2015-2016年湖北省黄冈市黄梅实验学校八年级上学期期中数学试卷及参考答案
湖北省黄冈市八年级上学期数学期中试卷
湖北省黄冈市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·南关期末) 下列各式中,与是同类二次根式的是()A .B .C .D .2. (2分) (2019九上·台州开学考) 下列方程是一元二次方程的是()A . 2x+1=0B . y2+x=1C . x2+1=0D . +x2=13. (2分)方程配方后,下列正确的是()A .B .C .D .4. (2分)(2020·济宁模拟) 若=x﹣5,则x的取值范围是()A . x<5B . x≤5C . x≥5D . x>55. (2分) (2020九下·深圳期中) 定义新运算:a※b= ,则函数y=3※x的图象大致是()A .B .C .D .6. (2分) (2016九上·桐乡期中) 二次函数y=ax2+bx+c的图像如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图像是()A .B .C .D .二、填空题 (共12题;共12分)7. (1分) (2015八下·金乡期中) 已知y= + ﹣3,则2xy的值为________.8. (1分) (2019八上·嘉定期中) 已知a,b是实数,且,问a,b之间有怎样的关系:________.9. (1分) (2020八下·湘桥期末) 已知实数a<1,化简 =________10. (1分)如果最简二次根式与能合并,那么a=________.11. (1分)+=________ .12. (1分)已知方程组的解满足x+y<0,则m的取值范围是________.13. (1分) (2019九上·灌阳期中) 反比例函数的比例系数是________.14. (1分)(2018·玄武模拟) 若关于x的一元二次方程x2-2x+a-1=0有实数根,则a的取值范围为________.15. (1分)(2016·庐江模拟) 在实数范围内分解因式:x3﹣2x=________16. (1分) (2018九上·硚口期中) 某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到只有98万美元,设该厂平均每月下降的百分率是x,则所列方程是________.(可不必化成一般形式!)17. (1分)正比例函数y=﹣5x中,y随着x的增大而________ .18. (1分)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .三、解答题 (共7题;共52分)19. (5分) (2019九上·瑞安开学考)(1)计算:20190+ +2×(-2)-1 .(2)化简:(a+b)2-b(2a+b)20. (5分) (2020九上·德惠期末)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=321. (5分)如图,在△ABC中,,,,点P从点A开始沿AC边向点C 以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?22. (5分) (2016八上·江阴期末) 计算(1)(﹣1)2015﹣ + +(﹣π)0;(2)23. (7分)(2019·大连模拟) 甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事,8:45才出发.甲沿相同的路线自行驾车前往,比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义:________,点B坐标________;CD=________;(2)学校与博物馆之间的距离.24. (10分) (2019九上·赣榆期末) 如图,的面积为,与边上的高之比为,矩形的边在上,点、分别在边、上,且 .(1)求的长;(2)求矩形的面积.25. (15分)(2019·福州模拟) 己知抛物线y=ax2+bx-3a(a>0)与x轴交于A(-1,0)、B两点,与y轴交于点C.(1)求点B的坐标;(2) P是第四象限内抛物线上的一个动点.①若∠APB=90°,且a<3,求点P纵坐标的取值范围;②直线PA、PB分别交y轴于点M、N求证:为定值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共52分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、。
黄冈中学八年级数学试卷
2015~2016学年度第一学期期中考试八年级数学试题一、选择题(共8小题,每小题3分,共24分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卷上将正确答案的代号填写在指定位置.1.下列各组线段中能围成三角形的是 A . 2 cm ,4 cm ,6 cm B . 8 cm ,4 cm ,6 cm C . 14 cm ,7 cm ,6 cm D . 2 cm ,3 cm ,6 cm 2.下列图形中,作△ABC 中AC 边上的高正确的是ECBAECBAECBAECB AA .B .C .D . 3.下列各图中,∠1=60°的是A .B .C .D . 4.下面所给的交通标志中,是轴对称图形的是DCBA5.已知点A 的坐标为(-2,3),则点A 关于x 轴对称的点的坐标为 A .(-2,-3) B .(2,3) C .(2,-3) D .(-2,3) 6.如图,△ACE ≌△DBF ,若AD=8,BC=2,则AB 的长度为A .6B .4C .2D .3FEDCBAD CAEBA第6题图 第7题图 第8题图7.如图,点B 、D 、E 、C 在一条直线上,△ABD ≌△ACE ,∠AEC=110°,则∠DAE 的度数是 A . 30° B .40° C .50° D .60°8.如图,△ABC 中,边AC 的垂直平分线分别交BC 、AC 于D 、E ,△ABC 的周长为30 cm , △ABD 的周长为22 cm ,则AE 的长度为A .8 cmB .4 cmC .2 cmD .3 cm二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答题卷上的指定位置.9.已知三角形两边长分别为3,8,则三角形第三边长c 的取值范围是 . 10.若等腰三角形有两边长分别为4 cm 和7 cm ,则它的周长是 cm . 11.一个n 边形的每个内角都等于140°,则n= .12.已知点A (a ,2)、B (-3,b ),关于y 轴对称,则a +b=___________.13.在△ABC 中,∠B 、∠C 的平分线相交于O ,∠BOC=115°,则∠A 的度数为 . 14.如图,已知AB =CD ,请添加一个条件,使△ABC ≌△CDA ,这个条件是 . DBCA FEDCBA54321第14题图 第15题图 第16题图15.如图,点D 、E 在AB 上,点F 在AC 上,∠1=∠2=25°,∠3=∠4,则∠5= . 16.如图,△ABC 中, ∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E . AB =6cm ,则△DEB 的周长为_____________ cm . 三、解答题(共5小题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本题8分) 如图,电信部门要在S 区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条高速公路m 和n 的距离也必须相等.发射塔应修建在什么位置?请用尺规作图在图上标出它的位置.(要求:画图留下痕迹,但不要求写作法)18.(本题10分)如图,点B 、C 、E 、F 在同一直线上,BE=CF ,AC ⊥BC 于点C ,DF ⊥EF 于点F , AB=DE .求证:(1) △ABC ≌△DEF ; (2) AB ∥DE .19.(本题10分)如图,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC ,CE 、BF 相交于点M . 求证:(1)EC =BF ;(2)EC ⊥BF .F E DC B AM FECBA20.(本题12分)如图所示,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,5)、B (-3,2)、C (-1,1). (1)画出△ABC 关于y 轴对称的△AB 1C 1, 并写出B 1的坐标;(2)将△ABC 向右平移8个单位, 画出平移后的△A 2B 2C 2, 写出B 2的坐标; (3)认真观察所作的图形, 指出△AB 1C 1与△A 2B 2C 2有怎样的位置关系.21.(本题12分)如图,在△ABC 中,D 为BC 边上一点,AB =AD =DC . (1)若AD 平分∠BAC ,求证:AC =BC ; (2)若AD 三等分∠BAC ,求∠B 的度数.第Ⅱ卷 (本卷满分50分)四、选择题(每小题4分,共8分)下列各题中均有四个备选答案,其中有且只有一个正确,请将正确答案的代号填在答卷的指定位置.22.已知直线l 经过点(0,2)且与x 轴平行,则点(6,5)关于直线l 的对称点为 A .(-1,5) B .(6,-1) C .(1,-5) D .(6,1) 23.如图,在△ABC 中,∠BAC=110°,MP 、NQ 分别垂直平分AB 、AC ,交BC 于点P 、Q ,则∠PAQ 等于A .70°B .45°C .40°D .55° 五、填空题(每小题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置. 24.小明在计算一个多边形的内角和时,不小心算漏掉了一个内角,结果算得的内角和是600°,那么这个多边形是 边形. 25.如图,△ABC 中,∠ACB=90°,D 为AB 上任一点,过D 作AB 的垂线,交边AC 于点E ,交BC 的延长线于点F ,∠BAC 、∠BFD 的平分线交于点I ,AI 交DF 于点M ,FI 交AC 于点N ,连接BI .下列结论:①∠BAC=∠BFD ;②∠ENI=∠EMI ;③AI ⊥FI ;④∠ABI=∠FBI ;其中正确的结论是 .(填序号)六、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.I第25题图ABC DEF MNQPN M CBA26.(本题10分)求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.27.(本题12分)在△ABC 中,2B C ∠=∠,点D 在BC 上,连接AD . (1)如图1,若AD ⊥BC ,求证:CD=AB +BD ;(2)如图2,若AD 平分BAC ∠,求证:AC AB BD =+.28.(本题12分)如图1,点A 、B 分别在x 轴负半轴和y 轴正半轴上,点C (2,-2),CA 、CB分别交坐标轴于D 、E ,CA ⊥AB ,且CA =AB . (1)求点B 的坐标;(2)如图2,连接DE ,求证:BD -AE =DE ;(3)如图3,若点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.图2图3DCB A图1 D CB A图22015~2016学年度第一学期期中考试八年级数学答案第Ⅰ卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分) 1~8 BCDAADBB二、填空题(共8小题,每小题3分,共24分)9. 5﹤c ﹤11 10.15或18 11.9 12.5 13.50° 14.BC=DA (或∠BAC=∠DCA ) 15.75° 16.6 三、解答题(共5题,共52分)17.连接AB ,作出线段AB 的垂直平分线 ………………………3分作出∠MON 的平分线 ………………………6分两线交于一点C ,即点C 为发射塔的位置 ………………………8分 18.(1)∵BE=CF ∴BE-CE=CF-CE 即BC=EF ………………………2分∵AC ⊥BC ,DF ⊥EF ∴∠ACB=∠DFE= 90°………………………3分 在Rt △ABC 和Rt △DEF 中AB DEBC EF =⎧⎨=⎩………………………5分 ∴△ABC ≌△DEF (HL) ………………………6分(2) ∵△ABC ≌△DEF ∴∠B=∠DEF ………………………8分 ∴AB ∥DE ………………………10分19.(1)∵AE ⊥AB ,AF ⊥AC ∴∠EAB=∠CAF= 90°∴∠EAB+∠BAC =∠CAF+∠BAC 即∠EAC=∠BAF ………………………2分在△EAC 和△BAF 中AE AB EAC BAF AC AF =⎧⎪∠=∠⎨⎪=⎩………………………4分 ∴ △EAC ≌△BAF (SAS )………………………5分 ∴ EC=BF ………………………6分 (2)设AB 、CE 的交点为O∵ △EAC ≌△BAF ∴∠AEC=∠ABF ………………………7分又∵ ∠AOE=∠BOM ,且∠AOE +∠AEC+∠EAB=∠BOM+∠ABF+∠OMB= 180° ∴ ∠OMB=∠EAB=90°………………………9分 ∴ EC ⊥BF ………………………10分20.(1)画出△AB 1C 1, B 1(3,2) ………………………4分(2)画出△A 2B 2C 2,B 2(5,2) ………………………8分(3) △AB 1C 1与△A 2B 2C 2关于直线x=4对称………………………12分21.(1)∵ AD=DC ∴ ∠C=∠DAC ………………………1分 ∴∠ADB=∠C +∠DAC=2∠DAC ………………………2分∵ AB=AD∴ ∠B=∠ADB=2∠DAC ………………………3分 ∵ AD 平分∠BAC∴ ∠BAC=2∠DAC ………………………4分 ∴ ∠B=∠BAC ………………………5分 ∴ AC=BC ………………………6分(2)分两种情况:①当∠BAD=2∠DAC 时,设∠C=x °,则∠DAC=∠C=x °,∴ ∠BAD=2∠DAC =2x °,∠B=∠ADB=2∠DAC= 2x °………………………8分 ∵ ∠B+∠ADB+∠BAD=180° ∴ ∠B=60°………………………9分 ②当∠DAC=2∠BAD 时,设∠BAD=x °,则∠DAC=∠C =2x °, ∴∠B=∠ADB=2∠DAC=4x °………………………11分∵ ∠B+∠ADB+∠BAD=180° ∴ ∠B=80°………………………12分第Ⅱ卷(本卷满分50分)四、选择题(每小题4分,共8分) 22.B 23.C五、填空题(每小题4分,共8分) 24.6 25.①②③六、解答题(共3题,共34分) 26.画出图形 ………………………1分已知:如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:△ABC 是直角三角形 ………………………4分 证明:∵AD 是BC 边上的中线 ∴BD=CD=21BC ……………………5分 又∵AD=21BC ∴BD=CD=AD ………………………6分 ∴∠B=∠BAD ,∠C=∠CAD ………………………7分又∵∠B +∠C +∠BAD +∠CAD =180° ∴∠B +∠C= 90° ………………………9分 ∴△ABC 是直角三角形 ………………………10分27.(1)方法一:在DC 上取一点E ,使DE=DB ,连接AE .∵AD ⊥BC 且DE=DB ∴ AB=AE ∴∠AEB =∠B=2∠C ………………………3分 又∵∠AEB=∠C +∠CAE ∴ ∠C=∠CAE ∴CE=AE=AB ………………………5分 ∴ DC= CE + DE=AB +BD ………………………6分CBADCBA方法二:延长DB 至点F ,使DF=DC ,连接AF .∵AD ⊥BC 且DF=DC ∴ AF=AC ∴∠F=∠C ∴∠ABC=2∠C=2∠F ………………3分 又∵∠ABC =∠F +∠FAB ∴ ∠F=∠FAB ∴BF=AB ………………………5分 ∴ DC= DF=BF + BD=AB +BD ………………………6分 (其他方法参照给分)(2)方法一:在AC 上取一点E ,使AE=AB ,连接DE .证△ABD ≌△AED , 得BD=ED ………………………9分 然后证DE=CE ∴BD=CE ………………………11分 ∴AC=AE +CE=AB +BD ………………………12分 方法二:延长AB 至点F ,使AF=AC ,连接DF .证△AFD ≌△ACD ,得FD=CD ………………………9分 然后证BF=BD ………………………11分∴AC=AF=AB +BF=AB +BD ………………………12分 (其他方法参照给分)28.(1)过C 作CF ⊥x 轴于点F , 证△ABO ≌△CAF ……………1分 得AO=CF=2,BO=AF=2+2=4,得点B (0,4)……………3分 (2)过C 作CH ⊥y 轴于点H ,CG ⊥CA 交x 轴于点G . 证△ABD ≌△CAG ,得BD=AG ,AD=CG ……………4分 再证△AOD ≌△CHD ,得AD=CD ,从而CD= CG ……………5分 最后证△CDE ≌△CGE ,得DE=GE ……………6分∴BD-AE=AG-AE=GE=DE ……………7分(3)过O 作OQ ⊥OP 交PG 的延长线于点Q ,连接BQ .先证△DOP ≌△BOQ ,得DP=BQ ,∠ODP=∠OBQ ,从而BQ=PF …………9分 接着证∠ODP=∠BEP ,从而∠OBQ =∠BEP ,得BQ ∥PE …………11分 最后证△BQG ≌△FPG ,得QG=PG ……………12分GHQ。
