电路原理作业第三章
电路原理与电机控制第3章电路的一般分析方法
1
2 - 22V+ 3
3Ω
I
8A 1Ω 1Ω
25A
4
U1 = –9.43V U4 = 2.5V
U3 = 22V
I = –2.36 A
17
• 例2. 列写下图含VCCS电路的节点电压方程。
• 解: (1) 先把受控源当作独立
源列方程;
IS1
1 R2
+ UR2 _
1
R1
1 R2
1 R1
25
I
4
U3–U2 = 22
解得
U1 = –11.93V U2 = –2.5V
U3 = 19.5V I = –2.36 A
16
• 解二:以节点②为参考节点,即U2=0
节点电压方程如下
(1 3
1 4
)U1
1 4
U3
11
4Ω 3A
U3 (1 1)U4 17
U3 = 22
解得:
1
I1 2A
2 1
I2 +U –
2
+
2
3
I
3
用节点电压表示受控源的控制量为:
2I2 –
U U1 U2 1 U1 U2
3
3
I2
U1 2
3
3 24
1
5
U1 U 2
2 0
解之:
U1
20 7
V,
U2
16 7
V
3 3
所求电流为:I
15
• 例1. 电路如图所示,求节点电压U1、U2、U3。
《电路原理》作业
第一讲作业(电路和电路模型,电流和电压的参考方向,电功率和能量) 1. 如图1所示:U = V ,U 1= V 。
2. 图1—4所示的电路中,已知电压1245U U U V===,求3U 和CAU3. 图示一个3A 的理想电流源与不同的外电路相接,求3A 电流源三种情况第二讲作业(电路元件,电阻元件,电压源和电流源)I 。
2. 求图示各电路的电压U 。
3. 图示各电路,求:(1) 图(a)中电流源S I 产生功率S P 。
(2) 图(b)中电流源S U 产生功率S P第三讲作业(受控电源,电路基本定律(VAR 、K CL 、K VL ))1. 图示某电路的部分电路,各已知的电流及元件值已标出在图中,求I 、s U 、R 。
2. 图示电路中的电流I = ( )。
3. 图示含受控源电路,求:(1) 图(a)中电压u 。
(2) 图(b)中2Ω电阻上消耗的功率R P 。
第四讲作业(电路的等效变换,电阻的串联和并联,电阻的Y形联结和△形连结的等效变换)1.图示电路中的acb支路用图支路替代,而不会影响电路其他部分的电流和电压。
2.电路如图,电阻单位为Ω,则R ab=_________。
3. 求图示各电路中的电流I 。
第五讲作业(电压源和电流源的串联和并联,实际电源的两种模型及其等效变换,输入电阻)1. 求图示电路中的电流I 和电压U ab 。
2. 用等效变换求图示电路中的电流I 。
.3. 求图示各电路ab 端的等效电阻ab R 。
第三章作业3-1、某电路有n 结点,b 支路,其树枝数为 ,连枝数为 ,基本回路数为 ;独立的KCL 方程有 个,独立的KVL 方程有 个,独立的KCL 和KVL 方程数为 。
3-2、电路的图如图,以2、3、4为树枝,请写出其基本回路组。
3-3、电路如图,用支路电流法列方程。
3-4、电路见图,用网孔分析法求I 。
3-5、用网孔电流法(或回路电流法)求解图2电路中电流I及电压U 。
电路原理第3章
④
i1 − i 2 = 0
− i1 + i3 + i5 = 0
i2 − i3 − i4 = 0
i4 − i5 = 0
6
• 一个 结点和b条支路的电路,其独立的 一个n结点和 条支路的电路 结点和 条支路的电路, KCL方程数为(n-1)。 方程数为( ) 方程数为 二、KVL方程的独立方程数 方程的独立方程数 几个概念: 1、几个概念: 连通图: 连通图:任意两个结点之间至少存在一条路 径的图G。 径的图 。 回路(loop):闭合路径。 回路 :闭合路径。 一个连通图G的树 包含G的全部结点和 的树T包含 树:一个连通图 的树 包含 的全部结点和 部分支路,其本身是连通的,但不包含回路 回路。 部分支路,其本身是连通的,但不包含回路。 树支:树中包含的支路。 树支:树中包含的支路。 例如P54 P54图 例如P54图3-4
1. 概念
为未知量, 基尔霍夫定律和 以支路电流为未知量,根据基尔霍夫定律和VCR 支路电流为未知量 根据基尔霍夫定律 列出电路方程,进而求解电路变量的方法。 列出电路方程,进而求解电路变量的方法。
2. 适用范围
原则上适用于各种复杂电路, 原则上适用于各种复杂电路,但当支路数很多 方程数增加,计算量加大。因此, 时,方程数增加,计算量加大。因此,适用于支路 数较少的电路。 数较少的电路。
• 平面图:把一个图画在平面上,其各条支路除 平面图:把一个图画在平面上, 连接的结点外不再交叉,这样的图称为平面图 平面图。 连接的结点外不再交叉,这样的图称为平面图。 • 网孔是平面图中的“自然孔”,网孔内不再有 网孔是平面图中的 自然孔” 是平面图中的“ 其他支路。 其他支路。
平平 平
非平平平
求各元件上吸收的功率, 求各元件上吸收的功率,进行功率平衡校验
第3章 直流斩波电路 习题及答案
电路原理第三章 电阻电路的一般分析
例3.
I1 7 + 70V –
求支路电流(电路中含有受控源)
a I2 1 I3
解 11 + U _ 2
节点a:–I1–I2+I3=0
7I1–11I2=70-2U 11I2+7I3= 2U
7
+
2U
_ b
增补方程:U=7I3
利用支路电流与受控 电源控制量的关系
得 I1=8/3A; I2=14/3A; I3=22/3A;
6 4
+ 2 + 3 + 4 =0
上述四个方程并不相互独立,可由任意三个推 出另一个,即只有三个是相互独立的。
结论
n个结点的电路, 独立的KCL方程为n-1个。
独立方程对应的节点称为独立节点。
2.KVL的独立方程数 KVL的独立方程数=基本回路数=b-(n-1)
结 论
n个结点、b条支路的电路, 独立的 KCL和KVL方程数为:
例
图示为电路的图,画出三种可能的树及其对应的基 本回路。 1
4
8 3
5
6 7 2
5 8 6 7
4 8 3 6
4 8 2 3
3.2 KCL和KVL的独立方程数
1.KCL的独立方程数
2 1 1 4 3 5 2 3 2 3 4 1 1
i1 i4 i6 0 i1 i2 i3 0 i 2 i5 i 6 0 i3 i4 i5 0
整理得:
(R1+R2) im1 – R2 im2 = us1- uS2 -R2im1 + (R2+R3) im2 = uS2-us3 R11=R1+R2 R22=R2+R3 R11im1+ R12 im2 = us11 R21im1 + R22im2 = uS22
电路基础第三章知识点总结
电路基础第三章知识点总结第三章节的内容主要涉及电路的分析和维持,包括各种电路的分析方法、戴维南定理、诺尔顿定理、极限定理、最大功率传输定理以及电路维持的相关知识。
通过本章的学习,我们可以更好地理解电路的工作原理和分析方法,为我们今后的学习和工作打下扎实的基础。
本篇总结将主要围绕本章的知识点展开,总结出电路的分析方法和维持知识点,让读者对电路有更全面的了解。
一、电路分析方法1.节点分析法节点分析法是一种电路分析方法,通过寻找电路中的节点,应用基尔霍夫电流定律(KCL)进行节点电压的分析。
通过节点电压的计算,可以找到各个支路中的电流,从而进一步分析电路的特性。
节点分析法的手续步骤为:(1)选取一个节点作为参考点,为了简化计算,一般选为电压源的负极或接地点;(2)对不确定电压的节点进行标记;(3)应用基尔霍夫电流定律,列出各节点处的电流之和为零;(4)利用基尔霍夫电流定律和欧姆定律,列出各节点处的电压。
2.支路分析法支路分析法是一种电路分析方法,通过寻找电路中的支路,应用基尔霍夫电压定律(KVL)进行支路电流和电压的分析。
通过支路电流和电压的计算,可以找到各个支路中的电流和电压,从而进一步分析电路的特性。
