2019-2020年中考图形的变换专题复习题及答案

合集下载

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。

湖南省2019-2020年中考数学试题图形的变换分类汇编(52页)

湖南省2019-2020年中考数学试题图形的变换分类汇编(52页)

湖南省2019-2020年中考数学试题图形的变换分类汇编一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD 中,E 是DC 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=︒B .45BAC ∠=︒ C .12EF FB =D .AD AB =2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是() A .4 B .2 CD . 3.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是( )A . 注意安全B .水深危险C .必须戴安全帽D .注意通风 4.(2020•永州)如图,在ABC ∆中,//EF BC ,23AE EB =,四边形BCFE 的面积为21,则ABC ∆的面积是( )A .913B .25C .35D .635.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=,阻力臂2cos L l β=,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是( )A .B .C .D .7.(2020•益阳)如图所示的几何体的俯视图是( )A.B.C.D.8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是()A.B.C.D.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是() A.B.C.D.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30 时,船离灯塔的水平距离是()米B.米C.21米D.42米A.16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是() A.B.C.D.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.19.(2019•邵阳)如图,在Rt ABC∠=︒,AD是斜边BC上的中B∠=︒,36∆中,90BAC线,将ACD∠等∆沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则BED 于()A.120︒B.108︒C.72︒D.36︒20.(2019•常德)如图,在等腰三角形ABC=,图中所有三角形均相似,∆中,AB AC其中最小的三角形面积为1,ABC∆的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.2621.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C .D .22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .B .(1,0)C .(D .(0,1)- 二.填空题(共11小题)25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是 .26.(2020•娄底)若1()2b d a c a c ==≠,则b d a c-=- . 27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 .28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是 .29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值.30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PE PQ PM += .(2)若2PN PM MN =,则MQ NQ= .31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是 (结果保留)π.32.(2020•湘潭)若37y x =,则x y x-= .33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是 .34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 .35.(2020•湘潭)计算:sin45︒= .三.解答题(共12小题)36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈︒≈,tan260.49︒≈,tan71 2.90)︒≈,sin710.9538.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面5m,从E点处测得D点俯角为30︒,斜面ED长为4m,水平面DC长为2m,斜面BC的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到≈.0.1m 1.41 1.73)39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC ∆的重心为点O ,求OBC ∆与ABC ∆的面积.(2)性质探究:如图(二),已知ABC ∆的重心为点O ,请判断OD OA、OBC ABCS S ∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若1CME S ∆=,求正方形ABCD 的面积.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s 的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A 处测得“南天一柱”底部C 的俯角为37︒,继续飞行6s 到达B 处,这时测得“南天一柱”底部C 的俯角为45︒,已知“南天一柱”的高为150m ,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈41.(2020•郴州)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O 处发射,当火箭到达点A 时,地面D 处的雷达站测得4000AD =米,仰角为30︒.3秒后,火箭直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为45︒.已知C ,D 两处相距460米,求火箭从A 到B 处的平均速度(结果精确到1米/ 1.732 1.414).42.(2020•湘潭)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD 为矩形,10DE =m ,其坡度为1i =DE 改造为斜坡AF ,其坡度为21:4i =,求斜坡AF 的长度.(结果精确到0.01m , 1.732≈,4.123)43.(2020•株洲)某高速公路管理部门工作人员在对某段高速公路进行安全巡检过程中,发现该高速公路旁的一斜坡存在落石隐患.该斜坡横断面示意图如图所示,水平线12//l l ,点A 、B 分别在1l 、2l 上,斜坡AB 的长为18米,过点B 作1BC l ⊥于点C ,且线段AC 的长为(1)求该斜坡的坡高BC ;(结果用最简根式表示)(2)为降低落石风险,该管理部门计划对该斜坡进行改造,改造后的斜坡坡角α为60︒,过点M 作1MN l ⊥于点N ,求改造后的斜坡长度比改造前的斜坡长度增加了多少米?44.(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A ,B 两地向C 地新建AC ,BC 两条笔直的污水收集管道,现测得C 地在A 地北偏东45︒方向上,在B 地北偏西68︒向上,AB 的距离为7km ,求新建管道的总长度.(结果精确到0.1km ,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈,1.41)45.(2020•衡阳)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120︒时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24OA OB cm ==,BC AC ⊥,30OAC ∠=︒.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120︒,求点B'到AC的距离.(结果保留根号)46.(2020•常德)如图,已知AB是O的直径,C是O上的一点,D是AB上的一点,DE AB⊥于D,DE交BC于F,且EF EC=.(1)求证:EC是O的切线;(2)若4BD=,8BC=,圆的半径5OB=,求切线EC的长.47.(2020•常德)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5︒,卸货时,车厢与水平线AD成60︒,此时AB与支撑顶杆BC的夹角为45︒,若2AC=米,求BC的长度.(结果保留一位小数)(参考数据:sin650.91︒≈,tan70 2.75︒≈,cos700.34︒≈,︒≈,cos650.42︒≈,sin700.94︒≈,tan65 2.141.41)湖南省2019-2020年中考数学试题图形的变换分类汇编答案详解一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD 中,E 是DC 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是()A .30DAE ∠=︒B .45BAC ∠=︒C .12EF FB=D.AD AB =【解答】解:四边形ABCD 是矩形,ABE ∆是等边三角形,AB AE BE ∴==,60EAB EBA ∠=∠=︒,AD BC =,90DAB CBA ∠=∠=︒,//AB CD ,AB CD =,30DAE CBE ∴∠=∠=︒,故选项A 不合题意,cos AD ADDAE AE AB∴∠===,故选项D 不合题意, 在ADE ∆和BCE ∆中,AD BCDAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩, ()ADE BCE SAS ∴∆≅∆,1122DE CE CD AB ∴===,//AB CD , ABF CEF ∴∆∆∽, ∴12CE EF AB BF ==,故选项C 不合题意, 故选:B .2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()D.A.4B.2C【解答】解:如图,过点B作BD AC∆的边AB在右⊥于点D,此正三棱柱底面ABC侧面的投影为BD,AC=,2==,AB AD1AD∴=,2∴BD左视图矩形的长为2,∴左视图的面积为故选:D.3.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.注意安全B.水深危险C .必须戴安全帽D .注意通风【解答】解:根据轴对称图形的定义可知: 选项A 、B 、C 中的图形是轴对称图形, 选项D 不是轴对称图形. 故选:D .4.(2020•永州)如图,在ABC ∆中,//EF BC ,23AE EB=,四边形BCFE 的面积为21,则ABC ∆的面积是( )A .913B .25C .35D .63【解答】解://EF BC ,AEF ABC ∴∆∆∽, ∴224()()25AEF ABC S AE AE S AB AE EB ∆∆===+, 425AEF ABC S S ∆∆∴=. 21ABC AEF BCFE S S S ∆∆=-=四边形,即212125ABC S ∆=, 25ABC S ∆∴=.故选:B .5.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=,阻力臂2cos L l β=,如果动力F的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是()A.越来越小B.不变C.越来越大D.无法确定【解答】解:动力⨯动力臂=阻力⨯阻力臂,∴当阻力及阻力臂不变时,动力⨯动力臂为定值,且定值0>,∴动力随着动力臂的增大而减小,杠杆向下运动时α的度数越来越小,此时cosα的值越来越大,又动力臂1cosL Lα=,∴此时动力臂也越来越大,∴此时的动力越来越小,故选:A.6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是() A.B.C.D.【解答】解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.7.(2020•益阳)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看该几何体,选项D的图形符合题意,故选:D.8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形.故错误;B、是中心对称图形.故正确;C、不是中心对称图形.故错误;D、不是中心对称图形.故错误.故选:B.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【解答】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意.故选:D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.【解答】解:从正面看有三列,从左到右依次有2、1、1个正方形,图形如下:故选:A.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是() A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30︒时,船离灯塔的水平距离是()米B.米C.21米D.42米A.【解答】解:根据题意可得:船离海岸线的距离为÷︒=(米)42tan30故选:A.16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是() A.B.C.D.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.19.