最新-YZBZ—1型圆柱坐标式四自由度机械手设计
圆柱坐标式机械手
圆柱坐标式机械手圆柱坐标式机械手是一种常见的工业机器人,通过使用圆柱坐标系来表达其运动。
它的设计基于圆柱坐标系的特性,具有灵活性和适应性,能够在多种工业任务中发挥重要作用。
概述圆柱坐标系是一种三维坐标系,其中X轴与水平方向对齐,Y轴垂直于X轴并指向上方,Z轴与地面平行。
与笛卡尔坐标系不同,圆柱坐标系使用极坐标来表达位置,其中角度θ表示与X轴的夹角,半径r表示与原点的距离,高度z则表示垂直于XY平面的距离。
结构与动作圆柱坐标式机械手通常由基座、臂和末端执行器组成。
基座是机械手的底部支撑结构,臂负责连接基座和末端执行器,而末端执行器则是机械手的功能部分,用于执行各种任务。
机械手的关节通常由电动机驱动,使其能够完成各种运动。
与笛卡尔坐标系的机械手不同,圆柱坐标式机械手的关节通常沿着r、θ和z轴进行旋转和移动。
应用领域圆柱坐标式机械手广泛应用于各种工业领域,例如自动化生产线、物料搬运、装配和焊接等。
其主要优势在于适应性和灵活性,能够执行各种复杂任务。
以下是圆柱坐标式机械手的一些具体应用领域:1. 自动化生产线圆柱坐标式机械手能够在自动化生产线上完成物料搬运、装配和包装等任务。
其可以通过精确的控制和坐标定位来提高生产效率,并减少人工操作的风险。
2. 焊接与切割机械手在焊接和切割领域中发挥着重要作用。
圆柱坐标式机械手能够以精确的姿态和速度完成复杂的焊接和切割任务,提高生产效率和产品质量。
3. 实验研究科研领域中也广泛使用圆柱坐标式机械手进行实验研究。
其能够准确控制实验参数,提供稳定的实验环境,并帮助科学家进行数据收集与分析。
未来发展随着科学技术的进步,圆柱坐标式机械手在未来将继续发展和改进。
以下是一些可能的发展方向:•智能化:机械手可以与其他智能设备和系统进行交互,实现更高级别的自动化和人工智能应用。
•灵活性:机械手可以应对不同的任务和环境,具备更大的工作范围和适应能力。
•精确度:通过改进传感器和控制算法,机械手可以实现更高的精确度和稳定性。
圆柱坐标式机械手课程设计
圆柱坐标式机械手课程设计引言随着现代工业的发展,机械手作为一种非常重要的自动化装备,在生产线上发挥着至关重要的作用。
而圆柱坐标式机械手作为机械手的一种常见类型,具有较高的灵活性和适应性,并广泛应用于各个工业领域。
本文将对圆柱坐标式机械手的课程设计进行详细介绍。
设计目标本课程设计旨在帮助学生深入了解圆柱坐标式机械手的基本原理和工作方式,并通过实际操作来掌握机械手的控制技术和编程方法。
具体设计目标如下:1.了解圆柱坐标式机械手的结构和工作原理;2.掌握机械手的基本编程语言和指令集;3.能够实现机械手的基本动作控制;4.能够进行机械手的编程调试和故障排除;5.能够应用机械手完成简单的操作任务。
设计步骤步骤一:理论学习在进行实际操作之前,学生首先需要对圆柱坐标式机械手的结构和工作原理进行学习。
教师可以进行课堂讲解,介绍机械手的各个组成部分及其功能,并对机械手的工作原理进行详细说明。
此外,还可以通过实例或案例分析,让学生更好地理解机械手在实际生产中的应用。
步骤二:控制系统学习圆柱坐标式机械手的控制系统是实现机械手动作控制的核心。
学生需要学习机械手控制系统的基本原理,如传感器的应用、控制算法的设计等。
此外,还需了解机械手的编程语言和指令集,包括机械手的坐标系描述、运动指令、速度设置等。
步骤三:实际操控在完成理论学习后,学生需要进行实际操控,以进一步掌握机械手的操作和编程方法。
可以为学生准备一台圆柱坐标式机械手,并给予相应的操作说明。
学生可以按照指定的任务要求,通过编程控制机械手完成相应的动作。
在实际操控过程中,学生应注意机械手的安全操作规范,避免发生意外事故。
步骤四:调试和故障排除在机械手的实际操作中,常常会遇到一些问题,如动作不准确、速度异常等。
学生需要学会如何调试和排除这些问题。
可以给学生提供一些常见问题的案例,让他们进行分析和解决。
在解决问题的过程中,学生需要查阅资料、寻求帮助,并通过实践经验不断积累。
4自由度机械手设计
四自由度机械手设计摘要:工业机械手由机械本体、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
生产中应用机械手可以提高生产的自动化水平,可以减轻劳动强度、保证产品质量、实现安全生产机械手的结构形式比较简单,通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
本课题将设计一个四自由度机械手,其中,三个移动自由度,需完成X、Y、Z三维空间内的移动要求,另外一个旋转自由度,完成手部的旋转运动要求。
它能实现平面运动,具有柔顺性,全臂在垂直方向的刚度大,在水平方向的柔性大,广泛用于装配作业中。
关键字:机械手;机电一体化;自由度The design of four degrees freedom mechanical handAbstract: Industrial manipulator is composed of machine body, controller, servo drive system and detection sensor device, a humanoid operation, automatic control, can repeat programming, to complete the electromechanical integration automatic production equipment of various operations in three-dimensional space. Especially suitable for the production of a variety of flexible, variable volume. Its stability, improve product quality, improve production efficiency, plays a very