添加辅助线口诀

合集下载

一-初中几何常见辅助线口诀

一-初中几何常见辅助线口诀

一初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为△和□。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

注意点辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

二 由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

中考数学:辅助线助记忆口诀

中考数学:辅助线助记忆口诀

中考数学:辅助线助记忆口诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上假设有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

假设是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;〝教书先生〞恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,〝教书先生〞那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

(完整版)三角形全等添加辅助线口诀

(完整版)三角形全等添加辅助线口诀

三角形全等添加辅助线口诀人说几何很困难点就在辅助线,辅助线,如何添加?把握定理和概念,还要刻苦加钻研,找出规律凭经验,图中有角平分线,可向两边引垂线,也可将图对折看,对称以后关系现,角平分线平行线,等腰三角形来添,角平分线加垂线,三线合一试试看,线段垂直平分线,常向两边把线连,要证线段倍与半,延长缩短可试验,三角形中两中点,连接则成中位线,三角形中有中线,延长中线等中线。

几何,不谈战术谈战略学而思中考研究中心施佳辰作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。

话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。

实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想,这种思想的集中体现,便是模型(变形金刚的原力所在)对于几何,我们不仅仅要在战术上坚定执行,在战略层面上也要对几何在初中三年的整体学习有一个明确的了解。

得模型者得几何,而模型思想的建立又并非一朝一夕,是需要同学们在大量的实战做题和不断总结方法中培养出来的。

对于模型的理解和认识,分为很多层面,最浅的是基本的形似,看到图形相仿或相似的题目,能够有意识的联想以前学过的题型并加以运用,套用,这是最简单的模型思想。

高一些的是神似,看到一些关键点,关键线段或是题目所给条件的相似便能够联想到所学知识点,通过推理和演绎逐步取得正确的解法,记住的是一些具体模型,这,是第二种层次。

最高的境界是,心中只有很少几种基本模型,这些模型就像种子,看到一道题目就会发芽,开花结果,随着对于题目的深入理解,不断地寻找适合的花朵,每一朵花上面都有着一种具体的模型,而每种模型之间,都会有树枝相连,相互间并不是孤立的,而是借由其他条件贯穿连接的。

达到这样的理解才能算是包罗万象,驾轻就熟。

我们对于模型的把控能不应当仅限于会用于具有明显模型特征的题目,对于一些特征并不明显的题目,我们要有能力添加辅助线去挖掘图形当中的隐藏属性。

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解初中数学辅助线口诀及图解 1作辅助线的方法和技巧题中有角平分线,可向两边作垂线。

垂直平分线,可以把线连接到两端。

三角形中两中点,连结则成中位线。

三角形中有中线,延长中线同样长。

成比例,正相似,常为平行线。

如果所有的线都在圆的外面,则通过切割圆心来连接这些线。

如果两圆内外切,经过切点作切线。

两个圆相交于两点,这两点一般作为它们的公共弦。

它是直径,在一个半圆里,我想把线连接成直角。

作等角,添个圆,证明题目少困难。

辅助线是虚线。

小心不要更改图纸。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

需要将线段对折一半,延伸和缩短都可以测试。

三角形的两个中点相连形成中线。

三角形有一条中线,中线延伸。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

移动平行对角线组成三角形是很常见的。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径和弦长计算,弦中心到中间站的距离。

圆上若有一切线,切点圆心半径连。

勾股定理是计算切线长度最方便的方法。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆形,要连接成直角的弦。

圆弧的中点与圆心相连,竖径定理要记完整。

圆周角边两条弦,直径和弦端点连。

切角、切边、切弦、找同弧、同对角线等。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交的圆,别忘了把它做成普通串。

