最新浙教版八年级数学上册《一次函数》同步练习题2及答案(精品试卷).docx
2019—2020年最新浙教版八年级数学上册《一次函数》单元测试卷及答案解析.doc
《一次函数》 第一学期初二数学测试卷(3)( 试卷满分100分,考试时间90分钟)班级 姓名 成绩一、 选择题:(每小题3分,共30分)1、直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2、已知一次函数y=x+b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.23、函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4、如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y > 时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >25、在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为(-1,1) 1y (2,2)2yx yOA .y=x+1 B.y=x-1 C.y=x D. y=x-26、已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<17、已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为A. -32 B. -92 C. -74 D. -728、在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 S (米)与所用时间 t (秒)之间的函数图象分别为线段OA 和折线OBCD . 下列说法正确的是( )A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后 180 秒时,两人相遇D.在起跑后 50 秒时,小梅在小莹的前面9、在平面直角坐标系中,已知直线y=-43x+3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 10、如图,已知A 点坐标为(5,0),直线y=x +b (b>0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为A.3B.335C.4D.435 二、填空题(每小题3分,共24分)11、写出一个具体的y 随x 的增大而减小的一次函数解析式____ 。
八年级数学上册《第五章 一次函数》练习题-附答案(浙教版)
八年级数学上册《第五章一次函数》练习题-附答案(浙教版)一、选择题1.下列函数中,正比例函数是( )A.y=﹣8xB.y=1x C.y=8x2 D.y=8x﹣42.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-123.下列函数中,“y是x的一次函数”的是( )A.y=2x﹣1B.y=12x2 C.y=1 D.y=1﹣x4.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.55.下列函数中,是一次函数的有( )①y=12x;②y=3x+1;③y=4x;④y=kx-2.A.1个B.2个C.3个D.4个6.若函数y=(2-m)x|m|-1是关于x的正比例函数,则常数m的值等于( )A.±2B.﹣2C.± 3D.﹣ 37.函数y=(m﹣n+1)x|n﹣1|+n﹣2是正比例函数,则m,n应满足的条件是( ).A.m≠﹣1,且n=0B.m≠1,且n=0C.m≠﹣1,且n=2D.m≠1,且n=28.在y=(k+1)x+k2-1中,若y是x的正比例函数,则k值为( )A.1B.-1C.±1D.无法确定二、填空题9.若函数y=﹣2x m+2是正比例函数,则m的值是.10.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_______11.若函数y=(n﹣3)x+n2﹣9是正比例函数,则n的值为12.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=_______.三、解答题15.已知y与2x+1成正比例函数,当x=2时,y=10.(1)求y与x的函数关系式;(2)若A(3,m)在此直线上,求m的值.16.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.17.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.18.已知y﹣1与x成正比例,且x=﹣2时,y=4(1)求出y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值;(3)如果自变量x的取值范围是0≤x≤5,求y的取值范围.参考答案1.A2.B3.D4.C5.B6.B7.D8.A9.答案为:﹣1.10.答案为:2;y =2x.11.答案为:﹣312.答案为:﹣3,0,﹣12. 13.答案为:≠1,=-1.14.答案为:0.15.解:(1)y=4x+2;(2)m=14.16.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎪⎨⎪⎧k 1=-12,k 2=-12. ∴y =-12x -12(x -2),即y =-x +1. ∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.17.解:(1)设y =k(x +2).∵x =4,y =12,∴6k =12.解得k =2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10 ∴点(-7,-10)是函数图象上的点. 18.解:(1)∵y﹣1与x成正比例∴设y﹣1=kx将x=﹣2,y=4代入,得∴4﹣1=﹣2k解得k=﹣3 2;∴y与x之间的函数关系式为:y=﹣32x+1;(2)由(1)知,y与x之间的函数关系式为:y=﹣32x+1;∴﹣2=﹣32a+1,解得,a=2;(3)∵0≤x≤5∴0≥﹣32x≥﹣152∴1≥﹣32x+1≥﹣132,即﹣132≤y≤1.。
浙教版八年级上5.3一次函数(2)同步练习含答案
5.3一次函数(2)一.选择题1.若23y x b =+-是正比例函数,则b 的值是 ( ) A. 0 B.23 C. 23- D. 32- 2.已知一次函数y=kx+b(k,b 是常数,且k≠0),x 与y 的部分对应值如表所示,那么m 的值等于( ).x (A)-l(B)0(C)2(D)23. 一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R 欧表示为温度t ℃的函数关系式为 ( ) (A)R =0.008t (B)R =2+0.008t (C)R =2.008t (D)R =2t +0.008 4. 某商店售货时,在进价基础上加一定利润.其数量x 与售价y 如下表所示, ,则售价y 与数量x 的函数关系式为 2 A .y =8+0.4x B .y =8x +0.4 C .y =8.4 x D .y =8.4x +0.4 5. 已知一次函数b kx y +=中,当0=x 时,1=y ,当21=x 时,0=y ,则一次项系数k 和常数项b 的值分别是( )A.1,21=-=b k B. 1,2=-=b k C. 1,21-==b k D. 1,2-==b k二.填空题6.某种储蓄的月利率是0.25%,存入200元本金后,则本息和y 元与所存月数x 之间函数关系式为_______________7.在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,总价y (元)与加油量x (升)的函数关系式是________.8.邮购一种图书,每册定价20元,另加总书价的5%作邮费,购书x 册,需付款y(元)与x 的函数关系式为____________________。9.已知y 是x 的一次函数,又表给出了部分对应值,则m 的值是____________________。 10. 已知y 是x 的一次函数,当1=x 时,5=y ,当2=x 时,7=y ,则y 与x 之间的函数解析式为 三.解答题11. 已知一次函数b kx y +=,当3=x 时,5=y ,当4-=x 时,9-=y ,求这个一次函数解析式。