important role in improve working conditions and the rapid upgrading of products. Production of mechanical hand can improve the automation level of production, can reduce labor intensity, to ensure product quality, realize the structure safety of the manipulator is relatively simple, general machinery hand can quickly change the working procedure, strong adaptability, widely cited small batch production so it is in changing varieties in production.This paper will design a four DOF Manipulator, wherein, three degrees of freedom of movement, to complete the X, Y, mobile Z in the three-dimensional space, another rotational degree of freedom, rotational movement of the hand requirements. It can achieve planar motion, with the flexibility, the arm in the vertical stiffness, flexibility in the horizontal direction of the large, widely used in assembly operations.Keywords:Manipulator; mechatronics; degree of freedom目录摘要................................................................................................ 错误!未定义书签。
四自由度机械手毕业设计
四自由度机械手毕业设计
四自由度机械手的毕业设计可以从以下几个方面入手:
1. 机械结构设计:根据所需的工作空间、负载要求、运动速度等参数,设计出四自由度机械手的整体结构。
其中,四自由度机械手的自由度一般包括三个旋转自由度和一个平移自由度。
2. 控制系统设计:根据机械手的运动方式和运动范围,设计出相应的控制系统。
可以采用传统的PID控制算法或者基于神经网络的控制算法,确保机械手的稳定性和精度。
3. 动力学分析:对机械手进行动力学分析,研究机械手在运动过程中的力学特性,比如加速度、速度、角加速度等参数,为机械手的优化提供理论依据。
4. 实验验证:经过机械结构设计、控制系统设计和动力学分析后,可以进行实验验证。
通过实验对机械手的运动精度、稳定性、负载承载能力等参数进行测试,对设计方案进行调整和优化。
以上只是一些可以从不同方面入手的思路,毕业设计的具体内容和难度还需要根据实际情况和要求进行具体确定。
四自由度圆柱坐标机器人机械手臂设计毕业论文(设计)
四自由度圆柱坐标机器人机械手臂设计毕业论文(设计)毕业论文设计坐标型工业机器人机械设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
圆柱坐标式机械手设计概述
圆柱坐标式机械手设计概述圆柱坐标式机械手是一种广泛应用于工业生产线的机械设备,它可以在三维空间内进行各种运动控制,并完成各种任务,如搬运、装卸、加工等。
本文将对圆柱坐标式机械手的设计概述进行分析和讨论。
一、圆柱坐标系介绍圆柱坐标系是一种三维空间坐标系,其重要特点是使用极坐标系描述位置,即使用径向位置、角度和高度三个坐标描述三维空间内的任意一点。
在工业生产过程中,往往需要机械手能够在三维空间内进行移动、夹取等操作,因此圆柱坐标系的运动学性能就显得尤为重要。
二、圆柱坐标式机械手的结构设计圆柱坐标式机械手一般由底座、支臂、旋转关节、手臂、手腕和末端执行器等部分组成。
其中,底座是支架的基础结构,在整个机械手的运动过程中起到了稳定支撑的作用;支臂是机械手上升了一定高度后的支撑结构,通过旋转关节的转动实现机械手的转动操作;手臂是机械手的伸缩结构,它与旋转关节之间通过伸缩体连接,可以实现手臂的伸缩操作;手腕是机械手的转动结构,可以使整个手臂和末端执行器以各种不同的角度进行转动;末端执行器是机械手的活动手指,可以进行抓取、松开、旋转等操作。
三、圆柱坐标式机械手的动力学设计圆柱坐标式机械手在运动控制中需要考虑其负载能力和加速度等因素,这就需要进行动力学设计和分析。
主要考虑的参数包括机械手的载重能力、速度限制、加速度、惯性、运动惯量等。
这些参数的合理设定才能保证机械手在使用过程中的安全性和稳定性,从而达到高效地完成工作的目标。
四、圆柱坐标式机械手的控制系统设计圆柱坐标式机械手的控制系统设计包括硬件和软件两个方面。
硬件部分主要包括电机、传感器、执行器等元器件,这些元器件需要在系统之间进行良好的连接和配合,以实现机械手的各项运动和动作。
软件部分主要包括核心的程序控制器、编程、监控和数据处理等方面的设计,是整个控制系统的核心和基础,决定了机械手的操作精度和稳定性。
五、圆柱坐标式机械手的应用领域圆柱坐标式机械手的应用范围非常广泛,它可以应用于制造业、物流、医疗、农业等领域。
圆柱坐标机械手结构设计
圆柱坐标机械手结构设计圆柱坐标机械手是一种常见的机器人结构,其可灵活地工作于三维空间内,并可实现各种各样的操作任务。
设计一台圆柱坐标机械手需要考虑多个方面,如机械结构的安全性能、控制系统的精度和可靠性等等。
在本文中,我们将对圆柱坐标机械手结构设计进行详细讨论,并介绍其在不同领域的应用。