内外相切的两个圆,通过切点公切线。

如果添加了连接线,切点必须在连接线上。

在等角图上加一个圆很难证明问题。

辅助线,是虚线,画图注意勿改变。

如果图形是分散的,对称旋转进行实验。

画画是必不可少的,平时也要熟练。

解题还要多心眼,经常总结方法显。

不要盲目加线。

方法要灵活多变。

分析综合方法选,困难再多也会减。

初中数学辅助线口诀

初中数学辅助线口诀

中考数学作辅助线规律总结(巧计口诀) 人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线添加口诀

辅助线添加口诀

辅助线做法口诀
1、辅助线,如何添?把握规律有几点。

2、三角形,角分线,可向两边作垂线。

3、角分线,平行线,等腰三角形来添。

4、角分线,加垂线,三线合一试试看。

5、线段的,中垂线,可向两端把线连。

6、证线段,倍与半,截长补短可试验。

7、三角形,边中点,连接即成中位线。

8、三角形,有中线,延长中线一样长。

9、特殊的,四边形,对称中心等分点。

10、梯形里,作高线,平移一腰试试看。

11、对角线,平行移,补成三角形常见。

12、证相似,线段比,添线平行成习惯。

13、等积式,比例换,寻找线段很关键。

14、直接证,有困难,等量代换少麻烦。

15、斜边上,作高线,比例中项一大片。

16、圆半径,圆弦长,弦心距来中间站。

17、圆周上,有切线,切点圆心把线连。

18、是直径,或半圆,想成直角径连弦。

初中语文常见辅助线添加口诀

初中语文常见辅助线添加口诀

初中语文常见辅助线添加口诀
1. 划线标点成歧顶
2. 括弧划线示重要
3. 斜杠画线表选择
4. 短线画眉分段位
5. 台阶两点线标起
6. 下沉顶上一线画
7. 弯钩标点兼表示
8. 平推长下连斜变
以上是初中语文常见辅助线添加的口诀,下面对每一项进行详
细解释。

1. 划线标点成歧顶:
在语文中,当遇到标点符号时,可以利用直线将标点符号划线,这样可以使得句子的结构更加清晰,重要的标点会更加突出。

2. 括弧划线示重要:
括弧中的内容通常具有强调或重要性,可以使用直线将括弧内的内容划线,以便读者更加注意和理解。

3. 斜杠画线表选择:
在选择题中,可以使用斜杠将选项和问题连接起来,便于学生更清楚地选出正确答案。

4. 短线画眉分段位:
在文章中,可以使用短线来划分不同段落,这样可以使得文章结构更加清晰,读者可以更方便地理解每一段的内容。

5. 台阶两点线标起:
当需要强调某个句子或词语时,可以使用台阶状的直线将其标注起来,这样可以使得重点更加醒目。

6. 下沉顶上一线画:
当需要强调某句话的下沉或顶上时,可以使用一条直线将其标注,以突出该部分的重要性。

7. 弯钩标点兼表示:
当某个标点符号需要兼具多种功能时,可以使用弯钩状的直线将其标注,以示其复杂性。

8. 平推长下连斜变:
当需要使用辅助线连接多个文字或单词时,可以使用平推、长线、下连和斜变的方式,使得连接更加清晰。

以上是初中语文常见辅助线添加的口诀和解释。

希望能对你的学习和写作有所帮助!。

中考数学:辅助线助记歌诀

中考数学:辅助线助记歌诀

中考数学:辅助线助记歌诀人说几何专门困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭体会。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形显现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成适应。

等积式子比例换,查找线段专门关键。

直截了当证明有困难,等量代换少苦恼。

斜边上面作高线,比例中项一大片。

半径与弦长运算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的运算,勾股定理最方便。

要想证明是切线,半径垂线认真辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆假如遇到相交圆,不要忘作公共弦。

内外相切的两圆,通过切点公切线。

若是添上连心线,切点确信在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

差不多作图专门关键,平常把握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,显现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;专门角、专门边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