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
最新浙教版八年级数学上学期《一次函数的简单应用》同步练习题及答案.docx
浙教版八年级数学上册第五章5.5 一次函数的简单应用一、选择题1.已知函数y=-x+m与y=mx-4的交点在x轴的负半轴上,那么m的值是( ) A.±2 B.±4 C.2 D.-22.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,交于点P的两条线段l1,l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是( )A. 3 k m/h和4 km/hB. 3 km/h和3 km/hC. 4 km/h和4 km/hD. 4 km/h和3 km/h,(第2题)) ,(第3题))3.如图,直线y=kx+b过点A(-1,-2),B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解为( )A.x<-2 B.-2<x<-1C.-2<x<0 D.-1<x<04.已知一次函数y=ax+b的图象过第一、第二、第四象限,且与x轴交于点(2,0),则关于x的不等式a(x-1)-b>0的解为( )A. x<-1B. x>-1C. x>1D. x<15.直线y =kx +k(k 为正整数)与坐标轴所构成的直角三角形的面积为S k ,当k 分别为1,2,3,…,199,200时,S 1+S 2+S 3+…+S 199+S 200=( )A .10000B .10050C .10100D .10150 二、填空题6. 正比例函数的图象过点(2,-6),则这个正比例函数的表达式是________.7. 已知点A(a ,3),B(-2,b)均在直线y =-32x +6上,则a +b =____.8.直线y =-2x +3与x 轴的交点坐标是⎝ ⎛⎭⎪⎪⎫32,0,与y 轴的交点坐标是_____,图象与坐标轴所围成的三角形面积是_______.(第9题)9.已知一次函数的图象如图所示,则一次函数的表达式为________.(第10题)10.如图是一次函数y =kx +b 的图象,则关于x 的不等式kx +b >0的解为_________. 11. 已知方程组⎩⎪⎨⎪⎧y -3x +3=0,2y +3x -6=0的解为⎩⎪⎨⎪⎧x =43,y =1,则一次函数y =3x -3与y =-32x +3的交点P 的坐标是_______.12.如图,直线y =kx +b 和y =mx +n 交于点P(1,1),直线y =mx +n 交x 轴于点(2,0),则不等式组0<mx +n <kx +b 的解是______.三、解答题(第6题)13.如图,已知直线l 1:y 1=k 1x +b 1和l 2:y 2=k 2x +b 2于点M(1,3),根据图象判断:(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1>y 2? (3)当x 取何值时,y 1<y 2?14.新疆库尔勒某乡A,B两村盛产香梨,A村有香梨200 t,B村有香梨300 t.现将这些香梨运到C,D两个冷藏仓库,已知C仓库可储存240 t,D仓库可储存260 t.从A村运往C,D两仓库的费用分别为每吨40元和45元;从B村运往C,D两仓库的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x(t),A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数表达式;C D 总计A x(t) (200-x)t 200 t300 tB (240-x)t (60+x)t总计240 t 260 t 500 t(2)当x为何值时,A村的运费最少?(3)请问:怎样调运,才能使两村的运费之和最小?求出最小值.(第14题)15.某空中加油飞机接到命令,立即给另一架正在飞行的战斗机进行空中加油.在加油过程中,设战斗机的油箱余油量为Q1(t),加油飞机的加油油箱余油量为Q2(t),加油时间为t(min),Q1,Q2与t之间的函数关系图象如图所示,结合图象回答问题:(1)加油飞机的加油油箱中装载了多少油?将这些油全部加给战斗机需多长时间?(2)求加油过程中,战斗机的余油量Q1(t)与时间t(min)之间的函数表达式;(3)战斗机加完油后,以原速度继续飞行,需10 h到达目的地,油是否够用?请说明理由.16.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材,一张标准板材尽可能多地裁出A型、B型板材,有下列三种裁法(如图是裁法一的裁剪示意图):裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n(第10题)设所购的标准板材全部裁完,其中按裁法一裁x张,按裁法二裁y张,按裁法三裁z张,且所裁出的A,B两种型号的板材刚好够用.(1)上表中,m=__0__,n=__3__;(2)分别求出y,z关于x的函数表达式;(3)若用Q表示所购标准板材的张数,求Q与x之间的函数表达式,并指出当x取何值时Q最小.此时按三种裁法各裁标准板材多少张?参考答案:1.D2.D3.B4.A5.B6. y=-3x7. 118.(0,3),. 949. y=-2x+210. x>-211.⎝⎛⎭⎪⎪⎫43,112. 1<x<213【解】(1)当x=1时,y1=y2.(2)当x<1时,y1>y2.(3)当x>1时,y1<y2.14【解】(1)由题意,得y A=40x+45(200-x)=-5x+9000(0≤x≤200);y B=25(240-x)+32(60+x)=7x+7920(0≤x≤240).(2)对于y A=-5x+9000(0≤x≤200),∵k=-5<0,∴y随x的增大而减小,则当x=200时,y A最小,其最小值为-5×200+9000=8000(元).(3)设两村的运费之和为W,则W =y A +y B =-5x +9000+7x +7920=2x +16920(0≤x ≤200), ∵k =2>0,∴y 随x 的增大而增大,∴当x =0时,W 有最小值,W 的最小值为16920元.此时调运方案为:从A 村运往D 仓库200 t ,B 村运往C 仓库240 t ,运往D 仓库60 t.15【解】 (1)加油飞机的加油油箱中装载了30 t 油,将这些油全部加给战斗机需10 min.(2)设Q 1=kt +40,将(10,69)的坐标代入,得k =2910,∴Q 1=2910t +40(t ≥0).(3)40+30-69=1(t),∴战斗机10 min 用了1 t 油,10 h =600 min ,∴需用油60 t.∵69>60, ∴油料够用.16【解】 (2)由题意,得x +2y =240,2x +3z =180, ∴y =120-12x ,z =60-23x.(3)由题意,得Q =x +y +z =x +120-12x +60-23x =180-16x.又由题意,得⎩⎪⎨⎪⎧120-12x ≥0,60-23x ≥0,解得x ≤90(注:事实上,0≤x ≤90且x 是6的整数倍).∴当x =90时,Q 最小,Q 最小=165张,此时按三种裁法分别裁90张,75张,0张。