湖北省黄冈市 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.三角形的内角和为()A. 540oB. 360oC. 180oD. 60o2.下列图形中是轴对称图形的是()A. B. C. D.3.如图:AB=CD,AD=BC,则下列结论不正确的是()A. ∠A=∠CB. AB//CDC. AD//BCD. BD平分∠ABC4.下列长度的三条线段,不能组成三角形的是()A. 2、3、4B. 1、2、3C. 3、4、5D. 4、5、65.如图,∠A+∠B+∠C+∠D+∠E的度数为()A. 180oB. 270oC. 360oD. 540o6.如图,已知AC=AD,BC=BD,则有()个正确结论.①AB垂直平分CD②CD垂直平分AB③AB与CD互相垂直平分④CD平分∠ACB.A. 1个B. 2个C. 3个D. 4个7.如图等边△ABC边长为1cm,D、E分别是AB、AC上两点,将△ADE沿直线DE折叠,点A落在A’处,A在△ABC外,则阴影部分图形周长为()A. 1cmB. 1.5cmC. 2cmD. 3cm8.如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A. 1个B. 2个C. 3个D. 4个9.如图△ABC,AC=BC,∠ACB=90°,AD为角平分线,延长AD交BF于E,E为BF中点,下列结论错误的是()A. AD=BFB. CF=CDC. AC+CD=ABD. BE=CF10.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共10小题,共30.0分)11.2的平方根是______.12.点P(-2,3)关于y轴对称的点的坐标是______ .13.已知BD为四边ABCD的对角线,AB∥CD,要使△ABD≌△CDB,利用“SAS”可加条件______ .14.如果△ABC≌△A′B′C′,且∠B=65゜,∠C=60゜,则∠A′=______ .15.已知,如图在坐标平面内,OA⊥OC,OA=OC,A(√3,1),则C点坐标为______.16.△ABC中,BO平分∠ABC,CO平分∠ACB,MN过点O,交AB于M,交AC于N,且MN∥BC,若AB=12cm,AC=18cm,则△AMN周长为______ .17. 已知,如图∠MON =30°,P 为∠MON 平分线上一点,PD ⊥ON 于D ,PE ∥ON ,交OM 于E ,若OE =12cm ,则PD 长为______.18. 如图,A 、B 、C 、D 、E 、F 、G 都在∠O 的边上,OA =AB =BC =CD =DE =EF =FG ,若∠EFG =30°,则∠O = ______ .19. 当(a -12)2+2有最小值时,2a -3= ______ .20. 若关于x 、y 的二元一次方程组{x +2y =−22x+y=3k−1的解满足x +y >1,则k 的取值范围是______.三、解答题(本大题共6小题,共60.0分)21. 解方程组或不等式组.(1){7x +4y =157x+2y=8(2){7x −1≥2x 2x+5≤3(x+2).22. 已知:如图,AB ∥DE ,∠A =∠D ,BE =CF .求证:△ABC ≌△DEF .23. 已知如图,D 、E 分别在AB 和AC 上,CD 、BE 交于O ,AD =AE ,BD =CE .求证:OB =OC .24.已知,D、E分别为等边三角形ABC边上的点,AD=CE,BD、AE交于N,BM⊥AE于M.证明:(1)∠CAE=∠ABD;BN.(2)MN=1225.某商场购进甲、乙两种服装后,都加价40%再标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,这两种服装的进价和标价各是多少元?26.已知,如图坐标平面内,A(-2,0),B(0,-4),AB⊥AC,AB=AC,△ABC经过平移后,得△A′B′C′,B点的对应点B′(6,0),A,C对应点分别为A′,C′.(1)求C点坐标;(2)直接写出A′,C′坐标,并在图(2)中画出△A′B′C′;(3)P为y轴负半轴一动点,以A′P为直角边以A’为直角顶点,在A′P右侧作等腰直角三角形A′PD.①试证明点D一定在x轴上;②若OP=3,求D点坐标.答案和解析1.【答案】C【解析】解:由三角形内角和定理得,三角形的内角和为180°,故选:C.根据三角形内角和定理解答即可.本题考查的是三角形内角和定理的应用,掌握三角形内角和是180°是解题的关键.2.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】D【解析】解:∵在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠A=∠C,∠ABD=∠CDB,∠ADB=∠CBD,∴AB∥CD,AD∥BC故A,B,C选项都正确,D选项错误.故选:D.先根据SSS判定△ABD≌△CDB,再根据全等三角形的性质得出∠A=∠C,AB∥CD,AD∥BC即可.本题主要考查了全等三角形的判定与性质,解决问题的关键是掌握三条边分别对应相等的两个三角形全等.4.【答案】B【解析】解:A、3+2>4,能组成三角形;B、1+2=3,不能组成三角形;C、3+4>5,能够组成三角形;D、4+5>6,能组成三角形.故选:B.根据三角形任意两边之和大于第三边进行分析即可.本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.【答案】A【解析】解:如图,∵∠1=∠C+∠2,∠2=∠B+∠E,∠A+∠1+∠D=180°,∴∠A+∠C+∠B+∠E+∠D=180°,故选A.如图根据三角形的外角的性质,三角形内角和定理可知∠1=∠C+∠2,∠2=∠B+∠E,∠A+∠1+∠D=180°,由此不难证明结论.本题考查三角形的外角的性质、三角形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题,中考常考题型.6.【答案】A【解析】解:∵AC=AD,BC=BD,∴AB垂直平分CD,∴∠CAB=∠DAB,∠CBA=∠DBA,正确的只有①,故选A.根据AC=AD,BC=BD可得AB垂直平分CD,进而得到答案.本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.【答案】D【解析】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故选:D由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.本题属于折叠问题,考查了折叠的性质与等边三角形的性质.折叠问题的实质是“轴对称”性质的运用,解题关键是找出经轴对称变换所得的等量关系.8.【答案】A【解析】解:∵△ABC≌△AEF,∴AC=AF,故①正确,∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC-∠BAF=∠EAF-∠BAF,∴∠FAC=∠BAE,故②错误,③正确,∵AC=AF,∴∠C=∠AFC=50°,∵△ABC≌△AEF,∴∠AFE=∠C=50°,∴∠EFB=180°-50°-50°=80°,错误结论有1个,故选:A.根据全等三角形对应边相等,对应角相等可得AF=AC,∠BAC=∠EAF,∠C=∠AFE,进而可得答案.此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等,对应角相等.9.【答案】D【解析】解:过点E作EH⊥AB于H,作EG⊥AF于G,则∠EHB=∠EGF=90°,∵AD为角平分线,∴EH=EG,又∵E为BF中点,∴EB=EF,∴Rt△EHB≌Rt△EGF(HL),∴∠BEH=∠FEG,∵∠EAH=∠EAG,∠EHA=∠EGA,∴∠AEH=∠AEG,∴∠AEB=∠AEF=90°,即AE⊥BF,又∵∠ACB=90°,∠ADC=∠BDE,∴∠CAD=∠CBF,在△ACD和△BCF中,,∴△ACD≌△BCF(ASA),∴AD=BF,CD=CF,故A、B选项正确;∴AC+CD=AC+CF=AF,又∵AE垂直平分BF,∴AF=AB,∴AC+CD=AB,故C正确;∵EF>CD,∴BE>CF,故D错误.故选:D.先过点E作EH⊥AB于H,作EG⊥AF于G,判定Rt△EHB≌Rt△EGF,再判定△ACD≌△BCF,即可得出AD=BF,CD=CF,再根据AF=AB,可得AC+CD=AB.本题主要考查了全等三角形的判定与性质与等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行判断.10.【答案】C【解析】解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△BCD,△BFH,△ADC,△AEF,△CGH,故选C.根据轴对称图形的定义与判断可知.本题考查轴对称图形的定义与判断,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.11.【答案】±√2【解析】解:2的平方根是±.故答案为:±.直接根据平方根的定义求解即可(需注意一个正数有两个平方根).本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【答案】(2,3)【解析】解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P(-2,3)关于y轴对称的点的坐标是(2,3).根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【答案】AB=CD【解析】解:∵AB∥CD,∴∠ABD=∠CDB,在△ABD与△CDB中,,∴△ABD≌△CDB,故答案为:AB=CD根据全等三角形的判定方法SSS、SAS、ASA、AAS解答即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】55゜【解析】解:∵△ABC≌△A′B′C′,且∠B=65゜,∠C=60゜,∴∠B′=∠B=65°,∠C′=∠C=60°,∴∠A′=180°-∠B′-∠C′=55°.故答案为:55°.根据全等三角形性质得出∠B′=∠B=65°,∠C′=∠C=60°,代入∠A′=180°-∠B′-∠C′求出即可.本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.15.【答案】(-1,√3)【解析】解:过点A作AD⊥x轴于D,过点C作CE⊥x轴与E,则∠ADO=∠COE=90°,∴∠OCE+∠COE=90°,∵OA⊥OC,∴∠AOD+∠COE=90°,∴∠OCE=∠AOD,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD,CE=OD,又∵A(,1),∴OE=AD=1,CE=OD=,∴C点坐标为(-1,).故答案为:(-1,)先过点A作AD⊥x轴于D,过点C作CE⊥x轴与E,构造△OCE≌△AOD,再根据全等三角形的性质,求得OE=AD=1,CE=OD=,进而得出C点坐标.本题主要考查了全等三角形的判定与性质,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.16.【答案】30cm【解析】解:∵BO平分∠ABC,∴∠ABO=∠CBO,∵MN∥BC,∴∠CBO=∠BOM,∴∠ABO=∠BOM,∴BM=OM,同理可得CN=ON,∴△AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,∵AB=6,AC=5,∴△AMN的周长=12+18=30cm.故答案为:30cm.根据角平分线的定义可得∠ABO=∠CBO,根据两直线平行,内错角相等可得∠CBO=∠BOM,从而得到∠ABO=∠BOM,再根据等角对等边可得BM=OM,同理可得CN=ON,然后求出△AMN的周长=AB+AC,代入数据计算即可得解.本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟记性质并求出△AMN的周长=AB+AC是解题的关键.17.【答案】6cm【解析】解:过点P作PC⊥OM,∵PE∥ON,∴∠EPO=∠POD,∵OP是∠AOB的平分线,PD⊥ON,PC⊥OM,∴∠COP=∠DOP,PC=PD,∴∠EOP=∠EPO,∴PE=OE=12cm,∵∠MON=30°,∴∠PEC=30°,∴PC=6cm,∴PD的长为6cm.故答案为:6cm.过点P作PC⊥OM,可得出∠PEC=30°,在直角三角形中,由直角三角形的性质得出PC的长,再由角平分线的性质求得PD的长.本题主要考查了角平分线的性质,平行线的性质以及含30°角的直角三角形的性质,解题时注意:直角三角形中30°的锐角所对的直角边等于斜边的一半.18.【答案】12.5o【解析】解:∵∠O=x,OA=AB=BC=CD=DE=EF=FG,∴∠BAC=2x,∴∠CBD=3x;∴∠DCE=4x,∴∠FDE=5x,∴∠FEG=6x,∵EF=FG,∴∠FEG=∠FGE,∵∠EFG=30°,∴∠FEG=6x=75°,∴x=12.5o,∴∠O=12.5°.故答案为:12.5°.根据三角形内角和定理,三角形外角和内角的关系以及等腰三角形的性质,即可得到结论.本题主要考查了等腰三角形的性质、三角形内角和定理、三角形外角性质.此类题考生应该注意的是三角形内角和定理、外角性质的运用.19.【答案】-2【解析】解:∵(a-)2+2有最小值,∴(a-)2最小,∴当a=时原式取到最小值,当a=时,2a-3=1-3=-2.故答案为:-2.本题可根据(a-)2≥0得出(a-)2+2≥2,因此可知当a=时原式取到最小值.再把a 的值代入2a-3中即可解出本题.本题主要考查了平方数非负数的性质,利用非负数求最大值、最小值是常用的方法之一.20.【答案】k >2【解析】 解:,①-②×2得,y=-k-1;将y=-k-1代入②得,x=2k , ∵x+y >1,∴2k-k-1>1,解得k >2.故答案为:k >2.先解关于x 、y 的方程组,用k 表示出x 、y 的值,再把x 、y 的值代入x+y >1即可得到关于k 的不等式,求出k 的取值范围即可.本题考查的是解二元一次方程组及解一元一次不等式组,根据题意得到关于k 的不等式是解答此题的关键.21.【答案】解:①, ②-①得2y =7,则y =72,把y =72代入①得7x +7=8,解得x =17,则方程组的解是{y =72x=17;②{7x −1≥2x ⋯(2)2x+5≤3(x+2)⋯(1),解(1)得x ≥-1,解(2)得x ≥15,则不等式组的解集是x ≥15.【解析】①利用加减法即可求解;②首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 本题考查了二元一次方程组和不等式组的解集,解二元一次方程组的基本思想是消元,转化为一元一次方程.22.【答案】证明:∵BE =CF ,∴BC =EF ,∵AB ∥DE ,∴∠B =∠DEF ,∵∠A =∠D ,在△ABC 与△DEF 中,{∠A =∠D ∠B =∠DEF BC =EF,∴△ABC ≌△DEF .【解析】根据全等三角形的判定方法SSS 、SAS 、ASA 、AAS 分别进行分析即可. 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】证明:∵AD =AE BD =CE ,∴AB =AC ,在△ABE 和△ACD 中,{AE =AD ∠A =∠A AB =AC ,∴△ABE ≌△ACD (SAS ),∴∠B =∠C ,在△BOD 和△COE 中,{∠B =∠C ∠BOD =∠COE BD =CE ,∴△BOD ≌△COE (AAS ),∴OB =OC .【解析】由SAS 证明△ABE ≌△ACD ,得出∠B=∠C ,由AAS 证明△BOD ≌△COE ,得出对应边相等即可.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BOD ≌△COE 是解题的关键.24.【答案】证明:如图所示:(1)∵△ABC 为等边三角形,∴AC =AB ,∠BAC =∠C =60°,在△ABD 和△CAE 中,{AD =CE ∠BAD =∠C AB =AC,∴△ABD ≌△CAE (SAS ),∴∠CAE =∠ABD ;(2)由(1)得∠CAE =∠ABD ,∵∠CAE +∠BAE =60°,∴∠BAE +∠ABD =60°∴∠BNM =∠BAN +∠ABN =60°,∵BM ⊥AE ,∴∠BMN =90°,∴∠MBN =30°,∴MN =12BN .【解析】(1)与等边三角形的性质得出AC=AB ,∠BAC=∠C=60°,由SAS 证明△ABD ≌△CAE ,得出∠CAE=∠ABD 即可;(2)由(1)得∠CAE=∠ABD ,求出∠BNM=∠BAN+∠ABN=60°,得出∠BMN=90°,∠MBN=30°,由含30°角的直角三角形的性质即可得出结论. 此题考查了全等三角形的判定与性质、等边三角形的性质、含30°角的直角三角形的性质,证明全等三角形是解本题的关键.25.【答案】解:设甲的进价为x 元,乙的进价为y 元,依题意得:{1.4x +1.4y =2100.8×1.4x+0.9×1.4y=182,解得 {y =100x=501.4×50=70,1.4×100=140.答:甲、乙进价分别为50元、100元,标价分别为70元、140元.【解析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=210元,甲种服装的标价×0.8+乙种服装的标×0.9=182元,根据这两个等量关系可列出方程组求解即可.本题考查了二元一次方程组的应用.解题关键是弄清题意,找合适的等量关系,列出方程组.在设未知量时知道到底设哪个更简单,否则较难列出方程组.本题还需注意进价、标价之间的关系.26.【答案】解:(1)∵A(-2,0),B(0,-4),∴AO=2,BO=4,作CH⊥x轴于H,如图1所示:则∠CHA=90°=∠AOB,∴∠ACH+∠CAH=90°,∵AB⊥AC,∴∠BAO+∠CAH=90°,∴∠ACH=∠BAO,在△ACH和△BAO中,{∠CHA=∠AOB∠ACH=∠BAOAC=BA,∴△ACH≌△BAO(AAS),∴AH=BO=4,CH=AO=2,∴OH=AO+AH=6,∴C(-6,-2);(2)∵B(0,-4),B′(6,0),∴△ABC向上平移4个单位长度,再向右平移6个单位长度,∴A′(4,4),C′(0,2);(3)①连B′D,延长DB′交PC′于E,交A′P于F,如图3所示:∵△A′B′C′和△A′PD是等腰直角三角形,∴A′B′=A′C′,A′P=A′D,∠B′A′C′=∠DA′P=90°,∴∠PA′C′=∠DA′B′,在:△A′DB′和△A′PC′中,{A′D=A′P∠B′A′D=∠PA′C′A′B′=A′C′,∴△A′DB′≌△A′PC′(SAS),∴∠A′DB′=∠A′PC′,∵∠PFE=∠A′FD,∴∠PEF=∠PA′D=90°,∴DB′⊥y轴,∴D点在x轴上;②∵△A′DB′≌△A′PC′得,∴B′D=C′P=5,∴OD=11,∴D(11,0).【解析】(1)由点的坐标得出AO=2,BO=4,作CH⊥x轴于H,证出∠ACH=∠BAO,由AAS证明△ACH≌△BAO,得出AH=BO=4,CH=AO=2,求出OH=AO+AH=6,即可得出点C的坐标;C(-6,-2);(2)由B(0,-4)和B′(6,0),得出△ABC向上平移4个单位长度,再向右平移6个单位长度得△A′B′C′,即可得出A′,C′坐标,画出图形即可;(3)①连B′D,延长DB′交PC′于E,交A′P于F,由等腰直角三角形的性质得出A′B′=A′C′,A′P=A′D,∠B′A′C′=∠DA′P=90°,证出∠PA′C′=∠DA′B′,由SAS 证明△A′DB′≌△A′PC′,得出∠A′DB′=∠A′PC′,由三角形内角和得出∠PEF=∠PA′D=90°,得出DB′⊥y轴,即可得出D点在x轴上;②由全等三角形的性质得出B′D=C′P=5,得出OD=11,即可得出答案.本题是三角形综合题目,考查了全等三角形的判定与性质、平移的性质、坐标与图形性质、等腰直角三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