(2019•邵阳)如图,在Rt ABCB∠=︒,AD是斜边BC上的中∠=︒,36∆中,90BAC线,将ACD∠等∆沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则BED 于()A.120︒B.108︒C.72︒D.36︒【解答】解:在Rt ABCB∠=︒,∠=︒,36BAC∆中,90∴∠=︒-∠=︒.9054C BAD是斜边BC上的中线,∴==,AD BD CDDAC C∴∠=∠=︒,54∠=∠=︒,BAD B36∴∠=︒-∠-∠=︒.ADC DAC C18072将ACD∆沿AD对折,使点C落在点F处,∴∠=∠=︒,ADF ADC72BED BAD ADF∴∠=∠+∠=︒+︒=︒.3672108故选:B.20.(2019•常德)如图,在等腰三角形ABC=,图中所有三角形均相似,∆中,AB AC其中最小的三角形面积为1,ABC∆的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.26【解答】解:如图,根据题意得AFH ADE ∆∆∽,∴2239()()416AFH ADE S FH S DE ∆∆=== 设9AFHS x ∆=,则16ADE S x ∆=,1697x x ∴-=,解得1x =,16ADE S ∆∴=,∴四边形DBCE 的面积421626=-=.故选:D .21.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( ) A .(0,5)B .(5,1)C .(2,4)D .(4,2)【解答】解:将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1). 故选:B .23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意;B .俯视图与主视图都是长方形,故选项B 不合题意;C .俯视图是圆,主视图是三角形,故选项C 符合题意;D .俯视图与主视图都是圆,故选项D 不合题意;故选:C .24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .B .(1,0)C .(D .(0,1)- 【解答】解:四边形OABC 是正方形,且1OA =,(0,1)A ∴,将正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,1A ∴,2(1,0)A ,3A ,,⋯, 发现是8次一循环,所以20198252÷=⋯余3,∴点2019A 的坐标为 故选:A .二.填空题(共11小题)25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是【解答】解:分别作P 关于射线OA 、射线OB 的对称点P '与点P '',连接P P ''',与OA 、OB 分别交于M 、N 两点,此时PMN ∆周长最小,最小值为P P '''的长, 连接OP ',OP '',OP ,OA 、OB 分别为PP ',PP ''的垂直平分线,(4,3)P ,5OP OP OP ∴'==''=,且POA P OA ∠=∠',POB P OB ∠=∠'', 60AOB AOP BOP ∠=∠+∠=︒,120P OP ∴∠'''=︒,过O 作OQ P P ⊥''',可得P Q P Q '='',30OP Q OP Q ∠'=∠''=︒,52OQ ∴=,P Q P Q '=''=,22P P P Q ∴'''='== 则PMN ∆周长的最小值是故答案为:26.(2020•娄底)若1()2b d ac ac==≠,则b d a c-=-12.【解答】解:1()2b d ac a c ==≠, ∴12b d ac -=-. 故答案为:12.27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 48 .【解答】解:根据圆锥侧面积公式:S rl π=, 圆锥的母线长为10, 侧面展开图的面积为60π,故6010r ππ=⨯⨯, 解得:6r =.由勾股定理可得圆锥的高8==,圆锥的主视图是一个底边为12,高为8的等腰三角形,∴它的面积1128482=⨯⨯=, 故答案为:48.28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是4(3,2) .【解答】解:将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,(2,3)A ,∴点1A 的坐标是:2(23⨯,23)3⨯,即14(3A ,2).故答案为:4(3,2).29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM上一动点(不与点A ,M 重合),直线PC 交BD于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值.【解答】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,M ,C 是半圆上的三等分点,30BAH ∴∠=︒,BD 与半圆O 相切于点B .90ABD ∴∠=︒, 60H ∴∠=︒,ACP ABP ∠=∠,ACP DCH ∠=∠, 60PDB H DCH ABP ∴∠=∠+∠=∠+︒, 90PBD ABP ∠=︒-∠,若PDB PBD ∠=∠,则6090ABP ABP ∠+︒=︒-∠,15ABP ∴∠=︒,P ∴点为AM 的中点,这与P 为AM 上的一动点不完全吻合,PDB ∴∠不一定等于ABD ∠, PB ∴不一定等于PD ,故①错误; ②M ,C 是半圆上的三等分点,1180603BOC ∴∠=⨯︒=︒,直径8AB =,4OB OC ∴==, ∴BC 的长度60441803ππ⨯==, 故②正确;③60BOC ∠=︒,OB OC =, 60ABC ∴∠=︒,OB OC BC ==, BE OC ⊥, 30OBE CBE ∴∠=∠=︒, 90ABD ∠=︒, 60DBE ∴∠=︒,故③错误; ④M 、C 是AB 的三等分点,30BPC ∴∠=︒, 30CBF ∠=︒,但BFP FCB ∠>∠,PBF BFC ∠<∠, BCF PFB ∴∆∆∽不成立,故④错误; ⑤30CBF CPB ∠=∠=︒,BCF PCB ∠=∠,BCF PCB ∴∆∆∽, ∴CB CFCP CB=, 2CF CP CB ∴=,142CB OB OC AB ====, 16CF CP ∴=,故⑤正确.故答案为:②⑤.30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PEPQ PM+= 1 .(2)若2PN PMMN=,则MQ NQ= .【解答】解:(1)MN 为O 的直径,90MPN ∴∠=︒,PQ MN⊥,90PQN MPN ∴∠=∠=︒,NE 平分PNM∠,MNE PNE ∴∠=∠,PEN QFN ∴∆∆∽,∴PE PNQF QN=,即PE QF PNQN=①,90PNQ NPQ PNQ PMQ ∠+∠=∠+∠=︒, NPQ PMQ ∴∠=∠, 90PQN PQM ∠=∠=︒, NPQ PMQ ∴∆∆∽,∴PN NQMP PQ=②,∴①⨯②得PE QFPM PQ=,QF PQ PF =-,∴1PE QF PFPM PQ PQ ==-, ∴1PF PEPQ PM+=, 故答案为:1; (2)PNQ MNP ∠=∠,NQP NPM ∠=∠,NPQ NMP ∴∆∆∽,∴PN QNMN PN=,2PN QN MN ∴=,2PN PM MN =,PM QN ∴=,∴MQ MQNQ PM=,cos MQ PMM PM MN∠==,∴MQ PMNQ MN=,∴MQ NQNQ MQ NQ=+, 22NQ MQ MQ NQ ∴=+,即221MQ MQNQ NQ=+, 设MQ x NQ=,则210x x +-=,解得,x =0x =<(舍去),∴MQ NQ =31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是24π (结果保留)π.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是422÷=,高是6, 圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:224ππ⨯=,∴这个圆柱的侧面积是4624ππ⨯=.故答案为:24π.32.(2020•湘潭)若37y x=,则x y x-=47.【解答】解:由37y x=可设3y k =,7x k =,k 是非零整数,则7344777x y k k k xkk--===.故答案为:47.33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是2019(0,2)-.【解答】解:点1P 的坐标为,将线段1OP 绕点O 按逆时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;11OP ∴=,22OP =,34OP ∴=,如此下去,得到线段342OP =,452OP =⋯,12n n OP -∴=,由题意可得出线段每旋转8次旋转一周,202082524÷=⋯,∴点2020P 的坐标与点4P 的坐标在同一直线上,正好在y 轴的负半轴上, ∴点2020P 的坐标是2019(0,2)-.故答案为:2019(0,2)-.34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 12 .【解答】解:设正方形ABCD 的边长为x ,由翻折可得:DG DA DC x ===, 4GF =,6EG =, 6AE EG ∴==,4CF GF ==,6BE x ∴=-,4BF x =-,6410EF =+=,如图1所示:在Rt BEF ∆中,由勾股定理得:222BE BF EF +=,222(6)(4)10x x ∴-+-=,221236816100x x x x ∴-++-+=, 210240x x ∴--=, (2)(12)0x x ∴+-=,12x ∴=-(舍),212x =. 12DG ∴=.故答案为:12.35.(2020•湘潭)计算:sin45︒=.【解答】解:根据特殊角的三角函数值得:sin 45︒=三.解答题(共12小题)36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).【解答】解:根据题意知,四边形11AA B O 和四边形112BB C B 均为矩形,1162OB AA m ∴==,211100B C BB m ==,111006238BO BB OB m ∴=-=-=,2121200100100CB CC B C m =-=-=,在Rt AOB ∆中,90AOB ∠=︒,30BAO ∠=︒,38BO m =,223876AB BO m ∴==⨯=;在2Rt CBB ∆中,290CB B ∠=︒,245CBB ∠=︒,2100CB m =,∴2BC ==,∴(76AB BC m +=+,即管道AB 和BC 的总长度为:(76m +.37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈,tan260.49︒≈,sin710.95︒≈,tan71 2.90)︒≈【解答】解:(1)斜坡CD 的坡度1:1i =,tan :1:11DH CH α∴===, 45α∴=︒.答:斜坡CD 的坡角α为45︒; (2)由(1)可知:12CH DH ==,45α=︒.264571PCH PCD α∴∠=∠+=︒+︒=︒,在Rt PCH ∆中,12tan 2.9012PH PD PCH CH +∠==≈, 22.8PD ∴≈(米). 22.818>,答:此次改造符合电力部门的安全要求.38.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E 点距地面5m ,从E 点处测得D 点俯角为30︒,斜面ED 长为4m ,水平面DC 长为2m ,斜面BC 的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到0.1m 1.41 1.73)≈.【解答】解:作DF AE ⊥于F ,DG AB ⊥于G ,CH AB ⊥于H ,如图所示: 则DF GA =,2DC GH ==,AF DG CH ==, 由题意得:30EDF ∠=︒,114222EF DE ∴==⨯=,DF == 5AE =,523CH AF AE EF ∴==-=-=,斜面BC 的坡度为1:4CH BH=,412BH CH ∴==,2121417.5()AB AG GH BH m ∴=++=+=≈,答:处于同一水平面上引桥底部AB 的长约为17.5m .39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC ∆的重心为点O ,求OBC ∆与ABC ∆的面积.(2)性质探究:如图(二),已知ABC ∆的重心为点O ,请判断OD OA 、OBC ABCS S ∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度;②若1CME S ∆=,求正方形ABCD 的面积.【解答】解:(1)连接DE ,如图一,点O 是ABC ∆的重心,AD ∴,BE 是BC ,AC 边上的中线,D ∴,E 为BC ,AC 边上的中点,DE ∴为ABC ∆的中位线,//DE AB ∴,12DE AB =, ODE OAB ∴∆∆∽, ∴12OD DE OA AB ==, 2AB =,1BD =,90ADB ∠=︒,AD ∴OD =,∴2322OBC BC OD S ∆==22ABC BC AD S ∆⨯=== (2)由(1)同理可得,12OD OA =,是定值; 点O 到BC 的距离和点A 到BC 的距离之比为1:3,则OBC ∆和ABC ∆的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故13OBCABC S S ∆∆=,是定值; (3)①连接BD 交AC 于点O ,点O 为BD 的中点,点E 为CD 的中点,∴点M 是BCD ∆的重心, ∴13EM BE =, E 为CD 的中点,∴122CE CD ==, ∴BE = 即EM②1CME S ∆=,且12ME BM =, 2BMC S ∆∴=,12ME BM =, ∴21()4CME AMB S ME S BM ∆∆==, 4AMB S ∆∴=,246ABC BMC ABM S S S ∆∆∆∴=+=+=,又ADC ABC S S ∆∆=,6ADC S ∆∴=,∴正方形ABCD 的面积为:6612+=.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s 的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A 处测得“南天一柱”底部C 的俯角为37︒,继续飞行6s 到达B 处,这时测得“南天一柱”底部C 的俯角为45︒,已知“南天一柱”的高为150m ,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈【解答】解:设无人机距地面xm ,直线AB 与南天一柱所在直线相交于点D ,由题意得37CAD ∠=︒,45CBD ∠=︒.在Rt ACD ∆中,tan 0.75CD x CAD AD AD∠===,。

