高中物理典型模型及处理方法

合集下载

高中物理板块模型归纳

高中物理板块模型归纳

高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。

这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。

下面详细介绍高中物理板块模型。

一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。

(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。

(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。

2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。

(2)动量定理:动量的守恒、动量的变化。

(3)能量守恒定律:动能、势能、机械能、内能。

3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。

(2)非简谐振动:阻尼振动、受迫振动。

(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。

二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。

(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。

2. 热力学(1)热力学第一定律:内能、热量、功。

(2)热力学第二定律:熵、热力学第二定律的微观解释。

3. 物态变化(1)相变:固态、液态、气态、等离子态。

(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。

三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。

(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。

(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。

2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。

(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。

3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。

(2)电磁波的传播:波动方程、折射、反射、衍射。

四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。

(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。

高中物理基础知识总结几种典型的运动模型

高中物理基础知识总结几种典型的运动模型

高考物理知识点总结18几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动两个基本公式(规律): V t = V 0 + a t S = v o t +12a t 2 及几个重要推论:(1) 推论:V t2-V 02 = 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值)(2) A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=st(若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度: V s/2 =v v o t222+V t/ 2 =V =V V t 02+=s t =T SS N N 21++= V N ? V s/2 =v v o t222+匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2 <V s/2 (4) S第t 秒= S t -S (t-1)= (v o t +12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 +a (t -12)(5) 初速为零的匀加速直线运动规律①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1); ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……(n n --1)⑤通过连续相等位移末速度比为1:2:3……n(6)匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间).“刹车陷井”实验规律:(7) 通过打点计时器在纸带上打点(或频闪照像法记录在底片上)来研究物体的运动规律:此方法称留迹法。

初速无论是否为零,只要是匀变速直线运动的质点,就具有下面两个很重要的特点:在连续相邻相等时间间隔内的位移之差为一常数;?s = aT 2(判断物体是否作匀变速运动的依据)。

高中物理模型:应用动量定理解决流体模型的冲击力问题

高中物理模型:应用动量定理解决流体模型的冲击力问题

模型/题型:应用动量定理处理“流体模型”的冲击力问题一、模型概述1.研究对象:常常需要选取流体为研究对象,如水、空气等.2.研究方法:隔离出一定形状的一部分流体作为研究对象,然后列式求解.3.基本思路(1)在极短时间Δt 内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV =vS Δt(3)求小柱体质量Δm =ρΔV =ρvS Δt(4)求小柱体的动量变化Δp =v Δm =ρv 2S Δt (5)应用动量定理F Δt =Δp二、题型分类处理办法 模型一流体类问题通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ建立“柱状”模型,沿流速v 的方向选取一段柱形流体,其横截面积为S模型二 微粒类问题 三、典型例题1.(2016·全国卷Ⅰ·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.答案 (1)ρv 0S (2)v 022g - M 2g2ρ2v 02S2解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt① 喷出水柱质量Δm =ρΔV ② 其中ΔV 为水柱体积,满足ΔV =ΔlS ③由①②③可得:喷泉单位时间内喷出的水的质量为 ΔmΔt=ρv 0S (2)设玩具底板相对于喷口的高度为h 由玩具受力平衡得F 冲=Mg④ 其中,F 冲为水柱对玩具底板的作用力 由牛顿第三定律:F 压=F 冲⑤ 其中,F 压为玩具底板对水柱的作用力,设v ′为水柱到达玩具底面时的速度由运动学公式:v ′2-v 02=-2gh ⑥ 在很短Δt 时间内,冲击玩具的水柱的质量为Δm Δm =ρv 0S Δt⑦ 由题意可知,在竖直方向上,对该部分水柱应用动量定理 (F 压+Δmg )Δt =Δmv ′ ⑧ 由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为 F 压Δt =Δmv ′⑨由④⑤⑥⑦⑨可得h =v 022g -M 2g 2ρ2v 02S22.如图所示,由喷泉中喷出的水柱,把一个质量为M 的垃圾桶倒顶在空中,水以速率v0、恒定的质量增率(即单位时间喷出的质量)ΔmΔt从地下射向空中.求垃圾桶可停留的最大高度.(设水柱喷到桶底后以相同的速率反弹)答案 h =v 022g -M 2g 8(Δt Δm)2解析 设垃圾桶可停留的最大高度为h ,并设水柱到达h 高处的速度为vt ,则 v 2-v 02=-2gh得v 2=v 02-2gh由动量定理得,在极短时间Δt 内,水受到的冲量为FΔt=2(ΔmΔt ·Δt)v解得F =2Δm Δt ·vt=2Δm Δtv 02-2gh据题意有F =Mg联立解得h =v 022g -M 2g 8(Δt Δm)23. 有一宇宙飞船,它的正面面积S = 0.98m2,以v = 2×103 m/s 的速度飞入一宇宙微粒尘区,此尘区每立方米空间有一个微粒,微粒的平均质量m = 2×10﹣7 kg ,要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船外壳碰撞后附于飞船上)。