初中数学 湖北省黄冈市黄梅县实验中学八年级上学期期中考模拟试数学考试题 考试卷及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列图案中是轴对称图形的是( )试题2:下列长度的三条线段,不能组成三角形的是( )A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8试题3:等腰三角形中有一个内角等于40°,其余两个内角的度数为( )A.40°,100°B.70°,70°C.40°,100°或70°,70°D.60°,80°试题4:如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( )A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能评卷人得分B.试题5:如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=( )A.360°B.250°C.180°D.140°试题6:当多边形的边数每增加1时,它的内角和与外角和( )A. 都不变B. 内角和增加180°,外角和不变C. 内角和增加180°,外角和减少180°D. 都增加180°试题7:到三角形三边距离相等的点是( )A.三边垂直平分线的交点B.三条高线的交点C.三条中线的交点D.三条角平分线的交点试题8:如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是( )A.AD平分∠BAC B.∠B=∠CC.△ABD是直角三角形D.△ABC是等边三角形试题9:如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD ≌△COB;②CD =AB;③∠CDA=∠ABC;其中正确的结论是( )A.①②B.①②③C.①③D.②③试题10:如图,在△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的度数为( )A.100°B.80°C.70°D.50°试题11:从凸n边形的一个顶点,所画的全部对角线,把这个n变形分割成______个三角形.试题12:一个多边形每一个外角都等于40°,则这个多边形的边数是____.试题13:如图,AD是△ABC的角平分线,若AB=2AC,则S△ABD∶S△ACD=.试题14:如图,将矩形ABCD沿DE折叠,使A点落在BC上F处,若∠EFB=60°,则∠AED=______________.试题15:点P(-3,4)与点P1(a-1,b+2)关于y轴对称,则a=_____,b=______.试题16:在△ABC中,AB=AC,AB的垂直平分线与AC边所在的直线相交所得的锐角为50°,则∠B的度数为_______.试题17:如图,AB∥CD,点P到AB、BC、CD距离都相等,则∠P=_______.试题18:如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,且MN∥BC分别交AB、AC于M、N,若AB=12,AC=18,则图中的等腰三角形有____________;△AMN的周长是_________试题19:求如图星形中, ∠A+∠B+∠C+∠D+∠E的度数.试题20:如图,点C、E分别为△ABD的边BD、AB上两点,且AE=AD,CE=CD,∠D=70°,∠ECD=150°,求∠B的度数.试题21:如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.试题22:如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.试题23:如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
2015-2016年湖北省黄冈中学八年级(上)数学期中试卷带答案解析
2015-2016学年湖北省黄冈中学八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)2﹣3等于()A.﹣6 B.C.D.2.(3分)若a m=3,a n=5,则a m+n=()A.8 B.15 C.45 D.753.(3分)若(x﹣2)0﹣(x﹣3)﹣4有意义,那么x的取值范围是()A.x>2 B.x>3 C.x≠2或x≠3 D.x≠2且x≠34.(3分)化简的结果是()A. B.C.D.5.(3分)当a为任何实数时,下列分式中一定有意义的一个是()A. B. C.D.6.(3分)如果a2﹣8a+m是一个完全平方式,则m的值为()A.﹣4 B.16 C.4 D.﹣167.(3分)如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°8.(3分)等腰三角形的两边长分别为10cm和6cm,则它的周长为()A.26cm B.22cm C.26cm或22cm D.以上都不正确9.(3分)已知,,,则的值是()A.B.C.D.10.(3分)已知实数a,b,c均不为零,且满足a+b+c=0,则++的值是()A.为正B.为负C.为0 D.与a,b,c的取值有关二、填空题(每小题3分,共30分)11.(3分)用科学记数法表示0.000695为.12.(3分)点(2,3)关于y轴对称的点的坐标为.13.(3分)分解因式:ab2﹣4a=.14.(3分)+(﹣2008)0﹣()﹣1+|﹣2|=.15.(3分)已知分式的值为零,那么x的值是.16.(3分)如果x+y=2,x﹣y=8,那么代数式x2﹣y2的值是.17.(3分)若a2+b2=5,ab=2,则(a+b)2=.18.(3分)已知==,则=.19.(3分)若关于x的方程有增根,则m的值为.20.(3分)在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B 点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.三、解答题(共60分)21.(16分)计算和解方程(1)()2÷(2)(x+)÷(1+)(3)﹣2=(4)+=.22.(6分)已知:如图,甲、乙、丙三人做接力游戏,开始时甲站在∠AOB内的P点,乙站在OA上的定点Q,丙站在OB上且可以移动.游戏规则:甲将接力棒转给乙,乙将接力棒转给丙,最后丙跑至终点P处.若甲、乙、丙三人速度相同,试用尺规作图找出丙必须站在OB上的何处,使得他们完成接力所用的时间最短?(不写作法,保留作图痕迹)23.(6分)有一道题“先化简,再求值:,其中”.小明做题时把“”错抄成“”,但他的计算结果也是正确的,请你解释这是怎么回事.24.(6分)已知关于x的方程的解是正数,求m的取值范围.25.(6分)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?26.(7分)如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.27.(13分)如图1,直线l交x轴、y轴分别于A、B两点,A(a,0),B(0,b),且(a﹣b)2+|b﹣4|=0.(1)求A、B两点坐标;(2)如图2,C为线段AB上一点,且C点的横坐标是3.求△AOC的面积;(3)如图2,在(2)的条件下,以OC为直角边作等腰直角△POC,请求出P点坐标;(4)如图3,在(2)的条件下,过B点作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.2015-2016学年湖北省黄冈中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2﹣3等于()A.﹣6 B.C.D.【解答】解:2﹣3==.故选:B.2.(3分)若a m=3,a n=5,则a m+n=()A.8 B.15 C.45 D.75【解答】解:∵a m=3,a n=5,∴a m+n=a m•a n=3×5=15,故选:B.3.(3分)若(x﹣2)0﹣(x﹣3)﹣4有意义,那么x的取值范围是()A.x>2 B.x>3 C.x≠2或x≠3 D.x≠2且x≠3【解答】解:由题意得:x﹣2≠0,x﹣3≠0,解得:x≠2且x≠3.故选:D.4.(3分)化简的结果是()A. B.C.D.【解答】解:原式==;故选:D.5.(3分)当a为任何实数时,下列分式中一定有意义的一个是()A. B. C.D.【解答】解:A、,当a=0时,分母为0.分式无意义.故本选项错误;B、,当a=﹣1时,分母为0,分式无意义.故本选项错误;C、,当a=﹣1时,分母为0,分式无意义.故本选项错误;D、,无论a取何值,分母a2+1≥1.故本选项正确;故选:D.6.(3分)如果a2﹣8a+m是一个完全平方式,则m的值为()A.﹣4 B.16 C.4 D.﹣16【解答】解:根据题意,得:m=42=16,故选:B.7.(3分)如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°【解答】解:∵AB∥CD,∴∠DCF+∠BFC=180°,∴∠BFC=70°,∴∠EFA=70°,又∵△AEF中,AE=AF,∴∠E=∠EFA=70°,∴∠A=180°﹣∠BFC﹣∠EFA=40°.故选:B.8.(3分)等腰三角形的两边长分别为10cm和6cm,则它的周长为()A.26cm B.22cm C.26cm或22cm D.以上都不正确【解答】解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故选:C.9.(3分)已知,,,则的值是()A.B.C.D.【解答】解:∵,∴+=15①,∵,∴+=17②;∵,∴+=16③,∴①+②+③得,2(++)=48,∴++=24,则===,故选:D.10.(3分)已知实数a,b,c均不为零,且满足a+b+c=0,则++的值是()A.为正B.为负C.为0 D.与a,b,c的取值有关【解答】解:∵a+b+c=0,∴b+c=﹣a,c+a=﹣b,a+b=﹣c,∴++=+=+====0.故选:C.二、填空题(每小题3分,共30分)11.(3分)用科学记数法表示0.000695为 6.95×10﹣4.【解答】解:0.000695=6.95×10﹣4;故答案为:6.95×10﹣4.12.(3分)点(2,3)关于y轴对称的点的坐标为(﹣2,3).【解答】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3),故答案为(﹣2,3).13.(3分)分解因式:ab2﹣4a=a(b﹣2)(b+2).【解答】解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).14.(3分)+(﹣2008)0﹣()﹣1+|﹣2|=2.【解答】解:原式=2+1﹣3+2=5﹣3=2.故应填2.15.(3分)已知分式的值为零,那么x的值是1.【解答】解:根据题意,得x2﹣1=0且x+1≠0,解得x=1.故答案为1.16.(3分)如果x+y=2,x﹣y=8,那么代数式x2﹣y2的值是16.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×8=16,故答案为:16.17.(3分)若a2+b2=5,ab=2,则(a+b)2=9.【解答】解:∵(a+b)2=a2+b2+2ab,∴把a2+b2与ab代入,得(a+b)2=5+2×2=9.18.(3分)已知==,则=.【解答】解:∵==,∴设x=2k,y=3k,z=4k,原式==.故答案为:.19.(3分)若关于x的方程有增根,则m的值为1.【解答】解:方程两边都乘(x﹣2),得x﹣3=﹣m,∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.20.(3分)在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B 点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t= 7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.【解答】解:分两种情况:(1)P点在AB上时,如图,∵AB=AC=12cm,BD=CD=BC=×6=3cm,设P点运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD)或(BP+BD)=AP+AC+CD,∴t+3=(12﹣t+12+3)①或(t+3)=12﹣t+12+3②,解①得t=7秒,解②得,t=17(舍去);(2)P点在AC上时,如图,∵AB=AC=12cm,BD=CD=BC=×6=3cm,P点运动了t秒,则AB+AP=t,PC=AB+AC﹣t=24﹣t,由题意得:BD+AB+AP=2(PC+CD)或2(BD+AB+AP)=PC+CD,∴3+t=2(24﹣t+3)①或2(3+t)=24﹣t+3②解①得t=17秒,解②得,t=7秒(舍去).故当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.故答案为:7或17.三、解答题(共60分)21.(16分)计算和解方程(1)()2÷(2)(x+)÷(1+)(3)﹣2=(4)+=.【解答】解:(1)原式=••=;(2)原式=•=x+1;(3)方程两边同乘以x﹣3,得x﹣2(x﹣3)=1,解得:x=5,检验:当x=5时,x﹣3≠0,则原方程的解为x=5;(4)方程两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,∴x=1不是原方程的解,则原方程无解.22.(6分)已知:如图,甲、乙、丙三人做接力游戏,开始时甲站在∠AOB内的P点,乙站在OA上的定点Q,丙站在OB上且可以移动.游戏规则:甲将接力棒转给乙,乙将接力棒转给丙,最后丙跑至终点P处.若甲、乙、丙三人速度相同,试用尺规作图找出丙必须站在OB上的何处,使得他们完成接力所用的时间最短?(不写作法,保留作图痕迹)【解答】解:D点即为丙所在的位置.23.(6分)有一道题“先化简,再求值:,其中”.小明做题时把“”错抄成“”,但他的计算结果也是正确的,请你解释这是怎么回事.【解答】解:原式=[+]•(x+3)(x﹣3)=x2﹣6x+9+6x=x2+9,当x=或x=﹣时,原式=x2+9=2+9=11,则将x=﹣错抄成x=,结果仍然正确.24.(6分)已知关于x的方程的解是正数,求m的取值范围.【解答】解:方程两边都乘以(x﹣1)得,m﹣3=x﹣1,解得x=m﹣2,∵方程的解是正数,∴m﹣2>0且m﹣2≠1,解得m>2且m≠3.∴m的取值范围是:m>2且m≠3.25.(6分)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?【解答】解:设引进新设备前平均每天修路x米.根据题意,得:.(3分)解得:x=60.经检验:x=60是原方程的解,且符合题意.答:引进新设备前平均每天修路60米.(5分)26.(7分)如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.【解答】证明:连接AF,(1分)∵AB=AC,∠BAC=120°,∴∠B=∠C==30°,(1分)∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF(线段垂直平分线上的点到线段两端点的距离相等),∴∠FAC=∠C=30°(等边对等角),(2分)∴∠BAF=∠BAC﹣∠FAC=120°﹣30°=90°,(1分)在Rt△ABF中,∠B=30°,∴BF=2AF(在直角三角形中,30°角所对的直角边等于斜边的一半),(1分)∴BF=2CF(等量代换).27.(13分)如图1,直线l交x轴、y轴分别于A、B两点,A(a,0),B(0,b),且(a﹣b)2+|b﹣4|=0.(1)求A、B两点坐标;(2)如图2,C为线段AB上一点,且C点的横坐标是3.求△AOC的面积;(3)如图2,在(2)的条件下,以OC为直角边作等腰直角△POC,请求出P 点坐标;(4)如图3,在(2)的条件下,过B点作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.【解答】解:(1)∵(a﹣b)2+|b﹣4|=0,∴,解得∴A(4,0),B(0,4);(2)如图1,过C作CD⊥x轴于D.∵x C=3,A(4,0),B(0,4)∴OD=3,OA=OB=4,∴AD=OA﹣OD=1,∠BAO=45°,∴CD=AD=1=OA•CD=2,即△AOC的面积为2;∴S△AOC(3)如图1,过P作PE⊥x轴于E,则∠PEO=∠CDO=90°,∴∠EPO+∠EOP=90°.∵△POC是等腰直角三角形,∴OP=OC,∠POC=90°.∴∠EOP+∠COD=90°.∴∠EPO=∠COD.在△EPO和△DOC中,,∴△EPO≌△DOC(AAS)∴OE=CD=1,PE=OD=3,∴P(﹣1,3);(4)OD=AE.理由如下:如图2,过A作AG⊥x轴于A,交OC延长线于G.∴∠GAO=90°.∵OB⊥OA,BD⊥OC,∴∠BOD=∠BFO=90°,∴∠OBD+∠BOF=∠AOF+∠BOF=90°.∴∠OBD=∠AOF.在△BOD和△OAG中,,∴△BOD≌△OAG(ASA)∴∠BDO=∠G,OD=AG.∵∠CEA=∠BDO,∴∠CEA=∠G.∵∠BAO=45°,∠GAO=90°,∴∠BAO=∠CAG=45°.在△CEA和△CGA中,,∴△CEA≌△CGA(AAS),∴AE=AG,∴OD=AE.。