2020年中考数学图形的变换专题(附答案)

2020年中考数学图形的变换专题(附答案)

2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。

若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。

2020年中考复习专题练习 图形的变换 (含答案)

2020年中考复习专题练习  图形的变换 (含答案)

2020年中考复习专题练习图形的变换(含答案)第一部分知识梳理图形的变换包括平移、对称和旋转一、平移:、把一个图形整体沿某一个方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,平移前后对应点的连线平行或在同一直线上且相等。

在平面直角坐标系下,平移前后图形个点的对应点的横坐标都加上(或减去)同一个常数a,同时纵坐标都加上(或减去)同一个常数b二、、对称包括轴对称和中心对称(一)轴对称:1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线轴对称,这条直线叫做对称轴,2、轴对称的性质①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

②轴对称的两个图像是全等形③轴对称的两个图形中对应线段或对应线段所在直线的交点在对称轴上3.对称点的坐标:(1)点P(a,b)关于x轴对称的点的坐标为P1( a,-b )。

(2)点P(a,b)关于y轴对称的点的坐标为P2(-a ,b)。

(3)点P(a,b)关于原点对称的点的坐标为P3(-a,-b)。

(二)中心对称1、把一个图形绕着某点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于该点成中心对称,这点叫做对称中心,2、中心对称的性质①如果两个图形城中心对称,那么对称点的连线必经对称中心,并且被对称中心平分。