(完整)高中物理力学模型及分析

(完整)高中物理力学模型及分析

╰α高中物理力学模型及分析1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?EmL·m2m1FBAF1 F2 B A F假设单B下摆,最低点的速度V B=R2g ⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

物理模型考点总结归纳高中

物理模型考点总结归纳高中

物理模型考点总结归纳高中物理是一门研究物质运动以及相互作用的自然科学,广泛应用于现实生活和工程领域。

在高中物理学习中,学生们需要掌握各种物理模型,这些模型用于解释复杂的现象和问题。

本文将总结和归纳高中物理学习中的一些重要考点和物理模型。

一、力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律描述了物体的运动状态将保持恒定,直到遇到外力。

物体在无外力作用下匀速直线运动,或保持静止。

2. 牛顿第二定律(力学基本定律)牛顿第二定律描述了物体的加速度与作用在物体上的合力成正比。

即 F=ma,其中 F 为物体所受力的合力,m为物体的质量,a为物体的加速度。

3. 牛顿第三定律(作用力与反作用力)牛顿第三定律描述了物体之间的相互作用,即使两个物体之间有作用力,这两个力的大小相等、方向相反,且作用在不同的物体上。

4. 弹簧弹力模型弹簧的弹力模型是描述弹簧受力的一种常见模型。

根据胡克定律,弹簧的弹力与弹簧的伸长或压缩程度成正比。

二、电磁模型1. 静电力模型静电力模型用于描述电荷之间的相互作用。

根据库仑定律,两个电荷之间的静电力与它们之间的距离的平方成反比。

2. 电场模型电场模型用于描述静电力的传递方式。

电场是由电荷产生的,电场中的电荷会受到电场力的作用。

3. 磁场模型磁场模型用于描述磁力的传递。

根据洛伦兹力,运动带电粒子在磁场中受到的磁力与粒子的速度和磁场的强度成正比。

4. 电磁感应模型电磁感应模型用于描述电磁感应现象。

当导体中的磁通量发生变化时,会在导体中产生感应电动势。

三、光学模型1. 光的射线模型光的射线模型用于描述光在直线传播时的特性。

根据光的直线传播原理,光线在一直线传播过程中可以发生折射、反射等现象。

2. 光的波动模型光的波动模型用于描述光的波动性质。

根据光的波动理论,光具有波长、频率等特性,并符合波的干涉、衍射、偏振等规律。

3. 光的粒子模型(光量子模型)光的粒子模型用于描述光的粒子性质。

根据光量子理论,光以光子的形式传播,光子具有能量和动量。

高中物理模型的建构及教学方法

高中物理模型的建构及教学方法

高中物理模型的建构及教学方法
高中物理模型的建构与教学方法是指在教学过程中,通过对物理现象进行观察、实验、分析等方式,构建出物理模型,并探究其规律和应用。

具体来说,包括以下几个方面:
一、物理模型建构的基本步骤:
1.观察物理现象,提出问题;
2.设计实验,收集数据,分析数据;
3.提出假设,构建物理模型;
4.验证假设,修正模型;
5.用模型预测新现象,检验模型的适用性。

二、高中物理模型教学的方法:
1.实验教学法:通过实验观察、测量等方式,帮助学生建立模型,提高学生的实验能力和科学思维。

2.探究式教学法:引导学生通过探究、发现、总结的方式,建立物理模型,激发学生的学习兴趣和动力。

3.问题导向教学法:通过提出问题、分析问题、解决问题的方式,引导学生建立模型,培养学生的自主学习能力。

4.案例教学法:通过引入实际案例,帮助学生建立模型,提高学生的应用能力。

结论:
高中物理模型的建构及教学方法对于学生的物理学习具有重要的意义,不仅可以提高学生的学习兴趣和动力,还可以培养学生的实
验能力、科学思维和应用能力,是高中物理教学中不可或缺的一部分。