湖北省 八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A. 2B. 3C. 4D. 83.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形4.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A. 4个B. 3个C. 2个D. 1个5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.B.C.D.6.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.B. 8C. 15D. 无法确定7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5B. 4C. 3D. 28.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A. B. C. D.二、填空题(本大题共7小题,共21.0分)9.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2+3= ______ .10.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为______ .11.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是______ .12.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=cm.13.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠1=20°,则∠2的度数为______.14.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为______ .15.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=______度.三、计算题(本大题共1小题,共11.0分)16.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是____; ②当∠BAD=∠ABD时,x=____;当∠BAD=∠BDA时,x=____;(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.四、解答题(本大题共7小题,共64.0分)17.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.求证:△BAE≌△CAD.18.如图,在△ABC中,∠A=46°,CE是∠ACB的平分线,点B、C、D在同一条直线上,FD∥EC,∠D=42°,求∠B的度数.19.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.21.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE求证:(1)AE=CF;(2)AE∥CF(3)∠AFE=∠CEF.22.已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.(1)求证:△ACE≌△BCD;(2)猜想:△DCE是______ 三角形;并说明理由.23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】C【解析】解:由题意,令第三边为X,则5-3<X<5+3,即2<X<8,∵第三边长为偶数,∴第三边长是4或6.∴三角形的第三边长可以为4.故选C.根据三角形三边关系,可令第三边为X,则5-3<X<5+3,即2<X<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.3.【答案】C【解析】解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.此题可以利用多边形的外角和和内角和定理求解.本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°.4.【答案】B【解析】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.5.【答案】A【解析】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.6.【答案】A【解析】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC•DE=×5×3=7.5.故选:A.如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.7.【答案】B【解析】解:如图,过D作于G,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.【答案】B【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.【答案】19【解析】解:∵点M(2,a+3)与点N(2,2a-15)关于x轴对称,∴a+3+2a-15=0,解得:a=4,∴a2+3=19,故答案为:19.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a+3+2a-15=0,再解方程即可.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.10.【答案】15°【解析】解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°.故答案为:15°.根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°-∠2计算即可得解.本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.11.【答案】65°【解析】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.本题考查了全等三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.12.【答案】7【解析】【分析】此题主要考查线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进行线段的等量代换是正确解答本题的关键.由已知条件,根据垂直平分线的性质得到AD=BD,进行等量代换后可得答案.【解答】解:∵DE为AB边的垂直平分线∴DA=DB∵△ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故答案为7.13.【答案】100°【解析】【分析】本题考查了折叠前后两图形全等,即对应角相等,对应线段相等,也考查了三角形的内角和定理以及外角性质.先根据三角形的内角和定理可求出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,最后利用三角形的内角和定理以及外角性质计算即可.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°,∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠4=120°,∵∠A+∠B+∠4+∠2=360°,∴∠2=100°.故答案为100°.14.【答案】32【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.【答案】36【解析】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n-2).16.【答案】(1)20°;120;60.(2)①当点D在线段OB上时,∵OE是∠MON的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20,若∠BAD=∠BDA=(180°-70°)=55°,则x=35,若∠ADB=∠ABD=70°,则∠BAD=180°-2×70°=40°,∴x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA=35°,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.【解析】解:(1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°.②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAB=140°,∴∠OAC=∠OAB-∠BAD=120°.∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=∠OAB-∠BAD=60°.故答案为:①20°,②120,60.(2)根据D点在线段OB和在射线BE上两种情况来讨论,具体解答请参看答案.利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.本题考查了三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.17.【答案】证明:∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中,∴△BAE≌△CAD(SAS).【解析】根据等腰直角三角形的性质和全等三角形的判定定理SAS可以得出:△BAE≌△CAD.本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.18.【答案】解:∵FD∥EC,∠D=42°,∴∠BCE=∠D=42°,∵CE是∠ACB的平分线,∴∠ACB=2∠BCE=84°,∵∠A=46°,∴∠B=180°-84°-46°=50°.【解析】根据平行线的性质得出∠BCE的度数,进而利用角平分线的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠BCE的度数.19.【答案】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°.【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.【答案】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.【解析】(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.21.【答案】解:(1)∵BF=DE,∴BF+EF=DE+EF,即BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF;(2)由(1)知:△ABE≌△CDF,∴∠AEB=∠CFD,∴AE∥CF;(3)在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠DEC,∴∠AFE=∠CEF.【解析】(1)易证BE=DF,即可求证△ABE≌△CDF,即可解题;(2)根据(1)中的△ABE≌△CDF可得∠AEB=∠CFD,即可解题(3)根据全等三角形的性质得到∠AFB=∠DEC,根据邻补角的定义即可得到结论.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABE≌△CDF是解题的关键.22.【答案】等腰直角【解析】(1)证明:∵∠ACB=90°,AC=BC,∴∠B=∠2=45°.∵AE⊥AB,∴∠1+∠2=90°.∴∠1=45°.∴∠1=∠B.在△ACE和△BCD中,∵∴△ACE≌△BCD(SAS).(2)猜想:△DCE是等腰直角三角形;理由说明:∵△ACE≌△BCD,∴CE=CD,∠3=∠4.∵∠4+∠5=90°,∴∠3+∠5=90°.即∠ECD=90°.∴△DCE是等腰直角三角形.(1)由已知可得△ABC是等腰直角三角形,由AE⊥AB即可得到∠1=∠B,从而可利用SAS判定△ACE≌△BCD.(2)根据已知可猜想其为等腰直角三角形,由第一问可得CE=CD,∠3=∠4,根据等角的性质可推出∠ECD=90°,从而即得到了答案.此题主要考查学生对全等三角形的判定方法及等腰直角三角形的判定的综合运用.23.【答案】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【解析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。
湖北省黄冈市2015-2016学年区学校八年级上学期期末数学试卷及参考答案
A. =
B. =
C. =
D. =
9. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1 , P2 , P3 , P4四个点中找出符合条件的点 P,则点P有( )
A . 1个 B . 2个 C . 3个 D . 4个 二、填空题
10. 当1<x<2,化简 + 的值是________. 11. 如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:________,使△ABC≌△FED.
18. 解方程:
.
19. 如图,点B,F,C,E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
20. 先化简,再求值:
÷(x﹣2﹣
),其中x=3.
21. 如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).
(1) 在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标. (2) 求△ABC的面积.
16. 如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE 的延长线于点F,则DF的长为________.
三、解答题
Байду номын сангаас
17. 化简与解方程
(1) 化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);
(2) 解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.
A . AB=DC,AC=DB B . AB=DC,∠ABC=∠DCB C . BO=CO,∠A=∠D D . AB=DC,∠A=∠D 6. 若 = ,则 的值为( )
湖北省黄冈市八年级上学期数学期中考试试卷