支路分析法的手续步骤为:(1)选择一个支路作为参考方向,可以沿着电流的方向或者反方向;(2)按照已选的方向,利用基尔霍夫电压定律,列出各支路的电流和电压;(3)应用欧姆定律,列出支路中的电流和电压。
3.戴维南定理戴维南定理是电路理论中的一项重要理论,它指出了任意线性电路可以用一个恒电压源和一个串联电流源的组合来替代。
通过戴维南定理,可以将一个复杂的电路简化为一个等效的电压源和串联电流源的组合,从而方便进一步的分析和计算。
4.诺尔顿定理诺尔顿定理是电路理论中的另一项重要理论,它指出了任意线性电路可以用一个恒电流源和一个并联电阻的组合来替代。
通过诺尔顿定理,可以将一个复杂的电路简化为一个等效的电流源和并联电阻的组合,从而方便进一步的分析和计算。
电路原理第3章1-3节
11
I2
解 由于I2已知, + 故只列写两 70V
6A 1 7
个方程
–
结点a: –I1+I2=6
b
避开电流源支路取回路:7I1+7I2=70 小结
作业 P75 3-3,3-5,3-7
19
6
二、KVL的独立方程数
1. 图的路径: 2. 连通任图意:两个结点
之间至少有一条路径。
3. 图的回闭路合:路径。右图中共① 有13个不同的回路。
4. 独立回至路少:包含一条新的支 路的回路。
5. 独立回路数的确定
②
15
2
8 ⑤6
③
7
4
3
④
如:上图中由支路1、2、5、6和8共构成3个回路, 共可列出3个KVL方程,但只有两个KVL方程是独立 的,相应地,共有2个独立回路。
题的步骤,图(b)为该电路的图
i6 R6
6
① i2 R2
i1 R1
uS1
②
i4 ③
i3
R4
i5
R3 R5 ④
①
②4 ③
2
1 iS5
35
④
13
i6 R6
6
① i2 R2
i1 R1
uS1
②
i4 ③
i3
R4
i5
R3 R5 ④
①
②4 ③
2
1 iS5
35
④
二、用支路电流法解题的步骤
如取①、②和③独立结点,由KCL得
i1 R1
uS1
②
i4 ③
i3
R4
i5
R3 R5 ④
①
②4 ③
2
电路原理课后习题答案
第五版《电路本理》课后做业之阳早格格创做第一章“电路模型战电路定律”训练题11道明题11图(a)、(b)中:(1)u、i的参照目标是可联系?(2)ui乘积表示什么功率?(3)如果正在图(a)中u>0、i<0;图(b)中u>0、i>0,元件本质收出仍旧吸支功率?(a)(b)题11图解(1)u、i的参照目标是可联系?问:(a) 联系——共一元件上的电压、电流的参照目标普遍,称为联系参照目标;(b) 非联系——共一元件上的电压、电流的参照目标好异,称为非联系参照目标.(2)ui乘积表示什么功率?问:(a) 吸支功率——联系目标下,乘积p = ui> 0表示吸支功率;(b) 收出功率——非联系目标,变更电流i的参照目标之后,乘积p = ui < 0,表示元件收出功率.(3)如果正在图(a) 中u>0,i<0,元件本质收出仍旧吸支功率?问:(a) 收出功率——联系目标下,u > 0,i < 0,功率p 为背值下,元件本质收出功率;(b) 吸支功率——非联系目标下,变更电流i的参照目标之后,u > 0,i> 0,功率p为正值下,元件本质吸支功率;14正在指定的电压u战电流i的参照目标下,写出题14图所示各元件的u战i的拘束圆程(即VCR).(a)(b)(c)(d)(e)(f)题14图解(a)电阻元件,u、i为联系参照目标.由欧姆定律u=R i =104i(b)电阻元件,u、i为非联系参照目标由欧姆定律u=Ri=10i(c)理念电压源与中部电路无关,故u=10V(d)理念电压源与中部电路无关,故u=5V(e)理念电流源与中部电路无关,故i=10×103A=102A(f)理念电流源与中部电路无关,故i=10×103A=102A15试供题15图中各电路中电压源、电流源及电阻的功率(须道明是吸支仍旧收出).(a)(b)(c)题15图解15图解15图解 (a )由欧姆定律战基我霍妇电压定律可知各元件的电压、电流如解15图(a )故电阻功率10220WR P ui ==⨯=吸(吸支20W )电流源功率 I 5210WP ui ==⨯=吸(吸支10W ) 电压源功率U 15230WP ui ==⨯=发(收出30W )(b )由基我霍妇电压定律战电流定律可得各元件的电压电流如解15图(b )故电阻功率12345WR P =⨯=吸(吸支45W )电流源功率I 15230W P =⨯=发(收出30W ) 电压源功率U 15115WP =⨯=发(收出15W )(c )由基我霍妇电压定律战电流定律可得各元件的电压电流如解15图(c )故电阻功率15345WR P =⨯=吸(吸支45W )电流源功率 I 15230WP =⨯=吸(吸支30W ) 电压源功率U 15575WP =⨯=发(收出75W )116电路如题116图所示,试供每个元件收出或者吸支的功率.(a ) (b )题116图120试供题120图所示电路中统造量u1及电压u.题120图解:设电流i ,列KVL 圆程得:第二章“电阻电路的等效变更”训练题21电路如题21图所示,已知uS=100V ,R1=2k,R2=8k.试供以下3种情况下的电压u2战电流i2、i3:(1)R3=8k;(2)R3=(R3处启路);(3)R3=0(R3处短路).题21图解:(1)2R 战3R 并联,其等效电阻84,2R ==Ω则总电流分流有(2)当33,0R i =∞=有 (3)3220,0,0R i u ===有25用△—Y 等效变更法供题25图中a 、b 端的等效电阻:(1)将结面①、②、③之间的三个9电阻形成的△形变更为Y 形;(2)将结面①、③、④与动做里面大众结面的②之间的三个9电阻形成的Y 形变更为△形.9Ω9Ω9Ω9Ω9Ωab①②③④题25图解 (1)变更后的电路如解题25图(a )所示.解解25图2R 3R ③①②①③④31R 43R 14R果为变更前,△中Ω===9312312R R R 所以变更后,Ω=⨯===3931321R R R故123126(9)//(3)3126ab R R R R ⨯=+++=++7Ω=(2)变更后的电路如图25图(b )所示.果为变更前,Y 中1439R R R ===Ω 所以变更后,1443313927R R R ===⨯=Ω 故 144331//(//3//9)ab R R R R =+Ω=7211利用电源的等效变更,供题211图所示电路的电流i.题211图解由题意可将电路等效变 为解211图所示.于是可得A i 25.0105.21==,A i i 125.021==213题213图所示电路中431R R R ==,122R R =,CCVS 的电压11c 4i R u =,利用电源的等效变更供电压10u .u S+-R 2R 4R 1i 1u c+-R 3u 10+-1题213图解 由题意可等效电路图为解213图. 所以342111()//2//2R R R R R R R =+==解解211图解213图又由KVL 得到1112()c S u R i Ri R u R ++=所以114S u i R = 10114S S S u u u R i u =-=-=0.75S u214试供题214图(a )、(b )的输进电阻ab R .(a ) (b )题214图解 (1)由题意可设端心电流i 参照目标如图,于是可由KVL 得到,(2)由题已知可得第三章“电阻电路的普遍分解”训练题31正在以下二种情况下,绘出题31图所示电路的图,并道明其结面数战支路数:(1)每个元件动做一条支路处理;(2)电压源(独力或者受控)战电阻的串联拉拢,电流源战电阻的并联拉拢动做一条支路处理.(a ) (b )题31图解:(1)每个元件动做一条支路处理时,图(a)战(b)所示电路的图分别为题解31图(a1)战(b1).图(a1)中节面数6=n ,支路数11=b 图(b1)中节面数7=n ,支路数12=b(2)电压源战电阻的串联拉拢,电流源战电阻的并联拉拢动做一条支路处理时,图(a)战图(b)所示电路的图分别为题解图(a2)战(b2).