浙教版八年级数学上册同步测试:5.3一次函数同步练习题(一) .docx
5.3一次函数同步练习题(一)第一课时演兵场☆我能选1.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数2.下列函数中,y是x的一次函数的是()A.y=-3x+5 B.y=-3x2C.y=1xD.y=2x3.已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20-2x,则其自变量的取值范围是()A.0<x<10 B.5<x<10 C.x>0 D.一切实数4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是(•)A.y=2x+1 B.y=-2x+1 C.y=2x-1 D.y=-2x-1☆我能填5.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.第二课时1.下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3-4x C.y=2x+2 D.y=(5-2)x2.已知一次函数y=mx+│m+1│的图象与y轴交于(0,3),且y随x•值的增大而增大,则m的值为()A.2 B.-4 C.-2或-4 D.2或-43.已知一次函数y=mx-(m-2)过原点,则m的值为()A.m>2 B.m<2 C.m=2 D.不能确定4.下列关系:①面积一定的长方形的长s与宽a;②圆的周长s与半径a;•③正方形的面积s与边长a;④速度一定时行驶的路程s与行驶时间a.其中s是a的正比例函数的有()A.1个B.2个C.3个D.4个☆我能填5.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)6.如果一次函数y=(m-3)x+m2-9是正比例函数,则m的值为_________.7.若从5%的盐水y千克中,蒸发x千克水分,制成含盐20%的盐水,则函数y•与自变量x之间的关系是____________.8.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.初中数学试卷鼎尚图文**整理制作。
浙教版八年级上5.3一次函数(二)同步集训含答案
5.3 一次函数(二)1.已知铁的质量m 与体积V 成正比例,当V =5 cm 3时,m =39.5 g ,则铁的质量m 关于体积V 的函数表达式是m =7.9V .2. 已知一次函数y =kx +b ,当x =-1时,y 的值为2;当x =3时,y 的值为10,则这个一次函数的表达式为y =2x +4.3.已知y 与x +1成正比例,当x =5时,y =12,则y 关于x 的函数表达式是y =2x +2. 4.已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是-7.x -1 2 5 y5-1m5.有一本书,每20页厚为1 mm ,设从第1页到第x 页的厚度为y (mm),则(A ) A .y =120x B .y =20xC .y =120+xD .y =20x6.在一次函数y =kx +3中,当x =2时, y 的值为5,则k 的值为(A ) A. 1 B. -1 C. 5 D. -57.设地面气温是25℃,如果高度每升高1 km ,气温下降6℃,那么气温t (℃)与高度h (km)之间的函数表达式是(A )A. t =25-6hB. t =25+6hC. t =6h -25D. t =625h8.若y 是x 的一次函数,当x =2时,y =2;当x =-6时,y =6. (1)求这个一次函数的表达式; (2)当x =8时,求函数y 的值; (3)当函数y 的值为零时,求x 的值; (4)当1≤y <4时,求自变量的取值范围.【解】 (1)设y =kx +b (k ≠0).∵当x =2时,y =2;当x =-6时,y =6, ∴⎩⎪⎨⎪⎧2=2k +b ,6=-6k +b , 解得⎩⎪⎨⎪⎧k =-12,b =3. ∴y =-12x +3.(2)当x =8时,y =-12×8+3=-1.(3)当y =0时,-12x +3=0,解得x =6.(4)当1≤y <4时,1≤-12x +3<4,∴-2<x ≤4.9.周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间 9:00(t =0) 9:06(t =6) 9:18(t =18) 路牌内容嘉兴90 km嘉兴80 km嘉兴60 km(注:“嘉兴90 km ”表示离嘉兴的距离为90 km.)假设汽车离嘉兴的距离s (km)是行驶时间t (min)的一次函数,求s 关于t 的函数表达式. 【解】 设s =kt +b .由表知:当t =0时,s =90,当t =6时,s =80, ∴⎩⎪⎨⎪⎧b =90,6k +b =80, 解得⎩⎪⎨⎪⎧k =-53,b =90.∴s =-53t +90.10.某市自来水公司为限制单位用水,每月供给某单位计划内用水2500 m 3,计划内用水每立方米收费0.9元,超过计划部分每立方米按1.5元收费.(1)写出该单位水费y (元)与每月用水量x (m 3)之间的函数表达式: ①当用水量x ≤2500时,y =0.9x ;②当用水量x >2500时,y =2250+1.5(x -2500);(2)某月该单位用水2000 m 3,应付水费1800元;若用水3000 m 3,则应付水费3000元; (3)若某月该单位付水费3300元,则该单位用水为多少?【解】 (3)2250+1.5(x -2500)=3300,解得x =3200.即该单位用水3200 m 3.11.已知整数x 满足-5≤x ≤5,y 1=x +1,y 2=-2x +4.对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是(B )A .1B .2C .24D .-9【解】 当y 1<y 2时,x +1<-2x +4,得x <1;当y 1=y 2时,x +1=-2x +4,得x =1;当y 1>y 2时,x +1>-2x +4,得x >1.根据已知条件,对任意一个x ,m 都取y 1,y 2中的较小值,故当x ≤1时,m =x +1;当x >1时,m =-2x +4.故m 的最大值为2.12.已知一次函数y =kx +b ,当-3≤x ≤1时,对应的y 的取值范围为-1≤y ≤8,则b 的值是(C )A. 54B. 234C. 54或234D. 414 【解】 分两种情况:(1)把x =-3,y =-1;x =1,y =8代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =-1,k +b =8,解得⎩⎨⎧k =94,b =234.(2)把x =-3,y =8;x =1,y =-1代入y =kx +b ,得⎩⎪⎨⎪⎧-3k +b =8,k +b =-1,解得⎩⎨⎧k =-94,b =54.∴b =234或54.13.爸爸准备为小强买一双新的运动鞋,但要小强自己计算穿几码的鞋.小强回家量了一下爸爸41码的鞋子长25.5 cm ,妈妈36码的鞋子长23 cm.小强穿21.5 cm 长的鞋子,是多少码?【解】 设x (cm)长的鞋子的码数为y 码,由题意,设y =kx +b (k ≠0).把x =25.5,y =41;x =23,y =36代入y =kx +b ,得⎩⎪⎨⎪⎧25.5k +b =41,23k +b =36, 解得⎩⎪⎨⎪⎧k =2,b =-10.∴y =2x -10.当x =21.5时,y =2×21.5-10=33. 答:他穿的鞋子是33码.14.