1.结构设计圆柱坐标机械手结构设计需要考虑其空间可达性、负载能力、动力学性能、稳定性等因素。
其中空间可达性是一个重要的指标,它决定了机械手能够工作的范围和精度。
一般来说,机械手的可达范围应该涵盖整个工作空间,且在整个范围内的精度应该足够高。
在设计机械手结构时,我们可以采用链式结构或者纵向结构。
链式结构包括末端链式机械手和中心链式机械手,其构造简单、操作灵活,但其负载能力和精度较低。
纵向结构包括柱形机械手和底座机械手,其结构稳定、负载能力高,适用于重载和高精度的操作。
2.控制系统圆柱坐标机械手的控制系统包括机械运动控制和机器视觉控制。
机械运动控制采用轴控制和运动控制器实现机械手在三维空间内的操作。
在轴控制中,机械手的每个关节都由一个电机控制,通过给电机施加不同大小的电流来控制关节的运动。
运动控制器负责管理机械手的所有电机,并根据运动的需求控制各个关节以实现所需运动。
机器视觉控制也是圆柱坐标机械手中不可缺少的一部分。
机器视觉控制可以通过摄像机来实现对机械手末端的精确控制,从而确保其在执行任务时的精确性和准确性。
此外,还可以利用机器学习技术来对机械手运动进行优化和改进,从而提高机械手的智能化水平。
3.应用领域圆柱坐标机械手在工业、医疗、科研等领域都有广泛的应用。
在工业领域,机械手可以承担自动化生产线上的装配和加工任务,提高生产效率和降低劳动成本;在医疗领域,机械手可以用于手术等高精度操作,避免对患者的人为破坏;在科研领域,机械手可以用于承担各种测量和实验任务,对工程技术的发展做出贡献。
综上所述,圆柱坐标机械手是一种重要的机器人结构,其结构设计、控制系统和应用领域都有着广泛的应用前景。
圆柱坐标式机械手结构设计
圆柱坐标式机械手结构设计引言圆柱坐标式机械手广泛应用于工业自动化领域,具有较高的灵活性和精度。
本文将对圆柱坐标式机械手的结构设计进行详细分析与探讨。
结构设计方案圆柱坐标式机械手的结构设计包括机械结构和控制系统两个方面。
机械结构设计1. 基座:机械手的基座是安装机械手关节的支撑结构,通常采用坚固的钢板焊接而成,以确保机械手在工作中的稳定性和刚性。
2. 旋转关节:旋转关节是机械手的第一关节,它负责控制机械手在水平面内的旋转运动。
通常采用电机驱动的齿轮传动机构实现旋转运动,并通过编码器测量旋转角度,以提供反馈控制。
3. 升降臂:升降臂是机械手的第二关节,它负责控制机械手的垂直运动。
升降臂通常由伸缩式气缸或电动升降装置实现,通过伸缩运动来控制机械手的升降。
4. 伸缩臂:伸缩臂是机械手的第三关节,它负责控制机械手在水平方向的伸缩运动。
伸缩臂通常采用液压缸或气缸驱动,通过伸缩运动来控制机械手的伸缩距离。
5. 夹爪:夹爪是机械手的末端执行器,用于抓取和放置工件。
夹爪通常采用气动或电动夹持机构,以实现对工件的抓取和释放操作。
控制系统设计1. 运动控制:机械手的运动控制系统通常由计算机或嵌入式控制器控制。
控制系统接收传感器反馈的位置信息和运动目标,通过控制算法计算出适当的控制信号,并驱动相应的执行机构,实现机械手的运动控制。
2. 位置检测:位置检测是机械手控制系统的关键环节,通过编码器、光电开关或激光测距传感器等设备,实时检测机械手各关节的位置,并将位置信息反馈给控制系统,以实现精确的位置控制。
3. 安全保护:机械手在工作中需要与人类共同操作,在设计控制系统时需要考虑安全保护措施。
例如,设置急停开关、防止碰撞传感器和安全光栅等设备,以确保机械手在意外情况下能够停止运动并保护操作人员的安全。
结论圆柱坐标式机械手的结构设计是实现其高精度、高效率工作的基础。
合理的机械结构和控制系统设计可以提高机械手的运动灵活性和精度,从而满足各种工业生产需求。
圆柱坐标机械手结构设计概述
圆柱坐标机械手结构设计概述随着工业自动化技术的不断发展,机器人应用的范围越来越广泛。
其中,机器人的结构设计是机器人性能的重要保障。
圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。
在本文中,我们将对圆柱坐标机械手的结构设计进行概述。
一、机械手的基本结构圆柱坐标机械手主要由机械结构、执行机构、传感器等几部分组成。
其中,机械结构包含底座、竖杆、横臂、前倾臂、手腕等几部分。
整个机械臂的结构呈现为一条圆柱体,机械手的工作方向沿z轴方向。
执行机构包括电机、减速器、传动系统等部分。
传感器主要用于监测机器人的位置和运动状态。
二、机械手的结构设计1、底座设计底座是机械手的支撑结构,需要具有足够的稳定性和承载能力。
在圆柱坐标机械手中,底座为圆形或者方形,对底座的设计需要考虑到整个机械臂的重心和稳定性。
2、竖杆设计竖杆支撑着整个机械臂的横向移动,需要具有足够的强度和刚度。
在竖杆的设计中需要考虑到挠度和加工精度,并确保竖杆能够承受机械手在工作时的负载和震动。
3、横臂设计横臂是圆柱坐标机械手的重要组成部分,需要具有足够的强度和刚度。
在横臂的设计中需要考虑到挠度和加工精度,并确保横臂能够承受机械手在工作时的负载和震动。
4、前倾臂设计前倾臂能够在xz平面内移动,其结构需要具有足够的强度和刚度。
在前倾臂的设计中需要考虑到挠度和加工精度,并确保前倾臂能够承受机械手在工作时的负载和震动。
5、手腕设计手腕是机械手的末端执行机构,需要具有很高的精度和稳定性。
在手腕的设计中需要考虑到机械手的负载和精度要求,并采用适当的传动系统和控制算法来保证机械手的运动精度。
三、结论圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。
机械手的结构设计对机器人性能具有非常重要的影响,需要考虑到机械臂的稳定性、强度、刚度和精度等因素。
因此,在机械手的设计中需要采用适当的设计方法和工艺流程,以确保机械手的质量和性能。
四自由度机械手设计
四个自由度气动机械手结构设计
四个自由度气动机械手结构设计1刖言机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。