图(a2)中节面数4=n ,支路数8=b 图(b2)中节面数15=n ,支路数9=b32指出题31中二种情况下,KCL 、KVL 独力圆程各为几?解:题3-1中的图(a)电路,正在二种情况下,独力的KCL 圆程数分别为(1)5161=-=-n (2)3141=-=-n 独力的KVL 圆程数分别为(1)616111=+-=+-n b (2)51481=+-=+-n b图(b)电路正在二种情况下,独力的KCL 圆程数为 (1)6171=-=-n (2)4151=-=-n 独力的KVL 圆程数分别为(1)617121=+-=+-n b (2)51591=+-=+-n b37题37图所示电路中Ω==1021R R ,Ω=43R ,Ω==854R R ,Ω=26R ,V 20S3=u ,V 40S6=u ,用支路电流法供解电流5i .题37图解 由题中知讲4n =,6b = , 独力回路数为16413l b n =-+=-+=由KCL 列圆程:对于结面①1260i i i ++= 对于结面②2340i i i -++= 对于结面③4660i i i -+-= 由KVL 列圆程:对于回路Ⅰ642281040i i i --=-u题3-7图对于回路Ⅱ1231010420-i i i ++=- 对于回路Ⅲ45-488203i i i ++= 联坐供得 0.956A 5i =-38用网孔电流法供解题37图中电流5i .解 可设三个网孔电流为11i 、2l i 、3l i ,目标如题37图所示.列出网孔圆程为止列式解圆程组为所以351348800.956A 5104i i ∆-====-∆311用回路电流法供解题311图所示电路中电流I.题311图解 由题已知,1I 1A l =其余二回路圆程为()()123123555303030203020305l l l l l l I I I I I I -+++-=⎧⎪⎨--++=-⎪⎩代人整治得 2322334030352A305015 1.5A l l l l l l I I I I I -==⎧⎧⇒⎨⎨-+==⎩⎩ 所以232 1.50.5A l l I I I =-=-=312用回路电流法供解题312图所示电路中电流a I 及电压o U .题312图315列出题315图(a )、(b )所示电路的结面电压圆程.(a ) (b ) 题315图解:图(a)以④为参照结面,则结面电压圆程为:图(b)以③为参照结面,电路可写成由于有受控源,所以统造量i 的存留使圆程数少于已知量数,需删补一个圆程,把统造量i 用结面电压去表示有: 321用结面电压法供解题321图所示电路中电压U.题321图解 指定结面④为参照结面,写出结面电压圆程删补圆程 220n u I =不妨解得 221500.5154205n n u u -⨯⨯=电压 232V n u u ==.第四章“电路定理”训练题42应用叠加定理供题42图所示电路中电压u.题42图解:绘出电源分别效率的分电路图 对于(a)图应用结面电压法有 解得:对于(b)图,应用电阻串并联化简要领,可得: 所以,由叠加定理得本电路的u 为45应用叠加定理,按下列步调供解题45图中a I .(1)将受控源介进叠加,绘出三个分电路,第三分电路中受控源电压为a 6I ,a I 并没有是分赞同,而为已知总赞同;(2)供出三个分电路的分赞同a I '、a I ''、a I ''',a I '''中包罗已知量a I ;(3)利用a a aa I I I I '''+''+'=解出a I . 题45图49供题49图所示电路的戴维宁或者诺顿等效电路.(a )(b ) 题49图解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”供启路电压oc u .设'10oc oc u u V ==,各支路电流如图示,估计得'55'22''244'''3345''1132'122''123''1110110(210)112122.4552.413.477 3.41235.835.85.967665.967 3.49.367999.36735.8120.1n n n n n n n s s n i i A u u Vu i i Ai i i i Au u i u Vu i i A i i i Au u i u =====+⨯=======+=+===⨯+=⨯+======+=+===⨯+=⨯+=V故当5s u V =时,启路电压ocu 为'5100.41612.1oc ocu Ku V ==⨯= 将电路中的电压源短路,应用电阻串并联等效,供得等效内阻eqR 为[(9//67)//52]//10 3.505eq R =++=Ω417题417图所示电路的背载电阻L R 可变,试问L R 等于何值时可吸支最大功率?供此功率.题417图解:最先供出L R 以左部分的等效电路.断启L R ,设 如题解4-17图(a )所示,并把受控电流源等效为受控电压源.由KVL可得111(22)8660.512i i i A ++===故启路电压111122812120.56oc u i i i i V =++==⨯=把端心短路,如题解图(b )所示应用网孔电流法供短路电流sci ,网孔圆程为⎩⎨⎧=+-++-=+-+0)82()42(2 682)22( 1111i i i i i i sc sc 解得6342sc i A ==故一端心电路的等效电阻 6432oc eq sc u R i ===Ω 绘出戴维宁等效电路,交上待供支路L R ,如题解图(c )所示,由最大功率传输定理知4L eq R R ==Ω时其上赢得最大功率.L R 赢得的最大功率为第五章“含有运算搁大器的电阻电路”训练题52题52图所示电路起减法效率,供输出电压o u 战输进电压1u 、2u 之间的关系.题52图解:根据“真断”,有: 得:故: 而:根据“真短” 有:代进(1)式后得: 56试道明题56图所示电路若谦脚3241R R R R =,则电流L i 仅决断于1u 而与背载电阻L R 无关.题56图道明:采与结面电压法分解.独力结面○1战○2的采用如图所示,列出结面电压圆程,并注意到准则1,可得==+-i i 2413i i ,i i ==()12120u u RRu -=01)111(1)11(4221112121=-++=-+o n L o n u R u R R R R u u R u R R 应用准则2,有21n n u u =,代进以上圆程中,整治得2434)111(n L o u R R R R u ++=112243241)1(R uu R R R R R R R n L =--故14314132322)(u R R R R R R R R R R R u L Ln --=又果为14314132322)(u R R R R R R R R R R R u i L L n L --==当3241R R R R =时,即电流L i 与背载电阻L R 无关,而知与电压1u 有关.57供题57图所示电路的o u 战输进电压S1u 、2S u 之间的关系.题57图解:采与结面电压法分解.独力结面○1战○2的采用如图所示,列出结面电压圆程,并注意到准则1,得(为分解便当,用电导表示电阻元件参数)234243112121)()(s o n s o n u G u G u G G u G u G u G G -=-+=-+应用准则2 ,有21n n u u =,代进上式,解得o u 为324122131431)()(G G G G u G G G u G G G u s s o -+++=或者为4132********)()(R R R R u R R R u R R R u s s o -+++=第六章“储能元件”训练题68供题68图所示电路中a 、b 端的等效电容与等效电感.(a ) (b )题68图69题69图中μF 21=C ,μF 82=C ;V 5)0()0(21CC -==u u .