0312111201=---,故齐次线性方程组有非零解,…………………(4分)从而存在1k ,2k ,3k 不全为零,使0332211=++βββk k k ,从而1β,2β,3β是线性相关的。
自学考试-线性代数试卷及答案集合
2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】A.1-B.0C.1D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
2014-2015(1)期末考试试卷(A)(线性代数)
考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------第1页(共1页)3、设⎪⎪⎪⎭⎫ ⎝⎛=100152321A ,⎪⎪⎪⎭⎫ ⎝⎛=141B ,利用初等变换求1-A ,并求解求矩阵方程B AX =。
4、设有向量组TTTT---=--=-==)1,1,3,4(,)3,1,0,3(,)7,1,3,2(,)0,0,1,1(4321αααα,(1)求此向量组的秩和一个极大无关组;(2)将其余向量用极大无关组线性表示。
5、设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知4321,,,ηηηη是它的四个解向量,且T )2,2,0,1(1=η,T )8,2,5,1(432=++ηηη,求其通解。
6、λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解?无解?有无穷多组解?7、设⎪⎪⎪⎭⎫ ⎝⎛=1010111a a A 与⎪⎪⎪⎭⎫⎝⎛=b B 10相似,求b a ,的值。
8、求一个正交变换,将二次型2123222132142),,(x x x x x x x x f -+-=化为标准形。
9、设⎪⎪⎪⎭⎫ ⎝⎛=30201t t t t A ,且A 为正定矩阵,求t 的取值范围。
三、证明题(每小题6分,共12分)1、设向量组321,,ααα线性无关,321αααβ++=,证明:1αβ-、2αβ-、3αβ-线性无关。
2、设A 是正交矩阵,证明:A 的特征值为1或1-。
考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------满分8分得分4、满分8分得分5、满分8分得分满分8分得分7、满分8分得分8、满分8分得分满分8分得分三、证明题1、满分6分得分2、满分6分得分。
2014-2015学年线性代数试题及答案
2 x1 2 x2 x3 0 1、设线性方程组 x1 x2 2 x3 0 的系数矩阵A,三阶 x x 3 x 0 3 1 2
矩阵B不等于零,且AB=0,试求 的值,并证明 B 0
1 0 1 2 B ( kE A ) 2、设矩阵 A 0 2 0 ,矩阵 ,其中k为 1 0 1
一、填空题(每小题2分,共14分) 1 A 1、设A是3阶矩阵,且 A , 是A的伴随矩阵,则: 2
(3 A) 2 A
1
16 27
T
2、设四元非齐次线性方程组 Ax b 的系数矩阵A的秩为3,且
1 (1,2,3,4) ,2 (2,3,4,5)
T
是该方程组的两个解,则
问当a,b取何值时,方程组有惟一解、无解、有无穷多解, 并求有无穷多解时的通解。
七、(满分10分) 求一正交变换 x Py ,将二次型
f ( x1, x2 , x3 ) x 4x 4x 4x1x2 4x1x3 8x2 x3
2 1 2 2 2 3
化为标准形。
八、(每小题5分,满分10分)
k 2
(k 2)
2
2 3
八、1)解:
2 2 1 A 1 2 0, B 0 1 1 3 并且 AB 0, R( A) 3, R( B) 3
A 0, 1
因为1)可知 R( B) 3, B 0
八、2)解:
1
0 1
4、设A为n阶方阵,且 A a 0 ,则 A ( A )
( A) a
n 1
1 ; ( B) ; (C ) a; ( D)a n . a
2014年4月自考线性代数真题及答案
三、计算题(本大题共7小题,每小题9分,其63分)
1 4 16.计算行列式D= 2 3
3 1 4 2
2 3 1 4
4 2 的值. 3 1
a 21 a 22 a 23 a11 a12 a13 17.设矩阵A= a 21 a 22 a 23 ,B= a11 3a 31 a12 3a 32 a13 3a 33 ,求可逆矩阵P,使得PA=B. a a 31 a 32 a 33 31 a 32 a 33 1 1 2 1 0 0 18.设矩阵A= 2 2 3 ,B= 2 1 1 ,矩阵X满足XA=B,求X. 4 3 3 1 2 2
1 +2 2 + 3 , 1 + 2 +2 3 也是该方程组的基础解系.
全国2014年4月高等教育自学考试线性代数(经管类)答案课程代码:04184
一、单项选择题 1-5 CABDC 二、填空题(本大题共10小题,每小题2分,共20分)
1 0 1 1 4 3 6.0 7.4 8. 9. 10.-2 11. , 12.1 13. 1 k (1 2 ) 14. 15.2 3 2 5 5 0 1
导出组同解方程组为
基础解系 1 (1, 1,1, 0)T , 2 (2,3, 0,1)T ,通解为 * k11 k2 2 , k1 , k2 R.