不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。
机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。
因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。
工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手的是工业机器人的一个重要分支。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手是在机械化,自动化生产过程中发展起来的一种新型装置。
在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多自由度,可用来搬运物体以完成在各个不同环境中工作。
①1.1机械手简史现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品。
机械手首先是从美国开始研制的。
1958年美国联合控制公司研制出第一台机械手。
他的结构是:机体上安装一回转长机构,端部装有电磁铁的工件抓放机构,控制系统是示教型的。
四自由度棒料搬运机械手_毕业设计
四自由度棒料搬运机械手目录摘要:本设计的机械手是基于提高劳动生产率、产品质量和经济效益,减轻工人劳动强度而设计的。
在某些劳动条件极其恶劣的条件下,工人难以用手工工作,可用本机械手代替人力劳动。
本设计为四自由度圆柱坐标型工业机械手,其工作方向为两个直线方向和两个旋转方向。
本设计中的四自由度棒料搬运机械手,主要是针对质量少于2KG的圆形棒料的搬运。
通过气爪手指的不同选择可满足直径小于60mm的棒料的搬运。
在控制器的作用下,机械手执行将工件从一条流水线拿到另一条流水线并把工件翻转过来这一简单的动作.关键词:四自由度;机械手;搬运;工业机器人The Four Degrees-of-freedom Bar Manipulator DesignsAbstract:This paper design for enhances the labor productivity, product quality, economic efficiency and reduces the worker labor intensity. Some job working at extremely bad environment, that people can’t work in hand, so the robots can replace worker to do it.This scheme introduced a cylindrical robot for four degree of freedom. It is composed of two linear axes and two rotary axis currentThis paper mainly use at the transporting of circular good material that quality is short to2KG. The different fingernail finger was Choice for transporting the good material that diameter is smaller than 60mm.Under controller function the robot move the components from one assembly line to other assembly line and turn over it in space, perform relatively simple takes.Key words: four degrees of freedom; robot; transporting; Industrial robot1 前言1.1 工业机器人的概述与发展机器人(又称机械手,机械人,英文名称:Robot),在人类科技发展史上其来有自,早在三国时代,诸葛亮发明的木牛流马即是古代中国人的智能结晶。
四自由度机械手的设计与规划
论文提要随着大工业时代的到来,自动化设备代替人工作业成为现代化工业发展的一大趋势。
机械手作为一种自动化执行设备,解放了人类的双手,大大降低了工人的劳动强度,提高了工作效率。
它能模仿一些人手和手臂的动作,进行抓取、搬运或装配工作,被广泛应用在大型工厂的生产流水线上,尤其是在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,机械手的应用更加重要。
随着现代科技的发展,借助计算机辅助设计系统、计算机辅助制造系统,使机械手得到了更快的发展和应用,过渡到了一个新的工业自动化阶段。
本文主要是对四自由度机械手的结构设计和工作原理进行阐述和说明,并推导出了机械手的运动轨迹方程。
四自由度机械手的设计与规划摘要:随着大工业时代的到来,自动化设备代替人工作业成为现代化工业发展的一大趋势。
机械手作为一种自动化执行设备,解放了人类的双手,大大降低了工人的劳动强度,提高了工作效率。
它能模仿一些人手和手臂的动作,进行抓取、搬运或装配工作,被广泛应用在大型工厂的生产流水线上,尤其是在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,机械手的应用更加重要。
随着现代科技的发展,借助计算机辅助设计系统、计算机辅助制造系统,使机械手得到了更快的发展和应用,过渡到了一个新的工业自动化阶段。
本文主要是对四自由度机械手的结构设计和工作原理进行阐述和说明,并推导出了机械手的运动轨迹方程。
关键词:四自由度机械手自动化一、什么是机械手机械手是一种主要由机械主体、控制器、驱动系统和传感器装置等组成的,能模仿人手和臂的某些动作的运动机构。