数学几何辅助线口诀

数学几何辅助线口诀

数学几何辅助线口诀以下是为您生成的十个适用于小学生的数学几何辅助线口诀:1. 一遇中点倍延长,二线合一试试看。

遇到中点别慌张,倍长中线来帮忙。

延长之后再相连,全等出现思路宽。

若是等腰三角形,中线高线合一观。

角平分线加垂线,三线合一试试看,解题轻松又简单。

2. 一作高线二作角,三线相交找全等。

图形难题不可怕,一作高线把距画。

垂直关系先找到,面积问题能解答。

二作角来也不错,相等角儿对应着。

三线相交全等现,几何证明有着落。

3. 一找直角二找边,相似全等细分辨。

碰到几何要冷静,一找直角定分明。

直角当中藏秘密,勾股定理常应用。

二找边的比例同,相似全等在其中。

边边关系要理清,解题才能方向准。

4. 一作平行二连线,比例线段轻松现。

解题思路遇阻碍,一作平行智慧来。

平行产生相似形,对应线段成比例。

二把线段连一连,构造图形更直观。

比例线段轻松现,计算不再苦难言。

5. 一证平行二证角,平行四边形就来到。

想要证明四边形,一证平行不能少。

对边平行且相等,平行四边形初显貌。

二证对角也相等,两组对角都一样。

如此一来就成功,图形性质要记清。

6. 一找圆心二连弦,垂径定理在心间。

圆中难题别犯难,一找圆心是关键。

圆心确定位置明,半径直径随之现。

二连弦来莫等闲,垂径定理记心田。

垂直弦的直径分,平分弦且平分弦所对的弧。

7. 一遇切线连半径,垂直关系立呈现。

见到切线别发呆,一遇切线连半径。

半径与切线相连,垂直关系立马现。

圆心切点和半径,构成直角最常见。

解题巧用这一点,思路清晰不再乱。

8. 一构等腰二构圆,难题也能变简单。

几何题目花样多,一构等腰巧解题。

相等边儿找出来,角度计算不费力。

二构圆形更神奇,圆周角和圆心角,关系明确思路开。

难题不再把你难,轻松应对笑开颜。

9. 一作对称二平移,图形变换有规律。

遇到复杂的图形,一作对称找特征。

对称轴上有玄机,对应点线都相等。

二作平移也可行,位置改变形状恒。

图形变换有规律,掌握方法就搞定。

10. 一找特殊三角形,二用勾股来计算。

初中几何常见辅助线作法口诀大全

初中几何常见辅助线作法口诀大全

初中几何常见辅助线作法口诀大全人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上假设有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

假设是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何辅助线口诀

几何辅助线口诀

几何辅助线口诀
几何辅助线的口诀有很多,例如:
1.三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对
称以后关系现。

角平分线平行线,等腰三角形来添。

2.角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端
把线连。

3.线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一
三角去。

4.三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线
得全等。

5.四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变
为三角或平四。

6.平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上
中位线。

等积式子比例换,寻找线段很关键。

7.直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项
一大片。

8.圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点
圆心半径联。

切线长度的计算,勾股定理最方便。

9.要想证明是切线,半径垂线仔细辨。

是直径成半圆,想成直角径
连弦。

弧有中点圆心连,垂径定理要记全。

10.圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角
等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