湖北省黄冈市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A .B .C .D .2. (2分) (2017七下·东莞期中) 下列各式中无意义的式子是()A .B .C .D .3. (2分) (2019八下·武昌月考) 满足下列条件的不是直角三角形的是A . 三边之比为1:2:B . 三边之比1::C . 三个内角之比1:2:3D . 三个内角之比3:4:54. (2分) (2017九上·双城开学考) 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A . 6B . 4C . 3D . 35. (2分) (2017八上·潮阳月考) 如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A . PA=PBB . PO平分∠APBC . AB垂直平分OPD . OA=OB6. (2分) (2018八上·鄂伦春月考) 如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:()A . 带①去B . 带②去C . 带③去D . 带①和②7. (2分)等腰三角形两边长分别为4,8,则它的周长为()A . 20B . 16C . 20或16D . 不能确定8. (2分)观察图,在下列四种图形变换中,该图案不包含的变换是()A . 旋转B . 轴对称C . 位似D . 平移二、填空题 (共10题;共13分)9. (1分) (2018八上·东台月考) 已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=________度.10. (1分) 36的算术平方根是________11. (2分)如图14所示,在△ABC中,AD⊥BC ,请你添加一个条件,写出一个正确结论(不在图中添加辅助线).条件是________ ,结论为________ .12. (3分)与一条线段两个端点距离相等的点,在这条线段的________上;用此判定可证线段的________关系和________关系13. (1分) (2019八下·武昌期中) 如图,□ABCD和□DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为________14. (1分) (2018八下·深圳月考) 如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有________个.15. (1分)(2017·广东模拟) 矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于________.16. (1分)(2019·湟中模拟) 已知:如图,在Rt△ABC中,∠B=90°,D、E分别是边AB、AC的中点,DE=4,AC=10,则AB=________.17. (1分) (2019八上·玄武期末) 如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为________.18. (1分) (2017九上·萧山月考) 在平面直角坐标系中,已知点A ,点B ,点C是y 轴上的一个动点,当∠BCA=30°时,点C的坐标为________.三、解答题 (共8题;共57分)19. (5分)(2019·梧州模拟) (﹣2)2+ ﹣4sin45°.20. (6分)(2020·上海模拟) 已知:在平行四边形ABCD中,AB︰BC=3︰2.(1)根据条件画图:作∠BCD的平分线,交边AB于点E,取线段BE的中点F,连接DF交CE于点G.(2)设,那么向量 =________.(用向量、表示),并在图中画出向量在向量和方向上的分向量.21. (5分)已知,如图,等边三角形ABC,延长BA至D,延长BC至E,使AD=BE,根据以上条件,你能判断出CD与DE的关系吗?请给予说明.22. (10分) (2018八下·宝安期末) 如图,AC是平行四边形ABCD的对角线,E、H分别为边BA和边BC延长线上的点,连接EH交AD、CD于点F、G,且EH∥AC.(1)求证:EG=FH;(2)若△ACD是等腰直角三角形,∠ACD=90°,F是AD的中点,AD=6,连接BF,求BF的长.23. (5分) (2016八上·宁城期末) 如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.24. (9分) (2018八上·郑州期中) 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如 .善于思考的小明进行了以下探索:设 (其中a、b、m、n均为整数),则有 .∴ .这样小明就找到了一种把类似的式子化为平方式的方法。
湖北省黄冈市黄梅县实验中学八年级上学期期中考试数学
(满分120分闭卷考试时间:120分钟)一、选择题(下列各题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.下列图案中是轴对称图形的是( )2.下列长度的三条线段,不能组成三角形的是( )A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83.等腰三角形中有一个内角等于40°,其余两个内角的度数为( )A.40°,100°B.70°,70°C.40°,100°或70°,70°D.60°,80°4.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( )A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能5.如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=( ) A.360°B.250°C.180°D.140°6.当多边形的边数每增加1时,它的内角和与外角和( )A. 都不变B. 内角和增加180°,外角和不变C. 内角和增加180°,外角和减少180°D. 都增加180°7.到三角形三边距离相等的点是( )A.三边垂直平分线的交点B.三条高线的交点C.三条中线的交点D.三条角平分线的交点8.如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是( ) A.AD平分∠BAC B.∠B=∠CC.△ABD是直角三角形D.△ABC是等边三角形9.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是( )A.①②B.①②③C.①③D.②③第9题图B ACD B第4题图BACCB第8题图 第9题图 第10题图10.如图,在△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =20°,∠DAC =30°,则∠BDC 的度数为( )A .100°B .80°C .70°D .50° 二、填空题(每小题3分,共24分)11.从凸n 边形的一个顶点,所画的全部对角线,把这个n 变形分割成______个三角形. 12.一个多边形每一个外角都等于40°,则这个多边形的边数是____. 13.如图,AD 是△ABC 的角平分线,若AB =2AC ,则S △ABD ∶S△ACD= .第13题图第14题图第17题图14.如图,将矩形ABCD 沿DE 折叠,使A 点落在BC 上F 处,若∠EFB =60°,则∠AED =______________. 15.点P (-3,4)与点P 1(a -1,b +2)关于y 轴对称,则a =_____,b =______.16.在△ABC 中,AB =AC ,AB 的垂直平分线与AC 边所在的直线相交所得的锐角为50°,则∠B 的度数为_______.17.如图,AB ∥CD ,点P 到AB 、BC 、CD 距离都相等,则∠P =_______18.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O , 且MN ∥BC 分别交AB 、AC 于M 、N ,若AB =12,AC =18,则图中的等腰三角形有____________;△AMN 的周长是_________ 第18题图三、解答题(共66分) 19.(8分)求如图星形中, ∠A +∠B +∠C +∠D +∠E 的度数.20.(8分)如图,点C 、E 分别为△ABD 的边BD 、AB 上两点,且AE =AD ,CE =CD ,∠D =70°,∠ECD=150°,求∠B 的度数.21.(8分)如图,P 为∠MON 平分线上一点,PA ⊥OM 于A ,PB ⊥ON 于B ,求证:OP 垂直平分AB .22.(10分)如图,△ABC 中,∠C =2∠A ,BD 平分∠ABC 交AC 于D ,求证:AB =CD +BC .23.(10分)如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
湖北省黄冈市八年级上学期数学期中考试试卷
湖北省黄冈市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2019·盘锦) 下列图形既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (1分) (2018九上·铜梁期末) 如果三角形的两边长分别是方程x2﹣8x+15=0的两根,那么这个三角形的周长可能是()A . 17B . 14C . 10D . 93. (1分)(2019·濮阳模拟) 如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A . 105°B . 110°C . 115°D . 120°4. (1分) (2018八上·湖州期中) 以下说法正确的是()①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A . ①②B . ②④C . ①③D . ①③④5. (1分) (2016八上·望江期中) 在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (1分) (2017八上·陕西期末) 如图,在中,,,,分别是,,上的点,且,,若,则的度数为()A .B .C .D .7. (1分) (2018七上·襄州期末) 下列物品不是利用三角形稳定性的是()A . 自行车的三角形车架B . 三角形房架C . 照相机的三脚架D . 放缩尺8. (1分) (2019八上·合肥月考) 如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A . 一处B . 二处C . 三处D . 四处9. (1分)如图所示,△ABC≌△DEC,则不能得到的结论是()A . AB=DEB . ∠A=∠DC . BC=CDD . ∠ACD=∠BCE10. (1分)如图,O为△ABC内任意一点,OD⊥AB,OE⊥AC,OF⊥BC,若OD=OE=OF,连接OA,OB,OC,下列说法不一定正确的是()A . △BOD≌△BOFB . ∠OAD=∠OBFC . ∠COE=∠COFD . AD=AE二、填空题 (共6题;共6分)11. (1分)如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为________步.12. (1分) (2020七下·厦门期末) 一个n边形的内角和是720°,则n=________.13. (1分) (2019八上·嘉兴期末) 如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,要使△ABC≌△DEF,应添加的一个条件是________.(不添加任何字母)14. (1分) (2019八上·松桃期中) 若(a﹣5)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为________.15. (1分)小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第________块.16. (1分) (2020八下·哈尔滨月考) 如图,把一张长方形纸条ABCD沿AF折叠.已知∠ADB=25°,AE∥BD,则∠BAF=________.三、解答题(一) (共3题;共4分)17. (1分) (2020八上·阳东月考) 已知,如图AB//CD,EG与AB,CD分别交于F,G,∠EAB=31°,∠EGD =70°,则∠AEG是多少度?18. (1分) (2020八下·湘桥期末) 如图, ABCD中,E,F分别为CD,AB上的点,且DE=BF。
湖北省黄梅实验学校2016-2017学年八年级上期中测试题含答案
2016年秋八年级(上)期中考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是( )A.B.C.D.2.以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSS B.SAS C.AAS D.ASA4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC5.三角形中,到三边距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点6.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=( )A.30°B.35°C.40°D.50°7.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为( )A.30°B.30°或150°C.60°或150°D.60°或120°8.下列图形中有稳定性的是( )A.正方形B.长方形C.直角三角形D.平行四边形9.正n边形的内角和等于1080°,则n的值为( )A.7 B.8 C.9 D.1010.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于( )A.90°B.75°C.70°D.60°二、填空题:本大题共10小题,每小题3分,共30分。
湖北省黄冈市八年级数学上学期期中试卷(含解析) 新人教版(1)
2016-2017学年湖北省黄冈市八年级(上)期中数学试卷一.选择题1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10 B.11 C.13 D.11或133.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm4.下列各项中是轴对称图形,而且对称轴最多的是()A.等腰梯形 B.等腰直角三角形C.等边三角形D.直角三角形5.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.56.等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40° B.80° C.100°D.100°或40°7.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于D点,∠ADC=130°,那么∠CAB的大小是()A.80° B.50° C.40° D.20°8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.29.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.1 个二.填空题11.若n边形内角和为900°,则边数n= .12.点P(1,﹣1)关于x轴对称的点的坐标为P′.13.等腰三角形的两边长分别是4cm和8cm,则它的周长是.14.若正多边形的一个内角等于140°,则这个正多边形的边数是.15.若等腰三角形的周长为26cm,一边为11cm,则腰长为.16.在Rt△ABC中,已知∠C=90°,∠B=60°,BC=2.3,那么∠A= ,AB= .17.等腰三角形一腰上的高与腰长之比是1:2,则该三角形的顶角的度数是.18.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为.三、解答题(共66分19.(8分)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.20.(8分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.21.(8分)如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.22.(9分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.23.(9分)如图,在△ABE中,AD⊥BE于D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为22cm,求 DE的长.24.(12分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.25.(12分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.2016-2017学年湖北省黄冈市英才学校八年级(上)期中数学试卷参考答案与试题解析一.选择题1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【解答】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10 B.11 C.13 D.11或13【考点】等腰三角形的性质.【分析】由若等腰三角形的一边长等于5,另一边长等于3,分别从腰长为5,底边长为3与底边长为3,腰长为5去分析求解即可求得答案.【解答】解:若腰长为5,底边长为3,∵5+3>5,∴5,5,3能组成三角形,则它的周长等于:5+5+3=13,若底边长为3,腰长为5,∵3+3=6>5,∴3,3,5能组成三角形.∴它的周长为11或13.故选D.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.3.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边用排除法即可得出答案.【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.【点评】本题考查了三角形三边关系,属于基础题,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.4.下列各项中是轴对称图形,而且对称轴最多的是()A.等腰梯形 B.等腰直角三角形C.等边三角形D.直角三角形【考点】轴对称图形;等腰三角形的性质;等边三角形的性质;直角三角形的性质.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.