2
21.解:特征方程 | E A |
0 0
0 0 2 1 ( 2)( 2 a 2 2a 1) 0 1 a
二、填空题(本大题共10小题,每小题2分,共20分)
2 3 4 6.3阶行列式 1 5 2 第2行元素的代数余子式之和A21+A22+A23=________. 1 1 1
中国农业大学2014-2015春线性代数期末考试题解析
2014~2015学年春季学期《线性代数》课程考试试题解析一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.设A 为3阶可逆矩阵,2A =,*A 为矩阵A 的伴随矩阵,则*A A =.解析:由于3-122,|2A A A*===,则3*5||232A A A A *=⨯==注释本题知识点:(1)1;n A A-*=(2);AA A A A E **==(3).n A A λλ=答案:322.设四元非齐次方程组=Ax b 的系数矩阵A 的秩为3,已知123,,ηηη是它的三个解向量,且1212210⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭ηη,30211⎛⎫⎪⎪= ⎪ ⎪⎝⎭η,则方程组=Ax b 的通解为.解析:由于(A)3R =,未知数的个数为4n =,则齐次方程的基础解系有(A)1n R -=个向量。
已知123,,ηηη是=Ax b 的三个解向量,则1212(2)2,A A A b -=-=ηηηη3A b=η123[(2)]0A --=ηηη所以,即123(2)--ξηηη所以=是非齐次方程的基础解系,方程组=Ax b 的通解为1233x k[(2)]=--+ηηηη注释本题知识点:(1)如果,(A)r m n A R ⨯=,则齐次方程的基础解系有n r -个向量;(2)如果齐次方程组的基础解系为12,,,n r ξξξ- ,非齐次方程组的特解为*η,则非齐次方程的通解为1122*n r n r x k k k ξξξη--=++++ 。
(3)如果12,ηη是非齐次方程组的解,则12ηη-是其次方程组的解。
答案:1002,0111k k ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭为任意实数.3.设向量组123,,ααα线性无关,11222331232,3,βααβααβααα=+=+=-+,则向量组123,,βββ是线性(相关、无关)的.解析:方法一,定义法计算;方法二,123123201(,,)(,,)111031βββααα⎛⎫ ⎪=- ⎪ ⎪⎝⎭令123B (,,)βββ=,123(,,)A ααα=,201111031K ⎛⎫⎪=- ⎪ ⎪⎝⎭,则B AK =;又因为0K ≠,所以(A)R(B)=R .又因为向量组123,,ααα线性无关,则(A)R(B)3==R .所以向量组123,,βββ是线性无关.注释本题知识点:(1)如果11220m m x x x βββ+++= 有非零解(仅有零解),向量组12,,,m βββ 是线性相关(无关);(2)如果12(,,,)(m)或m R m βββ<= ,向量组12,,,m βββ 是线性相关(无关)。
2014级线性代数试卷及答案
e2
1
1
0
1 2
1 1
,
e3
2
1 6
1 1
2 0 2
(3)取 P (e1 e2 e3 )
1
6
2 2
3 3
1 ,正交变换 x Py , 1
第 6页(A 卷,共 7页)
第 1页(A 卷,共 7页)
6. 已知 n 阶方阵 A 满足 A2 A 2E O ,则【 】.
A. A E 与 A 2E 均可逆
B. A 与 E A 均可逆
C. A 可逆, E A 不可逆
D. A 不可逆, E A 可逆
7. 下列说法错误的是【 】. A. 实对称矩阵的特征值均为实数 B. 实反对称矩阵的特征值为零或虚数 C. 实正交矩阵的特征值的模为 1 D. 若 A 与 B 相似,则 A 与 B 合同
0 1
1 0
0 1
0 0
1 0
0 1
0 1
1 0
01
1 0 2
A
(B
2E )1
0
1
0
.
1 0 1
第 4页(A 卷,共 7页)
6. AT A* AT A A* A AT A | A | E
| A |2 ( | A |)3 | A | 0 or | A | 1 .
10.曲线 ez y2 关于 Oz 轴旋转而成的旋转曲面方程为【 】.
二、计算题与证明题(共 8 小题,每小题 5 分,共 40 分)
线性代数-历年在线作业-含2014年春
《线性代数》在线练习题(50%)选择题1.n 阶行列式 n D 可按任一行(列)展开,其展开式共有!n 项.如果按逆序数表示可写为( B )B. nnn j n j j j j j j j j r n a a a D 21212121)()(∑-=2、行列式D 按第k 行展开等于( C )C.),,2,1(1n k A ai k ni ik =∑=2. 互换行列式的两行(列),则行列式( B ) B. 变号3. 范德蒙行列式的计算公式)(1111121121==---n nn n nn x x x x x x V(A)A.∏≤<≤-nj i i j x x 1)(答案: 选 A.4.)(=AB (B) B.BA ⋅5. 若,0≠A 则矩阵A 可逆,且( A )A.*-=A A1A16. 若A 为正交矩阵,则其行列式 )(=A (C)C. 1±7.向量),,(554用向量 )2,3,3(,)4,1,1(,)3,2,1(-的线性表示式为( B ) B. )5,5,4(),,(),,(233321+= 或)5,5,4(),,(),,(4113213--=8.n 元齐次线性方程组 =x A 0有非零解的充分必要条件是( C )C. nr <)(A9. 若向量组k b b b ,,,21 可用向量组ma a a ,,,21 线性表示,则( D )D. r rk ≤),,,(21b b b ),,,(21m a a a10. 方阵A互不相同的特征值k λλλ,,,21 所对应的特征向量k ααα,,,21 必( B )B. 线性无关11.设λ是矩阵A的 k 重特征值,则有不等式( D )D. ).(A E --≥λr n k12.n 阶矩阵()ji a =A 所有特征值之和等于A 的主对角线上所有元素之和等于( D )D..1i i ni a ∑=13. 二次型xA x T 为正定的充分必要条件是(B ) B.A的顺序主子式都大于零14.设方程组⎪⎩⎪⎨⎧=+-=-+=++.0200z y x z y k x z y x k 有非零解,则其中 )(=kD. 1-=k 或 4=k 答案: 选D .15.设,0010,1000⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=B A 则BA =( D )D.⎥⎦⎤⎢⎣⎡001016.若,cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθA 则),(=kA 其中k 为一个正整数.C. ,cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθk k k k kA (C)17.