某乡镇为了解决抗旱问题,要在某河道上建一座水泵站,分别向河的同一侧张村A 和李村B 送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立平面直角坐标系(如图,河道宽度忽略不计).两村的坐标分别为A (2,3),B (12,7).(1)若从节约经费方面考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短? (2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?(第14题)【解】 (1)作点B 关于x 轴的对称点E ,连结AE ,则点E(12,-7).设直线AE 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧2k +b =3,12k +b =-7,解得⎩⎪⎨⎪⎧k =-1,b =5.∴y =-x +5.当y =0时,x =5.∴水泵站建在距离大桥5 km 的地方,可使所用输水管道最短.(2)作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G .过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C .设点G 的坐标为(x ,0).在Rt △AGD 中,AG 2=AD 2+DG 2=32+(x -2)2, 在Rt △BCG 中,BG 2=BC 2+GC 2=72+(12-x )2. ∵AG =BG ,∴32+(x -2)2=72+(12-x )2, 解得x =9.∴水泵站建在距离大桥9 km 的地方,可使它到张村、李村的距离相等.15.某中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒).由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.(1)若有x 名同学参与购买书包,试求出购买学习用品的总件数y 与x 之间的函数表达式(不要求写出自变量的取值范围);(2)若捐赠学习用品总金额超过2300元,且灾区90名同学每人至少能得到一件学习用品,请问:同学们该如何安排购买书包和文具盒的人数?此时选择其中哪种方案,能使购买的学习用品的总件数最多?【解】 (1)有x 名同学参与购买书包,则有(300-x )名同学参与购买文具盒,所以可购买书包x 6个,购买文具盒300-x2个.∴购买学习用品的总件数y 与x 之间的函数表达式为y =x 6+300-x 2,即y =-13x +150.(2)设有x 名同学参与购买书包,根据题意,得⎩⎪⎨⎪⎧x 6×54+300-x 2×12>2300,-13x +150≥90, 解得16623<x ≤180.又∵6人合买一个书包,故购买书包的人数应为6的倍数,∴安排购买书包的人数应为168或174或180,相应购买文具盒的人数为132或126或120. 当x =168时,y =-13x +150=94;当x =174时,y =-13x +150=92;当x =180时,y =-13x+150=90,∴当x =168时,总件数最多.∴安排168人购买书包,132人购买文具盒能使购买的学习用品的总件数最多.。
浙教版八年级数学上册.3一次函数同步练习题(二).docx
5.3一次函数同步练习题(二)第一课时1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,•则此函数的解析式为()A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-52.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为()A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤ D.不能确定☆我能填4.已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.5.如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.(1) (2)6.已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.7.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.8.如图2,线段AB的解析式为____________.☆我能答9.已知直线m与直线y=2x+1的交点的横坐标为2,与直线y=-x+2•的交点的纵坐标为1,求直线m的函数关系式.10.已知一次函数的图象经过点A(-3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积11.某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.第二课时☆我能选1.已知点(a,b)、(c,d)都在直线y=2x+1上,且a>c,则b与d的大小关系是( • )A.b>d B.b=d C.b<d D.b≥d2.已知自变量为x的一次函数y=a(x-b)的图象经过第二、三、四象限,则( • )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>03.如图所示的图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()☆我能填4.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y•轴的交点是_________.5.已知一次函数y=kx+b的图象经过点(0,-4),且x=2时y=0,则k=______,b=•_______.初中数学试卷。
数学:7.3《一次函数》同步练习2(浙教版八年级上)
浙教版八上《7.3一次函数》同步练习2◆基础训练1.若y=5x+m-3 是y 关于x 的正比例函数,则m= .2.一台拖拉机开始工作时,油箱中有40 升油,如果每小时耗油6 升,则油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式为.3.已知y=(k-2)x|k|-1+ 2k-3 是关于x 的一次函数,则这个函数的表达式为.4.设地面气温是25℃,如果每升高 1 千米,气温下降6℃,则气温 t(℃)与高度 h(千米)的函数关系是()6A.t=25-6t B.t=25+6h C.t=6h-25 D.t= t255.水箱内原有水 200 升,7:30 打开水龙头,以 2 升/分的速度放水,设经 t 分时,水箱内存水 y 升.(1)求 y 关于 x 的函数关系式和自变量的取值范围.(2)7:55 时,水箱内还有多少水?(3)几点几分,水箱内的水恰好放完?6.已知 s 是 t 的一次函数,并且当 t=1 时,s=2;当 t=-2 时,s=23,试求这个一次函数的关系式.7.周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间9:00(t=0) 9:06(t=6) 9:18(t=18)路牌内容嘉兴 9 0km 嘉兴 80k m 嘉兴 60km(注:“嘉兴90km”表示离嘉兴的距离为 90 千米)假设汽车离嘉兴的距离 s(千米)是行驶时间 t(分钟)的一次函数,求 s 关于 t 的函数关系式.8.某饮料厂生产一种饮料,经测算,用 1 吨水生产的饮料所获利润 y(元)是 1 吨水买入价 x(元)的一次函数.根据下表提供的数据,求 y 关于 x 的函数解析式.当水价每吨为 10 元时,1 吨水生产的饮料所获的利润是多少?1 吨水的买入价(元) 4 6利润 y(元)200 1989.测得某一弹簧的长度 y(cm)与悬挂物体的重力 x(N)有下面的对应值:x(N)0 1 2 3 4 5y(cm) 12 12.5 13 13.5 14 14.5如果y 是x 的一次函数,利用表中任意两对对应值求此函数解析式,并用其他数据检验.10.