姚孟臣概率统计第六章
概率论第6章
样本的二重性 ● 假设 X1, X2, …, Xn 是总体X中的样本,在一 次具体的观测或试验中,它们是一批测量值, 是已经取到的一组数。这就是说,样本具有 数的属性。. ● 由于在具体试验或观测中,受各种随机因素 的影响,在不同试验或观测中,样本取值可 能不同。因此,当脱离特定的具体试验或观 测时,我们并不知道样本 X1,X2,…,Xn 的具 体取值到底是多少。因此,可将样本看成随 机变量。故,样本又具有随机变量的属性。.
又如:为研究某种安眠药的药效,让 n个病人 同时服用这种药,记录服药者各自服药后的睡 眠时间比未服药时增加睡眠的小时数 X1,X2,…,Xn, 则这些数字就是样本。 那么,什么是总体呢? 设想让某个地区(或某国家,甚至全世界) 所有患失眠症的病人都服用此药,则他们所增 加睡眠的小时数之全体就是研究问题的总体。
X ~ N (μ , σ
2
/ n ).
定理应用
●
样本均值分布函数的近似计算
X −μ 因 近似~ N ( 0 ,1), 所以 ∀ a ∈ R , σ/ n
总有
⎧ X −μ a−μ ⎫ P{ X ≤ a} = P ⎨ − ∞ < ≤ ⎬ σ / n σ / n⎭ ⎩
⎛ a−μ ⎞ ≈ Φ⎜ ⎟. ⎝σ / n ⎠
例 3 (例 l 续):在例 l中,若农户年收入以万 元计,假定 N户的收入X只取以下各值: 0.5, 0.8, l.0, 1.2和1.5。取上述值的户数分别n1, n2, n3, n4和n5 (n1+n2+n3+n4+n5=N)。则X为离散型 分布,分布律为:
X pk
0.5 n1/N
0.8 n2/N
§6.2 总体与样本
6.2.1 总体、个体与样本 在数理统计中,称研究问题所涉及对象的 全体为总体,总体中的每个成员为个体。 例如: 研究某工厂生产的某种产品的废品 率,则这种产品的全体就是总体,而每件产品 都是一个个体。
概率论与数理统计第六章
概率论与数理统计第六章一、估计及其性质“估计”在中文里既可以作名词,也可以作动词。
用英文的话,可以表示成不同的单词:estimate:所谓的“估计”(动词)就是根据样本预测总体分布中的未知参数。
例如,已知总体服从正态分布[公式] ,但总体均值[公式] 未知,我们通过某个函数“估计”总体均值,[公式] 。
estimator:“估计量”(名词)[公式] 实际上是一个统计量,它是通过一个不含未知参数的样本函数计算出来的结果。
一般使用[公式] 表示总体的参数,[公式] 表示参数的估计量。
estimation:“估计法”(名词)表示寻找函数[公式] 的过程,可以理解为一种估计方法。
例如:Maximum Likelihood Estimation,最大似然估计法。
随着样本不同,同一估计法得到的结果可能是不一样的,因此“估计量”也是一个随机变量。
对于同一个参数,有不同的估计方法,而且看起来都是合理的。
如何比较它们的优劣呢?(1)均方误差MSE Mean Square Error评价一个估计量的好坏,很自然地会想到:衡量“估计量”与“真实值”之间的距离,距离越小表示估计量的性能越好。
也就是所谓的“均方误差”函数:[公式] 也就是距离平方的期望值,如果将其进一步展开:[公式]注意:[公式] 和[公式] 均为数值,[公式] 表示参数的真实值,[公式] 表示估计量的数学期望。
由此看见,均方误差由两部分组成:一是估计量的方差(Variances),即[公式] ;二是估计量的系统偏差(Bias)的平方,即[公式] 。
从“马同学”处借来此图,它可以帮助理解“方差”与“偏差”:备注:靶心表示“真实值”,红叉表示“估计值”“方差”衡量估计值的分散程度,“偏差”衡量估计值的期望与真实值的距离。
左上图:估计值落在靶心四周,此时“方差”较大但“偏差”较小;右上图:估计值落在靶心邻近,此时“方差”、“偏差”均较小;左下图:估计值离靶心较远,呈分散状,此时“方差”、“偏差”均较大;右下图:估计值离靶心较远,落点集中,此时“偏差”较大但“方差”较小。
概率论与数理统计A第6章-文档资料
样本标准差
样本k阶原点矩
1 k A Xi k=1,2,… k n i1
样本k阶中心矩
n
它反映了总体k 阶矩的信息
1 k M (X X ) k i ni 1
n
它反映了总体k 阶 中心矩的信息
统计量的观察值
1n x xi; n i1
2
tx 1 ( x ) e t dt , x 0 0
2
来定义.