用初等变换可求得矩阵⎪⎪⎪⎭⎫ ⎝⎛=431212321A 的逆矩阵)(1=-AA. .315416112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---答案: 选 A.18.矩阵⎥⎦⎤⎢⎣⎡=2112A 的特征值为( A ) A. ,11=λ32=λ19.已知向量Tk )1,,1(=α是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=211121112A 的逆矩阵1-A 的特征向量,则常数 k 等于( B )B. 1 或 - 220. 向量的范数有如下三角不等式关系( C ) C.βαβα+≥+21、已知二次型,)0(2332),,(32232221321>+++=a x x a x x x x x x f 通过正交变换化成标准型,52232221y y y f ++=则参数 a 等于( C )C .2=a21.用配方法求出二次型3132********),,(x x x x x x x x x f +-=的标准形为(A ) A.232221622w w w f +-=22. 向量组)1,1,3,4(),2,4,3,1(,)0,2,1,3(,)1,3,1,2(4321-=-=-=-=αααα中的一个极大无关组是( C ) C . 21αα,23.设有向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=411,512,102:321ααααA , 及向量,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11βb 已知向量b 不能由向量组A 线性表示,则βα,应为( C )C . 4-=α,0≠β24. 若 ,010113221=λλ 则21,λλ必须满足( ).答案: 选 )(C .25.行列式 0401011>-a a a 的充分必要条件是( D ).26. 计算).(0000000=v u d c y x b a (B)27.排列)2(42)12(31n n - 的逆序数是( A ).28.用行列式性质,化下列行列式为上三角形行列式,再求出行列式的值..)(1111111111111111=------(C)( C ) 8.29.下列行列式中,其值为零的是( D ).(D) 261422613-30. 行列式.)(0001110333322211==b a a a b a a b a D (C)31.设c b a ,,两两互不相同,则 0222=+++=c b a c b a b a a c c b D 的充分必要条件是.)((A)32. 利用行列式性质先简化行列式,再计算行列式.1111111111111111yy x x-+-+其值为( C ).33.如果线性方程组⎩⎨⎧=+=+2122c y kx c ky x 21,(c c 为不等于零的常数)有唯一解,则 k必须满足( ). (D) 2-≠k且 2≠k答案: 选 )(D .34. 若齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=+-.0002321321321x x kx x x k x x x x 有非零解,则k必满足(A)(A) 1-=k或 4=k35.线性方程组 ⎪⎩⎪⎨⎧-=--=+=++32282422z y x y x z y x 的增广矩阵是( B ).36.已知 ,723322⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+b a a b a b a 则b a ,的值为( A ).37..)(22121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n b b b a a a (A)38.设,70,2,70⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=y xy v u y x C B A 且,2O C B A =-+则vu y x ,,,的值等于( A ).39.设CB,A,均为n阶方阵,且,ECACBAB===则).(222=++CBA(A)40.乘积).(24131211314311412=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎦⎤⎢⎣⎡-(A)41.设,25123211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A则).(])[(1=-*TA(A)(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----10642442.将线性方程组⎪⎪⎩⎪⎪⎨⎧-=+=+--=++=-+11222221432432432xxxxxxxxxxx,求得其秩为( D ).(D) 4.43.用两种方法求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321211A的逆矩阵. 其逆矩阵是(A ).(A).31310021210011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=-A 44.设齐次线性方程O X A = 有非零解,其中,11223112321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=t A 则).(=t (C)45.设 ⎪⎩⎪⎨⎧=++-=-+=+++,332,1,1234214324321x x x x a x a x x x x x 问)(≠a 时,方程组有解 ?并在有解时,其通解中含有( )个任意常数.(D)46.),1,0,2,1(,)0,0,1,2(,)1,0,1,1(--=-=-=γβα 则向量=ξ).(23=+-γβα(B))2,0,1,6()(--B 47.设a 为三维列向量,Ta 是a 的转置. 若,111111111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=T aa 则).(=a a T(C)3)(C48. 设向量组321,,a a a 线性无关,向量321,,a a a 线性表可由321,,a a a 线性表示,而向量2β不能由321,,a a a 线性表示,则对于任意常数,k 必有( ).)(A 321,,a a a ,21ββ+k 线性无关(A)49. 设三阶矩阵,403212221⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=A 三维列向量(),1,1,Ta =a 已知A a 与 a 线性相关,则a =( B ).B 、 -150.向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=7431,6514,3121321a a a 的一个最大无关组是( C ).51.