现已知μA 1205t e i -=,供:(1)等效电容C 及C u 表白式;(2)分别供1C u 与2C u ,并核查于KVL.题69图解(1)等效电容uC(0)= uC1(0)+uC2(0)=-10V (2) 610题610图中H 61=L ,A 2)0(1=i ;H 5.12=L ,A 2)0(2-=i ,V e 62tu -=,供:(1)等效电感L 及i 的表白式;(2)分别供1i 与2i ,并核查于KCL. 题610图解(1)等效电感解(2)i(0)= i1(0)+i2(0)=0V 第七章“一阶电路战二阶电路的时域分解”训练题 71题71图(a )、(b )所示电路中启关S 正在t=0时动做,试供电路正在t=0+时刻电压、电流的初初值.10V+-u CC 2F(t =0)2S 10VL +-u L(t =0)2S 5题71图(a ) (b )解 (a):Ⅰ:供uC(0):由于启关关合前(t<0),电路处于宁静状态,对于曲流电路,电容瞅做启路,故iC=0,由图可知:C1C10165605501()= (0)+()d C 1=5+12010e d 2101205e (712e )V 2(5)tt t t u t u i ξξξξξ---⨯⨯+⨯=-⨯-⎰⎰---=-C2C20265605501()= (0)+()d C 1=5+12010e d 8101205e (23e )V 8(5)tt t t u t u i ξξξξξ---⨯⨯+⨯=--⨯-⎰⎰---=-0202201()= (0)+()d 1=0+6e d 1.260e (2.5 2.5e )A 1.2(2)tt t t i t i u L ξξξξξ---+⨯=-⨯-⎰⎰=2202202201()= (0)+()d 1=2+6e d 1.562e 2e A 1.5(2)tt t ti t i u L ξξξξξ-----+⨯=-⨯-⎰⎰=uC(0)=10VⅡ:供uC(0+):根据换路时,电容电压没有会突变,所以有:uC(0+)= uC(0)=10VⅢ:供iC(0+)战uR(0+) :0+时的等效电路如图(a1)所示.换路后iC 战uR 爆收了跃变. 解 (b):Ⅰ:供iL(0):由于启关关合前(t<0),电路处于宁静状态,对于曲流电路,电感可瞅做短路,故uL=0,由图可知: Ⅱ:供iL(0+):根据换路时,电感电流没有会突变,所以有:iL(0+)= iL(0)=1AⅢ:供iR(0+)战uL(0+) :0+时的等效电路如图(b1)所10V(a1)()A i C 5.1105100-=+-=+()()Vi u C R 150100-=⨯=++()Ai L 155100=+=-()()()V i u u L L R 5150500=⨯=⨯=-=+-+()()Ai i L R 100==++示.换路后电感电压uL 爆收了跃变78题78图所示电路启关本合正在位子1,t=0时启关由位子1合背位子2,供t 0时电感电压)(L t u .题78图712题712图所示电路中启关关合前电容无初初储能,t=0时启关S 关合,供t 0时的电容电压)(C t u .题712图解:()()000==-+C C u u用加压供流法供等效电阻717题717图所示电路中启关挨启往日电路已达宁静,t=0时启关S 挨启.供t 0时的)(C t i ,并供t=2ms 时电容的能量.题717图解:t> 0时的电路如题图(a )所示.由图(a )知 则初初值 V 6)0()0(==-+C C u u5Ωu L (b1)1A+ _u R+ _t> 0后的电路如题解图(b )所示.当∞→t 时,电容瞅做断路,有时间常数 s 04.0102010)11(630=⨯⨯⨯+==-C R τ 利用三果素公式得 电容电流 mA 3d d )(25t CC e tu C t i -⨯== t=2 ms 时 电容的储能为720题720图所示电路,启关合正在位子1时已达宁静状态,t=0时启关由位子1合背位子2,供t 0时的电压L u .题720图解:()()A 42800-=-==-+L L i i ()21=+∞i i L用加压供流法供等效电阻()042411=--∞i i i L ()A 2.1=∞L i726题726图所示电路正在启关S 动做前已达稳态;t=0时S 由1交至2,供t 0时的L i .题726图解:由图可知,t>0时V 4)0(=-C u , 0)0(=-L i果此,+=0t 时,电路的初初条件为 t>0后,电路的圆程为设)(t u C 的解为 C C Cu u u '''==式中C u '为圆程的特解,谦脚V 6'=u根据个性圆程的根 2j 11)2(22±-=-±-=LCL R LR p 可知,电路处于衰减震荡历程,,果此,对于应齐次圆程的通解为 式中2,1==ωδ.由初初条件可得解得236.2)43.63sin(64sin 6443.6312arctan arctan -=︒-=-=︒===θδωθA 故电容电压 V )43.632sin(236.26''')(︒+-=+=-t e u u t u t C C C 电流 A 2sin sin d d )( 22t e t e CA tu Ct i t t CL =+==-ωωδ 729RC 电路中电容C 本已充电,所加)(t u 的波形如题729图所示,其中Ω=1000R ,μF 10=C .供电容电压C u ,并把C u :(1)用分段形式写出;(2)用一个表白式写出.(a ) (b )题729图解:(1)分段供解. 正在20≤≤t 区间,RC 电路的整状态赞同为s 2=t 时 V 10)1(10)(2100≈-=⨯-e t u C正在32<≤t 区间,RC 的齐赞同为s 3=t 时 V 203020)3()23(100-≈+-=-⨯-e u C正在∞<≤t 3区间,RC 的整输进赞同为(3)用阶跃函数表示激励,有 而RC 串联电路的单位阶跃赞同为根据电路的线性时没有变个性,有第八章“相量法”训练题87若已知二个共频正弦电压的相量分别为V 30501︒∠=U ,V 1501002︒-∠-=U ,其频次Hz 100=f .供:(1)1u 、2u 的时域形式;(2)1u 与2u 的相位好.解:(1)()()()1502cos 230502cos 62830u t ft t V π=+=+(2).15030U =∠,.210030U V =∠故相位好为0ϕ=,即二者共相位. 89已知题89图所示3个电压源的电压分别为V )10cos(2220a ︒+=t u ω、V)110cos(2220b ︒-=t u ω、V )130cos(2220c ︒+=t u ω,供:(1)三个电压的战;(2)ab u 、bcu ;(3)绘出它们的相量图.ca bc题89图解:,,a b c u u u 的相量为.22010a U =∠,.220110b U =∠-,.220130c U =∠(1) 应用相量法有即三个电压的战 ()()()0a b c u t u t u t ++= (2)..40ab a b U U U ⋅=-=V(3)相量图解睹题解83图816题816图所示电路中A 02S ︒∠=I .供电压U. 题816图解: L L R S jX U R U I I I +=+= 即V jI US4524520211∠=-∠∠=+=第九章“正弦稳态电路的分解”训练题91试供题91图所示各电路的输进阻抗Z 战导纳Y .(a ) (b ) (c ) (d )题91图解:(a )Z=1+()1212j j j j --⨯=1+j2=j 21-Ω Y=Z1=j211-=521j +=4.02.0j + S(b) (b)Z=)1()1(1j j j j ++-+⨯-+=j j -=-+2)1(1ΩY=S j jj Z2.04.052211+=+=-=(c)()()S j j j j j j Y 025.040140404040404040404040140401==-+++-=-++=(d)设端心电压相量为U,根据KVL ,得()I r L j I r I L j U-=-=ωω 所以输进阻抗为 Ω-==r L j IUZ ω导纳 ()S l r r L j r L j Z Y 2211ωωω+--=-==94已知题94图所示电路中V )30sin(216S ︒+=t u ω,电流表A 的读数为5A.L=4,供电流表A1、A2的读数. 