若 y1=-x+3,y2=3x-4,试确定当 x 取何值时:(1)y1<y2;(2)y1=y2;(3)y1>y2.11.某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价为8 元/千克,下面是他们在活动结束后的对话.小丽:如果以 10 元/千克的价格销售,那么每天可售出 300 千克.小强:如果以 13 元/千克的价格销售,那么每天要获取利润 750 元.小红:通过调查验证,我发现每天的销售量 y(千克)与销售单价 x(元)之间存在一次函数关系.求y(千克)关于 x(元)(x>0)的函数关系式.12.铜导钱的电阻 R(欧)与温度 t(℃)成一次函数关系.当t=20℃,R=42 欧;当t= 40℃时,R=45.36 欧.(1)求R 关于 t 的函数关系式;(2)当温度为30℃时,加在铜导线两端的电压为 12 伏,则通过铜导线的电流为多少安(精确到0.0 1 安)?13.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度 y(cm)与饭碗数 x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?14.甲、乙两个旅行社组织去某地旅行,每个人的收费均为 100 元,除优惠政策外其他服务均相同,甲旅行社的收费标准是每个人均可打 7 折,乙旅行社可免去一位带队教师的费用,其他人均可打 8 折.(1)请用函数关系式分别表示甲、乙旅行社所需的总费用 y 和 y 与旅行人数 x 的函数关系式;(2)当人数为 5 人时,甲,乙两个旅行社的总收费各是多少?此时,你会选择哪个旅行社?(3)当人数为 10 人,你会选择哪个旅行社?为什么?答案:1.3 2.Q=40-6t 3.y=-4x-7 4.A5.(1)y=200-2t,0≤t≤100 (2)150 升(3)9 点10 分56.s=-7t+9 7.s=- t+90 8.y=-x+204,194 元37 7 79.y=0.5x+12 10.(1)x> (2)x= (3)x<4 4 411.y=-50x+800(x>0) 12.(1)R=0.168t+38.64 (2)0.27 安13.(1)y=1.5x+4.5 (2)21cm14.(1)y=70x,y=80x-80 (2)y 甲=350 元,y 乙=320 元,选择乙旅行社(3)y 甲=700 元,y 乙=720 元,选择甲旅行社。
最新浙教版2018-2019学年八年级数学上册《一次函数》同步练习题2及答案-精品试题
5.3 一次函数(2)(巩固练习)姓名班级第一部分1、已知y是关于x的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式;(2)求当x=-3时, 函数y的值;(3)求当y=2时, 自变量x的值;(4)当y>1时, 自变量x的取值范围.2、已知y-2与x成正比例,且x=2时,y=-6.求:(1) y与x的函数关系式;(2)当y=14时,x的值.3、为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元.(1) 求y 与x 的函数关系式(不要求写出x 的取值范围);(2) 王老师想参加该旅行社原价格为5600元的一条线路的暑期旅游,请帮王老师算出这条线路的价格.4、某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6元计费.(1) 求出租车收费y (元)与行驶路程x (千米)之间的函数关系式;(2) 若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程?第二部分1. 已知下列函数:①y=2x -1;②y=-x ;③y=4x ;④2x y . 其中属于正比例函数的有( )A .1个B .2个C .3个D .4个2.一次函数y=kx+b 中,k 为……………………………………………………………( )A .非零实数B .正实数C .非负实数D .任意实数3. 已知y 与x 成正比例,当x=-2时,y=6,那么比例系数k=_______.4.已知一次函数y=-2x+b ,当x=1时,y=2,那么b 的值是_______.5. 若y 与x 成正比例,且当13x =-时,2y =,则当35y =时,x 的值是___________.6. 若已知一次函数y=3x -6,则当x<0时,y 的取值范围为.7. 下列各题:①汽车以60千米/时的速度行驶,行驶路程y(千米)与行驶时间x (时)之间的关系;②圆的面积y(cm 2)与它的半径x(cm)之间的关系;③一棵树现在高50cm ,每个月长高2cm ,x 月后这个棵树的高度为y(cm);④某种大米的单价是2.2元/千克,花费y 元与购买大米x 千克之间的关系.其中y 是x 的一次函数的为.(填序号).8. 已知y 与2x+1成正比例,且x=-1时,y=2,解答下列问题:(1)求y 与x 的函数解析式;(2)当y=10时,求x 的值;9. 已知y 是关于x 的一次函数, 且当x=0时,y=2;当x=1时,y=-1.(1) 求这个一次函数的表达式;(2)求当x=-3时,函数y 的值;(3) 当y>0时,自变量x 的取值范围.10.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?参考答案第一部分1、已知y 是关于x 的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式;(2)求当x=-3时, 函数y 的值;(3)求当y=2时, 自变量x 的值;(4)当y>1时, 自变量x 的取值范围.【解】(1) 设一次函数的表达式为y=kx+b. 由题意,得{2332k b k b -=+-=+, 解得{15k b ==-.∴y=x -5.(2) 当x=-3时, y=-3-5=-8;(3) 当y=2时, 2=x -5, 解得x=7.(4) 当y>1时, x -5>1, 解得x>6.2、已知y -2与x 成正比例,且x=2时,y=-6.求:(1) y 与x 的函数关系式;(2)当y=14时,x 的值.【解】(1) 设y -2=kx, 则-6-2=2k, ∴k=-4, ∴y=-4x+2.(2) 当y=14时, 14=-4x+2, 解得x=-3.3、为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y (元)是原来价格每人x (元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元.(1) 求y 与x 的函数关系式(不要求写出x 的取值范围);(2) 王老师想参加该旅行社原价格为5600元的一条线路的暑期旅游,请帮王老师算出这条线路的价格.【解】(1) 设y=kx+b, 由题意得{1800210023002800k b k b =+=+, 解得57300k b ⎧⎪=⎨⎪=⎩, ∴53007y x =+. (2)当x=5600时, y=57×5600+300=4300元. 4、某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6元计费.(1) 求出租车收费y (元)与行驶路程x (千米)之间的函数关系式;(2) 若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程?解:当x ≤3时, y=8;当x>3时, y=8+1.6(x -3)=1.6x+3.2.(2)由题意,得14.4=1.6x+3.2, 解得x=7千米.第二部分1. 已知下列函数:①y=2x -1;②y=-x ;③y=4x ;④2x y =. 