1 2 2 (1 )就是 , 2 分布 . 由定义 X ~ (1 ), 注 已知 i 2 n 1 n 2 2 2 即 Xi ~ 可加性知 Xi ~ ,2.再由 ,2. i 1 2 2
x 是一个样本的观察值 , 则 g ( x ,x , x ) 也是统 n 1 2 n
几个常见统计量
它反映了 1 n 样本平均值 总体均值 X Xi n i 1 的信息 n 1 2 2 样本方差 S (X X ) i n 1i 1 它反映了总体 方差的信息
1 n 2 2 X n X i n 1 i 1
这就是矩估计法的理论 根据 .
经验分布函数
设 X ,X , ,X 是总体 F 的一个样本, s ( x )x 1 2 n
表示 x ,x , ,x 中不大于 x 的随机变量的 . 1 2 n
定义 经验分布函数为
1 F (x ) s (x ) x n n 例设总体 F 具有一个样本值 1 , 1 , 2 ,则经验分布函
顺序统计量
极差: 最直接也是最简单的方法,即最大值-最小 值(也就是极差)来评价一组数据的离散度。
MPA入学考试综合知识应试指导与模拟试题·数学分册姚孟臣北京大学出版社
研究生入学考试应试指导丛书2002 年M P A入学考试综合知识应试指导与模拟试题(数学分册)姚孟臣编著北京大学出版社·北京·图书在版编目(CIP)数据MPA入学考试综合知识应试指导与模拟试题·数学分册/ 姚孟臣编著. - 北京: 北京大学出版社,2002 .6(研究生入学考试应试指导丛书)ISBN7-301-05662-1Ⅰ. M⋯Ⅱ. 姚⋯Ⅲ. 数学-研究生-入学考试-自学参考资料Ⅳ. G643中国版本图书馆CIP数据核字(2002) 第034556 号内容简介本书是公共管理硕士( M P A) 全国统一联考“综合知识”考试科目微积分和概率论与数理统计初步的复习指导书。
本书作者参加有关MP A入学考试辅导班的教学,深知考生的疑难与困惑。
作者把他们的教学经验结合考试实际加以细化、归纳和总结, 整理成书奉献给广大读者, 旨在提高考生的数学水平与考试成绩。
本书紧扣《2002 年M PA联考考试大纲》, 贴切考试实践, 内容丰富。
全书共分五章。
内容包括: 函数和极限、导数与微分、不定积分与定积分、多元函数微分学、概率论与数理统计初步等。
本书结构新颖, 每一节按照考试内容、考试要求、典型例题分析、练习题四部分编写。
本书对典型例题逐题进行详细地分析,并对考生容易出错、混淆的概念题和计算题重点给出评注,从多侧面、不同角度、用多种方法进行讲解, 注重对考生基本概念的理解、多种类型基础题目的训练和综合解题能力的培养。
本书第二部分为考生配置了四套模拟试题, 以帮助读者进行考前模拟测验, 检查学习效果。
本书可作为M P A入学考试“综合知识”数学科目的复习指导书, 对于在校的管理类大学生及自学考试者, 本书也是一本较好的学习参考用书。
书名: MPA入学考试综合知识应试指导与模拟试题( 数学分册)著作责任者: 姚孟臣编著责任编辑: 刘勇标准书号: ISBN7- 301 -05 66 2-1/ G·0731出版者: 北京大学出版社地址: 北京市海淀区中关村北京大学校内100871网址: http:/ / .c n电话: 出版部62752015 发行部62754140 邮购部62752019电子信箱: zpup@.c n印刷者: 北京飞达印刷厂发行者: 北京大学出版社经销者: 新华书店787×1092 16 开本10 .5印张250 千字2002 年6 月第1 版2002 年6 月第1 次印刷定价: 18 .00 元前言公共管理硕士( M PA)全国统一联考中“综合知识”是必考科目之一“, 综合知识”科目由逻辑、数学与语文三个部分组成, 数学部分包括微积分和概率论与数理统计初步。
概率论第六章
P( X1 = x1 , X2 = x2 ,, Xn = xn )记作 f ( x1 , x2 ,, xn ) = P( X1 = x1 ) P( X2 = x2 )P( Xn = xn ) = f ( x1 ) f ( x2 ) f ( xn ) = ∏ f ( xi )
i =1 n
(1)
(2)当总体 X是连续型随机变量 且具有概率 当总体 是连续型随机变量,且具有概率 密度函数 f ( x) 时 ,则样本 ( X1 , X2 ,, Xn ) 的联 则样本 合概率密度为
的分布函数为F(x),则称总体的分布函数为 若X的分布函数为 的分布函数为 ,则称总体的分布函数为F(x) 。
对总体进行研究时, 对总体进行研究时,对总体中每个个体逐一 进行考察,这在实际中往往是行不通的, 进行考察,这在实际中往往是行不通的,一是试 验具有破坏性,二是需花费大量的人力物力; 验具有破坏性,二是需花费大量的人力物力; 常用的方法是: 常用的方法是:从总体中随机地抽取若干个 个体, 个体,根据对这部分个体的研究结果推判总体某 方面的特征。 方面的特征。 二、样本 从总体X中随机地抽取 个个体, 中随机地抽取n个个体 定义 从总体 中随机地抽取 个个体,称之为 的样本。 总体X的一个样本容量为 的样本 的一个样本容量 总体 的一个样本容量为n的样本。
解 总体 X 的分布律为 P{ X = k } = p k (1 p )1 k
所以 ( X 1 , X 2 , , X n ) 的分布律为