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵记为,A 若存在三阶矩阵,O B ≠使得,O B A =则( C ).1)(=λC 且0=B52.四元线性方程组⎪⎩⎪⎨⎧=-==+00041241x x x x x 的基础解系是( B ).T B )0,2,0,0()(53.设α是A 关于特征值λ的特征向量,则α不是( )的特征向量.(C)54. 设A 为n 阶方阵,以下结论中不成立的是(A ).)(A 若A 可逆,则矩阵A 属于特征值λ的特征向量也是矩阵1-A 的属于特征值λ1的特征向量.55.与矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010001A 相似的矩阵是( C ).56.n 阶方阵A 具有n 个不同的特征值是A 与对角矩阵相似的(B))(B 充分而非必要条件57.设A 、B 均为n 阶矩阵,且A 与B 合同,则(D ). )(D r r =)(A )(B58.对于二次型,),,,(21Ax x T n x x x f = 其中A 为n 阶实对称矩阵,下述结论正确的是( D ).)(D f 的规范形是唯一的59.设A 是n 阶对称矩阵,则A 是正定矩阵的充分必要条件是( D ). )(D A 与单位矩阵合同62、设A 是n 阶方阵,且A^2=2A,则未必有(A)A.A 可逆;63、二次型的秩为(B)B. 264、n 元实二次型正定的充分必要条件是其标准形中n 个平方项的系数全大于零(C)C. 充分必要条件65、若,其中n为一个正整数(B)B.66、(C)C.65、(A)A.66、(D)D.67、(C)C.68、行列式1221≠--k k 的充分必要条件是( C ).31)(31)(3)(1)(≠-≠≠-≠≠-≠k k D k k C k B k A 或且69、 若,010113221=λλ 则21,λλ必须满足( C ).均可为任意数可为任意数21212121,)(,2)()(0,2)(λλλλλλλλD C B A =====270、已知行列式 ,111111111bb aD -++=则.)(=D (B)22222)()()1()()(ba D ba Cb a B b b a A -+--71、 行列式 0401011>-aa a 的充分必要条件是( D ).2)(2)(2)(2)(<>≤>a D a C a B a A72、 )0(.)(010100111121210≠=n na a a a a a a 其中(B)(A ) 0. ( B ) .)1()(101∑∏==-ni ini ia a a( C ) .1∏=ni ia( D ) .0∑=ni i a73、设c b a ,,两两互不相同,则行列式 0222=+++=c b a c b a ba a c cb D 的充分必要条件是(A)1))()(()(0))()()(()())()(()(0)(=---≠---++---==++b c a c a b D b c a c a b c b a C b c a c a b abc B c b a A74. 如果线性方程组⎩⎨⎧=+=+2122c y kx c ky x 21,(c c 为不等于零的常数)有唯一解,则 k必须满足( ).(A) 0=k(B) 2-=k 或 2=k(C) 2-≠k 或 2≠k (D) 2-≠k 且 2≠k(第1章 选D )75. 乘积 ).(20413121013143110412=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---6520867)(654321)(6520876)(6520876)(D C B A(第2章. 选 A . 按矩阵乘法定义计算 )76. 若A , B都是三阶可逆矩阵,则下列结论不一定正确的是 ( ).)(A TTTA B AB =)(. )(B 111)(---=A B AB .)(C ***=A B AB )(. )(D 222)(A B AB =. ( 第2章. 选 D . 注意:问的是:不一定正确者 ) 77. 若 ),,0(2k k =β能由)1,1,1(,)1,1,1(,)1,1,1(321k k k +=+=+=ααα唯一线性表示,则k 等于( ).0)(≠k A 3)(-≠k B 0)(≠k C 且 3-≠k k D )(任意. ( 第4章.选 C .78. 设向量组r B b b b ,,,:21 能由向量组m A a a a ,,,:21 线性表示,则( ).)(D 当m r >时,向量组B 必线性相关(第4章. 选 D . 解法提示:用反证法排除其余三种可能 )79. 设A 为n 阶方阵,以下结论中成立的是().)(A 若A 可逆,则矩阵A 属于特征值λ的特征向量也是矩阵1-A的属于特征值λ1的特征向量.)(B A 的特征向量即为方程o x A E =-)(λ的全部解.)(C 若A 存在属于特征值λ的n 个线性无关的特征向量, 则E A λ≠.)(D A 与TA 不可能有相同的特征值. (第5章.选 A )80. n 阶方阵A 具有n 个不同的特征值是A 与对角矩阵相似的).()(A 充分必要条件 )(B 充分而非必要条件 )(C 必要而非充分条件 )(D 既非充分也非必要条件(第5章. 选 B . )81. 设A ,B 均为n 阶矩阵,且A 与B 合同,则( ).)(A A 与B 相似 )(B =A B)(C A 与B 有相同的特征值 )(D r r =)(A )(B(第5章.选D )82. 若 44553321a a a a a j i 是5阶行列式中带有正号的一项, 则j i ,的值应为( ). )A (3,1==j i )B (3,2==j i )C (2,1==j i )D (1,2==j i (第1章. 选C.)83. 设D 是n 阶行列式, 则下列各式中正确的是( B ).)(A n j A aj i ni ji ,,2,1,01 ==∑= )(B n j D A a j i ni j i ,,2,1,1==∑=)(C D A aj nj j=∑=111 )(D n i A aj i nj ji ,,2,1,01==∑=(第1章.选B . 解法提示:根据行列式展开定理知选B . 它是行列式按第j 列展开的公式. )84、若A为正交矩阵,则其行列式|A|=( C )C85、C:-16答案为C的解为(C)86、方程87答案为B88、设向量组则(B)B、B能由A线性表示,但A不能有B线性表示88、设A为三阶矩阵,|A|=1/2,求|(2A)^(-1)-5A*|C、-16 答案:C14、若A~B矩阵A与B等价,即A~B,则它们的秩有如下关系(B)B、r(A)一定等于r(B)89、如果则方程组的解是(C)90、n阶矩阵A所有特征值得乘积等于(C)C、|A|91、设有三个线性无关的特征向量,则x 和y 应满足条件(B )B 、x+y=092、设则行列是|AB|=(A )A 、24 93、设矩阵矩阵X 满足,其中是的伴随矩阵,则矩阵X=(B )94、与矩阵相似的矩阵是(D )95、行列式与其转置行列式(A ) A 、相等96、若齐次线性方程组⎪⎩⎪⎨⎧=++=-+=+-.0002321321321x x kx x x k x x x x 仅有零解,则k必满足(D )97、(AB )^T=(B ) B 、B^T A^T98、A 的特征值全大于零是二次型为正定的(C )C 、充分必要条件99、若方程组无解,则k 应等于(B )B、k=4100、设则AB=(C)C、101、排列的逆序数是(A)A、n(n-1)102、已知向量a1,a2,a3线性无关。