②成中心对称的两个图像是全等形三、旋转1、在平面内。

把一个平面图形绕着平面某一点O转动一定的角度,叫做图形旋转,点O叫旋转中心,转动的角叫旋转角2、旋转的性质(1)对应点到旋转中心的距离相等(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的两个图像全等第二部分中考链接1.(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)2.(2018•黄石)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6) C.(﹣1,2) D.(﹣9,2)1题图2题图3题图4题图3.(2018•宜宾)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.4.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B 的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)5.(2019枣庄)在平面直角坐标系中,将点(1,2)A-向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是()A.(1,1)-B.(1,2)--C.(1,2)-D.(1,2)6.(2019)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)7.(2019枣庄)如图,将ABC沿BC边上的中线AD平移到A B C'''的位置.已知ABC的面积为16,阴影部分三角形的面积9.若1AA'=,则A D'等于()A.2 B.3 C.4 D.327题图9题图12题图13题图8. (2019乐山)下列四个图形中,可以由图1通过平移得到的是( )()A()B()C()D图1B9、(2019江苏苏州)如图,菱形ABCD的对角线AC,BD交于点O,416AC BD==,,将ABOV沿点A到点C的方向平移,得到A B C'''V,当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.1210.(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.11.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.12.(2018•曲靖)如图:图象①②③均是以P为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依次规律,PP2018= 个单位长度.13.(2018•株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),则线段OA在平移过程中扫过部分的图形面积为.二、对称(一)轴对称1.(2018•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2 (2019年山东省德州市)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3. (2019年山东省菏泽市)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4. (2019年山东省济宁市)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5. (2019年山东省青岛市)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(2018•枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2) D.(2,﹣2)7.(2018•滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C.6 D.38.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.59.(2019聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P 的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)7题图10、(2019的值为(11.(2019A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=312. (2019年西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△PAB=S矩形ABCD,则点P 到A、B两点距离之和PA+PB的最小值为()A.2B.2C.3D.13.(2018•东营)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.(二)折叠1.(2018•青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕相交于点F.已知EF=,则BC的长是()A. B. C.3 D.1题图2题图3题图4题图2.(2018•烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A .7B .6C .5D .43. (2019辽宁大连)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A .2 B .4 C .3 D .24、(2018•泰安)如图,在矩形ABCD 中,AB=6,BC=10,将矩形ABCD 沿BE 折叠,点A 落在A'处,若EA'的延长线恰好过点C ,则sin ∠ABE 的值为 .5.(2018威海)如图,将矩形ABCD (纸片)折叠,使点B 与AD 边上的点K 重合,EG 为折痕;点C 与AD 边上的点K 重合,FH 为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC 的长.5题图 6题图6、(2019潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A’,折痕为DE .若将∠B 沿EA’向内翻折,点B 恰好落在DE 上,记为B’,则AB =__________.7.(2019青岛)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD =4cm ,则CF 的长为 cm .7题图 8题图 9题图 10题图8、(2019随州)如图,已知正方形ABCD 的边长为a ,E 为CD 边上的一点(不与端点重合),将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG ,CF.给出下列判断: ①∠EAG=45°;②若DE=a 31,则AG∥CF;③若E 为CD 的中点,则△GFC 的面积为2101a ; ④若CF=FG ,则DE=a )12( ;⑤BG·DE+AF·GE=a².其中正确的是 .(写出所有正确判断的序号).9. (2019西藏)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为 .10、 (2019四川资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′= .11.(2019天津)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE ,折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为 .D 1A 1G P F E C DBA11题图 12题图 13题图12. (2019浙江杭州)如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A'点,D 点的对称点为D'点,若∠FPG=90°,△A'EP 的面积为4,△D'PH 的面积为1,则矩形ABCD 的面积等于________.13. (2019甘肃天水)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么sin∠EFC 的值为 .中心对称1. (2019贵港)若点P (m -1,5)与点Q (3,2-n )关于原点成中心对称,则m +n 的值是( )A. 1B. 3C. 5D. 72. (2019山东枣庄)下列图形,可以看作中心对称图形的是( )A .B .C .D .三、旋转1、(2018济宁)如图,在平面直角坐标系中,点 A ,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt △ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度, 则变换后点 A 的对应点坐标是( )A .(2,2) B .(1,2) C .(﹣1,2) D .(2,﹣1)1题图 2题图 3题图2.(2018•淄博)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A. B. C. D.3.(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE的面积始终等于;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1 B .2 C .3 D .44.(2018•聊城)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C的对应点C的坐标为()1A.(﹣,) B.(﹣,) C.(﹣,) D.(﹣,)4题图5题图6题图5.(2018青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B 的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.(2019聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC 边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180° C.OE+OF=BC D.S四边形AEOF=S△ABC7. (2019青岛)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7题图8题图9题图8. (2019枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.2C.6 D.29. (2019天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=ADB.AB⊥EBC. BC=DED.∠A=∠EBC10. (2019湖北荆州)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A 顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)11. (2019湖北宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)12.(2018•枣庄)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.11题图12题图13题图14题图13.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.14. (2019广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC 于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.15. (2019湖北随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为______.16. (2019内蒙古包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.16题图17题图18题图19题图17 (2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.18、(2019海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.19. (2019湖北十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.20.(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD=CD ;(2)当α为何值时,GC=GB ?画出图形,并说明理由.21、(2018菏泽)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD 沿对角线AC 剪开,得到ABC ∆和ACD ∆.并且量得2AB cm =,4AC cm =. 操作发现:(1)将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转α∠,使BAC α∠=∠,得到如图2所示的'AC D ∆,过点C 作'AC 的平行线,与'DC 的延长线交于点E ,则四边形'ACEC 的形状是________.(2)创新小组将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转,使B 、A 、D 三点在同一条直线上,得到如图3所示的'AC D ∆,连接'CC ,取'CC 的中点F ,连接AF 并延长至点G ,使FG AF =,连接CG 、'C G ,得到四边形'ACGC ,发现它是正方形,请你证明这个结论. 实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将ABC ∆沿着BD 方向平移,使点B 与点A 重合,此时A 点平移至'A 点,'A C 与'BC 相交于点H ,如图4所示,连接'CC ,试求tan 'C CH ∠的值.22.(2018•宁波)如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.23.(2018•自贡)如图,已知∠AOB=60°,在∠AOB 的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE +OD 与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.24.(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).25.(2019日照)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG =CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.26.(2019菏泽)如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.(1)如图1,连接BE ,CD ,BE 的廷长线交AC 于点F ,交CD 于点P ,求证:BP ⊥CD ;(2)如图2,把△ADE 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE ,CD ,CD 的延长线交BE 于点P ,若BC =6,AD =3,求△PDE 的面积.27.(2019济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用如图3,在111ABC ∆中,118A B =,11160A B C ∠=,11175B A C ∠=,P 是11B C 上的任意点,连接1AP ,将1A P 绕点1A 按顺时针方向旋转75,得到线段1A Q ,连接1B Q .求线段1B Q 长度的最小值.28. (2019年北京市)已知∠AOB=30°,H 为射线OA 上一定点,,P 为射线OB 上一点,M为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:∠ OMP=∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.备用图图1BAOB29、(2019年江苏省苏州市)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =; (2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.30 (2019年湖北省荆州市)如图①C ,D 分别在OE 和OF 上,现将△OEF 绕点O 逆时针旋转α角(0°<α<90°),连接AF ,DE (如图②). (1)在图②中,∠AOF = ;(用含α的式子表示)(2)在图②中猜想AF 与DE 的数量关系,并证明你的结论.位似1. (2019甘肃武威市)如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.对称变换2.(2018菏泽)如图,OAB∆与OCD∆是以点O为位似中心的位似图形,相似比为3:4,90OCD∠=,60AOB∠=,若点B的坐标是(6,0),则点C的坐标是.[来源:学&科& Z&X3. (2019滨州)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.3. (2019辽宁本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.其它1.(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.2.(2018•徐州)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.3.(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).4.(2018•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)5.(2018•眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.6.(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).7. (2019年四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)8. (2019年黑龙江省伊春市)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).9.(2018•德州)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB ,并把AB 折到图①中所示的AD 处.第四步,展平纸片,按照所得的点D 折出DE ,使DE ⊥ND ,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=(保留根号);(2)如图③,判断四边形BADQ 的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由. 实际操作(4)结合图④,请在矩形BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.答案与提示 平移1、C2、C3、A4、C5、A6、C7、B8、D9、C 10、(1,1) 11、(5,1) 12、673 13、41、解:∵点B 的坐标为(3,1),∴向左平移6个单位后,点B 1的坐标(﹣3,1),故选:C .2、解:由题意P (﹣5,4),向右平移4个单位,再向下平移2个单位,点P 的对应点P'的坐标是(﹣1,2),故选:C .3、解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =S △A′EF =2,S △ABD =S △ABC =, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E∥AB ,∴△DA′E∽△DAB ,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A .4、解:∵点A 与点O 对应,点A (﹣1,0),点O (0,0), ∴图形向右平移1个单位长度,∴点B 的对应点B'的坐标为(0+1,),即(1,),故选:C .5.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,∴点(1,2)A -向上平移3个单位长度,再向左平移2个单位长度后,得到点A '横坐标为121-=-,纵坐标为231-+=,A ∴'的坐标为(1,1)-.故选A .6.解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2019÷4=504…3,所以A 2019的坐标为(504×2+1,0),则A 2019的坐标是(1009,0). C 7.解:16ABCS=、9A EFS'=,且AD 为BC 边的中线,1922A DEA EFSS ''∴==,182ABDABCS S ==,将ABC沿BC 边上的中线AD 平移得到A B C ''',//A E AB ∴',∴DA E DAB '∽,则2()A DE ABDSA D AD S''=,即2992()1816A D A D '=='+,解得,3A D '=或37-(舍),故选B . 8、平移前后的图像的大小、形状、方向是不变的,故选D.9、由菱形的性质得28AO OC CO BO OD B O '''======,90AOB AO B ''∠=∠=oAO B ''∴V为直角三角形10AB '∴==故选C10、解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1). 11、解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1)12、解:由图可得,P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3; ∵2018=3×672+2,∴点P 2018在正南方向上,∴P 0P 2018=672+1=673,故答案为:673.13、解:∵点B 的坐标为(0,2),将该三角形沿x 轴向右平移得到Rt △O′A′B′,此时点B′的坐标为(2,2),∴AA′=BB′=2,∵△OAB 是等腰直角三角形,∴A(,),∴AA′对应的高,∴线段OA 在平移过程中扫过部分的图形面积为2×=4.故答案为:4.二、对称 (一)轴对称 1、C2、解:A 、是轴对称图形,不是中心对称图形,故本选项错误, B 、是中心对称图形但不是轴对称图形,故本选项正确, C 、不是轴对称图形,也不是中心对称图形,故本选项错误, D 、是轴对称图形,也是中心对称图形,故本选项错误.故选:B .3、解:A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,也是中心对称图形,故此选项正确;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选:C .4、解:A、既是中心对称图形也是轴对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:A.5、解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.6、B7、解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.8、解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,菱形ABCD即PE+PM的最小值是2,故选:C.9.解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),10、∵点A(1,-3x轴的对称点A'的坐标为(1,3)∴把(1,3 A11、A,B关于y故选B12、解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.13、解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b 把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)(二)折叠1、解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.2、、解:连接AC、BD,如图,∵点O为菱形ABCD的对角线的交点,∴OC=AC=3,OD=BD=4,∠COD=90°,在Rt△COD中,CD==5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM和△ODN中,∴△OBM≌△ODN,∴DN=BM,∵过点O折叠菱形,使B,B′两点重合,MN是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.3、解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.4、解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE==2,∴sin∠ABE==,故答案为:.5、解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.6、7.解:设BF=x,则FG=x,CF=4﹣x.。

辽宁省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)

辽宁省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)