其中属于正比例函数的有( )A .1个B .2个C .3个D .4个 答案:B2.一次函数y=kx+b 中,k 为……………………………………………………………( )A .非零实数B .正实数C .非负实数D .任意实数 答案:C3. 已知y 与x 成正比例,当x=-2时,y=6,那么比例系数k=_______. 答案:34.已知一次函数y=-2x+b ,当x=1时,y=2,那么b 的值是_______. 答案:45. 若y 与x 成正比例,且当13x =-时,2y =,则当35y =时,x 的值是___________. 答案:1106. 若已知一次函数y=3x -6,则当x<0时,y 的取值范围为.答案:y<-67. 下列各题:①汽车以60千米/时的速度行驶,行驶路程y(千米)与行驶时间x (时)之间的关系;②圆的面积y(cm 2)与它的半径x(cm)之间的关系;③一棵树现在高50cm ,每个月长高2cm ,x 月后这个棵树的高度为y(cm);④某种大米的单价是2.2元/千克,花费y 元与购买大米x 千克之间的关系.其中y 是x 的一次函数的为.(填序号).答案:①③④8. 已知y 与2x+1成正比例,且x=-1时,y=2,解答下列问题:(1)求y 与x 的函数解析式;(2)当y=10时,求x 的值;解:(1) 设y=k(2x+1), 则2=(-2+1)k, ∴k=-2, ∴y=-4x -2;(2)当y=10时, 10=-4x -2, 解得x=-3.9. 已知y 是关于x 的一次函数, 且当x=0时,y=2;当x=1时,y=-1.(1) 求这个一次函数的表达式;(2)求当x=-3时,函数y 的值;(3) 当y>0时,自变量x 的取值范围.解:(1) 设y=kx+b, 则{21b k b =-=+, 解得{32k b =-=. ∴y=-3x+2. (2) 当x=-3时, y=11;(3)当y>0时, -3x+2>0, 解得x<23.10.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?解:(1) 设y=kx+b, 则{410.5715k b k b +=+=, 解得{1.54.5k b ==, ∴y=1.5x+4.5; (2)当x=11时, y =1.5×11+4.5=21cm .。
八年级数学上册5.3一次函数同步练习(新版)浙教版【含解析】
5.3 一次函数一、选择题(共10小题;共50分)1. 若y=(m−3)x+1是一次函数,则( )A. m=3B. m=−3C. m≠3D. m≠−32. 在同一平面直角坐标系中,若一次函数y=−x+3与y=3x−5的图象交于点M,则点M的坐标为 ( )A. (−1,4)B. (−1,2)C. (2,−1)D. (2,1)3. 下列四组点中,可以在同一个正比例函数图象上的一组点是 ( )A. (2,−3),(−4,6)B. (−2,3),(4,6)C. (−2,−3),(4,−6)D. (2,3),(−4,6)4. 某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量的取值范围分别是( )A. y=0.12x,x>0B. y=60−0.12x,x>0C. y=0.12x,0≤x≤500D. y=60−0.12x,0≤x≤5005. 如图,一次函数图象经过点A,且与正比例函数y=−x的图象交于点B,则该一次函数的表达式为 ( )A. y=−x+2B. y=x+2C. y=x−2D. y=−x−26. 下列函数:① y=πx,② y=2x−1,③ y=1x ,④ y=1x−3x,⑤ y=x2−1中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个7. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为 ( )A. 1B. −1 D. −38. 若实数m,n满足4m2+12m+n2−2n+10=0,则函数y=x2m+4n+n+2是 ( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数9. 在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,⋯,z(不论大小写)依次对应1,2,3,⋯,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=x+12;当明码对应的序号x为偶数时,密码对应的序号y=x+13.A. gawqB. shxcC. sdriD. love10. 八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为 ( )A. y=−xB. y=−34x C. y=−34x D. y=−910x二、填空题(共10小题;共50分)11. 正比例函数y=−12x的图象过点(1, ).在横线处应填.12. 已知函数y=(m+2)x∣m∣−1−1是一次函数,则m的值为.13. 当m=时,关于x的函数y=(m−2)x m2−3+5是一次函数.14. 如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(−1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.15. 已知y=(m−3)x m2−8+m+1是一次函数,则m=.16. 已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x时,y≤0.17. 如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(−2,0),(−1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△AʹBʹCʹ(A和Aʹ,B和Bʹ,C和Cʹ分别是对应顶点),直线y=x+b经过点A,Cʹ,则点Cʹ的坐标是.18. 当m=时,函数y=(m+3)x2m+1+4x−5(x≠0)是一个一次函数.19. 如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0,则图中阴影部分的面积是.20. 在平面直角坐标系中,有三条直线l1,l2,l3,它们的函数解析式分别是y=x,y=x+1,y=x+2.在这三条直线上各有一个动点,依次为A,B,C,它们的横坐标分别为a,b,c,则当a,b,c满足条件( )时,这三点不能构成△ABC.三、解答题(共5小题;共65分)21. 已知一次函数y=kx+b,当x=1时,y=−1;当x=−1时,y=3,求k和b的值.22. 甲、乙两地相距50 km,小明骑自行车以10 km/h的速度从甲地驶往乙地.写出小明离乙地的距离s(km)与行驶时间t(h)之间的关系式. s是否为t的一次函数?是否为正比例函数?23. 已知关于x的函数y=kx−2k+3−x+5是一次函数,求k的值.x−6与x轴相交于点A,与y轴相交于点B,求这条直线与坐标轴围成的三24. 已知直线y=−12角形的面积.25. 如图,直线y=kx+b经过A,B两点.Ⅰ求此直线表达式;Ⅱ若直线y=kx+b绕着点A旋转,旋转后的直线y=kʹx+bʹ与y轴交于点M,若△OAM 的面积为S,且3<S<5,分别写出kʹ和bʹ的取值范围(只要求写出最后结果).答案第一部分1. C2. D3. A4. D5. B6. C7. A8. B9. B 10. D 第二部分 11. −12 12. 2 13. −2 14. −2 15. −3 16. ≥2 17. (1,3)18. −3 或 −12 或 0 19. 12.520. a =b =c 或 a =b +1=c +2 或 a−ca−b =2 第三部分21. 由题意可得 {k +b =−1,−k +b =3.∴k =−2;b =1 .22. s =50−10t ,s 是 t 的一次函数,s 不是 t 正比例函数. 23. 当 k =0 时,y =−x +5,是一次函数. 当 −2k +3=0,即 k =32 时,y =−x +132,是一次函数.当 −2k +3=1,即 k =1 时,y =5,不是一次函数.所以 k 的值为 0 或 32.24. ∵ 直线 y =−12x −6 与 x 轴相交于点 A ,与 y 轴相交于点 B ,∴A (−12,0),B (0,−6) . ∴OA =12,OB =6 .∴ 这条直线与坐标轴围成的三角形的面积 =12×12×6=36 . 25. (1) 依题意,得{b =4,−2k +b =0.解得{b =4,k =2.所以直线表达式为 y =2x +4.(2) 32<kʹ<52,3<bʹ<5 或 −52<kʹ<−32,−5<bʹ<−3.。