2014-2015第二学期线性代数试卷A 答案
东莞理工学院(本科)试卷( A 卷参考答案)2014 --2015学年第二学期《 线性代数 》试卷开课单位: 计算机学院数学教研室 ,考试形式:闭卷,允许带 入场每题或每空3分,共36分)、设n 元线性方程组Ax b =,其中()(,)R A R A b n ==,则该方程组( B )A .有无穷多解B .有唯一解C .无解D .不确定、设P 为正交矩阵,则P 的列向量( C ) .可能不正交 B. 有非单位向量 C. 组成单位正交向量组 C. 必含零向量 、设A 是m n ⨯型矩阵,B 是s m ⨯型矩阵,则TTA B 是( B )型矩阵 A .m s ⨯ B .n s ⨯ C .m n ⨯ D .s n ⨯ 、如果A 、B 均为n 阶方阵,则下列命题正确的是( D )若0=A ,则必有0A = B.若AX BX =,则A B =( X 也是n 阶方阵)C. 若0AB =,则0A =或0B =D.2B -2(E+B )(E-B)=E (E 为n 阶单位阵) 、已知α=T(1,-1,-1,1),则α=2 ,其单位化向量是()11,1,1,12T-- 、设12,ξξ是线性方程组Ax b =的两个解,则12ξξ-是线性方程组__0Ax =__的解,12ξξ-是线性方程组Ax b =的解.7、12a b A c d λλ⎛⎫=⎪⎝⎭,,是A 的两个特征值,则12λλ+=a d +8、已知二次型()12,3121323,226f x x x x x x x x x =+-,则二次型的矩阵011103130A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭9、 矩阵A 与B 相似, 111021003B ⎛⎫⎪= ⎪ ⎪⎝⎭,则A = 610、矩阵11t A t ⎛⎫=⎪⎝⎭,正定时,t 就满足的条件是 0t > 二、解答题(共37分)1、(10分)设A 为5阶方阵,且3A =,求1A -;A *解:30A =≠ ,A ∴可逆, (1)111,1A A E A A A A E ---=∴=== 又 (2)1113A A--∴== (1)111,A A A A A A-**-=∴= 又 …………….2 511A A A A A -*-== (3)=4A =81 (1)2、(8分)已知⎪⎪⎭⎫ ⎝⎛-=102111A ,,201112⎪⎪⎭⎫⎝⎛--=B求(1)2;(2).T A B A B -解:(1).5003332⎪⎪⎭⎫⎝⎛--=-B A (4)(2) 1241321110211.10211113T A B --⎛⎫⎛⎫-⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪---⎝⎭⎝⎭ (4)3、(7分)设,100210321⎪⎪⎪⎭⎫⎝⎛=A 求.1-A解:构造矩阵()=E A ⎪⎪⎪⎭⎫ ⎝⎛100100010210001321 (2)⎪⎪⎪⎭⎫⎝⎛--→100100010210021101 ……………………2 ⎪⎪⎪⎭⎫ ⎝⎛--→100100210010121001 ……………………2 所以,.1002101211⎪⎪⎪⎭⎫⎝⎛--=-A ………………………….1 4、(6分)已知矩阵52002100,0012011A ⎛⎫⎪ ⎪= ⎪- ⎪⎝⎭求.A解:将矩阵化为分块矩阵12,A O A OA ⎛⎫=⎪⎝⎭ (1)则12.A A A =⋅ (2)52121332111-=⋅=⨯= (3)5、(6分)判定向量组()()()1231,0,1,0,1,1,1,0,1T T T ααα===-的线性相关性解:3132101101101010010010111012002A γγγγ-----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=−−−→−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)即: ()3n R A == ,则矩阵A 有唯一的0解 .................2 所以向量组是线性无关的 . (1)三、应用题(共27分)1、(12分)求非齐次线性方程组1234123412342142 2221x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩的通解解:对曾广矩阵施行初等行变换,则有:3121123222211112111121101422120001000010,211110002000000A γγγγγγγγ--+----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-−−−−−→-−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭, 22110100010,0000γ--⎛⎫ ⎪−−→⎪ ⎪⎝⎭ ………………………4 可见:()()24R A R A ==<, 故此线性方程组有无穷多解, (2)基础解系中有4-2=2个解, (2)与之同解的方程组是123421x x x x +-=⎧⎨=⎩选取1,3x x 为自由变量,并令1,13212,,x c x c c c R ==∈,则方程组的通解是11213334120x x x x x x x x =⎧⎪=-+⎪⎨=⎪⎪=⎩ 向量形式为:121234010121001000x x c c x x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)2、(15分)设二次型322322213214332),,(x x x x x x x x f +++=,求一个正交变换化此二次型为标准型,并写出标准型.解:二次型的矩阵,320230002⎪⎪⎪⎭⎫ ⎝⎛=A (1)特征多项式:).5)(2)(1(3223002----=---=-λλλλλλλE A特征值.5,2,1321===λλλ (3)当11=λ时,解0)(=-x E A ,,000110001220220001⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-E A 得⎪⎪⎪⎭⎫⎝⎛-=1101ξ . (2)当21=λ时,解0)2(=-x E A , ,1000100001202100002⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-E A 得⎪⎪⎪⎭⎫⎝⎛=0012ξ . (2)当53=λ时,解0)5(=-x E A , ,0001100012202200035⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---=-E A 得⎪⎪⎪⎭⎫⎝⎛=1103ξ . (2)将上述三个两两正交的特征向量321,,ξξξ单位化,得 ,21210,001,21210321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-=p p p (1)则在正交变换⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛3213212102121021010y y y x x x (2)二次型的标准形为23222152y y y f ++=. (2)。