题94图解:供解XC若XC=0.878Ω时,共理可解得I1=4.799A,I2=1.404A.917列出题917图所示电路的回路电流圆程战结面电压圆程.已知V )2cos(14.14S t u =,A )302cos(414.1S ︒+=t i .(a ) (b )(c )(d )题917图919题919图所示电路中R 可变动,V 0200S︒∠=U .试供R 为何值时,电源SU 收出的功率最大(有功功率)? 题919图解:本题为戴维宁定理与最大功率传播定理的应用925把三个背载并联交到220V 正弦电源上,各背载与用的功率战电流分别为:kW 4.41=P ,A 7.441=I (感性);kW 8.82=P ,A 502=I (感性);kW 6.63=P ,A 602=I (容性).供题925图中表A 、W 的读数战电路的功率果数.题925图解:根据题意绘电路如题解925图.设电源电压为V ︒∠0220 根据ϕcos UI P =,可得即 ︒︒︒-===60,87.36,42.63321ϕϕϕ 果此各支路电流相量为⎪⎭⎪⎬⎫-∠=-∠=︒︒A I A I 87.365042.637.4421(感性元件电流降后电压)总电流A j I I I I ︒︒︒︒-∠=-=∠+-∠+-∠=++=31.1179.911890606087.365042.637.44321 电路的功率果数为第十章“含有耦合电感的电路”训练题104题104图所示电路中(1)H 81=L ,H 22=L ,H 2=M ;(2)H 81=L ,H 22=L ,H 4=M ;(3)H 421===M L L .试供以上三种情况从端子11'-瞅进去的等效电感.(a ) (b ) (c ) (d ) 题104图解以上各题的去耦等效电路如下图,根据电感的串并联公式可估计等效电感.105供题105图所示电路的输进阻抗Z (=1 rad/s ).1H11H2H1Ω解:利用本边等效电路供解等效阻抗为 :(a )()()Ω+=++=+=6.02.02112221j j j Z M L j Z eq ωω11'1H4H1H0.2F解 :利用本边等效电路供解等效阻抗为: (b )11'2H3H2H 1F解:去耦等效供解等效阻抗为: (c )去耦后的等效电感为: 题105图故此电路处于并联谐振状态.此时1017如果使100电阻能赢得最大功率,试决定题1017图所示电路中理念变压器的变比n.题1017图解 最先做出本边等效电路如解1017图所示. 其中, 2210L R n R n '==⨯ 又根据最大功率传输定理有当且仅当21050n ⨯=时,10Ω电阻能赢得最大功率 此时, 505 2.23610n ===Ω ()Ω-=⎪⎭⎫ ⎝⎛-+-=j j j j j Z eq 12.01521∞=+⋅=111111j j j j Z in HL eq 1=s rad CL eq /11==ω此题也不妨做出副边等效电路如b), 当211050n⨯=时,即2.236n ===Ω 10Ω电阻能赢得最大功率1021已知题1021图所示电路中V )cos(210S t u ω=,Ω=101R ,mH 1.021==L L ,mH 02.0=M ,μF 01.021==C C ,rad/s 106=ω.供R2为何值时获最大功率?并供出最大功率.题1021图第十一章“电路的频次赞同”训练题116供题116图所示电路正在哪些频次时短路或者启路?(注意:四图中任选二个)(a ) (b ) (c ) (d )题116图解:(a ) (b)117RLC 串联电路中,μH 50=L ,pF 100=C ,71.70250==Q ,电源mV 1S =U .供电路的谐振频次0f 、谐振时的电容电压C U 战通戴BW.1110RLC 并联谐振时,kHz 10=f ,k Ω100)j ω(0=Z ,Hz 100=BW ,供R 、L 战C. 1114题1114图中pF 4002=C ,μH 1001=L .供下列条件下,电路的谐振频次0ω: (1)2121C L R R ≠=;(2)2121C L R R ==. 题1114图第十二章“三相电路”训练题121已知对于称三相电路的星形背载阻抗Ω+=)48j 165(Z ,端线阻抗Ω+=)1j 2(l Z ,中性线阻抗Ω+=)1j 1(N Z ,线电压V 380=l U .供背载端的电流战线电压,并做电路的相量图.题解121图解:按题意可绘出对于称三相电路如题解12-1图(a )所示.由于是对于称三相电路,不妨归纳为一相(A 相)电路的估计.如图(b)所示.令V U U A0220031∠=∠=,根据图(b )电路有 根据对于称性不妨写出 背载端的相电压为 故,背载端的线电压为 根据对于称性不妨写出电路的背量图如题解12-1图(c )所示.122已知对于称三相电路的线电压V 380=l U (电源端),三角形背载阻抗Ω+=)41j 5.4(Z ,端线阻抗Ω+=)2j 5.1(l Z .供线电流战背载的相电流,并做相量图. 解:本题为对于称三相电路,可归纳为一相电路估计.先将该电路变更为对于称Y -Y 电路,如题解12-2图(a )所示.图中将三角形背载阻抗Z 变更为星型背载阻抗为题解12-2图令V U U A︒∠=∠=0220031 ,根据一相( A 相)估计电路(睹题解12-1图(b )中),有线电流A I 为 根据对于称性不妨写出利用三角形连交的线电流与相电流之间的关系,可供得本三角形背载中的相电流,有 而 A 78.15537.172 -∠==''''B A C B I a I电路的相量图如题解12-2图(b )所示.125题125图所示对于称Y —Y 三相电路中,电压表的读数为1143.16V ,Ω+=)315j 15(Z ,Ω+=)2j 1(l Z .供:(1)图中电流表的读数及线电压AB U ;(2)三相背载吸支的功率;(3)如果A 相的背载阻抗等于整(其余没有变),再供(1)(2);(4)如果A 相背载启路,再供(1)(2).(5)如果加交整阻抗中性线0N =Z ,则(3)、(4)将爆收何如的变更?题125图解:图示电路为对于称Y -Y 三相电路,故有0='NN U ,不妨归纳为一相(A 相)电路的估计.根据题意知V U B A 16.1143='',则背载端处的相电压N A U ''为 而线电流为A 22306601===''Z U I N A (电流表读数) 故电源端线电压AB U 为(1)令V U AN0220∠=,则线电流A I 为 故图中电流表的读数为A 1.6. (2)三相背载吸支的功率为(3)如果A 相的背载阻抗等于整(即A 相短路),则B 相战C 相背载所施加的电压均为电源线电压,即N '面战A 面等电位,而此时三相背载端的各相电流为那时图中的电流表读数形成18.26A. 三相背载吸支的功率形成:(4)如果图示电路中A 相背载启路,则B 相战C 相背载阻抗串联交进电压BCU 中,而 此时三相背载中的各相电流为 那时图中的电流表读数为整.三相背载吸支的功率为126题126图所示对于称三相电路中,V 380B A =''U ,三相电效果吸支的功率为 1.4kW ,其功率果数866.0=λ(滞后),Ω-=55j l Z .供AB U 战电源端的功率果数λ'.题126图第十三章“非正弦周期电流电路战旗号的频谱”训练题 137已知一RLC 串联电路的端心电压战电流为试供:(1)R 、L 、C 的值;(2)3的值;(3)电路消耗的功率.解:RLC 串联电路如图所示,电路中的电压)(t u 战电流)(t i 均为已知,分别含有基波战三次谐波分量.