高中物理运动学加速度求解题常见模型及方法

高中物理运动学加速度求解题常见模型及方法

高中物理运动学加速度求解题常见模型及方法引言:运动学是物理学的一个重要分支,研究物体的运动和运动规律。

在运动学中,加速度是一个关键概念,它描述了物体运动速度变化的快慢。

解决加速度相关问题需要理解常见的模型和方法。

本文将介绍高中物理中常见的加速度求解题的模型和方法。

一、直线运动加速度的求解模型及方法1. 匀加速直线运动:- 模型:匀加速直线运动的速度随时间的变化呈线性关系。

- 方法:根据速度随时间变化的关系,可以利用速度-时间图或速度-时间表求解加速度。

2. 自由落体运动:- 模型:自由落体运动是指只受重力作用的物体从静止位置开始下落的运动。

- 方法:可以利用重力加速度g来求解自由落体运动的加速度。

自由落体运动的加速度始终等于重力加速度g。

二、曲线运动加速度的求解模型及方法1. 简谐振动:- 模型:简谐振动描述了物体在一个约束力作用下沿一个路径往复运动的情况。

- 方法:可以利用力学模型来求解简谐振动的加速度,如弹簧振子的加速度可以通过Hooke定律和牛顿第二定律求解。

2. 圆周运动:- 模型:圆周运动是指物体在一个圆周轨迹上运动的情况。

- 方法:可以利用向心加速度来求解圆周运动的加速度,向心加速度的大小等于速度的平方除以半径。

结论:高中物理中,加速度求解问题常见的模型和方法包括匀加速直线运动、自由落体运动、简谐振动和圆周运动。

通过理解这些模型和方法,可以更好地解决与加速度相关的问题。

参考文献:[1] 高中物理课程标准. 人民教育出版社,2003.[2] 黄志伟, 李明. 高中物理实验教程. 人民教育出版社,2008.。

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

高中物理模型清单和126招

高中物理模型清单和126招

高中物理模型清单和126招
传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)
挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

“爆炸”模型:动量守恒定律,能量守恒定律。

“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中典型物理模型及解题方法

高中典型物理模型及解题方法

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1〈N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2。

水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

高中物理全部模型归纳(包括运动学动力学电磁学) 带答案解析

高中物理全部模型归纳(包括运动学动力学电磁学) 带答案解析

高考物理解题模型目 录第一章 运动和力一、追及、相遇模型; 二、先加速后减速模型; 三、斜面模型; 四、挂件模型;五、弹簧模型(动力学); 第二章 圆周运动一、水平方向的圆盘模型; 二、行星模型; 第三章 功和能;一、水平方向的弹性碰撞; 二、水平方向的非弹性碰撞; 三、人船模型;四、爆炸反冲模型; 第四章 力学综合 一、解题模型; 二、滑轮模型; 三、渡河模型; 第五章 电路一、电路的动态变化; 二、交变电流; 第六章 电磁场一、电磁场中的单杆模型; 二、电磁流量计模型;三、回旋加速模型;四、磁偏转模型; ****第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。

为了使两车不相撞,加速度a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。

因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。

即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为v 1,加速度大小为a 1。

乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少? 解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122av a v s s -+=∆ 若是2221a va v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a vv t --=在t 时间内 甲的位移t v v s 211+=共乙的位移t v v s 222+=共 代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型高考物理经典题型归纳
学好高中物理可以多积累些做题解题的经典模型。

下文小编给大家整理了高中物理最常用的几种解题模型,供参考!
 高中物理解题常用经典模型1、&#39;皮带&#39;模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.
 2、&#39;斜面&#39;模型:运动规律,三大定律,数理问题.
 3、&#39;运动关联&#39;模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.
 4、&#39;人船&#39;模型:动量守恒定律,能量守恒定律,数理问题.
 5、&#39;子弹打木块&#39;模型:三大定律,摩擦生热,临界问题,数理问题.
 6、&#39;爆炸&#39;模型:动量守恒定律,能量守恒定律.
 7、&#39;单摆&#39;模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.
 8.电磁场中的&#39;双电源&#39;模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.
 9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.
 10、&#39;平抛&#39;模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).
 11、&#39;行星&#39;模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).。

高中物理解题常用经典模型

高中物理解题常用经典模型

高中物理解题常用经典模型集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.。

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结高考物理48 个解题模型
高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。

1高中物理解题模型汇总必修一
1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函
数极值法。

图像法等)
3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

必修二
1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力
学问题和功能问题。

2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

选修3-1
1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

2、“磁流发电机”模型:平衡与偏转,力和能问题。

3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三。

动量守恒定律中的典型模型

动量守恒定律中的典型模型

动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。

一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。

例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。

设木块对子弹的阻力F恒定。

求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。

两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。

求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。

则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为①m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+. (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为①m A v 0=m A v A +m B v B ,C B Amv oBA②2220212121BB A A A v m v m v m +=可解出碰后速度0v m m m m v B A B A A +-=,v B =02v m m m B A A +.若m A =m B ,则v A = 0 ,v B = v 0,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。