f ( x1 , x 2 , , x n ) = ∏ f ( x i ) =
n i =1
( k = 0, 1)
= p i =1 (1 p )
∑ xi
n
n
i =1
概率论与数理统计第六章总结
概率论与数理统计第六章总结概率论与数理统计是数理学科中的重要分支,其应用广泛,涉及到许多领域,如工程、物理、自然科学、医学、经济学等等。
第六章主要讲述了离散型随机变量的概率分布、期望值、方差及其应用。
首先我们了解到离散型随机变量是指取值有限或者可以无限但是可以和自然数一一对应的随机变量,即不连续的随机变量。
其中概率分布的概念是很重要的,它告诉我们每种随机变量取值的可能性大小,从而可以计算一些重要的数值。
比如期望值,期望值是随机变量取值的平均值,它可以用概率分布函数计算得到。
期望值可以给我们一个随机变量所处于某个状态的平均位置,或者它对某个事件发生的平均贡献。
方差也是一个非常重要的概念,它是随机变量值与其期望值之差的平方的期望值。
方差表示了随机变量的分布范围,也就是它们取值的变化程度。
方差越大,代表随机变量距离其期望值越远,该随机变量取值的范围也相应较大。
求期望值和方差的过程中有一些公式会显著提高计算效率,比如线性变换的公式、缩放变换的公式、Chebyshev不等式等等。
这些公式的应用有助于简化计算,并且能帮助我们更容易地理解问题。
我们还讨论了一些常见离散型随机变量的概率分布,比如伯努利分布、二项分布、泊松分布等等。
这些分布的出现在实际问题中都有着很重要的意义,比如伯努利分布描述了实验只有两种可能结果的概率分布,比如是/否、头/尾等等。
而二项分布则描述了实验中成功的概率和试验次数的关系,给我们解决实际问题提供了基础。
除了离散型随机变量,我们还可以研究连续型随机变量的概率分布以及相应的数学理论。
这些知识在实际应用中也具有重要意义。
比如在统计财务账目时,需要研究一些连续型随机变量的概率分布,以便预测下一期客户付款时间的分布情况。
又比如在流量预测中,需要研究一些连续型随机变量的概率分布,以便预测某个时间段内的网络流量。
总之,离散型随机变量理论是概率论的核心内容,对于理解整个概率论课程和进行实际应用都有着重要的意义。
概率论与数理统计第六章总结
概率论与数理统计第六章总结一、概述在概率论与数理统计的第六章中,主要介绍了随机变量的概率分布以及常见的概率分布模型。
本章内容是概率论与数理统计的重点和难点之一,对于理解和应用概率统计的基本理论和方法具有重要意义。
二、随机变量的概率分布1. 随机变量及其概率分布的概念•随机变量是对随机试验结果的数值化描述,它的取值不仅依赖于随机试验的结果,还受到机会因素的影响。
•概率分布描述了随机变量可能取值的概率大小。
常用的概率分布有离散型和连续型两种。
2. 离散型随机变量及其概率分布•离散型随机变量的取值是有限或可列的,它的概率分布可以用概率质量函数来描述。
•常见的离散型随机变量包括伯努利随机变量、二项分布、泊松分布等。
3. 连续型随机变量及其概率分布•连续型随机变量的取值是无限的,它的概率分布可以用概率密度函数来描述。
•常见的连续型随机变量包括均匀分布、正态分布等。
三、常见概率分布模型1. 二项分布•二项分布是指在 n 重伯努利试验中,成功的次数服从的概率分布。
其概率质量函数为二项式系数与成功概率的乘积。
•二项分布在实际应用中常用于描述成功次数的分布情况,如抽样调查中的样本中某一特征出现的次数。
2. 泊松分布•泊松分布是定义在非负整数集上的概率分布,它描述了在一段时间或空间内事件发生的次数。
其概率质量函数为事件发生率与时间(或空间)长度的乘积。
•泊松分布常用于描述罕见事件发生的次数,如单位时间内电话呼叫次数、一段时间内事故发生次数等。
3. 正态分布•正态分布是最重要的连续型概率分布模型之一,也称为高斯分布。
它的概率密度函数呈钟形曲线,对称于均值。
•正态分布在实际应用中广泛存在,如身高体重、测量误差、考试成绩等符合正态分布的情况较多。
4. 指数分布•指数分布是定义在非负实数集上的连续型概率分布,它描述了连续时间间隔或空间间隔内事件发生的情况。
其概率密度函数呈指数下降曲线。
•指数分布在实际应用中常用于描述无记忆性随机事件的发生情况,如设备失效时间、极端天气事件的间隔等。
概率统计第六章习题参考解答
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩ 令 ⎩⎨⎧==.2211μμA A求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx n i ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆni i x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01ni i x d L p n dp p p =-=-=-∑01)(ln 1=---=∑=pn x p ndp p L d ni i 解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由2()2()x f x μσ--=(1)2σ已知,似然函数221()()2211()(,)ni i i x nx n nii i L f x eμμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x nx ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i ix n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni i x n L d d 解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22n ii x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33ni i x x n θ===∑ (3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:2121222222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i n i i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L 0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβn i i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论与数理统计六七章习题答案
第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。
则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。
合工大概率统计第6章
偏度是衡量随机变量取值分 布对称性的量,表示分布的
偏斜程度。
偏度的计算公式为: Skewness = Σ[(xE(X))^3*p(x)] / [D(X)^1.5], 其中x为随机变量X的所有可能 取值,p(x)为相应的概率。
05 大数定律与中心极限定理
大数定律
定义
大数定律描述了在独立重复试验 中,某一事件发生的频率将随着 试验次数的增加而趋向于某一稳 定值。
条件概率的定义
条件概率是指在某个已知条件下,某个事件发生的概率。条件概率的公式为P(A|B) = P(A∩B)/P(B)。
独立性的定义
如果两个事件之间没有相互影响,即一个事件的发生不会影响另一个事件发生的概率,则这两个事件是独立的。 独立事件的概率乘法公式为P(A∩B) = P(A)P(B)。
贝叶斯定理
02 概率论基础
概率的定义与性质
概率的基本定义
概率是描述随机事件发生可能性大小 的数值,取值范围在0到1之间,其 中0表示事件不可能发生,1表示事 件一定会发生。
概率的性质
概率具有一些基本性质,包括概率的 取值范围、概率的加法性质、概率的 乘法性质等。这些性质是概率论中重 要的基础概念。
条件概率与独立性
泊松分布
适合于稀有事件计数,可通过观察次数和泊松概率函数进行比较,使 用似然比检验等方法。
THANKS FOR WATCHING
感谢您的观看
VS
离散型随机变量的分布
离散型随机变量的分布通常用概率质量函 数(PMF)或概率生成函数(PGF)来表 示,描述了随机变量取各个可能值的概率。
连续型随机变量及其分布
连续型随机变量的定义
连续型随机变量是在一定范围内可以连续取 值的随机变量,其取值是连续的。
概率论与数理统计第六章第七章
二、常用的统计量
设 X1, X 2 ,, X n 是来自总体X的一个样本, X1, X 2 ,, X n 是
这一样本的观察值。定义:
样本平均值(Sample mean) 样本方差(Sample variance)
X
1 n
n i 1
Xi
S 2
1 n -1
n i 1
(Xi
X )2
Sn2
1 n
n i 1
y2 e 2,
y
0
0,
其它
二、 2 分布
2. 2 分布的性质 (1) 2 分布的可加性
设 12 ~ 2 (n1 ), 2 2~(2 n 2 )
并且 12 , 2 2 相互独立,则有
12 2 2~(2 n1 n 2 )
二、 2 分布
(2) 2 分布的数学期望和方差
若 2 ~ 2 (n)
n i1
Xi
1 n
n i1
E( X i )
D 1 n
n i1
Xi
1 n2
n i1
D(Xi )
1 n2
nC C n
1
P
1 n
n i 1
Xi
1 n
n i 1
E( Xi )
1
1
2
D 1 n
n i 1
Xi 1
C
n 2
1
四、辛钦(Khinchin)大数定律 (独立同分布随机变量序列的大数定律)
P 16 Xi 1920 1 P 16 Xi 1920
i1
i1
1 (0.8) 0.2119
因此,这16只元件的寿命的总和大于1920小时的概率近 似为0.2119。
第七章 数理统计的基本概念
概率统计每章知识点总结
概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。
概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。
随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。
大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。