(1)由于基波的电压战电流共相位,所以,RLC 电路正在基波频次下爆收串联谐振.故有 且111X X X c L == 即)314(11111s rad X CL ===ωωω 而三次谐波的阻抗为3Z 的模值为解得1X 为故F X C mH X L μωω34.318004.103141186.31314004.10.1111=⨯=====(2)三次谐波时,3Z 的阻抗角为 而 则(3) 电路消耗的功率 P 为139题139图所示电路中)(S t u 为非正弦周期电压,其中含有13ω战17ω的谐波分量.如果央供正在输出电压)(t u 中没有含那二个谐波分量,问L 、C 应为几?题139图解:根据图示结构知,欲使输出电压u(t) 中没有含13ω战17ω的谐波分量,便央供该电路正在那二个频次时,输出电压u(t) 中的3次谐波分量战7次谐波分量分别为整.若正在13ω处 1H 电感与电容 C 爆收串联谐振,输出电压的3次谐波03=U ,由谐振条件,得若正在17ω处 1F 电容与电感 L 爆收并联谐振,则电路中7次谐波的电流07=I ,电压07=U ,由谐振条件,得也可将上述二个频次处爆收谐振的序次变更一下,即正在13ω处,使L 与 C 1爆收并联谐振,而正在17ω处,使1L 与 C 爆收串联谐振,则得第十六章“二端心搜集”训练题161供题161图所示二端心的Y 参数、Z 参数战T 参数矩阵.(注意:二图中任选一个)(a ) (b )题161图解:对于 (a),利用瞅察法列出Y 参数圆程: 则Y 参数矩阵为:共理可列出Z 参数圆程:则Z 参数矩阵为: 列出T 参数圆程:将式2代进式1得:则T 参数矩阵为: 165供题165图所示二端心的混同(H )参数矩阵.(注意:二图中任选一个)(a ) (b )题165图解:对于图示(a )电路,指定端心电压1u ,2u 战电流1i ,2i 及其参照目标.由KCL ,KVL 战元件VCR ,可得 经整治,则有而 22222u u u i -=-=故可得出H 参数矩阵1615试供题1615图所示电路的输进阻抗i Z .已知F 121==C C ,S 121==G G ,S 2=g .题1615图解:图示电路中,当回转器输出端心交一导纳时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-=C j C j C j C L j Z ωωωωω1111⎥⎦⎤⎢⎣⎡-=112Cj L j LCT ωωω222)(sC G s Y +=(端心22'-启路),根据回转器的VCR ,可得出从回转器输进端心瞅进去的输进导纳为所以,该电路的输进阻抗)(s Z in 为。
电路原理邱关源第3章 电阻电路的一般分析PPT课件
I3
+
6A 1
7
70V
–
b 由于I2已知,故只列写两个方程
结点a: –I1+I3=6
避开电流源支路取回路: 7I1+7I3=70
返回 上页 下页
*例5 列写支路电流方程.(电路中含有受控源)
7 +
70V –
a
I1
1
I2 +
5U_
11 + U
2_
I3 解 7
结点a:
–I1–I2+I3=0 7I1–11I2=70-5U
当不需求a、c和b、d 间的电流时,(a、c)( b、 d)可分别看成一个结点。
(1) 应用KCL列结点电流方程
对结点 a: I1 + I2 –I3 = – 7
因所选回路不包含
(2) 应用KVL列回路电压方程 恒流源支路,所以,
对回路1:12I1 – 6I2 = 42 3个网孔列2个KVL方
对回路2:6I2 + 3I3 = 0
解1 (1) n–1=1个KCL方程:
结点a: –I1–I2+I3=0
(2) b–( n–1)=2个KVL方程:
设电流 源电压
7I1–11I2=70-U
a
11I2+7I3= U 增补方程:I2=6A
I1 7 I2 11
+
70V –
1 6A
+ U
2
_
I3 7
b
返回 上页 下页
a
解2
I1 7 I2 11
2、如何以最少的方程以及最简化的方法求解电 路的未知变量。
章目录 上一页 下一页 返回 退出
3.3 支路电流法
“电路原理”第1-6章作业
第一章“电路模型和电路定律”练习题1-1说明题1-1图(a )、(b )中:(1)u 、i 的参考方向是否关联?(2)ui 乘积表示什么功率?(3)如果在图(a )中u >0、i <0;图(b )中u >0、i >0,元件实际发出还是吸收功率?(a ) (b )题1-1图解:(1)图(a )中电压电流的参考方向是关联的,图(b )中电压电流的参考方向是非关联的。
(2)图(a )中由于 电压电流的参考方向是关联的,所以ui 乘积表示元件吸收的功率。
图(b )中电压电流的参考方向是非关联的,所以ui 乘积表示元件发出的功率。
(3)图(a )中u >0、i <0,所以ui <0。
而图(a )中电压电流参考方向是关联 的,ui 乘积表示元件吸收的功率,吸收的功率为负,所以元件实际是发出功率;图(b )中电压电流参考方向是非关联的,ui 乘积表示元件发出的功率,发出的功率为正,所以元件实际是发出功率。
1-4 在指定的电压u 和电流i 的参考方向下,写出题1-4图所示各元件的u 和i 的约束方程(即VCR )。
(a ) (b ) (c )(d ) (e ) (f )题1-4图解:(a )电阻元件,u 、i 为关联参考方向。
由欧姆定律u=Ri=104 i (b )电阻元件,u 、i 为非关联参考方向,由欧姆定律u = - R i = -10 i (c )理想电压源与外部电路无关,故 u = 10V (d )理想电压源与外部电路无关,故 u = -5V(e )理想电流源与外部电路无关,故 i=10×10-3A=10-2A(f )理想电流源与外部电路无关,故i=-10×10-3A=-10-2A1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。
(a ) (b ) (c )题1-5图解:(a )由欧姆定律和基尔霍夫电压定律可知各元件的电压、电流如解1-5图(a )故 电阻功率10220WR P u i ==⨯=吸(吸收20W )电流源功率 I 5210WP ui ==⨯=吸(吸收10W ) 电压源功率U 15230WP ui ==⨯=发(发出30W )(b )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(b )故 电阻功率12345WR P =⨯=吸(吸收45W ) 电流源功率 I 15230WP =⨯=发(发出30W ) 电压源功率U 15115WP =⨯=发(发出15W )(c )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(c )故 电阻功率15345WR P =⨯=吸(吸收45W )电流源功率 I 15230WP =⨯=吸(吸收30W ) 电压源功率U 15575WP =⨯=发(发出75W )1-16 电路如题1-16图所示,试求每个元件发出或吸收的功率。
【推荐】电路原理基础:第三章 节点分析法
R4 i4
uo -
②式解出ub,因虚短 ua = ub代入①式得
uo
R2 R1
u1
R2 R1
R2 R1
1 u2
R3 R4
1
由题中条件得:
uo
R2 R1
(u2
u1)
差动运算电路
输出与两输入之差成正比, 被称作差动运算电路。
二、含理想运放的节点法
3
i1 =G1 un1,i2 =G2 (un1 - un2 ),i3 =G3 (un2 – uS3 ) (*)
节点: 列写KCL方程:
n1 : n2 :
i1 i2 iS1 i2 i3 iS2
将(*)式代入
① + u2 -②
+
i2 G2 +
+
uS3
iS1
u1 G1 i1
u3
un3 R2
uo R3
ui R1
R3
(1 R4
1 R5
)
1 R5
uo
0
节点③和④:不列写!