浙教版八年级数学上册第五章-:一次函数-同步练习 (含解析)
八年级上册-(浙教版)第五章-一次函数-同步练习一、单选题1.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<02.当b<0时,一次函数y=x+b的图象大致是()A. B. C. D.3.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A. B. C. D.4.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3B.4C.5D.65.对于函数,下列表述正确的是()A.图象一定经过B.图象经过一、二、三象限C.随的增大而减小D.与坐标轴围成的三角形面积为6.一次函数y = kx + 4的图象与坐标轴围成的三角形的面积为4,则k的值为().A.2B.−2C.±2D.不存在7.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小8.在平面直角坐标系中,正比例函数y=kx(k<0)的图象的大体位置是()A. B. C. D.9.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()A.Q=40﹣B.Q=40+C.Q=40﹣D.Q=40+10.已知函数y=(m﹣2)x m2﹣3是正比例函数,则m=()A. -2B.2C.±2D.1二、填空题11.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为________.12.在函数y= 中,自变量x的取值范围是________。
2023-2024学年浙教版数学八年级上册3.3一元一次不等式同步练习2
2 3 y x O 3.3 一元一次不等式 同步练习一、 选择题1、如果a >b ,下列各式中错误..的是 ( )A .a -3>b -3B .-2a <-2bC .2a >2b D .3-a >3-b 2、直线b x y +=交x 轴于点A (-2,0),则不等式0<+b x 解集是 ( )A. 2-<xB. 2<xC. 2->xD. 2>x3、小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,根火腿肠,则满足上述条件的不等式是 ( )A .24243>+⨯xB . 24243≤+⨯xC .24423<⨯+xD . 24423≥⨯+x4、已知:03)3(2=++++m y x x 中,为负数,则的取值范围是 ( )A 、>9B 、<9C 、>-9D 、<-9 5、已知方程组⎩⎨⎧=++=+3313y x k y x 的解y x ,满足0<y x +<1,则k 的取值范围是 ( ) A 、-4<k <0 B 、-1<k <0 C 、0<k <8 D 、k >-46、关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( )A .a >3B .a ≤3C .a <3D .a ≥3 7、一次函数y kx b =+的图象如图所示,不等式kx+b <0的解集是( )A .0x >B .0x <C .2x >D .2x < 8、不等式2(x -2)≤x -2的非负整数解的个数为( ) A.1个 B.2个 C.3个 D.4个 9、D 在比例尺为1:100000的地图上某海员量得从海岸到A 岛的距离是2cm ,并且知道 船在海上行驶速度为40千米/时,那么此海员要到达A 岛最少需 ( )A 2分钟B 3分钟C 4分钟D 5分钟10、直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
2019—2020年最新浙教版八年级数学上册《一次函数的图像和性质》同步测试题及答案.docx
5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限 (C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y (元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值(A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能4.若函数b kx y +=(b k ,为常数)的图象如图所示,那么当0>y 时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是().(A )(B )(C )(D )yx2116.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线y x=-上运动,当线段AB最短时,点B的坐标为A.(0,0)B.11(,)22- C.22(,)22- D.11(,)22-9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx (n≠0)的图象都经过点(2,3),yxEDCBA则m=______,n=_________.2.如果函数()1f x x =+,那么()1f =3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km 的过程中,行使的路程y 与经过的时间x 之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h ,汽车的速度为____km/h .汽车电动自行车90 80 70 60 50 40 30 20 100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5y (km )x (h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―1|+2a = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 一次函数(2)(巩固练习)
姓名班级
第一部分
1、已知y是关于x的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式;(2)求当x=-3时, 函数y的值;
(3)求当y=2时, 自变量x的值;(4)当y>1时, 自变量x的取值范围.
2、已知y-2与x成正比例,且x=2时,y=-6.求:
(1) y与x的函数关系式;(2)当y=14时,x的值.
3、为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元.
(1) 求y 与x 的函数关系式(不要求写出x 的取值范围);
(2) 王老师想参加该旅行社原价格为5600元的一条线路的暑期旅游,请帮王老师算出这条线路的价格.
4、某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6元计费.