机械手的设计是模仿人的动作,所以在设计机械手时,为了使机械手能更像人手那样灵活好用,可以遵循三个设计原则:一是使机械手的覆盖范围尽可能的大;二是使机械手可以根据外界的环境改变自己的运动姿态;三是在使自身重量足够小时,承受的负载足够大。
美国机器人工业协会定义了工业机械手的含义:机械手是一种可以用于移动各种生产材料零部件工具或专用设备的,并通过可编程序动作来执行各种任务的,具有编程能力的多功能自动化设备。
4自由度机械手设计
4自由度机械手设计机械手是一种用于配合工业生产的机械装置,它通过模拟人类手臂的运动来进行各种操作。
在工厂生产线上,机械手能够替代人类完成一些重复性、精确性要求高的工作,提高了生产效率和产品质量。
在设计机械手时,需要考虑到其自由度,即机械手能够自主调节其位置和姿态的能力。
在本文中,将讨论一个具有4自由度的机械手设计。
在机械手的设计中,自由度是一个重要的设计参数。
自由度决定了机械手可以进行的运动方式和工作范围。
一个具有4自由度的机械手可以进行四种独立的运动,包括平移和旋转。
在这种机械手设计中,通常会将其运动分为基座运动、肩膀运动、肘部运动和腕部运动。
基座运动是指机械手在水平方向上进行的运动。
在这种设计中,可以使用一个转动关节实现机械手在平面上的旋转。
通过控制转动关节的角度,机械手可以改变其朝向和工作范围。
肩膀运动是指机械手在垂直方向上进行的运动。
在这种设计中,可以使用一个副地方转动关节实现机械手在垂直方向上的旋转。
通过控制转动关节的角度,机械手可以实现上下移动。
肘部运动是指机械手在前后方向上进行的运动。
在这种设计中,可以使用一个副地方转动关节实现机械手在前后方向上的旋转。
通过控制转动关节的角度,机械手可以实现前后伸缩。
腕部运动是指机械手末端执行器的运动。
在这种设计中,可以使用一个转动关节实现机械手末端执行器的旋转。
通过控制转动关节的角度,机械手可以实现执行器的转动。
在设计机械手时,需要考虑到其机械结构、传动机构和控制系统等方面的问题。
机械结构的设计需要考虑到机械手的稳定性、刚度和重量等因素。
传动机构的设计需要考虑到机械手的精度、速度和可靠性等方面的要求。
控制系统的设计需要考虑到机械手的运动轨迹规划、力控制和位置控制等方面的问题。
总结来说,一个具有4自由度的机械手设计需要考虑到其基座运动、肩膀运动、肘部运动和腕部运动等方面的设计问题。
在设计过程中,需要综合考虑机械结构、传动机构和控制系统等方面的要求,以满足机械手在工厂生产线上的工作需求。
四个自由度通用机械手设计
毕业设计说明书设计(论文)题目:四个自由度通用机械手设计学生姓名:学号:专业班级:学部:指导教师:本设计包含全部说明说及CAD图纸QQ2008年06月5日摘要摘要本次设计的多功能机械手为程四个自由度通用机械手设计,主要由手爪、手腕、手臂、机身、机座等组成,具备上料、翻转和转位等多种功能,并按自动线的统一生产节拍和生产纲领完成以上动作。
本机械手机身采用机座式,自动线围绕机座布置,其坐标形式为圆柱坐标式,具有立柱旋转、手臂伸缩、腕部转动和腕部摆动等4个自由度;驱动方式为液压驱动,且选用双联叶片泵,系统压力为2.5MPa,电机功率为 5.5KW,共有整机回转油缸、手臂伸缩油缸、手腕摆动油缸、手腕回转油缸、手爪夹紧油缸5个液压缸;定位采用机械挡块定位,定位精度为0.5~1mm,采用行程控制系统实现点位控制。
关键字:机械手;球坐标液压;机械挡块;点位控制AbstractThe current design of multifunctional mechanical hand is Hydraulic Universal Mechanical Hand, mainly consist of claw, wrists, arms, body, base and so on. With moving the materials, turnover and transfer spaces, and many other functions, the automatic line with the unified production rhythms and production program completed more moves. With the automatic production line rhythms and the production of complete reunification of the above movements, automatic line is around the machine arrange, the coordinates of the cylindrical coordinate of the form, with huge rotary, extendable arm, arm pitch, hitting and hitting back four moves freedom; Driven approach to hydraulic-driven, and the choice of double leaves pumps, the system pressure to 2.5MPa, 5.5KW electrical power for a total of whole sets of rotation tank, arm tilt cylinders, fuel tanks extendable arm, wrist swing tank, wrist rotation tank, claw clip tank six hydraulic oil tank; positioning a piece of machinery turned positioning, positioning accuracy for 0.5~1mm, using control systems to achieve their point spaces control.KeyWords:Mechanical hand. Cylindrical coordinate hydraulic. mechanical turned pieces. control point spaces目录目录摘要 ................................................................................................ 错误!未定义书签。