线性代数第一章作业及其答案
第一章行列式一、单项选择题1.行列式D 非零的充分条件是()(A)D 的所有元素非零(B)D 至少有n 个元素非零(C)D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解2.二阶行列式1221--k k ≠0的充分必要条件是()A.k≠-1B.k≠3C.k≠-1且k≠3D.k≠-1或≠33.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=()A.m -nB.n -mC.m +nD.–(m +n )4.设行列式==1111034222,1111304zy x zyx则行列式()A.32B.1C.2D.385.下列行列式等于零的是()A .100123123- B.031010300-C.100310-D.261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =()A.-2B.-1C.1D.27.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k=()A.-2B.-1C.1D.28.(考研题)行列式0000000ab a bc dc d=()A.()2ad bc - B.()2ad bc -- C.2222a db c- D.2222b c a d-二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为。
2.行列式1112344916中位于(3,2)元素的代数余子式A 32=。
3.设1578111120963437D --=--,则1424445A A A ++=。
4.已知行列式212300111a=-,则数a =。
5.若a ,b 是实数,则当a =且b =时,有000101ab ba-=--。
6.设13124321322)(+--+-+=x x x x f ,则2x 的系数为。
7.五阶行列式000130003201830207530026=。
线性代数B期中考试试题
中国农业大学 2014~2015学年秋季学期 线性代数(B )课程期中考试试题、一、填空题(本题满分15分,共5道小题,每道小题3分) 1.设B A ,都是5阶矩阵,且2,31=-=-B A ,则B A = .2.A 是34⨯矩阵,其秩()1R A =,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0030000108532001B ,则()R BA = .3.设A是n阶矩阵,E为单位矩阵,EAA T =,1-=A ,则()=*TA .·4.已知矩阵(0,1,0,1).Tα=若矩阵T E b αα+是矩阵2T E αα+的逆矩阵(其中b是数),则b = .5设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,则该方程组的通解为 .二、选择填空题(本题满分15分,共有5道小题,每道小题3分).以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中.1. 设A 为n 阶方阵,且A A =2.则以下结论正确的是( ). @(A)A =0或者A E =; (B)A 不可逆; (C)A 能写成一些初等矩阵的乘积; (D) A =0或者A E 0-=.2.设n 阶矩阵A 与B 等价,则下列结论不正确的是( ). (A) ()()R A R B = ; (B);当0=A 时,0=B、考生诚信承诺1.本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行。
2.本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信。
学院: 班级: 学号: 姓名: >(C) A B =; (D)A 与B 有相同的标准形. 3. n 维向量12,,,(3)s s n ααα≤≤线性无关的充分必要条件是( )3.n 维向量12,,,(3)s s n ααα≤≤线性无关的充分必要条件是( )(A ) 存在不全为零的数12,,,s k k k ,使11220s s k k k ααα++≠."(B )12,,,s ααα中任意一个向量都不能用其余向量线性表示. (C ) 12,,,s ααα中任意两个向量线性无关.(D ) 12,,,s ααα中存在一个向量都不能用其余向量线性表示.4. 已知C B A ,,均为n 阶可逆矩阵,且E ABC =, 则下列结论一定成立的是( ).(A )E ACB =;(B )E BCA = ;(C )E CBA =; (D )E BAC =. (5. 设A 为m n ⨯矩阵,且m n <,若A 的行向量组线性无关,则( ) (A) 方程组=Ax b 有无穷多解;(B) 方程组=Ax b 仅有零解; (C) 方程组=Ax b 无解;(D) 方程组=Ax 0仅有零解. 三、(14分)计算行列式(1)45555555344444442333333312222222233445233445233445233445⨯---⨯---⨯---⨯---》><(2)计算n 阶行列式nn a a a a a a D n n 1321112211----=--【 [ ||四、(6分)已知)(33E A A A -=,证明:A E -可逆,并求1)(--A E . — ~(学院: 班级: 学号: 姓名: 五、(10分)已知矩阵X 满足193AX A X A X E *-+=+,其中E 为单位矩阵,,200120012⎪⎪⎪⎭⎫⎝⎛=A 求X.$· $ `; 六、(10分) 设r r αααβααβαβ+++=+== 2121211,,,,且向量组r ααα,,,21 线性无关,证明向量组r βββ,,,21 线性无关. 》 ,七、(12分)当k为何值时,线性方程组1232123123424x x kxx kx x kx x x++=⎧⎪-++=⎨⎪-+=-⎩有唯一解,并求出该解.\—-<# ¥学院: 班级: 学号: 姓名: 八、(10分)求向量组()12011=α,()10212=α,()03123=α,()41524-=α,()13115--=α的秩和最大无关组,并把其余向量用该最大无关组线性表示:九 (8分)设n阶方阵A满足:().证明:A可以表示成r个秩为1的R A r矩阵之和.。
南京林业大学线性代数B A 卷(word文档良心出品)