由虚短得 un1 0
R2
R1
+ ui
① -∞
+
③
+ -
∞
②
-
R4
R5
④ + uo
un2 un3
-
可得: uo R2R3 (R4 R5 ) ui R1(R3R4 R2R4 R2R5 )
例(解节.:点求节电u点压A③)、的、方iB④程.的组电。位有分受别控为源时,G12
电路原理作业讲解
b a+ 4 - 3V 4 a+ u”oc b- u’oc b- + 2 2
1A 2
2
4-10(a) 求如图所示电路的戴维宁等效电路 5A 2Ω 2Ω 1Ω a 利用齐性原理计算 + 2Ω 2Ω 1Ω 10V 设uab=1v 3A 1A 1A - b 可计算得到电压源两端电 压U’=16V 利用齐性原理U 利用齐性原理 oc=10/16*1V=5/8V
k1is1=-0.4uab k2us1=0.65uab k3us2=0.75uab
u′′ =1.8uab = k1(−is1) +k2us1 +k3us2 将上面3式相加得 式相加得: 将上面 式相加得: ab
第三章习题
第三章电力系统元件及等值电路一、填空题1.变压器按其绕组数分为双绕组普通式、三绕组式以及自耦式等。
2.架空线路由导线、避雷线、绝缘子、金具、和杆塔等部件组成。
3.输电线路的电气参数有电阻、电抗、电导、电纳。
4.使架空线路的三相电气参数平衡的方法有三相导线等边三角形布置和三相导线换位两种。
5.输电线路的运行中电气参数反映电气现象的分别是有功功率损失、磁场效应、电场效应和泄露功率损失。
6.电力系统的网络参数是电阻、电抗、电导、电纳。
7.电力系统的运行参数是电压、电流、功率。
8.高压远距离输电线路,为了防止电晕损耗和线路电抗,往往采用分裂导线。
9.高压线路上,导线周围产生空气电离现象,称之为电晕。
10.线路等值电路中电抗和电纳产生无功功率损耗,电阻产生有功功率损耗。
11.标么值是指有名值/实际值和基准值的比值。
二、判断题1.为使架空输电线路的三相电气参数相同,可以通过架空线换位方法减小三相参数不平衡。
(√)2.架空线路越长,电纳对线路的影响越小。
(×)3. 对于高压远距离输电线路,为减小线路的电晕损耗及线路电抗,采用分裂导线。
(√)4. 采用分裂导线只是为了防止电晕产生。
(×)5. 交流电路中,交流电阻比直流电阻要小。
(×)6. 电力线路运行时,导线间及导线对地存在电导。
(×)7. 由线路电抗产生的损耗为有功功率损耗。
(×)8. 负荷的无功功率并没做功,所以发电机不用提供无功功率。
(×)9. 电力系统有多个电压等级时,系统等值电路计算需将不同电压等级下的元件参数归算到同一电压级,该电压称为基本级。
(√)10. 将参数和变量归算至同一个电压级。
一般取网络中最高电压级为基本级。
(√)11. 输电线路的等值电路为л型等值电路.其阻抗支路消耗功率,而对地电容支路发出功率。
(× )三、简答题1. 输电线路的运行电气参数分别反映什么电气现象?2. 标么值的定义和单位是什么?3. 画出工程上常用的200km架空线路的等值电路,并说明其参数意义?4. 输电线路的电阻、电抗、电导、电纳四个电气参数分别反映哪些电气现象?5. 根据输电线路的长度,分别画出输电线路的等值电路?6. 画出双绕组变压器的等值电路。
电路原理 第三章
第三章电阻电路的一般分析一、教学基本要求电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章学习的内容有:电路的图,KCL和KVL的独立方程数,支路电流法,网孔电流法,回路电流法,结点电压法。
本章内容以基尔霍夫定律为基础。
介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。
内容重点:会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程,回路电流方程,结点电压方程,并求解。
预习知识:线性代数方程的求解难点:1. 独立回路的确定2. 正确理解每一种方法的依据3. 含独立电流源和受控电流源的电路的回路电流方程的列写4. 含独立电压源和受控电压源的电路的结点电压方程的列写二、学时安排总学时:6三、教学内容§3-1 电路的图1. 网络图论图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。
图论的概念由瑞士数学家欧拉最早提出,欧拉在1736年发表的论文《依据几何位置的解题方法》中应用图的方法讨论了各尼斯堡七桥难题,见图3.1a和b所示。
图3.1 a 哥尼斯堡七桥 b 对应的图19~20世纪,图论主要研究一些游戏问题和古老的难题,如哈密顿图及四色问题。
1847年,基尔霍夫首先用图论来分析电网络,如今在电工领域,图论被用于网络分析和综合、通讯网络与开关网络的设计、集成电路布局及故障诊断、计算机结构设计及编译技术等等。
2. 电路的图电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应,如图3.2所示,所以电路的图是点线的集合。
哈工大电路原理基础课后习题
第一章习题图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。
根据图示参考方向,写出电流的数学表达式。
图示元件电压u=(5-9e-t/t)V,t>0。
分别求出t=0 和t→¥时电压u的代数值及其真实方向。
图题图题图示电路。
设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C 发出功率为-10W,求。
图题求图示电路电流。
若只求,能否一步求得?图示电路,已知部分电流值和部分电压值。
(1) 试求其余未知电流。
若少已知一个电流,能否求出全部未知电流?(2) 试求其余未知电压u14、u15、u52、u53。
若少已知一个电压,能否求出全部未知电压?图示电路,已知,,,。
求各元件消耗的功率。
图示电路,已知,。
求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。
求图示电路电压。
求图示电路两个独立电源各自发出的功率。
求网络N吸收的功率和电流源发出的功率。
求图示电路两个独立电源各自发出的功率。
求图示电路两个受控源各自发出的功率。
图示电路,已知电流源发出的功率是12W,求r的值。
求图示电路受控源和独立源各自发出的功率。
图示电路为独立源、受控源和电阻组成的一端口。
试求出其端口特性,即关系。
讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。
第二章习题图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。
求图示电路的电压及电流。
图示电路中要求,等效电阻。
求和的值。
求图示电路的电流I。
求图示电路的电压U。
求图示电路的等效电阻。
求图示电路的最简等效电源。
图题利用等效变换求图示电路的电流I。
(a) (b)图题求图示电路的等效电阻R。
求图示电路的电流和。
列写图示电路的支路电流方程。
图题图示电路,分别按图(a)、(b)规定的回路列出支路电流方程。
图题用回路电流法求图示电路的电流I。
用回路电流法求图示电路的电流I。
电路原理第四版课后练习题含答案
电路原理第四版课后练习题含答案介绍电路原理是电工电子工程的基础课程,是理解电子电路,掌握电子技术的必备基础。
电路原理第四版是一本经典的教材。
本文将提供该教材的课后练习题及答案,以供读者学习和练习。
课后练习题第一章电路基本定理1.四个1Ω的电阻分别连在电源的正极和负极,求它们之间的总电阻。
2.两个串联的电容C1=10μF,C2=20μF,两端的电压分别为50V和100V,求总电容。
3.RC电路充电后,电容器电压的夹角为45度,某一时刻电容器电压为6V,充电电阻R=2kΩ,电容C=0.1μF,求该时刻电容充电所经过的时间。
第二章电路简化技术1.简化下列电路:simplify_circuit2.已知电路中R1=3Ω,R2=4Ω,R3=5Ω,求R4使得电路平衡。
第三章交流电路基本理论1.已知某电路中电感为5mH,电容为8μF,电源交流电压为60V,频率为50Hz,求电流的有效值和相位角。
2.有一个平衡电桥电路,其两端分别为220V和200V,电桥中R1=100Ω,R2=50Ω,C1=0.1μF,C2=0.02μF,求电桥平衡时C3和R3的阻值。
答案第一章电路基本定理1.总电阻为4Ω。
2.总电容为6.67μF。
3.电容充电所经过的时间为2.2ms。
第二章电路简化技术1.简化后的电路如下:simplified_circuit2.R4=15Ω。
第三章交流电路基本理论1.电流的有效值为1.202A,相位角为-53.13度。