据此作答.【解答】解:A、等腰梯形是轴对称图形,有一条对称轴;B、等腰直角三角形是轴对称图形,有一条对称轴;C、等边三角形是轴对称图形,有三条对称轴;D、直角三角形不一定是轴对称图形.则对称轴最多的是等边三角形.故选C.【点评】考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.同时要熟记一些常见图形的对称轴条数.5.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.5【考点】全等三角形的性质.【分析】根据△MNP≌△MNQ可得MP=MQ,已知PM=6,即可得解.【解答】解:∵△MNP≌△MNQ,∴MP=MQ,已知PM=6,∴MQ=6.故选C.【点评】本题考查了全等三角形的性质,熟练找出两个全等三角形的对应边是解此题的关键.6.等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40° B.80° C.100°D.100°或40°【考点】等腰三角形的性质.【分析】等腰三角形的底角为40°,则顶角为180°﹣40°﹣40°=100°.【解答】解:∵等腰三角形的底角为40°,∴另一底角也为40°,∴顶角为180°﹣40°﹣40°=100°.故选C.【点评】本题运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.7.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于D点,∠ADC=130°,那么∠CAB的大小是()A.80° B.50° C.40° D.20°【考点】三角形内角和定理.【分析】设∠CAB=x,根据已知可以分别表示出∠ACD和∠DAC,再根据三角形内角和定理即可求得∠CAB的度数.【解答】解:设∠CAB=x∵在△ABC中,AB=AC∴∠B=∠ACB=(180°﹣x)∵CD是∠ACB的角平分线,AD是∠BAC的角平分线∴∠ACD=(180°﹣x),∠DAC=x∵∠ACD+∠DAC+∠ADC=180°∴(180°﹣x)+x+130°=180°∴x=20°故选D.【点评】此题主要考查三角形内角和定理:三角形内角和是180°.8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.2【考点】三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.【分析】过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.【解答】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.【点评】本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.9.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等【考点】等边三角形的性质.【分析】根据等边三角形的性质及判定对各个选项进行分析,从而得到答案.【解答】解:A,正确,符合等边三角形三线合一性质;B,正确,符合等边三角形的判定;C,不正确,也可能是钝角或等腰直角三角形;D,正确,符合等边对等角及等角对等边的性质.故选C.【点评】此题主要考查学生对等边三角形的判定及性质的理解及运用能力.10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.1 个【考点】三角形的外角性质;平行线的判定与性质;三角形内角和定理.【分析】①由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等两直线平行得出结论正确.②由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出结论∠ACB=2∠ADB,③在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出结论∠ADC=90°﹣∠ABD;④由∠BAC+∠ABC=∠ACF,得出∠BAC+∠ABC=∠ACF,再与∠BDC+∠DBC=∠ACF相结合,得出∠BAC=∠BDC,即∠BDC=∠BAC.【解答】解:①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴∠BAC+∠ABC=∠ACF,∵∠BDC+∠DBC=∠ACF,∴∠BAC+∠ABC=∠BDC+∠DBC,∵∠DBC=∠ABC,∴∠BAC=∠BDC,即∠BDC=∠BAC.故④正确.故选C.【点评】本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.二.填空题11.若n边形内角和为900°,则边数n= 7 .【考点】多边形内角与外角.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.12.点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1),故答案为:(1,1).【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,此时周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.若正多边形的一个内角等于140°,则这个正多边形的边数是9 .【考点】多边形内角与外角.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.15.若等腰三角形的周长为26cm,一边为11cm,则腰长为7.5cm或11cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.16.在Rt△ABC中,已知∠C=90°,∠B=60°,BC=2.3,那么∠A= 30°,AB= 4.6 .【考点】含30度角的直角三角形.【分析】先利用直角三角形的两个锐角的和为90°,可得∠A=30°,再利用直角三角形中30°角对应的直角边等于斜边的一半,即可得AB=2BC.【解答】解:在Rt△ABC中,∠C=90°,∠B=60°,所以∠A=30°,又BC=2.3,所以AB=4.6.【点评】本题主要考查的是解直角三角形,利用数形结合有利于更好的解决此类问题.17.等腰三角形一腰上的高与腰长之比是1:2,则该三角形的顶角的度数是30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】分两种情况画出图形;①高在三角形的内部,②高在三角形的外部,再根据30°角所对的直角边等于斜边的一半解答即可.【解答】解:①如图1,当高BD在三角形的内部时,∵高BD是腰长AB的一半,∴∠A=30°,②如图2,当高CD在三角形的外部时,∵高CD是腰长AC的一半,∴∠1=30°,∴∠BAC=180°﹣30°=150°,∴该三角形的顶角的度数是30°或150°.故答案为:30°或150°.【点评】本题考查了30°角所对的直角边等于斜边的一半的性质,用到的知识点是等腰三角形两腰相等的性质,注意分腰在三角形内部与外部两种情况讨论求解.18.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为120°.【考点】三角形内角和定理.【分析】根据半角三角形的定义得出β的度数,再由三角形内角和定理求出另一个内角即可.【解答】解:∵α=20°,∴β=2α=40°,∴最大内角的度数=180°﹣20°﹣40°=120°.故答案为:120°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题(共66分19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y 轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】本题考查了轴对称作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.20.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.【考点】全等三角形的判定与性质.【分析】由全等三角形的判定定理SAS证得△ABC≌△CED,则该全等三角形的对应边相等,即AC=CD.【解答】证明:如图,∵AB∥ED,∴∠ABC=∠CED.∵在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴AC=CD.【点评】本题考查了全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明21.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.【考点】等腰三角形的性质;三角形内角和定理.【分析】由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得∠BAC 的度数.【解答】解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.22.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【考点】等边三角形的性质.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.23.如图,在△ABE中,AD⊥BE于D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为22cm,求 DE的长.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AC=AB=CE,根据三角形的周长得出AC+DC=11,求出CD+CE即可.【解答】解:∵BD=DC,AD⊥BE,∴AB=AC,∵C在AE的垂直平分线上,∴AC=CE,∵△ABC的周长是22cm,∴AC+AB+BD+CD=22cm,∴AC+CD=11cm,∴DE=CD+CE=CD+AC=11cm.【点评】本题考查了线段垂直平分线性质,关键是得出DE=CD+CE=AC+CD和求出AC+CD的值.24.(12分)(2007•乐山)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【点评】本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.25.(12分)(2013秋•新洲区期末)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.【考点】全等三角形的判定与性质.【分析】(1)如图1,连接EM.根据AE⊥AB,AE=MB,AM=CB,可求出△AEM≌△BMC;根据直角三角形的性质可知△EMC是等腰直角三角形;再结合平行线的性质可知∠AFM=45°.(2)如图2,连接EM.同(1)△AEM≌△BMC,则EM=MC,∠MEA=∠CMB=15°.易证△EMC 是等边三角形,故∠ECM=60°,又由AN∥CE得到:∠AFM=∠ECM=60°.【解答】解:(1)连接EM.∵AE⊥AB,∴∠EAM=∠B=90°.在△AEM与△BMC中,,∴△AEM≌△BMC(SAS).∴∠AEM=∠BMC,EM=MC.∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90.∴∠EMC=90°.∴△EMC是等腰直角三角形.∴∠MCE=45°∵AN∥CE,∴∠AFM=∠MCE=45°;解:(2)如图2,连接ME.同(1)△AEM≌△BMC(SAS),则EM=MC,∠MEA=∠CMB=15°.又∵∠MEA+∠EMA=90°,∴∠EMC=60°,∴△EMC是等边三角形,∴∠ECM=60°,∵AN∥CE∴∠AFM+∠ECM=180°,∴∠AFM=120°.【点评】本题考查了全等三角形的判定与性质.解答此题的关键是作出辅助线,然后结合全等三角形、等腰三角形及平行线的性质解答,有一定难度.。
湖北省黄冈市八年级数学上学期期中试题(扫描版)
答案:一.选择题1.D ;2.C ;3.C ;4.B ;5.A ;6.B ;7. D ;8.C .二.填空题9.720°; 10.(-2,-3); 11.4; 12.115°;13.20; 14.8; 15. (﹣1,3)或(﹣1,﹣1)或(4,﹣1).三.解答题(共12小题)16.证明:∵AF=DC,∴AF+CF=DC +CF,即AC=DF .在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠=F AC A AB D D DE ,∴△ABC≌△DEF (SAS),∴∠ACB=∠DFE ,∴BC∥EF.17.解:(1)平移后点A 的对应点A 1的坐标是:(4,0);(2)翻折后点A 对应点A 2坐标是:(2,3);(3)将△ABC 向左平移2个单位,则△ABC 扫过的面积为:S △A′B′C′+S 平行四边形A′C′CA =×3×5+2×3=13.5.18.解:选②BC=DE,∵∠1=∠2,∠3=∠4,∴∠C =∠E ,在△ABC 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=E BC E C AE AC D ,∴△ABC ≌△ADE (SAS ).19.解: 如图所示,20.(1)证明:过点M作M E⊥AD于E,∵∠B=∠C=90°,∴MB⊥A B,MC⊥CD,∵DM平分∠ADC,M E⊥AD, MC⊥CD,∴ME=MC,∵M是BC的中点,∴MC=MB,∴MB=ME,又∴MB⊥A B,M E⊥AD,∴AM平分∠DAB.(2)可证Rt△ABM≌Rt△AEM, Rt△CDM≌Rt△EDM,∴AB=AE,CD=ED,∴AB+CD=AE+ED=AD.21.解:(1)连接DB、DC,∵DG⊥BC且平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.∠AED=∠BED=∠ACD=∠DCF=90°在Rt△DBE和Rt△DCF中,Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AC+CF=AF,∴AE=AC+CF.∵AE=AB﹣BE,∴AC+CF=AB﹣BE∵AB=8,AC=6,∴6+BE=8﹣BE,∴BE=1,∴AE=8﹣1=7.即AE=7,BE=1.22.1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC +CE= BE+ AD=7a=42,∴a=6,答:砌墙砖块的厚度a为6cm.23.解:(1)BD=AC,BD⊥AC,(2)不发生变化,理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF ,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD ⊥AC ;(3)①BD=AC ,理由是:∵△ABE 和△DEC 是等边三角形,∴AE=BE ,DE=EC ,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED ,∴∠BED=∠AEC ,在△BED 和△AEC 中,∴△BED ≌△AEC ,∴BD=AC .②能;由△BED ≌△AEC 可知,∠BDE=∠ACE ,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF )=180°﹣(∠ACE+∠EDC+∠DCF )=180°﹣(60°+60°)=60°,即BD 与AC 所成的锐角的度数为60°.24.解:(1)∵|m ﹣n ﹣4|+82 n =0,∴m ﹣n ﹣4=0,2n ﹣8=0,解得:n=4,m=8,∴OA=8,OB=4;(2)分为两种情况:①当P 在线段OA 上时,AP=t ,PO=8﹣t ,∴△BOP 的面积S=×(8﹣t )×4=-2t+16, ∵若△POB 的面积不大于4且不等于0,∴0<-2t+16≤4,解得:6≤t <8;②当P 在线段OA 的延长线上时, AP=t ,PO=t ﹣8,∴△BOP 的面积S=×(t ﹣8)×4=2t ﹣16, ∵若△POB 的面积不大于4且不等于0,∴0<2t ﹣16≤4,解得:8<t ≤10;即t 的范围是6≤t ≤10且t ≠8;(3)当OP=OB=4时,分为两种情况:①当P 在线段OA 上时,t=4,②当P 在线段OA 的延长线上时, t=12;即存在这样的点P ,使△DOP ≌△AOB ,t 的值是4或12。
湖北省黄梅2015-2016学年八年级上《轴对称》单元测试题含答案