圆柱坐标式机械手设计
圆柱坐标式机械手设计引言机械手是一种能够模仿和执行人工手动动作的自动化设备。
它由几个关节和执行器组成,可以完成需要复杂而精确的任务。
在工业生产中,机械手已经广泛应用于各种装配、搬运和加工等工作,大大提高了生产效率和质量。
本文将介绍圆柱坐标式机械手的设计原理和工作原理,并讨论其在工业领域的应用。
圆柱坐标系的定义圆柱坐标系是一种空间坐标系,其中位置由径向距离、方位角和高度组成。
在圆柱坐标系中,位置信息以极坐标形式表示,而不是直角坐标系中的笛卡尔坐标。
圆柱坐标系常用于描述圆柱形物体或球坐标系的数学问题。
在机械手设计中,圆柱坐标系被广泛应用于需要在空间中移动的任务。
圆柱坐标式机械手的设计原理圆柱坐标式机械手是一种基于圆柱坐标系的机械手设计。
它使用三个关节来实现机械手的运动,并通过控制关节的运动,实现机械手的位置和姿态调整。
机械手的位置信息由三个坐标表示:径向距离(R)、方位角(θ)和高度(Z)。
径向距离表示手的延伸程度,方位角表示手的旋转角度,而高度表示手的升降运动。
机械手的关节由电机和传动装置组成,通过控制电机的转动,传动装置将关节带动,实现机械手的运动。
在实际设计过程中,需要考虑关节的承载能力、速度和精度等因素。
圆柱坐标式机械手的工作原理圆柱坐标式机械手的工作原理可以分为以下几个步骤:1.传感器获取目标位置的圆柱坐标信息:首先,机械手需要通过传感器获取目标位置的圆柱坐标信息,包括径向距离、方位角和高度。
2.根据目标位置计算关节角度:通过逆运动学计算,根据目标位置的圆柱坐标信息,计算机械手各关节的角度。
3.控制关节运动:根据计算得到的关节角度,控制电机带动传动装置,使机械手达到目标位置。
4.完成任务:一旦机械手到达目标位置,它可以执行需要的任务,例如搬运物体或进行装配操作。
圆柱坐标式机械手的应用圆柱坐标式机械手具有广泛的应用领域,特别适用于需要在空间中移动的任务。
以下是一些常见的应用领域:1.组装线:圆柱坐标式机械手可以用于工业生产中的组装线,完成产品的装配操作。
圆柱坐标式机械手设计概述
圆柱坐标式机械手设计概述圆柱坐标式机械手,又称作柱三维式机械手,是一种基于圆柱坐标系的机械手。
它由一个固定底座、一个竖直的旋转臂和一个水平的移动臂构成,能够在三维空间内进行精准的定位、旋转和抓取操作。
本文将从机械手设计的角度,分析圆柱坐标式机械手的特点和设计的方法。
设计目标在设计圆柱坐标式机械手之前,需要先确定设计目标。
一般来说,设计目标有以下几个方面:1. 功能要求:机械手应该能够完成的工作,如抓取物品、放置物品、旋转物品等等。
2. 作业范围:机械手的有效作业范围与自由度密切相关。
在设计机械手时需要考虑到最大活动范围和最大负载。
3. 精度要求:机械手精度可以根据其应用领域不同而有很大的变化,需要根据实际情况进行调整。
4. 控制要求:机械手控制系统通常有手动控制和自动控制两种形式,需要根据实际情况选择。
机械手的设计要素1. 机械手骨架设计:机械手骨架设计是机械手设计的基础,其主要依据工作负载的大小、工作空间的形状、机械手的自由度和机械手操作起来的方便程度,以及机械手配套的附件和控制系统等因素。
2. 机械手臂设计:机械手臂设计应该考虑到负载、移动角度、距离和速度。
加入传感器可以提高机械手的精度和控制性。
3. 夹爪设计:夹爪是机械手重要组成部分,需要考虑到夹爪大小、形状、动力、重量和惯性等因素。
夹爪设计的好坏会对机械手抓取操作的效率和准确性起着非常重要的影响。
4. 控制系统设计:机械手的控制系统通常有手动和自动控制两种形式,自动化控制是最主要的控制方式。
控制系统需要可以控制机械手的移动、旋转、抓取和松开等工作。
设计注意事项1. 功能要求应该以机械手的实际需求为出发点,而不是为了增加复杂性而增加功能。
2. 机械手骨架的设计应该有利于附件和控制系统的调整和安装。
3. 夹爪设计应该适合机械手操作的速度和负载,需要注意反应速度和夹持力度的平衡。
4. 机械手的材料选择应能保证其强度和刚性等性能,而注意重量的控制。
四个自由度气动机械手结构设计
四个自由度气动机械手结构设计四个自由度气动机械手是一种具有四个独立运动自由度的机械手,常用于工业生产线上的自动化操作。
它采用了气动驱动技术,能够在高速下快速、准确地完成各种复杂任务。
在这篇文章中,将介绍四个自由度气动机械手的结构设计。
四个自由度气动机械手一般由基座、转台、前臂、前臂臂杆以及末端执行器等主要部件组成。
其中,基座是机械手的支撑部分,承载机械手的整体结构;转台是机械手的第一旋转关节,使机械手能够在水平面上进行转动;前臂是机械手的第二旋转关节,使机械手能够在竖直方向上进行旋转;前臂臂杆是机械手的伸缩部分,通过伸缩前臂臂杆,可以使机械手的工作范围更加灵活;末端执行器是机械手的最后一个关节,通过末端执行器可以实现机械手的精确定位和抓取动作。
在四个自由度气动机械手的设计中,需要考虑以下几个方面:结构刚度、重量、精度和可靠性。
首先,结构刚度是机械手设计的重要指标之一、为了保证机械手在高速运动中不产生振动和形变,需要采用合适的结构材料和设计参数,提高机械手的整体刚度。
其次,重量是机械手设计的另一个重要指标。
较轻的机械手可以提高其加速度和速度,使其能够更快地完成任务。
因此,在设计中需要尽量减小机械手的自重,采用轻量化的材料。
第三,精度是机械手设计的关键要素之一、在一些需要高精度定位和抓取的任务中,机械手需要具备较高的精度。
在设计中,需要合理选择驱动器、传感器和控制系统,以确保机械手的精确定位和抓取动作。
最后,可靠性是机械手设计的关键要素之一、机械手在工作过程中需要承受较大的负载和惯性力,因此需要采用可靠的结构和驱动系统,以保证机械手在长时间工作中不发生故障。