辽宁省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共19小题)1.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球2.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是( )A.B.C.D.3.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .4.(2020•大连)平面直角坐标系中,点(3,1)P 关于x 轴对称的点的坐标是( )A .(3,1)B .(3,1)-C .(3,1)-D .(3,1)--5.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD .2003m 6.(2020•大连)如图,ABC ∆中,90ACB ∠=︒,40ABC ∠=︒.将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,则CAA ∠'的度数是( )A .50︒B .70︒C .110︒D .120︒7.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.8.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( )A.B.C.D.9.(2020•营口)如图,在ABC∆中,//DE AB,且32CDBD=,则CECA的值为()A.35B.23C.45D.3210.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C .D .11.(2019•鞍山)如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,EGC∠的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH BE⊥;②EHM FHG∆∆∽;③21BCCG=-;④22HOMHOGSS∆∆=-,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④12.(2019•营口)如图,在ABC∆中,//DE BC,23ADAB=,则ADEDBCESS∆四边形的值是() A.45B.1C.23D.49 13.(2019•铁岭)下面四个图形中,属于轴对称图形的是()A.B.C.D.14.(2019•铁岭)如图所示几何体的主视图是()A .B .C .D .15.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是( )A .B .C .D .16.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .17.(2019•盘锦)如图,点(8,6)P 在ABC ∆的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''',点P 在A C ''上的对应点P '的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)18.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .19.(2019•沈阳)已知ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC ∆与△A B C '''的周长比是( )A .3:5B .9:25C .5:3D .25:9二.填空题(共11小题)20.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5AB m =,则这两棵树的水平距离约为 m (结果精确到0.1m ,参考数据:sin200.342︒≈,cos200.940︒≈,tan 200.364)︒≈.21.(2020•阜新)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==.将ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,则AC 边的中点D 与其对应点1D 的距离是 .22.(2020•锦州)如图,在ABC ∆中,D 是AB 中点,//DE BC ,若ADE ∆的周长为6,则ABC ∆的周长为 .23.(2020•盘锦)如图,在矩形ABCD 中,1AB =,2BC =,点E 和点F 分别为AD ,CD 上的点,将DEF ∆沿EF 翻折,使点D 落在BC 上的点M 处,过点E 作//EH AB 交BC 于点H ,过点F 作//FG BC 交AB 于点G .若四边形ABHE 与四边形BCFG 的面积相等,则CF 的长为 .24.(2020•盘锦)如图,AOB ∆三个顶点的坐标分别为(5,0)A ,(0,0)O ,(3,6)B ,以点O 为位似中心,相似比为23,将AOB ∆缩小,则点B 的对应点B '的坐标是 .25.(2020•大连)如图,矩形ABCD 中,6AB =,8AD =,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为 .26.(2020•鞍山)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE ∆≅∆;②2CG GH BG =;③若2DF CF =,则7CE GF =;④234ABCG S BG =四边形.其中正确的结论有 .(只填序号即可)27.(2020•葫芦岛)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为 cm .28.(2020•鞍山)如图,在平面直角坐标系中,已知(3,6)A ,(2,2)B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为 .29.(2020•沈阳)如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若PDF ∆为直角三角形,则DP 的长为 .30.(2020•营口)如图,ABC ∆为等边三角形,边长为6,AD BC ⊥,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE EF +的最小值为 .三.解答题(共16小题)31.(2020•阜新)如图,ABC ∆在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与ABC ∆关于y 轴对称的△111A B C ;(2)将ABC ∆绕点1O 顺时针旋转90︒得到△222A B C ,2AA 弧是点A 所经过的路径,则旋转中心1O 的坐标为 ;(3)求图中阴影部分的面积(结果保留)π.32.(2020•锦州)如图,ABCD 的对角线AC ,BD 交于点E ,以AB 为直径的O 经过点E ,与AD 交于点F ,G 是AD 延长线上一点,连接BG ,交AC 于点H ,且12DBG BAD ∠=∠. (1)求证:BG 是O 的切线;(2)若3CH =,1tan 2DBG ∠=,求O 的直径.33.(2020•锦州)已知AOB ∆和MON ∆都是等腰直角三角形2()OA OM ON <=,90AOB MON ∠=∠=︒.(1)如图1:连AM ,BN ,求证:AOM BON ∆≅∆;(2)若将MON ∆绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON +=;②当点A ,M ,N 在同一条直线上时,若4OB =,3ON =,请直接写出线段BN 的长.34.(2020•朝阳)如图,以AB 为直径的O 经过ABC ∆的顶点C ,过点O 作//OD BC 交O 于点D ,交AC 于点F ,连接BD 交AC 于点G ,连接CD ,在OD 的延长线上取一点E ,连接CE ,使DEC BDC ∠=∠.(1)求证:EC 是O 的切线;(2)若O 的半径是3,9DG DB =,求CE 的长.35.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A 和人工智能科技馆C 参观学习如图,学校在点B 处,A 位于学校的东北方向,C 位于学校南偏东30︒方向,C 在A 的南偏西15︒方向(30303)km +处.学生分成两组,第一组前往A 地,第二组前往C 地,两组同学同时从学校出发,第一组乘客车,速度是40/km h ,第二组乘公交车,速度是30/km h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).36.(2020•朝阳)如图所示的平面直角坐标系中,ABC ∆的三个顶点坐标分别为(3,2)A -,(1,3)B -,(1,1)C -,请按如下要求画图:(1)以坐标原点O 为旋转中心,将ABC ∆顺时针旋转90︒,得到△111A B C ,请画出△111A B C ;(2)以坐标原点O 为位似中心,在x 轴下方,画出ABC ∆的位似图形△222A B C ,使它与ABC ∆的位似比为2:1.37.(2020•锦州)如图,某海岸边有B ,C 两码头,C 码头位于B 码头的正东方向,距B 码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A 岛正北方向的B 码头航行,乙船向位于A 岛北偏东30︒方向的C 码头航行,当甲船到达距B 码头30海里的E 处时,乙船位于甲船北偏东60︒方向的D 处,求此时乙船与C 码头之间的距离.(结果保留根号)38.(2020•盘锦)如图,某数学活动小组要测量建筑物AB 的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表. 测量项目测量数据 测角仪到地面的距离1.6CD m = 点D 到建筑物的距离4BD m = 从C 处观测建筑物顶部A 的仰角67ACE ∠=︒ 从C 处观测建筑物底部B 的俯角 22BCE ∠=︒请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB 的高度.(结果精确到0.1米,参考数据:sin670.92︒≈,cos670.39︒≈,tan67 2.36︒≈.sin220.37︒≈,cos220.93︒≈,tan 220.40)︒≈(选择一种方法解答即可)39.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40AC cm =,求支架BC 的长.(结果精确到1cm ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈40.(2020•葫芦岛)在等腰ADC ∆和等腰BEC ∆中,90ADC BEC ∠=∠=︒,BC CD <,将BEC ∆绕点C 逆时针旋转,连接AB ,点O 为线段AB 的中点,连接DO ,EO .