南 京 林 业 大 学 试 卷课程 线性代数B (A 卷) 20 14~20 15 学年第 一 学期一、填空题(每题3分,共30分)1、某行列式D 的展开式其中有一项为 a 21a 34a 43a 45a 24,则此项的符号为 (填“正”或“负”或“不确定”)2、若3阶方阵,A 的行列式52=A ,则=*5-A (A *为A 的伴随矩阵) 3、设3阶行列式D 的第二行元素分别为 2,4,6 。
第三行对应的元素余子式分别为2 χ 6, 则χ =4、若3阶方阵A 的特征值分别为1,-2,3 则行列式E A A -+22=5、若A B 为同阶方阵,则())(B A B A -+=A 2-B 2成立的冲要条件是6、若三元齐次线性方程组AX=0同解于方程组⎩⎨⎧==4231χχχχ则矩阵A 的秩=7、已知A=⎪⎪⎪⎭⎫⎝⎛62-0030002-则1-A =8、设向量()4,2-1,与向量()8,2--a ,线性相关,则a= 9、设矩阵A=⎪⎪⎪⎭⎫ ⎝⎛-----122212221,已知⎪⎪⎪⎭⎫ ⎝⎛=112α是它的一个特征向量,则α所对应的λ=10、设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=721-3243521αα,分别是四元非齐次线性方程组AX=b 和AX=2b 的解,若R ()A =3那么AX=b 的通解为二、计算下列行列式(每题7分,共14分,)6124-721-3153-2432-1=D 1n ...333...............3...4333 (333)3 (332)+=n D三、(14分)非齐次线性方程组⎪⎩⎪⎨⎧-=+---=-++=-+-2521123064935432432143214321χχχχχχχχχχχχ是否有解?如果有解,求其通解四、(14分) 设矩阵A=⎪⎪⎪⎪⎪⎭⎫⎝⎛3473-20382-34-2-0217-3-132,求其矩阵A 的列向量组a 1a 2a 3a 4a 5的一个最大线性无关组并把其余的列向量用这个最大线性无关组线性表示五、(14分)已知n 阶方阵A,B 满足等式A+2B=-AB ,且B=⎪⎪⎪⎭⎫ ⎝⎛30001-2041-试求矩阵A六、(14分)设⎪⎪⎪⎭⎫ ⎝⎛------=124242421A ,试求A 的全部特征值与特征向量。
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
2014-2015-2-线性代数A卷答案
2014-2015-2线性代数A 卷答案及评分标准—————————————————————————————一、单项选择题(每小题3分,共15分)1. 设D C B A ,,,是同阶方阵,E ABCD =,则(,则( B )(A )E ABDC = (B )E CDAB = (C )E ACBD = (D )E BACD = 2. 设向量组I :321,,a a a 可由向量组II :21,b b 线性表示,则(线性表示,则( C ) (A )向量组II 必线性相关必线性相关 (B )向量组II 必线性无关必线性无关(C )向量组I 必线性相关必线性相关 (D )向量组I 必线性无关必线性无关3. 设A 是 n (3³n ) 阶可逆矩阵,*A 是A 的伴随矩阵,则(的伴随矩阵,则( C )(A )A A A n 1**||)(-= (B ) A A A n 1**||)(+= (C )A A A n 2**||)(-= (D) A A A n 2**||)(+=4. 设A 是n 阶方阵,且1)(-=n A R ,21,a a 是非齐次方程b Ax =的两个不同的解,的两个不同的解, 则b Ax =的通解是(的通解是( A )(A )121)(a a a +-k (B )21a a +k (C )121)(a a a ++k (D ) 221)(a a a --k5. 设A 是n 阶矩阵,P 是n 阶正交矩阵,且AP P B T=,则下列结论错误的是(,则下列结论错误的是( D ) (A )A 与B 相似相似 (B )A 与B 等价等价 (C )A 与B 有相同的特征值有相同的特征值 (D )A 与B 有相同的特征向量有相同的特征向量二、填空题(每小题3分,共15分)6.设三阶方阵A 的三个特征值是1,1,2,则=--|6)2(|1*A A 4 . 7. 设矩阵A 满足E A =3,则1)(-+E A =_____22EA A +-____. 8. 设三阶矩阵),,(321a a a =A ,且1||=A ,则|),,(|13321a a a a a -+=____1___. 9. 已知矩阵A=÷÷÷øöçççèæ--1 1 31 42 2 1a 的列向量组线性相关,则a =_____1-___. 10. 10. 设设21,l l 是实对称阵A 的两个不同的特征值,T 2T 1),2,1(,)1,1,1(a ==x x 为 对应的特征向量,则对应的特征向量,则a =___3-______.三、判断题,对的打√,错的打×(每小题2分,共10分)11. 11. 若矩阵若矩阵AB 是可逆矩阵, 则矩阵B A ,均是可逆矩阵(均是可逆矩阵( × ). 12. 12. 若n 阶行列式中元素为0的个数大于n n -2,则此行列式必为0( √ ). 13. 13. 若同阶矩阵若同阶矩阵B A ,均是正交矩阵,则矩阵AB 必为正交矩阵(必为正交矩阵( √ ). 14. 若向量组321,,a a a 线性相关,则向量组133322211 , ,a a b a a b a a b +=+=+= 无关(无关( × ). 15. 若A 是23´矩阵,且非齐次方程组b Ax =对应齐次方程组0=Ax 仅有零解,仅有零解, 则b Ax =有唯一解(有唯一解( × )四、计算题(每小题10分,共50分)16.求行列式a ba a ab a a a aa b a ab a D =的值的值. .解;原行列式把第二行,第三行,第四行均加到第一行得a b a a a b a a a a a b a a b a D ==ba a a ab a a a ab a b a b a b a b a ++++3333-------------------5分 b a a a a b a a a aa b b a 1111)3(+==3))(3( 0000 000 001111)3(a b b a ab a ba bb a -+=---+---10分17. 17. 利用初等变换求矩阵利用初等变换求矩阵÷÷÷øöçççèæ--=5 2 30 1 21 0 1A 的逆矩阵的逆矩阵. .解:÷÷÷øöçççèæ--=1 0 0 5 2 30 1 0 0 1 20 0 1 1 0 1),(E A ÷÷÷øöçççèæ-----1 0 0 5 2 30 1 2 2 1 00 0 1 1 0 12~12r r ---4分÷÷÷øöçççèæ---+1 0 3 2 2 00 1 2 2 1 00 0 1 1 0 13~13r r ÷÷÷øöçççèæ----1 2 7 2 0 00 1 2 2 1 00 0 1 1 0 12~23r r÷÷÷øöçççèæ--+1 2 7 2 0 01 1 5 0 1 00 0 1 1 0 1~32÷÷÷øöçççèæ-----¸1/2 1 7/2 1 0 01 1 5 0 1 01/2 1 5/2 0 0 12~313 所以的逆矩阵是÷÷÷øöçççèæ----1/2 1 7/2 1 1 5 1/2 1 5/2 .