轴对称单元测试题一.选择题(30分)1.下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.2.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A.15:01 B.10:51 C.10:21 D.12:013.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)4.如图,△ABC和△A′B′C′关于直线L对称,下列结论中正确的有()(1)△ABC≌△A′B′C′,(2)∠BAC=∠B′A′C′,(3)直线L垂直平分CC′(4)直线BC和B′C′的交点不一定在直线L上.A.4个B.3个C.2个D.1个5.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°(第1题图) (第4题图) (第5题图) (第6题图)6.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A.14cm B.13cm C.11cm D.9cm7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm8.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P 点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP9.如图,在△ABC中,AB的中垂线交BC于点E,若BE=2,则A、E两点的距离是()A.4 B.2 C.3 D.10.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB二.填空题(24分)11.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.12.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB 的中点E处,则△BEC的周长为.13.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为.14.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.15.点P(3a+6,3﹣a)关于x轴的对称点在第四象限内,则a的取值范围为.16.在△ABC中,AB、AC的垂直平分线分别交BC于点D、E.若BC=10,DE=4,则AD+AE=.17.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有.(填序号).①AC⊥BD;②AC、BD互相平分;③AC平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD 的面积为.18.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=度,若△ADE的周长为19cm,则BC=cm.三.解答题(66分)19.(6分)已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.20.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标;(3)求△ABC的面积.(9分)21.如图是由三个相同的小正方形组成的图形,请你用四种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.(8分)22.如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB.(1)说明:其中有几对三角形成轴对称,并指出其对称轴;(2)连接AO,试判断直线OA与线段BC的关系,并说明理由.(8分)23.如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.(6分)24.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.(7分)25.已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD 是BC的中垂线.(7分)26.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.(7分)27.如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.(8分)轴对称单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•梧州)下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.(2015秋•合川区期中)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A.15:01 B.10:51 C.10:21 D.12:01【解答】解:电子表的实际时刻是10:21.故选:C.3.(2016•呼伦贝尔)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.4.如图,△ABC和△A′B′C′关于直线L对称,下列结论中正确的有()(1)△ABC≌△A′B′C′(2)∠BAC=∠B′A′C′(3)直线L垂直平分CC′(4)直线BC和B′C′的交点不一定在直线L上.A.4个B.3个C.2个D.1个【解答】解:(1)正确;(2)正确;(3)正确;(4)“直线BC和B′C′的交点不一定在直线L上”,应是一定在直线L上的.故选B.5.(2016•黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.6.(2016春•宿州校级期末)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A.14cm B.13cm C.11cm D.9cm【解答】解:∵DE是边AB的垂直平分线∴BD=AD∴△ADC的周长为AC+DC+AD=AC+BC=5+8=13cm.故选B7.(2016春•宿州校级期中)已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm【解答】解:∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是70cm和48cm,∴AB=70﹣48=22cm,∴BC=48﹣22=26cm,即△ABC的腰和底边长分别为22cm和26cm.故选:C.8.(2015秋•川汇区校级期末)如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN 的同一侧,BC交MN于P点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP【解答】解:∵点P在线段AB的垂直平分线上,∴PA=PB.∵BC=PC+BP,∴BC=PC+AP.故选C.9.(2015春•高青县期末)如图,在△ABC中,AB的中垂线交BC于点E,若BE=2,则A、E两点的距离是()A.4 B.2 C.3 D.【解答】解:连接AE,∵DE是AB的中垂线,∴EA=EB=2,故选:B.10.(2015秋•莆田校级期中)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.二.填空题(共8小题)11.(2007秋•武昌区期末)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入1号球袋.【解答】解:如图,该球最后将落入1号球袋.12.(2016春•沭阳县期末)如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD 的对称点恰好落在AB的中点E处,则△BEC的周长为12.【解答】解:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=AB=4.∴△BEC的周长12.故答案为:12.13.(2015春•开江县期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为 4.5cm.【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.14.(2015秋•岳池县期中)如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为9cm2.【解答】解:∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.15.(2015春•巴南区校级期末)点P(3a+6,3﹣a)关于x轴的对称点在第四象限内,则a的取值范围为﹣2<a<3.【解答】解:∵P关于x轴的对称点在第四象限内,∴点P位于第一象限.∴3a+6>0①,3﹣a>0②.解不等式①得:a>﹣2,解不等式②得:a<3,所以a的取值范围是:﹣2<a<3.故答案为:﹣2<a<3.16.(2013秋•昆山市校级月考)在△ABC中,AB、AC的垂直平分线分别交BC于点D、E.若BC=10,DE=4,则AD+AE=6或14.【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,∴如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.17.(2016•南京一模)两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有①③⑤.(填序号).①AC⊥BD;②AC、BD互相平分;③AC平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为.【解答】解:∵在△ABC与△ADC中,,∴△ABC≌△ADC(SSS).∴∠BAO=∠DAO,∠BCO=∠DCO,即AC平分∠BCD.故③正确;∵AC平分∠BAD、∠BCD,△ABD与△BCD均为等腰三角形,∴AC、BD互相垂直,但不平分.故①正确,②错误;当AC2≠AB2+BC2时,∠ABC≠90°.同理∠ADC≠90°.故④错误;∵AC、BD互相垂直,∴筝形ABCD的面积为:AC•BO+AC•OD=AC•BD.故⑤正确;综上所述,正确的说法是①③⑤.故答案是:①③⑤.18.(2015春•青羊区校级月考)如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC 于D、E,若∠DAE=50°,则∠BAC=115度,若△ADE的周长为19cm,则BC=19cm.【解答】解:①∵DM、EN分别垂直平分AB和AC,∴AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC(等边对等角),∵∠BAC=∠DAE+∠BAD+∠CAE,∴∠BAC=∠DAE+∠B+∠C;又∵∠BAC+∠B+∠C=180°,∠DAE=50°,∴∠BAC=115°;②∵△ADE的周长为19cm,∴AD+AE+DE=19cm,由①知,AD=BD,AE=EC,∴BD+DE+EC=19,即BC=19cm.故答案为:115,19.三.解答题(共9小题)19.(2013秋•汉川市期中)已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.【解答】解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,∴,解得;(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,∴,解得:.20.(2013秋•大化县期中)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B (﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标.【解答】解:(1)如图,(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).21.(2012•温州一模)如图是由三个相同的小正方形组成的图形,请你用四种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.【解答】解:如图所示.22.(2015秋•泰州校级期中)如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB.(1)说明:其中有几对三角形成轴对称,并指出其对称轴;(2)连接AO,试判断直线OA与线段BC的关系,并说明理由.【解答】解:(1)△ABD和△ACE,△BOE和△COD,△EBC和△DBC,都关于AO所在直线对称,其对称轴为AO所在直线;(2)∵∠DBC=∠ECB,∴OB=OC,∴点O在线段BC的垂直平分线上,又∵AB=AC,∴点A在BC的垂直平分线上,因此AO是线段BC的垂直平分线.23.(2015春•启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【解答】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.24.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.25.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(SAS),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.26.(2015秋•浠水县期末)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.【解答】证明:设AD、EF的交点为K,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF.又∵∠EAD=∠FAD,AK=AK,∴△AEK≌△AFK,∴EK=KF,∠AKE=∠AKF=90°,∴AD是线段EF的垂直平分线.27.(2013秋•芜湖县校级期中)附加题:如图,在四边形ABCD中,点E是BC的中点,点F是CD 的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.【解答】(1)证明:连接AC,∵点E是BC的中点,AE⊥BC,∴AB=AC,∵点F是CD的中点,AF⊥CD,∴AD=AC,∴AB=AD.(2)∴∠EAF=∠BAE+∠DAF.证明∵由(1)知AB=AC,即△ABC为等腰三角形.∵AE⊥BC,(已知),∴∠BAE=∠EAC(等腰三角形的三线合一).同理,∠CAF=∠DAF.∴∠EAF=∠EAC+∠FAC=∠BAE+∠DAF.。
湖北省黄冈市八年级上学期数学期中考试试卷
湖北省黄冈市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2019八上·新疆期末) 下列长度的三条线段,能组成三角形的是()A . 1,2,3B . 1,4,2C . 2,3,4D . 6,2,32. (2分) (2019八上·阳东期末) 如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是()A . AC=ADB . BC=BDC . ∠C=∠DD . ∠3=∠43. (2分) (2019八下·腾冲期中) 以下列长度的线段不能围成直角三角形的是()A . 5,12,13B .C . ,3,4D . 2,3,44. (2分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是().A . AC=A′C′B . BC=B′C′C . ∠B=∠B′D . ∠C=∠C′5. (2分)如果|y﹣3|+|x﹣4|=0,那么的x﹣y值为()A . 1B . -1C . 7D . -76. (2分) (2016八上·临河期中) 如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A . 4B . 5C . 6D . 77. (2分)(2016·晋江模拟) 如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A . 3B . 6C .D . 128. (2分)如图,△ABC是直角边长为2a的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是()A .B .C .D .9. (2分)(2017·永定模拟) 下列实数中,属于无理数的是()A . ﹣3B . 3.14C .D .二、填空题 (共8题;共9分)10. (1分)实数8的立方根是________.11. (1分) (2019七下·夏邑期中) ﹣1的相反数是________,的绝对值是________,的平方根是________.12. (1分) (2019七上·拱墅期末) 已知实数a,b都是比-2小的数,其中a是整数,b是无理数.请根据要求,分别写出一个a,b的值,a=________.b=________.13. (2分) (2015九上·阿拉善左旗期末) 半径等于12的圆中,垂直平分半径的弦长为________.14. (1分)(2017·天津模拟) 如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B 行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走________千米.15. (1分)(2017·青岛模拟) 如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=2,CD=1,则⊙O的直径的长是________.16. (1分)(2016·盐城) 如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF 沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=________.17. (1分)(2016·随州) 如图,直线y=x+4与双曲线y= (k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为________.三、解答题 (共9题;共82分)18. (10分)(2012·北海) 计算:4c os45°+(π+3)0﹣ + .19. (10分) (2019七下·梁子湖期中) 解方程:(1);(2) .20. (5分)求出下列x的值.(1)4x2﹣49=0;(2)(x+1)3=﹣64.21. (10分)已知:如图,AB∥CD,E是AB的中点,CE=DE.