(1) 求出租车收费y (元)与行驶路程x (千米)之间的函数关系式;
(2) 若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程?
第二部分
1. 已知下列函数:①y=2x -1;②y=-x ;③y=4x ;④2x y . 其中属于正比例函数的有( )
A .1个
B .2个
C .3个
D .4个
2.一次函数y=kx+b 中,k 为……………………………………………………………( )
A .非零实数
B .正实数
C .非负实数
D .任意实数
3. 已知y 与x 成正比例,当x=-2时,y=6,那么比例系数k=_______.
4.已知一次函数y=-2x+b ,当x=1时,y=2,那么b 的值是_______.
5. 若y 与x 成正比例,且当13x =-时,2y =,则当35
y =时,x 的值是___________.
6. 若已知一次函数y=3x -6,则当x<0时,y 的取值范围为 .
7. 下列各题:①汽车以60千米/时的速度行驶,行驶路程y(千米)与行驶时间x (时)之间的关系;②圆的面积y(cm 2)与它的半径x(cm)之间的关系;③一棵树现在高50cm ,每个月长高2cm ,x 月后这个棵树的高度为y(cm);④某种大米的单价是2.2元/千克,花费y 元与购买大米x 千克之间的关系. 其中y 是x 的一次函数的为 .(填序号).
8. 已知y 与2x+1成正比例,且x=-1时,y=2,解答下列问题:
(1)求y 与x 的函数解析式;(2)当y=10时,求x 的值;
9. 已知y 是关于x 的一次函数, 且当x=0时,y=2;当x=1时,y=-1.
(1) 求这个一次函数的表达式;
(2) 求当x=-3时,函数y 的值;(3) 当y>0时,自变量x 的取值范围.
10.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
参考答案
第一部分
1、已知y 是关于x 的一次函数,且当x=3时,y=-2;当x=2时,y=-3.
(1)求这个一次函数的表达式;(2)求当x=-3时, 函数y 的值;
(3)求当y=2时, 自变量x 的值;(4)当y>1时, 自变量x 的取值范围.
【解】(1) 设一次函数的表达式为y=kx+b. 由题意,得{2332k b k b -=+-=+, 解得{
15k b ==-. ∴
y=x -5.
(2) 当x=-3时, y=-3-5=-8;(3) 当y=2时, 2=x -5, 解得x=7.
(4) 当y>1时, x -5>1, 解得x>6.
2、已知y -2与x 成正比例,且x=2时,y=-6.求:
(1) y 与x 的函数关系式;(2)当y=14时,x 的值.
【解】(1) 设y -2=kx, 则-6-2=2k, ∴k=-4, ∴y=-4x+2.
(2) 当y=14时, 14=-4x+2, 解得x=-3.
3、为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y (元)是原来价格每人x (元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元.
(1) 求y 与x 的函数关系式(不要求写出x 的取值范围);
(2) 王老师想参加该旅行社原价格为5600元的一条线路的暑期旅游,请帮王老师算出这条线路的价格.
【解】(1) 设y=kx+b, 由题意得{
1800210023002800k b k b =+=+, 解得57300k b ⎧⎪=⎨⎪=⎩, ∴53007y x =+. (2) 当x=5600时, y=57
×5600+300=4300元.
4、某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6元计费.
(1) 求出租车收费y (元)与行驶路程x (千米)之间的函数关系式;
(2) 若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程?
解:当x ≤3时, y=8;当x>3时, y=8+1.6(x -3)=1.6x+3.2.
(2) 由题意,得14.4=1.6x+3.2, 解得x=7千米.
第二部分
1. 已知下列函数:①y=2x -1;②y=-x ;③y=4x ;④2x y =. 其中属于正比例函数的有( )
A .1个
B .2个
C .3个
D .4个 答案:B
2.一次函数y=kx+b 中,k 为……………………………………………………………( )
A .非零实数
B .正实数
C .非负实数
D .任意实数 答案:C
3. 已知y 与x 成正比例,当x=-2时,y=6,那么比例系数k=_______. 答案:3
4.已知一次函数y=-2x+b ,当x=1时,y=2,那么b 的值是_______. 答案:4
5. 若y 与x 成正比例,且当13x =-时,2y =,则当35
y =时,x 的值是___________. 答案:110 6. 若已知一次函数y=3x -6,则当x<0时,y 的取值范围为 . 答案:y<-6
7. 下列各题:①汽车以60千米/时的速度行驶,行驶路程y(千米)与行驶时
间x (时)之间的关系;②圆的面积y(cm 2)与它的半径x(cm)之间的关系;③一棵树现在高50cm ,每个月长高2cm ,x 月后这个棵树的高度为y(cm);④某种大米的单价是2.2元/千克,花费y 元与购买大米x 千克之间的关系. 其中y 是x 的一次函数的为 .(填序号).
答案:①③④
8. 已知y 与2x+1成正比例,且x=-1时,y=2,解答下列问题:
(1)求y 与x 的函数解析式;(2)当y=10时,求x 的值;
解:(1) 设y=k(2x+1), 则2=(-2+1)k, ∴k=-2, ∴y=-4x -2;
(2) 当y=10时, 10=-4x -2, 解得x=-3.
9. 已知y 是关于x 的一次函数, 且当x=0时,y=2;当x=1时,y=-1.
(1) 求这个一次函数的表达式;
(2) 求当x=-3时,函数y 的值;(3) 当y>0时,自变量x 的取值范围.
解:(1) 设y=kx+b, 则{21b k b =-=+, 解得{
32k b =-=. ∴y=-3x+2. (2) 当x=-3时, y=11;(3) 当y>0时, -3x+2>0, 解得x<23.
10.如图,两摞相同规格的饭碗整齐地叠放在桌
面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y (cm )
与饭碗数x (个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
解:(1) 设y=kx+b, 则{410.5715k b k b +=+=, 解得{
1.54.5k b ==, ∴y=1.5x+4.5; (2) 当x=11时, y=1.5×11+4.5=21cm.。