总结而言,四个自由度气动机械手的结构设计涉及结构刚度、重量、精度和可靠性等多个方面。
在设计过程中,需要综合考虑这些因素,选择合适的驱动器、传感器和控制系统,以实现机械手的高速、准确和可靠的运动。
这样的机械手在工业生产线上能够提高生产效率,实现自动化操作。
YZBZ—1型圆柱坐标式四自由度机械手设计
目次1 绪论 (1)1.1 工业机械手的概述 (1)1.2 工业机械手在生产中的应用 (1)1.3 机械手的组成概述 (2)1.4 工业机械手的发展趋势 (3)2 总体设计方案 (4)2.1 设计题目 (4)2.2 初始参数与设计要求 (4)2.3 方案拟定 (5)3 机械手手部设计计算 (6)3.1 手部设计基本要求 (6)3.2 手部力学分析 (7)3.3 夹紧力及驱动力的计算 (8)3.4 机械手手抓夹持精度的分析计算 (9)4 机械手腕部设计计算 (11)4.1 腕部设计基本要求 (11)4.2 腕部结构的选择 (11)4.3 腕部回转力矩的计算 (12)5 机械手臂部设计计算 (16)5.1 机械手臂部设计的基本要求 (16)5.2 手臂的典型机构及结构的选择 (16)5.3 手臂伸缩驱动力计算 (17)5.4 手臂伸缩油缸结构的确定 (19)5.5 油缸端盖的连接方式及强度计算 (21)6 机身设计与计算 (23)6.1 机身的整体设计 (23)6.2 机身回转机构的设计计算 (25)6.3 机身升降机构的设计计算 (28)7 液压驱动系统的计算 (31)7.1 绘制液压系统的工况图 (31)7.2 计算和选择液压元件 (36)总结 (38)致谢 (38)参考资料 (39)1 绪论1.1 工业机械手的概述工业机械手在先进制造技术领域中扮演着极其重要的角色,是近几十年发展起来的一种高科技自动化生产设备,是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。
工业机械手的是工业机器人的一个重要分支,它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机电工程学院毕业设计说明书设计题目: YZBZ—1型圆柱坐标式四自由度机械手设计目次1 绪论 (1)1.1 工业机械手的概述 (1)1.2 工业机械手在生产中的应用 (1)1.3 机械手的组成概述 (2)1.4 工业机械手的发展趋势 (3)2 总体设计方案 (4)2.1 设计题目 (4)2.2 初始参数与设计要求 (4)2.3 方案拟定 (5)3 机械手手部设计计算 (6)3.1 手部设计基本要求 (6)3.2 手部力学分析 (7)3.3 夹紧力及驱动力的计算 (8)3.4 机械手手抓夹持精度的分析计算 (9)4 机械手腕部设计计算 (11)4.1 腕部设计基本要求 (11)4.2 腕部结构的选择 (11)4.3 腕部回转力矩的计算 (12)5 机械手臂部设计计算 (16)5.1 机械手臂部设计的基本要求 (16)5.2 手臂的典型机构及结构的选择 (16)5.3 手臂伸缩驱动力计算 (17)5.4 手臂伸缩油缸结构的确定 (19)5.5 油缸端盖的连接方式及强度计算 (21)6 机身设计与计算 (23)6.1 机身的整体设计 (23)6.2 机身回转机构的设计计算 (25)6.3 机身升降机构的设计计算 (28)7 液压驱动系统的计算 (31)7.1 绘制液压系统的工况图 (31)7.2 计算和选择液压元件 (36)总结 (38)致谢 (38)参考资料 (39)1 绪论1.1 工业机械手的概述工业机械手在先进制造技术领域中扮演着极其重要的角色,是近几十年发展起来的一种高科技自动化生产设备,是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。
工业机械手的是工业机器人的一个重要分支,它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
1.2 工业机械手在生产中的应用机械手是工业自动控制领域中经常遇到的一种控制对象。
机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛广泛。
在现代工业中,生产过程中的自动化已成为突出的主题。
各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。
可在机械工业中,加工、装配等生产很大程度上不是连续的。
据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。
从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。
目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。
具体应用在以下几方面:(1) 建造旋转零件(转轴、盘类、环类)自动线(2) 在实现单机自动化方面(3) 铸、锻、焊热处理等热加工方面1.3 机械手的组成工业机械手由执行机构、驱动机构和控制机构三部分组成。
1.3.1 执行机构(1) 手部既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。
手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。
传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、斜槭杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式。
(2) 腕部是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。
手腕有独立的自由度。
有回转运动、上下摆动、左右摆动。
一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。
目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于2700),并且要求严格密封,否则就难保证稳定的输出扭距。