第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。
古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。
几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。
等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。
第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。
随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。
数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。
离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。
第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。
概率统计第六章习题参考答案
概率统计第六章参考答案1.~(0,)X U b 101()2bbE X x dx A X b ====⎰2bX = ,b =1.69 2. 22()()3E X x xdx X θθθθ=-==⎰, 3X θ= 3. ~(,)X B m p111(1)101()(1)(1)kkm kk k m k mm k k E X kC p p pm C pp pm ∞∞-------===-=-=∑∑=X 22()(1)(1)(1)(1)k km kk km k mm k k E X k k C p p kC p p pm p X ∞∞--===--+-=-+∑∑=2A 4.~()X πλ {}!k e P X k k λλ-==()!k k e E X kX k λλλ-∞====∑ 所以 x λ= 11()()!nii x n nii e L p x λλ=-=∑=∏, 11ln ()ln ln ()!n niii i L p x n x λλ===--∑∏1(ln ())0nii x dL p n dp λ==-=∑ 解得 X λ=且2221(ln ())0d L p dp λ=-<所以 x λ=利用此式计算(2)5.1{}(1)x P X x p p -==-,1()()(1)ni i x n n L p p p =-∑=-1ln(())()ln(1)ln ni i L p x n p n p ==--+∑1(ln ())1ni i x n d nL p dp p p=-=-+-∑=0 解得1p = 利用此式解(2)6.2~(,)X N μσ (1) 参数2σ已知,估计μ解:由于),(~2σμN X ,故其概率密度函数为:),;(σμx f =()22221σμσπ--⋅x e⇒似然函数为),;,,,(21σμn n x x x L =∏=ni 1),;(σμi x f =∏=ni 1()22221σμσπ--⋅i x e=()21221σμσπ--∑=⋅⎪⎪⎭⎫⎝⎛⋅i ni x ne=()()212122μσσπ----∑=⋅⋅i ni x n n e两边取对数有:ln L =()()()212212ln ln 2ln μσσπ----∑=++i ni x nn e=()()212221ln 2ln μσσπ-∑--=-i ni nx n(l n ())dL d μμ=2(1)0ni i x n μ=-=∑ ⇒ˆx μ= (2) 参数μ已知,估计2σ22(ln ())d L d σσ=()2130ni i x nμσσ=-∑-+=⇒()2211ˆni i x x n σ==-∑ 7. (1) /21,0()0,x xe x f x θθ-⎧>⎪=⎨⎪ ⎩其他1/1222111()(),nii i x nx i n ni L x ex x x eθθθθθ=--=∑==∏121(())2()()()/nn i i Ln L nLn nLn x x x x θθθ==-+-∑(ln ())d L d θθ=1202nii x n θθ=-+=∑ ⇒ 2X θ=(2) 32/1,0()20,x x e x f x θθ-⎧>⎪=⎨⎪ ⎩其他1/221233111()(),22nii i x nx i n n n i L x e x x x e θθθθθ=--=∑==∏2121(())23()()()/nn i i Ln L nLn nLn nLn x x x x θθθ==--+-∑(ln ())d L d θθ=1203nii x n θθ=-+=∑⇒ 3X θ= (3) ~(,)X B m p 参数m 已知估计p ,{}(1)k kn k n P X k C p p -==-()L p =1(1)ii i nx x m x ni Cp p -=-(())Ln L p =111()ln(1)i nnnx ni i i i i Ln C x Lnp nm x p ===++--∑∑(ln ())dL p dp=1101nniii i xnm x pp==--=-∑∑⇒1ni i x =∑=nmp ⇒Xp m= 8.22()2(1)L θθθθθ=- 直接对其求导数=0 得到 56θ= 9.