(1)如图1,当点B 旋转到CD 边上时,请直接写出线段DO 与EO 的位置关系和数量关系;(2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若4BC =,26CD =,在BEC ∆绕点C 逆时针旋转的过程中,当60ACB ∠=︒时,请直接写出线段OD 的长.41.(2020•葫芦岛)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB ,在观测点C 处测得大桥主架顶端A 的仰角为30︒,测得大桥主架与水面交汇点B 的俯角为14︒,观测点与大桥主架的水平距离CM 为60米,且AB 垂直于桥面.(点A ,B ,C ,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24︒≈,cos140.97︒≈,tan140.25︒≈,3 1.73)≈42.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,31BP =,请直接写出点D 到CP 的距离为 .43.(2020•丹东)如图,小岛C 和D 都在码头O 的正北方向上,它们之间距离为6.4km ,一艘渔船自西向东匀速航行,行驶到位于码头O 的正西方向A 处时,测得26.5CAO ∠=︒,渔船速度为28/km h ,经过0.2h ,渔船行驶到了B 处,测得49DBO ∠=︒,求渔船在B 处时距离码头O 有多远?(结果精确到0.1)km(参考数据:sin26.50.45︒≈,cos26.50.89︒≈,tan26.50.50︒≈,sin490.75︒≈,cos490.66︒≈,tan 49 1.15)︒≈44.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A ,B ,C 的坐标分别为(1,2)A ,(3,1)B ,(2,3)C ,先以原点O 为位似中心在第三象限内画一个△111A B C .使它与ABC ∆位似,且相似比为2:1,然后再把ABC ∆绕原点O 逆时针旋转90︒得到△222A B C .(1)画出△111A B C ,并直接写出点1A 的坐标;(2)画出△222A B C ,直接写出在旋转过程中,点A 到点2A 所经过的路径长.45.(2020•营口)如图,在矩形ABCD 中,(0)AD kAB k =>,点E 是线段CB 延长线上的一个动点,连接AE ,过点A 作AF AE ⊥交射线DC 于点F .(1)如图1,若1k =,则AF 与AE 之间的数量关系是 ;(2)如图2,若1k ≠,试判断AF 与AE 之间的数量关系,写出结论并证明;(用含k 的式子表示)(3)若24AD AB ==,连接BD 交AF 于点G ,连接EG ,当1CF =时,求EG 的长.46.(2020•营口)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60︒方向上,航行12海里到达C点,这时测得小岛A 在北偏西30︒方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:3 1.73)≈辽宁省2019年、2020年数学中考试题分类(12)——图形的变换参考答案与试题解析一.选择题(共19小题)1.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.2.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是( )A.B.C.D.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.3.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【解答】解:观察图形可知,这个几何体的俯视图是.故选:A . 4.(2020•大连)平面直角坐标系中,点(3,1)P 关于x 轴对称的点的坐标是( )A .(3,1)B .(3,1)-C .(3,1)-D .(3,1)--【解答】解:点(3,1)P 关于x 轴对称的点的坐标是(3,1)-故选:B .5.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD 2003 【解答】解:由题意得,906030AOB ∠=︒-︒=︒,1100()2AB OA m ∴==, 故选:A .6.(2020•大连)如图,ABC ∆中,90ACB ∠=︒,40ABC ∠=︒.将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,则CAA ∠'的度数是( )A .50︒B .70︒C .110︒D .120︒【解答】解:90ACB ∠=︒,40ABC ∠=︒,90904050CAB ABC ∴∠=︒-∠=︒-︒=︒,将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,40A BA ABC ∴∠'=∠=︒,A B AB '=, 1(18040)702BAA BA A ∴∠'=∠'=︒-︒=︒, 5070120CAA CAB BAA '∴∠=∠+∠'=︒+︒=︒.故选:D .7.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )A .B .C .D .【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形. 故选:D .8.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( )A.B.C.D.【解答】解:从上面看易得俯视图:.故选:C.9.(2020•营口)如图,在ABC∆中,//DE AB,且32CDBD=,则CECA的值为()A.35B.23C.45D.32【解答】解://DE AB,∴32 CE CDAE BD==,∴CECA的值为35,故选:A.10.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A .B .C .D .【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C 的图形符合题意,故选:C .11.(2019•鞍山)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH BE ⊥;②EHM FHG ∆∆∽;③21BC CG=-;④22HOM HOG S S ∆∆=-,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④【解答】解:如图,四边形ABCD 和四边形CGFE 是正方形,BC CD ∴=,CE CG =,BCE DCG ∠=∠,在BCE ∆和DCG ∆中,BC CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩()BCE DCG SAS ∴∆≅∆,BEC BGH ∴∠=∠,90BGH CDG ∠+∠=︒,CDG HDE ∠=∠,90BEC HDE ∴∠+∠=︒,GH BE ∴⊥.故①正确;EHG ∆是直角三角形,O 为EG 的中点,OH OG OE ∴==,∴点H 在正方形CGFE 的外接圆上,EF FG =,45FHG EHF EGF ∴∠=∠=∠=︒,HEG HFG ∠=∠,EHM FHG ∴∆∆∽,故②正确;BGH EGH ∆≅∆,BH EH ∴=,又O 是EG 的中点,//HO BG ∴,DHN DGC ∴∆∆∽, ∴DN HN DC CG=, 设EC 和OH 相交于点N .设HN a =,则2BC a =,设正方形ECGF 的边长是2b ,则NC b =,2CD a =, ∴222b a a a b-=,即2220a ab b +-=,解得:(1a b =-,或(1a b =--(舍去),则212a b =,∴1BC CG=-, 故③正确;BGH EGH ∆≅∆,EG BG ∴=, HO 是EBG ∆的中位线,12HO BG ∴=,12HO EG∴=,设正方形ECGF的边长是2b,22EG b∴=,2HO b∴=,//OH BG,//CG EF,//OH EF∴,MHO MFE∴∆∆∽,∴2222OM OH bEM EF b===,2EM OM∴=,∴121(12)12OM OMOE OM===-++,∴21HOMHOESS∆∆=-,EO GO=,HOE HOGS S∆∆∴=,∴21HOMHOGSS∆∆=-,故④错误,故选:A.12.(2019•营口)如图,在ABC∆中,//DE BC,23ADAB=,则ADEDBCESS∆四边形的值是() A.45B.1C.23D.49【解答】解://DE BC ,ADE ABC ∴∆∆∽, ∴24()9ADE ABC S AD S AB ∆∆==, ∴45ADEDBCE S S ∆=四边形, 故选:A .13.(2019•铁岭)下面四个图形中,属于轴对称图形的是( )A .B .C .D .【解答】解:A 、不属于轴对称图形,故此选项错误;B 、不属于轴对称图形,故此选项错误;C 、属于轴对称图形,故此选项正确;D 、不属于轴对称图形,故此选项错误;故选:C .14.(2019•铁岭)如图所示几何体的主视图是( )A .B .C .D .【解答】解:从正面可看到的图形是:故选:B .15.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是( )A .B .C .D .【解答】解:从上面看得到的图形是:故选:B .16.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .17.(2019•盘锦)如图,点(8,6)P 在ABC 的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''',点P 在A C ''上的对应点P '的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)【解答】解:点(8,6)P 在ABC ∆的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''', ∴点P 在A C ''上的对应点P '的坐标为:(4,3).故选:A .18.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A .19.(2019•沈阳)已知ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC ∆与△A B C '''的周长比是( )A .3:5B .9:25C .5:3D .25:9【解答】解:ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,10AD =,6A D ''=, ABC ∴∆与△A B C '''的周长比:10:65:3AD A D =''==.