因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。
(3) 臂部手臂部件是机械手的重要握持部件。
它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。
臂部运动的目的:把手部送到空间运动范围内任意一点。
如果改变手部的姿态(方位),则用腕部的自由度加以实现。
因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。
手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。
因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。
(4) 行走机构有的工业机械手带有行走机构,我国的正处于仿真阶段。
1.3.2 驱动机构驱动机构是工业机械手的重要组成部分。
根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。
采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便。
1.3.3 控制系统分类在机械手的控制上,有点动控制和连续控制两种方式。
大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。
主要控制的是坐标位置,并注意其加速度特性。
1.4 工业机械手的发展趋势(1) 工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
(2) 机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
(3) 工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。
(4) 机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制多传感器融合配置技术在产品化系统中已有成熟应用。
(5) 虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
(6) 当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。
2 总体设计方案2.1 设计题目:YZBZ-1型圆柱坐标式四自由度机械手设计2.2 初始参数与设计要求1、抓重:300N2、自由度:4个3、臂部运动参数:4、腕部运动参数:表2-25、手指夹持范围:棒料,Φ60mm~Φ120mm,长度450~1200mm6、定位方式:缓冲,死挡块定位7、驱动方式:液压(中、低压系统)8、定位精度:±3mm2.3 方案拟定2.3.1 初步分析机械手抓重为300N,按工业机械手的分类,属于中型,按用途分为通用机械手,其特点是具有独立的控制系统、程序可变、动作灵活多样,通用机械手的工作范围大、定位精度高、通用性强,适合于不断变换生产品种的中小批量自动化生产。
由表2-1和表2-2、及机械手的各规格参数可以了解到,设计方案为通用型机械手,其通用性强,应用范围广,自身体积和重量适中,成本适中,维修较容易。
圆柱坐标式机械手与直角坐标式械手相比,占地面积小而活动范围大,结构较简单,并能达到很高的定位精度,因此应用广泛。
但由于机械手的结构关系,沿Z轴方向移动的最低位置受到限制,故不能抓取地面上的对象。
2.3.2 拟定方案由初始参数拟定整体设计方案通用机械手是3~6个自由度,而本次设计为4由度圆柱坐标机械手,其大致结构如图2-1,运动简图如图2-2:图2-1 图2-22.3.3 执行机构(1) 手部即直接与工件接触的部分,一般是回转型或平移型,也有吸盘式和电磁式结构,本次选用结构简单的两支点回转型结构。
手部为二指。
传力机构常用有滑槽杠杆式、连杆杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式。
本次选用滑槽杠杆式机构。
(2)腕部连接手部与手臂的部件。
要求0~180°的回转动作,因此选用具有单自由度的回转液压缸驱动结构。
此结构特点是结构紧凑,灵活。
(3)臂部臂部是机械手的主要执行部件。
他的作用是支撑腕部和手部(包括工件与工具)。
并带动他们作空间运动。
臂部设计的基本要求为:a 承载能力大,刚度好,自重轻b 运动速度高,惯性小c 动作灵活手臂动作应灵活d 位置精度要高因此,本设计选用双导向杆手臂伸缩结构与双作用液压缸。
其特点为手臂的伸缩缸安装在两根导向杆之间,由导向杆承受弯曲作用,活塞杆只受拉压作用,受力简单,传动平稳,外形整齐美观,结构紧凑。
2.3.4 驱动机构驱动机构是工业机械手的重要组成部分,根据动力源不同大致可分为气动、液压、电动和机械传动。
根据课题特点,本设计选用液压驱动,其特点是速度快,结构简单,控制方便,传递力矩大,并且控制精度高。
3 机械手手部设计计算3.1 手部设计基本要求(1) 应具有适当的夹紧力和驱动力,应考虑到在一定的夹紧力下,不同的传动机构所需要的驱动力大小是不同的。
(2) 手指应具有一定的张开范围,以便于抓取工件。
(3) 在保证本身刚度,强度的前提下,尽可能使结构紧凑,重量轻,以利于减轻手臂负载。
(4) 应保证手抓的夹持精度。
3.2 手部力学分析通过综合考虑,本设计选择二指双支点回转型手抓,采用滑槽杠杆式,夹紧装置采用常开式夹紧装置,他在弹簧的作用下手抓闭合下面对其基本结构进行力学分析:滑槽杠杆 图3-1(a)为常见的滑槽杠杆式手部结构。
(a) (b) 图3-1 滑槽杠杆式手部结构、受力分析 1——手指 2——销轴 3——杠杆 在杠杆3的作用下,销轴2向上的拉力为F ,并通过销轴中心O 点,两手指1的滑槽对销轴的反作用力为F 1和F 2,其力的方向垂直于滑槽的中心线1oo 和2oo 并指向o 点,交1F 和2F 的延长线于A 及B 。