高中物理常见的物理模型

高中物理常见的物理模型

1专题:高中物理力学常见物理模型高考中常出现的物理模型:斜面模型、叠加体模型(包含滑块、子弹射入)、〔弹簧、轻绳、轻杆〕连接体模型、传送带模型、人船模型、碰撞模型等。

一、斜面模型每年各地高考卷中几乎都有关于斜面模型的试题。

以下结论有助于更好更快地理清解题思路和方法.1.自由释放的滑块能在斜面上(如右图)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ.2.自由释放的滑块在斜面上(如右图所示):(1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如右图所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零..4.悬挂有物体的小车在斜面上滑行(如右图所示):(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v 0平抛一小球(如右 图所示):(1)落到斜面上的时间t =2v 0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.6.如下图,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止.7.在如以下图所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能到达的稳定速度v m =mgR sin θB 2L 2.8.如以下图所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =mm +ML .2v v tt二、叠加体模型叠加体模型〔包括滑块、子弹打木块、滑环直杆、传送带等模型,传送带另详述〕在高考中频现,常需求解摩擦力、相对滑动路程、摩擦生热、多次作用后的速度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理典型模型及处理方法解决物理问题的一般方法可归纳为以下几个环节:审视物理情景构建物理模型转化为数学问题还原为物理结论有些题目所设物理情境是不清晰的,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

●物理模型常常有下面三种(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型。

表示实际物体在某种条件下的近似与抽象,如质点、点电荷、点光源、单摆、弹簧振子、理想气体、理想变压器、原子核式模型、理想电表等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.条件模型分为两类:(1)作用条件模型:如恒力、合外力为零、阻力与速度成正比、恒定电压等。

(2)约束条件模型:如光滑平面、无限长导轨、不可伸长的轻绳或杆、轻质弹簧、匀强磁场等。

(3)过程模型:把具体物理理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动、弹性碰撞等。

这三类模型的相互关系是:一旦对象模型和条件模型确定,过程模型就随之被确定。

单一物体的运动过程模型一、静止(v=0且a=0)二、匀速直线运动(速度不变的运动)特征:合力为零,受力平衡处理方法:二力平衡看条件:(同体共线等值反向)三力平衡三角形:(知道角度解三角形——正弦定理、余弦定理、勾股定理不知道角度相似三角形——图解法)多力平衡正交分解(坐标系选取的原则——少分矢量,少分待求量)三、匀变速直线运动(含匀加速、匀减速、匀变速往返)口诀:五量五公式,知三求另二,方向定正负,陷阱莫落入五量:x v0 v t a t五公式:陷阱:(加速度突变):匀加速时最大速度限定,匀减速时最小速度限定,有去无返,往返不对称处理思路:受力分析后作v-t图象常例:汽车刹车,传送带上物体的运动讨论:⑴、物体初速度为零(轻放)V0向左或向右,⑵、V0大于V带、或是小于V、等于V,⑶、传送带有限长或是无限长作出相应v-t图象恒定加速度启动a定=F fm-定即F一定P↑=F定v↑即P随v的增大而增大当a=0时,v达到最大v m,此后匀速当P=P额时a定=F fm-定≠0,v还要增大F=Pv↓↑额a=F fm↑-↓∣→→匀加速直线运动→→→→∣→→→变加速(a↓)运动→→→→→∣→匀速运动→恒定功率启动速度V↑F=Pv↑定a=F fm↓-↓当a=0即F=f时,v达到最大v m保持v m匀速∣→→→变加速直线运动→→→→→→→∣→→→→匀速直线运动→→……四、匀变速曲线运动:平抛和类平抛,处理方式:正交分解(关键是运动时间)和动能定理记住两个推论:㈠做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