利用第六题中的结论可知道Y Xαβαβ⎧-=⎪⎨+=⎪⎩解得 22X Y α=+, 22X Y β=-10.(1) 证明:()(2)2()E E X E X θθ===(2) ()()E Y E Y λ==22()(3)3()()()E Z E Y Y E Y E Y D Y =+=++=24λλ+(3) 22111()(3)3()()()ni i E U E Y Y E Y nE Y E Z nn==+=+⋅=∑11 .T1和T3是无偏估计量 T3最有效 22212210()36936D T θθθ=+= 222222149164()252525255D T θθθθθ=+++= 2231()40.2516D T θθ=⋅= 12.(,1296)X N μ 27,36n σ==置信区间是22(,)X Z X Z αα-+(1) 210.95, 1.96Z αα-==, (2) 210.9, 1.645Zαα-==13. (1) 用第6题结论 (2)置信区间是22(,)X Z X Z αα-+,210.95, 1.96Z αα-==14.(1)根据P140中结论计算 (2)置信区间是2((1))X n a?,230,10.9, 1.6973n t a a =-== 15.置信区间是2((1))X n a?,9.4,12,s n == 210.95, 2.1788t a a -== 16.置信区间是2((1))X n a?, 19.06875,32, 3.256x n S === 210.95, 2.1788t a a -==17.置信区间是2((1))X n a?, 214.71, 6.144,13,10.95, 2.1788x S n t a a ===-==18.置信区间是122((2)X Y t n n S a -?-其中: W S =221281.31,78.61,60.76,48.24X Y S S ====1229,15,10.95,(23) 1.7139n n t a a ==-==19. 置信区间是2211222/21221/21211(,)(1,1)(1,1)S S S F n n S F n n a a -----129,11,n n == 22120.344,0.456S S ==/212(1,1) 3.85F n n a --=, 11/212 4.3(1,1)F n n a ---=20.单侧置信上限:221122221121()(1,1)S S F n n a s s -=--其中10.95a -=,21S =6.798 , 22S = 9.627 , 112(1,1)F n n a ---=3.29单侧置信上限22121(1)(1)n S n a s c --=- 21(1)n a c --=2.16721.单侧置信下限:(1)X n a m =+- 14.71, 6.144,13,10.95,(12)x S n t a a ===-==1.782322.单侧置信上限12(2)X Y t n n S a m =-++-222112212(1)(1)2wn S n S S n n -+-=+-,221281.31,78.61,60.76,48.24X Y S S ====12(2) 1.71t n n a +-=,。
概率论与数理统计(第四版)第六章
由简单随机抽样得到的样本(子样)称 为简单随机样本(子样)。
用( X1 , X2 , … , Xn )表示。
简单随机样本是应用中最常见的情形,
今后,当说到( X1 , X2 , … , Xn )是取自
某总体的样本时,就指简单随机样本。
休息 结束
3. 总体、样本、样本值的关系 总体(理论分布)
但是,一旦取定一组样本,得到的是n 个具体的数 ( x1 , x2 , … , xn ),称为样本的 一次观察值,简称样本观察值 。
休息 结束
最常用的一种抽样方法叫作“简单 随机抽样”,它要求抽取的样本满足下 面两点:
休息 结束
1. 代表性: X1 , X2 , … , Xn 中每一个 与所考察的总体有相同的分布。 2. 独立性: X1 , X2 , … , Xn 是相互独 立的随机变量。
P{1 1 }1
F F1(n1,n2)
F1
1 ( n1
,n2
)
P{1
1
y
}
F F1(n1,n2)
F(n2 ,n1 )
令:1 F
F
则 F: F(n2,n1)
P{F 1 }
x
F1(n1,n2) F(n2,n1)F1(1n1,n2)
F1(n1,n2)F(n12,n1)
休息 结束
1
F0.975(6,4)F0 .025 ( 4 ,6 )
2 DX
n
休息 结束
它反映了总体k 阶矩 的信息
3. 样本k阶原点矩
Ak
1 n
n i1
Xik
4. 样本k阶中心矩 Bk n1in1(Xi X)k
它反映了总体k 阶 中心矩的信息
概率论与数理统计参数估计小结
概率论与数理统计第6章参数估计
本章小结
01 知识点归纳
02 教学要求与学习建议
01 矩估计最大似然估计点估计地评价标准点估计
无偏性有效性相合性
参数
估计单个正态总体下地区间估计
区
间估计两个正态总体下地
区间估计3
01 知识点归纳
02 教学要求与学习建议
理解参数地点估计,估计量与估计值地概念.ꢀ 1.