故选:C .二.填空题(共11小题)20.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5AB m =,则这两棵树的水平距离约为 4.7 m (结果精确到0.1m ,参考数据:sin200.342︒≈,cos200.940︒≈,tan 200.364)︒≈.【解答】解:过点A 作水平面的平行线AH ,作BH AH ⊥于H ,由题意得,20BAH α∠==︒,在Rt BAH ∆中,cos AH BAH AB∠=, cos 50.940 4.7()AH AB BAH m ∴=∠≈⨯≈,故答案为:4.7.21.(2020•阜新)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==.将ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,则AC 边的中点D 与其对应点1D 的距离是 2 .【解答】解:连接BD 、1BD ,如图,90ABC ∠=︒,2AB BC ==,222222AC ∴+=D 点为AC 的中点,122BD AC ∴== ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,1BD BD ∴=,160DBD ∠=︒,1BDD ∴∆为等边三角形,12DD BD ∴==. 故答案为2.22.(2020•锦州)如图,在ABC ∆中,D 是AB 中点,//DE BC ,若ADE ∆的周长为6,则ABC ∆的周长为 12 .【解答】解://DE BC ,ADE ABC ∴∆∆∽,D 是AB 的中点,∴12AD AB =, ∴12ADE ABC ∆=∆的周长的周长 ADE ∆的周长为6,ABC ∴∆的周长为12,故答案为:12.23.(2020•盘锦)如图,在矩形ABCD 中,1AB =,2BC =,点E 和点F 分别为AD ,CD 上的点,将DEF ∆沿EF 翻折,使点D 落在BC 上的点M 处,过点E 作//EH AB 交BC 于点H ,过点F 作//FG BC 交AB 于点G .若四边形ABHE 与四边形BCFG 的面积相等,则CF 的长为 38.【解答】解:设CF x =,CH y =,则2BH y =-,四边形ABHE 与四边形BCFG 的面积相等,22y x ∴-=,22y x ∴=-,由折叠知,1MF DF x ==-,22EM ED CH y x ====-,90EMF D ∠=∠=︒, 90EMH CMF ∴∠+∠=︒,90C ∠=︒,90CMF CFM ∴∠+∠=︒,EMH MFC ∴∠=∠,90EHM C ∠=∠=︒,EMH MFC ∴∆∆∽, ∴EM EH MF MC =,即22221(1)x x x x-=---, 解得,38x =. 经检验,38x =是原方程的解, 故答案为:38. 24.(2020•盘锦)如图,AOB ∆三个顶点的坐标分别为(5,0)A ,(0,0)O ,(3,6)B ,以点O 为位似中心,相似比为23,将AOB ∆缩小,则点B 的对应点B '的坐标是 (2,4)或(2,4)-- .【解答】解:如图,OAB ∆∽△OA B '',相似比为3:2,(3.6)B , (2,4)B ∴',根据对称性可知,△OA B ''''在第三象限时,(2,4)B ''--, ∴满足条件的点B '的坐标为(2,4)或(2,4)--. 故答案为(2,4)或(2,4)--.25.(2020•大连)如图,矩形ABCD 中,6AB =,8AD =,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为 808y x =+ .【解答】解:在矩形 中,//AD BC ,DEF BCF ∴∆∆∽,∴DE DF BC BF=, 10BD BC =,BF y =,DE x =, 10DF y ∴=-,∴108x y y -=,化简得:808y x =+, y ∴关于x 的函数解析式为:808y x =+, 故答案为:808y x =+. 26.(2020•鞍山)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE ∆≅∆;②2CG GH BG =;③若2DF CF =,则7CE GF =;④23ABCG S BG =四边形.其中正确的结论有 ①③④ .(只填序号即可)【解答】解:ABCD 为菱形,AD CD ∴=, AE DF =,DE CF ∴=,60ADC ∠=︒,ACD ∴∆为等边三角形,60D ACD ∴∠=∠=︒,AC CD =,()ACF CDE SAS ∴∆≅∆,故①正确;过点F 作//FP AD ,交CE 于P 点.2DF CF =,::1:3FP DE CF CD ∴==,DE CF =,AD CD =,2AE DE ∴=,:1:6:FP AE FG AG ∴==,6AG FG ∴=,7CE AF GF ∴==,故③正确;过点B 作BM AG ⊥于M ,BN GC ⊥于N ,60AGE ACG CAF ACG GCF ABC ∠=∠+∠=∠+∠=︒=∠,即180AGC ABC ∠+∠=︒,∴点A 、B 、C 、G 四点共圆,60AGB ACB ∴∠=∠=︒,60CGB CAB ∠=∠=︒,60AGB CGB ∴∠=∠=︒,BM BN ∴=,又AB BC =,()ABM CBN HL ∴∆≅∆,ABCG BMGN S S ∴=四边形四边形,60BGM ∠=︒, 12GM BG ∴=,3BM BG =, 233112222BMG BMGN S S BG BG BG ∆∴==⨯⨯⨯=四边形,故④正确; 60CGB ACB ∠=∠=︒,CBG HBC ∠=∠,BCH BGC ∴∆∆∽,∴BC BH CH BG BC CG==, 则2BG BH BC =,则2()BG BG GH BC -=,则22BG BG GH BC -=,则22GH BG BG BC =-,当90BCG ∠=︒时,222BG BC CG -=,此时2GH BG CG =,而题中BCG ∠未必等于90︒,故②不成立,故正确的结论有①③④,故答案为:①③④.27.(2020•葫芦岛)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为 (333)或(333) cm .【解答】解:①根据题意画出如图1:菱形纸片ABCD 的边长为6cm ,6AB BC CD AD ∴====,高AE 等于边长的一半,3AE ∴=, 1sin 2AE B AB ∠==, 30B ∴∠=︒, 将菱形纸片沿直线MN 折叠,使点A 与点B 重合,3BH AH ∴==,23cos30BH BG ∴==︒, 623CG BC BG ∴=-=-,//AB CD ,30GCF B ∴∠=∠=︒,3cos30(623)333CF CG ∴=︒=-⨯=-, 6333(333)DF DC CF cm ∴=+=+-=+;②如图2,3BE AE ==,同理可得333DF =-.综上所述:则DF 的长为(333)或(333)cm -.故答案为:(333)+或(333)-.28.(2020•鞍山)如图,在平面直角坐标系中,已知(3,6)A ,(2,2)B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为 (1,0)- .【解答】解:把(3,6)A 向左平移1得(2,6)A ',作点B 关于x 轴的对称点B ',连接B A ''交x 轴于C ,在x 轴上取点D (点C 在点D 左侧),使1CD =,连接AD ,则AD BC +的值最小,(2,2)B -,(2,2)B ∴'--,设直线B A ''的解析式为y kx b =+,∴2226k b k b -+=-⎧⎨+=⎩, 解得:22k b =⎧⎨=⎩, ∴直线B A ''的解析式为22y x =+,当0y =时,1x =-,(1,0)C ∴-,故答案为:(1,0)-.29.(2020•沈阳)如图,在矩形ABCD中,6AB=,8BC=,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将AOP∆折叠,点A的对应点为点E,线段PE与OD相交于点F.若PDF∆为直角三角形,则DP的长为52或1.【解答】解:如图1,当90DPF∠=︒时,过点O作OH AD⊥于H,四边形ABCD是矩形,BO OD∴=,90BAD OHD∠=︒=∠,8AD BC==,//OH AB∴,∴12 OH HD ODAB AD BD===,132OH AB∴==,142HD AD==,将AOP∆折叠,点A的对应点为点E,线段PE与OD相交于点F,45APO EPO∴∠=∠=︒,又OH AD⊥,45OPH HOP∴∠=∠=︒,3OH HP ∴==,1PD HD HP ∴=-=;当90PFD ∠=︒时,6AB =,8BC =,22366410BD AB AD ∴=++=,四边形ABCD 是矩形,5OA OC OB OD ∴====,DAO ODA ∴∠=∠,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , 5AO EO ∴==,PEO DAO ADO ∠=∠=∠,又90OFE BAD ∠=∠=︒,OFE BAD ∴∆∆∽, ∴OF OE AB BD =, ∴5610OF =, 3OF ∴=,2DF ∴=,PFD BAD ∠=∠,PDF ADB ∠=∠,PFD BAD ∴∆∆∽, ∴PD DF BD AD =, ∴2108PD =, 52PD ∴=,综上所述:52PD =或1, 故答案为52或1. 30.(2020•营口)如图,ABC ∆为等边三角形,边长为6,AD BC ⊥,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE EF +的最小值为 33 .【解答】解:过C 作CF AB ⊥交AD 于E ,则此时,CE EF +的值最小,且CE EF +的最小值CF =,ABC ∆为等边三角形,边长为6,116322BF AB ∴==⨯=, 22226333CF BC BF ∴=-=-=,CE EF ∴+的最小值为33,故答案为:33.三.解答题(共16小题)31.(2020•阜新)如图,ABC ∆在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与ABC ∆关于y 轴对称的△111A B C ;(2)将ABC ∆绕点1O 顺时针旋转90︒得到△222A B C ,2AA 弧是点A 所经过的路径,则旋转中心1O 的坐标为 (2,0) ;(3)求图中阴影部分的面积(结果保留)π.【解答】解:(1)如图,△111A B C 为所作;(2)旋转中心1O 的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r ,则2222420r =+=,∴阴影部分的图形面积为:2111111242211542222S r ππ=⋅-⨯⨯-⨯⨯+⨯⨯=-阴影.32.