(1)求证:∠AEC=∠BED(2)求证:AC=BD22. (2分)(2019·凤翔模拟) 在四边形ABCD中,AB=AD,请利用尺规在CD边上求作一点P,使得S△PAB =S△PAD ,(保留作图痕迹,不写作法).23. (10分) (2016八上·桂林期末) 如图,已知线段a,h(a>h),求作等腰三角形ABC,使AB=AC=a,底边BC上的高AD=h(保留作图痕迹,不要求写出作法).24. (10分)(2017·长春模拟) 在四边形ABCD中,AB=AD,BC=CD.(1)如图1,请连接AC,BD,求证:AC垂直平分BD;(2)如图2,若∠BCD=60°,∠ABC=90°,E,F分别为边BC,CD上的动点,且∠EAF=60°,AE,AF分别与BD交于G,H,求证:△AGH∽△AFE;(3)如图3,在(2)的条件下,若EF⊥CD,直接写出的值.25. (10分) (2019八上·龙湾期中) 如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AC,AB上,且BD=CE,DC=BF,连结DE,EF,DF,∠1=60°(1)求证:△BDF≌△CED.(2)判断△ABC的形状,并说明理由.(3)若BC=10,当BD=________时,DF⊥BC.(只需写出答案,不需写出过程)26. (15分) (2016九上·仙游期末) 如图,抛物线与轴交于点(点分别在轴的左右两侧)两点,与轴的正半轴交于点 ,顶点为 ,已知点 .(1)求点的坐标;(2)判断△ 的形状,并说明理由;(3)将△ 沿轴向右平移个单位()得到△ .△ 与△ 重叠部分(如图中阴影)面积为 ,求与的函数关系式,并写出自变量的取值范围.参考答案一、单选题 (共9题;共18分)1-1、2-1、3、答案:略4-1、5-1、6-1、7-1、8-1、9、答案:略二、填空题 (共8题;共9分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17、答案:略三、解答题 (共9题;共82分)18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、24、答案:略25-1、25-2、25-3、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖北省黄冈市黄梅实验学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°2.(3分)有四条线段,长分别是3cm、5cm、7cm、9cm,如果用这些线段中的三条线段组成三角形,可以组成不同的三角形的个数为()A.2个 B.3个 C.4个 D.5个3.(3分)在等腰三角形ABC中,∠A=60°,BC=4,则△ABC的周长为()A.12 B.14 C.10 D.164.(3分)如图,AB=CD,AB∥DC,BE=DF,则图中的全等三角形有()A.4对 B.3对 C.2对 D.1对5.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.(3分)下列图案是几种汽车的标志,这几个图案中是轴对称图形的共有()A.4个 B.5个 C.6个 D.7个7.(3分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在8.(3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°9.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个 B.2个 C.1个 D.0个10.(3分)在平面直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共30分)11.(3分)如图是汽车牌照在水中的倒影,则该车牌照上的数字是.12.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=°,这个三角形按角分类时,属于三角形.13.(3分)等腰三角形的周长为14,其一边长为4,那么它的底边为.14.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).15.(3分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.16.(3分)若M(a,2)与N(3,b)关于y轴对称,则a+b=.17.(3分)在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B 点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.18.(3分)如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是.19.(3分)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=.20.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三、解答题(共60分)21.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)22.(6分)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.23.(6分)如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.24.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使AE=AB,求证:DA=DE.25.(8分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.26.(8分)如图,△ABC中,∠ACB=90゜,CD⊥AB于D,AO平分∠BAC,交CD于O,E为AB上一点,且AE=AC,求证:OE∥BC.27.(8分)如图,在平面直角坐标系中,点A与点B分别在x轴与y轴的正半轴上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠C的大小是否随点A、B的移动而发生变化?如果保持不变,求出∠C 的大小;如果随点A、B的移动而发生变化,请求出变化范围.28.(10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D 重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.2015-2016学年湖北省黄冈市黄梅实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°【解答】解:如果α与β互为余角,则α+β=900.故选:D.2.(3分)有四条线段,长分别是3cm、5cm、7cm、9cm,如果用这些线段中的三条线段组成三角形,可以组成不同的三角形的个数为()A.2个 B.3个 C.4个 D.5个【解答】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的3+5<9,不能组成三角形,应舍去.故选:B.3.(3分)在等腰三角形ABC中,∠A=60°,BC=4,则△ABC的周长为()A.12 B.14 C.10 D.16【解答】解:∵等腰三角形ABC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=AC=4,∴△ABC的周长为4×3=12,故选:A.4.(3分)如图,AB=CD,AB∥DC,BE=DF,则图中的全等三角形有()A.4对 B.3对 C.2对 D.1对【解答】解:∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形,∴AD=BC,且AD∥BC,在△ABD和△CDB中∴△ABD≌△CDB(SSS);∵AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中∴△ABE≌△CDF(SAS);同理可得∠ADE=∠CBF,∵BE=DF,∴BE+EF=EF+DF,即BF=DE,在△ADE和△CBF中∴△ADE≌△CBF(SAS),故全等的三角形有3对,故选:B.5.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.6.(3分)下列图案是几种汽车的标志,这几个图案中是轴对称图形的共有()A.4个 B.5个 C.6个 D.7个【解答】解:雪佛兰不是轴对称图形,三菱是轴对称图形,雪铁龙是轴对称图形,丰田是轴对称图形,奥迪是轴对称图形,本田是轴对称图形,大众是轴对称图形,铃木不是轴对称图形,欧宝不是轴对称图形,综上所述,轴对称图形共有6个.7.(3分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在【解答】解:∵108÷12=9,∴小林从P点出发又回到点P正好走了一个9边形,∴α=360°÷9=40°.故选:B.8.(3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°【解答】解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故A选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故B选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故C选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故D选项正确;故选:D.9.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个 B.2个 C.1个 D.0个【解答】解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△DCB(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△DCB,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选:B.10.(3分)在平面直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A.4个 B.3个 C.2个 D.1个【解答】解:(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故选:A.二、填空题(每小题3分,共30分)11.(3分)如图是汽车牌照在水中的倒影,则该车牌照上的数字是21678.【解答】解:该车牌照上的数字是21678.12.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=100°,这个三角形按角分类时,属于钝角三角形.【解答】解:∵∠A:∠B:∠C=1:3:5,设∠A=x°,则∠B=3x°,∠C=5x°,根据三角形内角和定理得到:∴x+3x+5x=180,解得:x=20则∠A是20°,∠B是3×20=60°,∠C,是5×20=100°,这个三角形按角分类时,属于钝角三角形;故答案为:100°,钝角.13.(3分)等腰三角形的周长为14,其一边长为4,那么它的底边为4或6.【解答】解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.14.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.15.(3分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为2.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.16.(3分)若M(a,2)与N(3,b)关于y轴对称,则a+b=﹣1.【解答】解:∵M(a,2)与N(3,b)关于y轴对称,∴a=﹣3,b=2,则a+b=﹣3+2=﹣1.故答案为:﹣1.17.(3分)在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B 点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t= 7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.【解答】解:分两种情况:(1)P点在AB上时,如图,∵AB=AC=12cm,BD=CD=BC=×6=3cm,设P点运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD)或(BP+BD)=AP+AC+CD,∴t+3=(12﹣t+12+3)①或(t+3)=12﹣t+12+3②,解①得t=7秒,解②得,t=17(舍去);(2)P点在AC上时,如图,∵AB=AC=12cm,BD=CD=BC=×6=3cm,P点运动了t秒,则AB+AP=t,PC=AB+AC﹣t=24﹣t,由题意得:BD+AB+AP=2(PC+CD)或2(BD+AB+AP)=PC+CD,∴3+t=2(24﹣t+3)①或2(3+t)=24﹣t+3②解①得t=17秒,解②得,t=7秒(舍去).故当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.故答案为:7或17.18.(3分)如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.【解答】解:∵根据折叠得出四边形MNFG≌四边形BCFG,∴∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.19.(3分)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=20°.【解答】解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案为:20°.20.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x ﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三、解答题(共60分)21.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)【解答】解:22.(6分)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.【解答】证明:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中∴△ADE≌△CFE(AAS),∴AD=CF.23.(6分)如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.【解答】解:∵∠1=20°,∠2=25°,∠A=55°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣55°=80°,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣80°=100°.24.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使AE=AB,求证:DA=DE.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,∴∠CAB=60°=2×∠CAD,∴∠CAD=30°;(2)连接BE,得到三角形ABE,∵延长AC至E,使AE=AB,在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠EAB=60°,∴三角形ABE是等边三角形,∴AC=CE,∴Rt△DCA≌Rt△DCE,∴DA=DE.25.(8分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.26.(8分)如图,△ABC中,∠ACB=90゜,CD⊥AB于D,AO平分∠BAC,交CD于O,E为AB上一点,且AE=AC,求证:OE∥BC.【解答】证明:在△AOC和△AOE中,,∴△AOC≌△AOE(SAS),∴∠ACD=∠AEO,∵△ABC中,∠ACB=90゜,CD⊥AB,∴∠ACD+∠BCD=∠BCD+∠B=90°,∴∠ACD=∠B,∴∠AEO=∠B,∴OE∥BC.27.(8分)如图,在平面直角坐标系中,点A与点B分别在x轴与y轴的正半轴上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠C的大小是否随点A、B的移动而发生变化?如果保持不变,求出∠C 的大小;如果随点A、B的移动而发生变化,请求出变化范围.【解答】解:∠C的大小保持不变.理由:∵AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY,∠CAB=∠OAB,∴∠C=∠ABE﹣∠CAB=∠ABy﹣∠OAB=(∠ABy﹣∠OAB)=∠AOB=45°.故∠C的大小不发生变化,且始终保持45°.28.(10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D 重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.【解答】数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。