㈡:1tan tan2βα=五、非匀变速直线运动:突变(用图象分析)渐变(蹦极和机车启动问题、安培力作用下杆的运动)从A—B:匀加速a=g从B-C:加速度减小的加速运动C处:加速度等于0,kx=mg,速度最大从C-D:加速度增大的减速运动D处:速度为0,加速度最大,且加速度a>g此后原路返回,a和v如何变化?全过程能量如何变化?汽车的启动问题:具体变化过程可用如下示意图表示.关键是发动机的功率是否达到额定功率,(1)若额定功率下起动,则一定是变加速运动,因为牵引力随速度的增大而减小.求解时不能用匀变速运动的规律来解.(2)特别注意匀加速起动时,牵引力恒定.当功率随速度增至预定功率时的速度(匀加速结束时的速度),并不是车行的最大速度.此后,车仍要在额定功率下做加速度减小的加速运动(这阶段类同于额定功率起动)直至a=0时速度达到最大.安培力作用下杆的运动分析三种情况:1、双轨单杆接电阻时㈠ 杆受恒力(重力,下滑力等),静止出发——存收尾速度 ㈡杆给定初速度v 0(讨论v 0为0时,较大时,较小时) ㈢外力控制下杆匀速、匀加速2、电阻换电容3、电阻换电源,杆恰静止时六、匀速圆周运动:圆锥摆、天体运动、氢原子模型、带电粒子在磁场中的运动 火车转弯模型:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力, ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现 天体运动 天上的星:记住:轨道半径r 越大,则地上的物:不考虑自转: 考虑自转: 双星 中子星氢原子模型七、竖直方向上的圆周运动:向内约束(绳球模型)、向外约束、双向约束(杆球模型) 1、向内约束(绳球模型)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。

能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道) 讨论:① 恰能通过最高点时:mg=Rm2临v ,临界速度V 临=gR ;可认为距此点2R h = (或距圆的最低点25R h =)处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg② 最高点状态: mg+T 1=L2m高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)最低点状态: T 2- mg = L2m低v 高到低过程机械能守恒:mg2L m m 221221+=高低v v T 2- T 1=6mg (g 可看为等效加速度) ② 半圆:过程mgR=221mv 最低点T-mg=R 2v m ⇒绳上拉力T=3mg ; 过低点的速度为V低=gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,此时绳子拉力T=mg(3-2cos θ)2、双向约束(杆球模型)(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)恰好过最高点时,此时从高到低过程 mg2R=221mv低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)八、简谐运动(强调对称、多解)00()v gR N v mg N v gR N v gR N v <>>==>②当向上且随增大而减小,且③当④当向下即拉力随增大而增大,方向指向圆心。

●动量与能量●知识分类力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律1.力的三种效应: 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理功与能量观点:求功方法 单位:J ev=1.6×10-19J 度=kwh=3.6×106J 1u=931.5Mev ⊙力学: ①W = Fs cos θ (适用于恒力功的计算):深刻理解:恒力对物体所做的功等于力乘以力的作用点在力的作用时间内沿力的方向的对地位移 ①理解正功、零功、负功 ②功是能量转化的量度 ②W= P ·t (⇒p=t w =tFS =Fv) 功率:P =Wt(在t 时间内力对物体做功的平均功率)机车 P = F v (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率.V 为平均速度时,P 为平均功率.P 一定时,F 与V 成正比)动能: E K =m2p mv 2122= 重力势能E p = mgh (凡是势能与零势能面的选择有关)③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2 一E k1 = 12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶即为物体所受合外力的功。

④功是能量转化的量度(最易忽视)主要形式有:“功是能量转化的量度”这一基本概念含义理解。

⑴重力的功------量度------重力势能的变化物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是功能原理。

只有重力做功时系统的机械能守恒。

⑵电场力的功-----量度------电势能的变化 ⑶分子力的功-----量度------分子势能的变化⑷合外力的功------量度-------动能的变化;这就是动能定理。

⑸摩擦力和空气阻力做功W =fd 相对路程⇒E 内能(发热)⑹一对互为作用力和反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。

f d=Q (d 为这两个物体间相对移动的路程)。

⊙电学: W AB =qU AB =F 电d E =qEd E⇒ 动能(导致电势能改变)W =QU =UIt =I 2Rt =U 2t/R Q =I 2RtE=I(R+r)=U 外+U 内=U 外+Ir P 电源t =UIt+E 其它 P 电源=IE=I U +I 2Rt⊙磁学:安培力功W =F 安d =BILd⇒内能(发热) d RV L B Ld R BLVB 22== ⊙光学:单个光子能量E =h γ 一束光能量E 总=Nh γ(N 为光子数目)光电效应221m kmmv E ==h γ-W 0 跃迁规律:h γ=E 大-E 小 辐射或吸收光子⊙原子:质能方程:E =mc 2 ΔE =Δmc 2 注意单位的转换换算机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力和弹簧的弹力做功;(能转化角度)只发生动能与势能之间的相互转化。

相关文档
最新文档