初二几何辅助线添加方法

初二几何辅助线添加方法

初中数学辅助线1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、分角线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:造角、平、相似,和、差、积、商见;如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关;在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移;故作歌诀:“造角、平、相似,和差积商见;”五:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;初中几何常见辅助线口诀人说几何很困难,难点就在辅助线;辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形问题巧转换,变为△和□;平移腰,移对角,两腰延长作出高;如果出现腰中点,细心连上中位线;上述方法不奏效,过腰中点全等造;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;三角形中作辅助线的常用方法举例一.倍长中线1:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD; 二、截长补短法作辅助线;在△ABC 中,AD 平分∠BAC,∠ACB =2∠B,求证:AB =AC +CD; 三、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC 分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角; 证明:分别延长DA,CB,它们的延长交于E 点,∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件; 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等五、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F;∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,ABC DEF25-图19-图DCBA E F 12A BCD18-图1234ABCD E17-图O∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE 六、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D; 证明:连接BC,在△ABC 和△DCB 中∵⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等七、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB; 分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB; 二 由角平分线想到的辅助线D BA110-图O 111-图D CBAM N口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种; ①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件; 与角有关的辅助线 一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍; 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件; 1-2,AB 21如图图1-2ADBCEF图2-1ABCDE F图示3-1ABCD HE如图所示,在直角梯形ABC D 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围;解:过点B作BM)(2121CH BGBC GH EF --==512=⨯=BE ED BD DH 6251252DHBC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+15cm20cm12cmDCEACD ABD S S S ∆∆∆==DBEABCD S S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆150cA B DC E Hm 如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形. 证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB.又AD 不平行于BC,∴四边形ABCD 是等腰梯形. 三、作对角线即通过作对角线,使梯形转化为三角形;例9如图6,在直角梯形ABCD 中,AD//BC,AB ⊥AD,BC=CD,BE ⊥CD 于点E,求证:AD=DE; 解:连结BD,由AD//BC,得∠ADB=∠DBE ; 由BC=CD,得∠DBC=∠BDC; 所以∠ADB=∠BDE;又∠BAD=∠DEB=90°,BD=BD, 所以Rt △BAD ≌Rt △BED, 得AD=DE;四、作梯形的高 1、作一条高例10如图,在直角梯形ABCD 中,AB//DC,∠ABC=90°,AB=2DC,对角线AC ⊥BD,垂足为F,过点F 作EF//AB,交AD 于点E,求证:四边形ABFE 是等腰梯形;证:过点D 作DG ⊥AB 于点G,则易知四边形DGBC 是矩形,所以DC=BG; 因为AB=2DC,所以AG=GB;从而DA=DB,于是∠DAB=∠DBA;又EF//AB,所以四边形ABFE 是等腰梯形; 2、作两条高例11、在等腰梯形ABCD 中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm, 求:1腰AB 的长;2梯形ABCD 的面积.解:作AE ⊥BC 于E,DF ⊥BC 于F,又∵AD ∥BC, ∴四边形AEFD 是矩形, EF=AD=3cm ∵AB=DC∵在Rt △ABE 中,∠B=60°,BE=1cmA B C D A B C D E A B C D E F∴AB=2BE=2cm,cm BE AE 33==∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD,求证:BD>AC;证:作AE ⊥BC 于E,作DF ⊥BC 于F,则易知AE=DF; 在Rt △ABE 和Rt △DCF 中, 因为AB>CD,AE=DF;所以由勾股定理得BE>CF;即BF>CE; 在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC 五、作中位线1、已知梯形一腰中点,作梯形的中位线;例13如图,在梯形ABCD 中,AB//DC,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD;证:取AD 的中点E,连接OE,则易知OE 是梯形ABCD 的中位线,从而OE=21AB +CD ①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD;2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线;例14如图,在梯形ABCD 中,AD//BC,E 、F 分别是BD 、AC 的中点,求证:1EF//AD ;2)(21AD BC EF -=;证:连接DF,并延长交BC 于点G,易证△AFD ≌△CFG则AD=CG,DF=GF由于DE=BE,所以EF 是△BDG 的中位线 从而EF//BG,且BG EF 21=因为AD//BG,AD BC CG BC BG -=-=所以EF//AD,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的;例15、在梯形ABCD 中,AD ∥BC, ∠BAD=900,E 是DC 上的中点,连接AE 和BE,求∠AEB=2∠CBE;解:分别延长AE与BC ,并交于F点∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F两直线平行内错角相等∠AED=∠FEC 对顶角相等DE=EC E点是CD的中点∴△ADE≌△FCE AAS∴ AE=FE在△ABF中∠FBA=900且AE=FE∴ BE=FE直角三角形斜边上的中线等于斜边的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC, ∴BE=AE.ABDCEF。