2.R3=5.52kΩ,C3=0.16μF。
总结本文提供了电路原理第四版课后练习题及答案,供读者学习和练习。
电路原理是电子电路的基本理论,掌握了该理论,才能更好的理解和应用电子电路技术。
同时,也希望本文的内容能对读者有所帮助。
哈工大电路原理基础课后习题
第一章习题1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。
根据图示参考方向,写出电流的数学表达式。
1.2图示元件电压u=(5-9e-t/t)V,t>0。
分别求出t=0 和t→¥ 时电压u的代数值与其真实方向。
图题1.1 图题1.21.3 图示电路。
设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C 发出功率为-10W,求。
图题1.31.4求图示电路电流。
若只求,能否一步求得?1.5 图示电路,已知部分电流值和部分电压值。
(1) 试求其余未知电流。
若少已知一个电流,能否求出全部未知电流?(2) 试求其余未知电压u14、u15、u52、u53。
若少已知一个电压,能否求出全部未知电压?1.6 图示电路,已知,,,。
求各元件消耗的功率。
1.7 图示电路,已知,。
求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。
1.8 求图示电路电压。
1.9 求图示电路两个独立电源各自发出的功率。
1.10 求网络N吸收的功率和电流源发出的功率。
1.11 求图示电路两个独立电源各自发出的功率。
1.12 求图示电路两个受控源各自发出的功率。
1.13 图示电路,已知电流源发出的功率是12W,求r的值。
1.14 求图示电路受控源和独立源各自发出的功率。
1.15图示电路为独立源、受控源和电阻组成的一端口。
试求出其端口特性,即关系。
1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。
第二章习题2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。
2.2 求图示电路的电压与电流。
2.3 图示电路中要求,等效电阻。
求和的值。
2.4求图示电路的电流I。
2.5 求图示电路的电压U。
2.6 求图示电路的等效电阻。
2.7 求图示电路的最简等效电源。
图题2.72.8 利用等效变换求图示电路的电流I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章“电阻电路的一般分析”练习题
3-1 在以下两种情况下,画出题3-1图所示电路的图,并说明其结点数和支路数:(1)每
个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
+
-
+-
+
-
+
-
+
-
和
(a ) (b )
题3-1图
解:(1)题3-1图(a )和题3-1图(b )电路的拓扑图分别如题3-1图(a )和题解3-1图(b)所示。
(2)题3-1图(a )和题3-1图(b )电路的拓扑图分别如题3-1图(c )和题解3-1图(d)所示。
题解3-1图(a )中结点数n=6,支路数b=11;题解3-1图(b )中结点数n=7,支路数b=12.
题解3-1图(c )中结点数n=4,支路数b=8;题解3-1图(d )中结点数n=5,支路数b=9.
3-2 指出题3-1中两种情况下,KCL 、KVL 独立方程各为多少?
解:电路题3-1图(a )对应题解3-1图(a )和题解3-1图(c )两种情况。
题解3-1图(a )中,独立的KCL 方程个数为n-1=6-1=5
独立的KVL 方程个数为b-n+1=11-6+1=6 题解3-1图(c )中,独立的KCL 方程个数为n-1=4-1=3 独立的KVL 方程个数为b-n+1=8-4+1=5
题3-1图(b )对应题解3-1图(b )和题解3-1图(d )两种情况。
题解3-1图(b )中,独立的KCL 方程个数为n-1=7-1=6
独立的KVL 方程个数为b-n+1=12-7+1=6 题解3-1图(d )中,独立的KCL 方程个数为n-1=5-1=4
独立的KVL 方程个数为b-n+1=9-5+1=5
3-7题3-7图所示电路中Ω==1021R R ,Ω=43R ,Ω==854R R ,Ω=26R ,
V 20S3=u ,V 40S6=u ,用支路电流法求解电流5i 。
u 题3-7图
解 由题中知道4n =,6b = , 独立回路数为16413l b n =-+=-+= 由KCL
列方程: 对结点① 1260i i i ++= 对结点② 2340i i i -++= 对结点③ 4660i i i -+-= 由KVL 列方程:
对回路Ⅰ 642281040i i i --=- 对回路Ⅱ 1231010420-i i i ++=- 对回路Ⅲ 45-488203i i i ++= 联立求得 0.956A 5i =-
u
题3-7图
3-8 用网孔电流法求解题3-7图中电流5i 。
解 可设三个网孔电流为11i 、2l i 、3l i ,方向如题3-7图所示。
列出网孔方程为
24612243621123233341
3234533()()()l l l s l l l s l l l s R R R i R i R i u R i R R R i R i u R i R i R R R i u
++--=-⎧⎪
--++-=-⎨⎪--+++=⎩ 1231231
232010840
1024420842020
l l l l l l l l l i i i i i i i i i --=-⎧⎪
-+-=-⎨⎪--+=⎩ 行列式解方程组为
2010820104010
24410
242048808
4
20
8
4
20
----∆=--=--=----- 所以35134880
0.956A 5104
i i ∆-==
==-∆
3-11 用回路电流法求解题3-11图所示电路中电流I 。
5V
题3-11图
解 由题已知,1I 1A l =
其余两回路方程为()()123123555303030
203020305
l l l l l l I I I I I I -+++-=⎧⎪⎨--++=-⎪⎩
代人整理得 2322334030352A
305015 1.5A l l l l l l I I I I I -==⎧⎧⇒⎨⎨-+==⎩⎩
所以232 1.50.5A l l I I I =-=-=
3-12 用回路电流法求解题3-12图所示电路中电流a I 及电压o U 。
I a
题3-12图
解:由题可知
123
12331
(415 2.5) 2.5150
2.5(8 2.52)2141.4l l L l l L L a a l I I I I I I I I I I ⎧++--=⎪⎪
-+++-=-⎨⎪==⎪⎩ 解得
123517l a l L I I A I A
I A
⎧==⎪
=⎨⎪
=⎩ 得
1230152242l l l U I I I V =--+=-
3-15 列出题3-15图(a )、(b )所示电路的结点电压方程。
G 2
G 4
i S5
G 6
G 3
i S7
i S2i S1
βi
R 2R 1
i S1
R 4
R 6
R 3
i i S5
(a ) (b )
题3-15图
解:(a )所选结点的选取和编号如题解3-15(a )所示
题解3-15图
设结点电压为1n u ,2n u ,
3n u
列结点电压方程231223321
212425231
36375()()()n n n S S n n S S n n S S G G u G u G u i i G u G G u i i G u G G u i i
+--=-⎧⎪
-++=-⎨⎪-++=-⎩
(b )所选结点的选取和编号如题解3-15(b )所示
列结点电压方程12152344
12
446111()111()n n S S n n u u i i R R R R u u i R R R β⎧
+-=-⎪+⎪⎨⎪-++=⎪⎩
补充方程:1
23
n u i R R =
+
3-21 用结点电压法求解题3-21图所示电路中电压U 。
+
-
20Ω
I 15I +-
50V
5Ω
4Ω
+
-
U
10Ω
题3-21图
解 指定结点④为参考结点,写出结点电压方程
1123350V 11111-()05
5204415n n n n n u u u u u I
=⎧⎪⎪
++
+-=⎨⎪=⎪⎩ 增补方程 220
n u I =
可以解得 22150
0.5154205n n u u -⨯⨯=
210
32V 0.3125n u ==
电压 232V n u u ==。
题3-21图
①
②
③
④。