---------------------------------10分18.设线性方程组ïîïíì=++=++=++040203221321321与方程12321-=++有公共解,有公共解,求的值及所有公共解解:两个方程组有公共解即合起来的大方程组ïïîïïíì-=++=++=++=++1204023213221321321有解, 即),()(=.---------------------------------------------------------------------------3分 ÷÷÷÷÷øöçççççèæ-112104102101112 ÷÷÷÷÷øöçççççèæ-----110)2)(1(0001100111~÷÷÷÷÷øöçççççèæ-----)2)(1(001 10001100111~当1=或2=时有公共解.----------------------------------------------------------------6分(1)当1=时,,2),()(==对应的方程组的通解为Î÷÷÷øöçççèæ-=,1 0 1(2)当2=时,,3),()(==对应的方程组的唯一解为÷÷øöççèæ-=1 1 0.---10分 19. 求向量组T 3T 2T 1)7,6,9(,)1,0,3(,)3,2,1(-==-=a a a ,T 4)2,2,4(-=a 的秩,的秩, 并求出一个极大无关组. 解:对÷÷÷øöçççèæ---==2 7 1 32 6 0 24 9 3 1),,,(4321a a a a 施加初等行变换,化成行阶梯型得----3分 ÷÷÷øöçççèæ---==2 7 1 32 6 0 24 9 3 1),,,(4321a a a a ÷÷÷øöçççèæ÷÷÷øöçççèæ---0 0 0 0 1 2 1 04 9 3 1~10 20 10 0 6 12 6 04 9 3 1~ 所以向量组的秩为2.------------------------------------------------------------------------------7分又因为任意两个向量都是线性无关的,所以我们可以选取21,a a 为一个极大无关组.--------------------------------------------------------------------------10分20. 20. 设三阶实对称阵设三阶实对称阵的秩为的秩为22,621==l l 是的二重特征值的二重特征值..若,)0,1,1(T 1=a T 2)1,1,2( =a 都是的属于的属于66的特征向量的特征向量. .(1) (1) 求求的另一个特征值及所有对应特征向量的另一个特征值及所有对应特征向量 ((2)求矩阵.解:( 1 )因为三阶实对称阵的秩为2,所以332136||0l l l l ===,所以03=l .----2分 不妨设对应的特征向量为÷÷÷øöçççèæ=3213a ,则由于属于不同特征值的特征向量正交,所以 îíì=++=+02032121,其非零解是0,111¹÷÷÷øöçççèæ-=--------------------------------5分 (2)取,1113÷÷÷øöçççèæ-=a 令),,(321a a a ==÷÷÷øöçççèæ- 1 1 01 1 11 2 1,则÷÷÷øöçççèæ=÷÷÷øöçççèæ=-0 6 63211所以÷÷÷øöçççèæ---÷÷÷øöçççèæ÷÷÷øöçççèæ-=÷÷÷øöçççèæ=- 1/3 1/3 1/32/3 1/3 1/31 1 00 6 6 1 1 01 1 11 2 10 6 61=÷÷÷øöçççèæ--4 2 22 4 22 2 4.------10分五、证明题(每小题分,共分)21. 已知为阶矩阵,且=2,证明.)()(=-+证明:证明: 令-=,所以0=从而£-+)()(--------------------------3分又因为)()())((+£-+,从而)()()(-+£=. 因此.)()(=-+------------------------------------------------------------5分22. 已知矩阵+,,均是可逆矩阵,证明矩阵11--+必可逆. 证明:因为1111111111)(----------+=+=+=+--------------4分所以矩阵11--+必可逆.--------------------------------------------------------------5分。
2014年10月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)
2014年10月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶行列式若元素aij的代数余子式为Aij(i,j=1,2,3),则A31+A32+A33= ( )A.一1B.0C.1D.2正确答案:D解析:由代数余子式的定义知A31+A32+A33==2.2.设A为3阶矩阵,将A的第3行乘以得到单位矩阵E,则|A|= ( )A.一2B.C.D.2正确答案:A解析:由题意得|A|=一2.3.设向量组α1,α2,α3的秩为2,则α1,α2,α3中( )A.必有一个零向量B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出正确答案:C解析:由于α1,α2,α3的秩为2,则其极大无关组所含向量个数为2,所以有一个向量可由其它向量线性表出.4.设3阶矩阵,则下列向量中是A的属于特征值一2的特征向量为( )A.B.C.D.正确答案:B解析:因λ=一2为A的一个特征值,所以(λE一A)即且x11=x2-x3,将A、B、C、D选项代入,只有B符合题意.5.二次型f(x1,x2,x3)=x12+x22+x32+4x1x2的正惯性指数为( ) A.0B.1C.2D.3正确答案:C解析:f(x1,x2,x3)=x12+x22+x32+4x1x2=2(x1+x2)2+x32一x12一x22,令则f=z12+z22—z32一z42,所以正惯性指数为2.填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设,则方程f(x)=0的根是______.正确答案:5解析:=(2-x)+3=5-x=0,得x=5.7.设矩阵,则A*=______.正确答案:解析:8.设A为3阶矩阵,,则行列式|(2A)-1|=_______.正确答案:解析:9.设矩阵.若矩阵A满足PA=B,则A=_______.正确答案:解析:=2≠0,所以P存在逆矩阵P-1,且p-1=由PA=B,得A=P-1B=10.设向量α1=(一1,4)T,α2=(1,2)T,α3=(4,2)T,则α3由α1,α2线性表出的表示式为_______。