初中辅助线口诀

初中辅助线口诀

辅助线口诀
学习几何体会深,成败也许一线牵。

分散条件要集中,常要添加辅助线。

畏惧心理不要有,其次要把观念变。

熟能生巧有规律,真知灼见靠实践。

图中已知有中线,倍长中线把线连。

旋转构造全等形,等线段角可代换。

多条中线连中点,便可得到中位线。

倘若知角平分线,既可两边作垂线。

也可沿线去翻折,全等图形立呈现。

角分线若加垂线,等腰三角形可见。

角分线加平行线,等线段角位置变。

已知线段中垂线,连接两端等线段。

辅助线必画虚线,便与原图联系看。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

转180 度,得到全等形,三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中美术常见辅助线添加口诀

初中美术常见辅助线添加口诀

初中美术常见辅助线添加口诀
在初中美术中,辅助线是提供给学生在绘画过程中正确布局和构图的基本线条。

下面是一些常见的辅助线添加口诀,方便同学们记忆和使用。

1. 中心十字线:从纸张中心点向四周画出十字线,帮助确定画面的对称和平衡。

2. 对角线:从画布四角画出对角线相交,帮助确定画面的主要元素和重点位置。

3. 比例线:将画布分为若干等分,通过比例线来确定各个元素和物体的大小和位置。

4. 水平线:在画布上绘制水平线,帮助确定物体在画面中的水平位置和平衡感。

5. 垂直线:在画布上绘制垂直线,帮助确定物体在画面中的垂直位置和平衡感。

6. 圆心线:在画布上找到圆心,通过圆心线来确定圆形物体的位置和形状。

7. 边框线:绘制边框线,帮助确定画面的范围和边界。

8. 纵深线:在画布上绘制纵深线,帮助确定物体的远近和透视效果。

上述口诀可以帮助初中美术学生在绘画中准确添加辅助线,提高作品的布局和构图。

同学们可以根据具体的绘画题材和要求选择合适的辅助线添加口诀,并在实践中不断探索和体验,以提升自己的美术水平。

初中数学知识点归纳之几何常见辅助线顺口溜

初中数学知识点归纳之几何常见辅助线顺口溜

初中数学知识点归纳之几何常见辅助线顺口溜初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀
初中几何辅助线大全及口诀可以帮助同学们在解题时更高效地添加辅助线,解决几何问题。

下面是一些常见的辅助线和口诀:
一、常见辅助线:
1. 过中点作中位线;
2. 见中线延长一倍;
3. 见中点,引中位线;
4. 遇比例线段,常作平行线;
5. 梯形问题,常作垂线;
6. 遇切线问题,常连结过切点的半径;
7. 遇弦的问题,常作弦心距。

二、常见定理:
1. 三角形内角和定理;
2. 平行线的性质定理;
3. 中位线定理;
4. 命题等价性定理;
5. 相似三角形判定定理;
6. 直角三角形判定定理。

三、口诀:
1. 直角三角形直角边平方等于斜边平方加直角边平方;
2. 三角形两边之和大于第三边;
3. 三角形三边长度比等于斜边夹角角度比;
4. 梯形问题,常作垂线;
5. 遇切线问题,常连结过切点的半径;
6. 遇弦的问题,常作弦心距。

这些辅助线和口诀可以帮助同学们更好地解决几何问题,提高解题效率。

同时,辅助线添加的技巧也需要同学们在实际解题中不断练习和总结,才能更好地掌握和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

添加辅助线口诀
人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

四线合一最为广,证题先须把它想。

已知中点找中点,连之即成中位线。

遇到中线加倍延,证明全等边角边。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端作连线。

要证线段和与差,延长截取可试验。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移腰和对角线。

证相似,比线段,分点处作平行线。

等积式子比例换,相似找准对应边。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

知切点,证切线,圆心切点一线连。

不知切点证切线,过圆心,作垂线。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角要找全。

要想作个外接圆,各边作出中垂线。

还要作个内切圆,内角平分线梦圆。

两圆相交作公弦,两圆相切作切线。

若是添上连心线,垂直平分切点现。

要作等角添个圆,证明题目很清闲。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

常用几何辅助线,望君时常记心间。

边求角,角求边,不要忘记正余弦。

相关文档
最新文档