掌握矩估计法(一阶矩,二阶矩)与最大似然估计法.了解估计量地无偏性,有效性与相合性(一致性)ꢀ 2.
ꢀ 3.地概念,并会验证估计量地无偏性.
理解区间估计地概念,会求单个正态总体地均值ꢀ 4.
与方差地置信区间,会求两个正态总体地均值差与差比地置信区间.
5
矩估计
考研重点最大似然估计点估计无偏性点估计地评价标准有效性相合性参数
估计
单个正态总体下地区间估计
区间估计
两个正态总体下地区间估计记忆为主
会求参数地点估计区间估计会判断估计量地无偏性
6
概率论与数理统计
学海无涯,祝你成功!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国人民大学出版社
(二)
最大似然估计法
2. 最大似然估计法 (3)似然方程组为 Əln������ 1 ������ = 2 ∑ ������������ -nμ = 0, Ə������ ������ ������ =1 ������ Əln������ ������ 1 2 = + ∑ ( ������ μ ) = 0, ������ 2 2 2 2 Ə������ 2������ 2(������ ) ������ =1
^ ^
称 θ ������ = θ ������ (������1 ,������2 ,…,������������ )
(r = 1,2,…,k)
^
为θr(r=1,2,…,k)的矩估计量,而称 θ ������ (x1,x2,…,xn)为θ
r(r=1,2,…,k)的矩估计值.
中国人民大学出版社
(一)
中国人民大学出版社
(一)
矩法
所谓矩法就是利用样本各阶原点矩(或中心矩)与相应的 总体矩,建立估计量应满足的方程,从而求出未知参数估 计量的方法. 考虑到在许多分布中所含的参数都是总体矩的函数,因此 很自然地会想到用样本矩代替总体矩,从而得到总体分布 中未知参数的一个估计.这种方法称为矩估计法,简称矩法. 设总体X的分布函数为F(x;θ),θ=(θ1,θ2,…,θk)∈Θ是未知参 数(k为未知参数的个数,k=1,2,…),X1,X2,…,Xn是来自X的 样本,x1,x2,…,xn是样本观测值,则矩法构造未知参数估计 量的步骤如下:
中国人民大学出版社
(一) 定义6.1
矩法
设总体 X 的分布函数为 F(x;θ),θ=(θ1,θ 2, … , θ k) ∈Θ是未知参数 ,X1,X2, … ,Xn 是来自 X 的样 本 ,x1,x2, … ,xn 是 样 本 观 测 值 . 选 取 一 个 统 计 量
^ ^ ^ ^ ^
θ=θ(X1,X2,…,Xn),以数值θ(x1,x2,…,xn)估计θ,则称 θ(X1,X2,…,Xn)是θ的一个估计量,称θ(x1,x2,…,xn)是 θ的估计值. 在不至于混淆的情况下,统称估计量和估计值为估计.
2. 最大似然估计法
求参数μ,σ2 的最大似然估计.
(1)样本的似然函数为 ������ 1 1 2 2 ������(������,������ ) = ∏ exp ( ������ μ ) ������ ������ =1 2������ 2 2πσ ������ ������ ������ 1 -2 2 2 -2 = (2π) (������ ) exp ∑ ( ������ μ ) ; 2������ 2 ������ =1 ������ (2)对似然函数取对数得 ������ ������ ������ 1 2 2 2 ln������(������,������ )=- ln(2π)- ln������ ∑ ( ������ μ ) ; ������ 2 2 2������ 2 ������ =1
������ =1 ������
为样本的似然函数,简记为 L(θ). 当总体 X 为离散型随机变量时,p(x;θ)为 X 的分布律; 当总体 X 为连续型随机变量时,p(x;θ)为 X 的概率密度.
中国人民大学出版社
(二)
最大似然估计法
2. 最大似然估计法
求最大似然估计量的步骤如下:
(1)根据总体 X 的分布律或概率密度 p(x;θ),写出似然函数 ������(������) = ∏ ������(������������ ;θ).
(二)
最大似然估计法
2. 最大似然估计法
其中,xi=0 或 1,i=1,2,„,85,故得似然函数为
85
������(������) = ������(������1 ,…,������85 ;p) = ������ 从而有 ln������(������) = dln������(������) = d������ 令
^
a = X- 3S,
−
~
^
b = X + 3S,
−
~
������ ~ − 1 2 其中S = ∑ (Xi-X)2,而S= ������ ������ =1 ~
������ − 1 2 ∑ (������������ -X) . ������ ������ =1
中国人民大学出版社
(二)
最大似然估计法
^ X ������
−
中国人民大学出版社
(一)
例3
矩法
设总体 X 在[a,b]上服从均匀分布,其概率密度为 1 , ������ ≤ ������ ≤ ������, ������(������;������,������) = ������-������ 0, 其他, 其中,a,b 是未知参数.试求 a,b 的矩估计量. 解 我们知道,均匀分布的期望和方差分别为 1 1 2 ������(������) = (a + b), D(X) = (b-a) . 2 12 现设 X1,X2,…,Xn 为总体 X 的样本,于是,有
������ =1 ������
(2)对似然函数取对数 lnL(θ)= ∑ lnp(xi;θ).
������ =1 ������
(3)写出似然方程 dln������ =0 d������
中国人民大学出版社
或
Əln������ = 0. Ə������
(二)
例 4 解
最大似然估计法
设 X1,X2,…,Xn 为取自正态总体 X~N(μ,σ2)的样本. 由题意可知,X 的概率密度为 ������(������;������,������ 2 ) = 1 2πσ exp 1 2 ( x μ ) . 2������ 2
解得 μ =
^ 1 ������ ∑ ������������ ������ ������ =1
= x,
^ −
−
^
σ2 =
^
因此,μ ,σ 2 的最大似然估计量为 μ = X,
~
− 2 1 ������ ∑ (������������ -x) . ������ ������ =1
σ 2 = S2 .
^
σ2 =
(一)
例2 解
矩法
设总体 X~B(n,p),其中 n 已知,求 p 的矩估计量.
我们知道,二项分布的 ������(������) = ������������. 设 X1,X2,…,Xn 为总体 X 的样本,于是有 1 ������ ������(������) = ������������ = ∑ ������������ , ������ ������ =1 解方程得 p 的矩估计量为 p = .
第六章 参数估计
1
点估计
2
3 4
估计量的评价标准
区间估计 正态总体均值与方差的区间估计
5 6
非正态总体的区间估计
本章小结
中国人民大学出版社
6.1
点估计(一)(二)源自矩法最大似然估计法
中国人民大学出版社
点估计问题的一般提法
设总体 X 的分布函数 F ( x; )的形式为已知 ,
是待估参数 . X 1 , X 2 ,, X n 是 X 的一个样本 ,
则 P(Xi=1)=p, P(Xi=0)=1-p (i=1,2,…,85).由于 ������(������������ ;p) = P(������������ = ������������ ) = ������ ������ ������ (1-p)1-������ ������ ,
中国人民大学出版社
∑ ������������
∑ ������������ -85p 85 1 1 -(85- ∑ ������������ ) = ������ =1 . ������ 1-������ ������(1-������) ������ =1 p 的最大似然估计值为
−
1 2 ∑ (������ -X) , ������ ������ =1 ������
������ 1 ∑ ������������ , ������ ������ =1 ������ −
得到μ,σ2 的矩估计量分别为
中国人民大学出版社
μ = X,
������ − 1 2 ∑ (������ -X) . ������ ������ =1 ������
所谓最大似然估计法就是当我们用样本的函数值估计总体 参数时,应使得当参数取这些值时,所观测到的样本出现的 概率最大.最大似然估计法是最重要的一种点估计方法,所 求的估计量有许多优良的性质.
中国人民大学出版社
(二)
最大似然估计法
1. 似然函数
定义6.2
设总体 X 的分布律或概率密度为 p(x;θ),θ=(θ1,θ2,…,θk) 是未知参数,X1,X2,…,Xn 是总体 X 的样本,则称 X1,X2,…,Xn 的联 合分布律或概率密度函数 ������(������1 ,������2 ,…,������������ ;θ) = ∏ ������(������������ ;θ)
中国人民大学出版社
(二)
最大似然估计法
2. 最大似然估计法
例5 解
设一批产品中含有次品,且从中随机抽取 设次品率为 p,则 0<p<1.设
85 件,发现次品 10 件.试估计这批产品的次品率. 1, 0, 第������次取得次品, 第������次取得合格品,
������������ =
i = 1,2,…,85,
中国人民大学出版社
(一)
矩法
1 ������ 1 ∑ ������ = E(X) = (a + b), ������ ������ =1 ������ 2 − 1 ������ 1 2 2 ∑ (������������ -X) = D(X) = (b-a) . ������ ������ =1 12 由上式可得 a,b 的矩估计量分别为