(2020•锦州)如图,ABCD 的对角线AC ,BD 交于点E ,以AB 为直径的O 经过点E ,与AD 交于点F ,G 是AD 延长线上一点,连接BG ,交AC 于点H ,且12DBG BAD ∠=∠.(1)求证:BG 是O 的切线;(2)若3CH =,1tan 2DBG ∠=,求O 的直径.【解答】(1)证明:AB 为O 的直径,90AEB ∴∠=︒,90BAE ABE ∴∠+∠=︒, 四边形ABCD 为平行四边形,∴四边形ABCD 为菱形,12BAE BAD ∴∠=∠, 12DBG BAD ∠=∠. BAE DBG ∴∠=∠,90DBG ABE ∴∠+∠=︒, 90ABG ∴∠=︒,BG ∴是O 的切线; (2)90ABG AEB ∠=∠=︒,HAB BAE ∠=∠,ABH AEB ∴∆∆∽,2AB AE AH ∴=,1tan 2DBG ∠=, ∴设HE x =,则2BE x =,3CH =,3AE CE x ∴==+,32AH AE HE x ∴=+=+,2(3)(32)AB x x ∴=++,22222(2)(3)AB BE AE x x =+=++,22(3)(32)(2)(3)x x x x ∴++=++,解得1x =或0(舍去),2(31)(32)20AB ∴=++=, 25AB ∴=,即O 的直径为25.33.(2020•锦州)已知AOB ∆和MON ∆都是等腰直角三角形2()OA OM ON <=,90AOB MON ∠=∠=︒.(1)如图1:连AM ,BN ,求证:AOM BON ∆≅∆;(2)若将MON ∆绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON +=; ②当点A ,M ,N 在同一条直线上时,若4OB =,3ON =,请直接写出线段BN 的长.【解答】(1)证明:如图1中,90AOB MON ∠=∠=︒,AOM BON ∴∠=∠,AO BO =,OM ON =,()AOM BON SAS ∴∆≅∆.(2)①证明:如图2中,连接AM.同法可证AOM BON∆≅∆,AM BN∴=,45OAM B∠=∠=︒,45OAB B∠=∠=︒,90MAN OAM OAB∴∠=∠+∠=︒,222MN AN AM∴=+,MON∆是等腰直角三角形,222MN ON∴=,2222NB AN ON∴+=.②如图31-中,设OA交BN于J,过点O作OH MN⊥于H.AOM BON∆≅∆,AM BN∴=,OAM OBN∠=∠,AJN BJO∠=∠,90ANJ JOB∴∠=∠=︒,3OM ON==,90MON∠=︒,OH MN⊥,32 MN∴=322 MH HN OH====,222232464()2AH OA OH ∴=-=-=, 4632BN AM MH AH +∴==+=.如图32-中,同法可证4632AM BN -==.34.(2020•朝阳)如图,以AB 为直径的O 经过ABC ∆的顶点C ,过点O 作//OD BC 交O 于点D ,交AC 于点F ,连接BD 交AC 于点G ,连接CD ,在OD 的延长线上取一点E ,连接CE ,使DEC BDC ∠=∠. (1)求证:EC 是O 的切线;(2)若O 的半径是3,9DG DB =,求CE 的长.【解答】解:(1)证明:如图,连接OC ,AB 是直径,90ACB ∴∠=︒, //OD BC ,90CFE ACB ∴∠=∠=︒, 90DEC FCE ∴∠+∠=︒,DEC BDC ∠=∠,BDC A ∠=∠, DEC A ∴∠=∠, OA OC =, OCA A ∴∠=∠, OCA DEC ∴∠=∠, 90DEC FCE ∠+∠=︒,90OCA FCE ∴∠+∠=︒,即90OCE ∠=︒, OC CE ∴⊥,又OC 是O 的半径, CE ∴是O 切线.(2)由(1)得90CFE ∠=︒, OF AC ∴⊥, OA OC =, COF AOF ∴∠=∠, ∴CD AD =,ACD DBC ∴∠=∠,又BDC BDC ∠=∠, DCG DBC ∴∆∆∽, ∴DC DGDB DC=, 29DC DG DB ∴==,3DC ∴=, 3OC OD ==, OCD ∴∆是等边三角形, 60DOC ∴∠=︒,在Rt OCE ∆中tan 60CEOC︒=,∴3CE,CE=.∴3335.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30︒方向,C在A的南偏西15︒方向(30303)km+处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40/km h,第二组乘公交车,速度是30/km h,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).【解答】解:作BD AC⊥于D.依题意得,∠=︒,15∠=︒,ABCCAE45BAE∠=︒,105∴∠=︒,BAC30∴∠=︒.45ACB在Rt BCD ∆中,90BDC ∠=︒,45ACB ∠=︒, 45CBD ∴∠=︒, CBD DCB ∴∠=∠, BD CD ∴=,设BD x =,则CD x =, 在Rt ABD ∆中,30BAC ∠=︒, 22AB BD x ∴==,tan30BDAD︒=,∴xAD=,AD ∴,在Rt BDC ∆中,90BDC ∠=︒,45DCB ∠=︒,sin BD DCB BC ∴∠=BC ∴,30CD AD +=+,30x ∴=+ 30x ∴=,260AB x ∴==,BC ==,第一组用时:6040 1.5()h ÷=;第二组用时:30)h ,1.5<,∴第二组先到达目的地,答:第一组用时1.5小时,第二组先到达目的地.36.(2020•朝阳)如图所示的平面直角坐标系中,ABC ∆的三个顶点坐标分别为(3,2)A -,(1,3)B -,(1,1)C -,请按如下要求画图:(1)以坐标原点O 为旋转中心,将ABC ∆顺时针旋转90︒,得到△111A B C ,请画出△111A B C ; (2)以坐标原点O 为位似中心,在x 轴下方,画出ABC ∆的位似图形△222A B C ,使它与ABC ∆的位似比为2:1.【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.22237.(2020•锦州)如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距B码头40海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30︒方向的C码头航行,当甲船到达距B码头30海里的E处时,乙船位于甲船北偏东60︒方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)【解答】解:过D 作DF BE ⊥于F , 603030ADE DEB A ∠=∠-∠=︒-︒=︒,A ADE ∴∠=∠, AE DE ∴=,90B ∠=︒,30A ∠=︒,40BC =(海里), 280AC BC ∴==(海里),3403AB BC =, 30BE =(海里), (40330)AE ∴=-(海里), (40330)DE ∴=(海里),在Rt DEF ∆中,60DEF ∠=︒,90DFE ∠=︒, 30EDF ∴∠=︒,1122EF DE x ∴==,3(60153)DF =-(海里), 30A ∠=︒,2120303AD DF ∴==-(海里),80120303(30340)CD AC AD ∴=-=-+=海里,答:乙船与C 码头之间的距离为(30340)海里.38.(2020•盘锦)如图,某数学活动小组要测量建筑物AB 的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目 测量数据 测角仪到地面的距离 1.6CD m = 点D 到建筑物的距离 4BD m = 从C 处观测建筑物顶部A 的仰角 67ACE ∠=︒ 从C 处观测建筑物底部B 的俯角22BCE ∠=︒请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB 的高度.(结果精确到0.1米,参考数据:sin670.92︒≈,cos670.39︒≈,tan67 2.36︒≈.sin220.37︒≈,cos220.93︒≈,tan 220.40)︒≈(选择一种方法解答即可)【解答】解:选择 1.6CD m =,4BD m =,67ACE ∠=︒, 过C 作CE AB ⊥于E ,则四边形BDCE 是矩形, 1.6BE CD m ∴==,4CE BD m ==,在Rt ACE ∆中,67ACE ∠=︒,tan AEACE CE∴∠=, ∴2.364AE≈, 9.4AE m ∴≈,9.4 1.611.0()AB AE BE m ∴=+=+=,答:建筑物AB 的高度为11.0m .39.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40AC cm =,求支架BC 的长.(结果精确到1cm ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:如图2,过C 作CD MN ⊥于D , 则90CDB ∠=︒,60CAD ∠=︒,40()AC cm =,3sin 40sin 6040203()CD AC CAD cm ∴=∠=⨯︒==, 15ACB ∠=︒,45CBD CAD ACB ∴∠=∠-∠=︒, 220649()BC CD cm ∴==≈,答:支架BC 的长约为49cm .40.(2020•葫芦岛)在等腰ADC ∆和等腰BEC ∆中,90ADC BEC ∠=∠=︒,BC CD <,将BEC ∆绕点C 逆时针旋转,连接AB ,点O 为线段AB 的中点,连接DO ,EO .(1)如图1,当点B 旋转到CD 边上时,请直接写出线段DO 与EO 的位置关系和数量关系; (2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若4BC =,26CD =,在BEC ∆绕点C 逆时针旋转的过程中,当60ACB ∠=︒时,请直接写出线段OD 的长.【解答】解:(1)DO EO ⊥,DO EO =;理由:当点B 旋转到CD 边上时,点E 必在边AC 上, 90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,点O 是AB 的中点,12OE OA AB ∴==, 2BOE BAE ∴∠=∠,在Rt ABD ∆中,点O 是AB 的中点,12OD OA AB ∴==, 2DOE BAD ∴∠=∠, OD OE ∴=,。

2020年中考数学图形的变换专题卷(附答案)

2020年中考数学图形的变换专题卷(附答案)

2020年中考数学图形的变换专题卷(附答案)一、单选题(共12题;共24分)1.如图,与相交于点,.若,则为()A. B. C. D.2.如果两个相似多边形的面积之比为1:4,那么它们的周长之比是( )A. 1:2B. 1:4C. 1:8D. 1:163.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A. 3:2B. 4:3C. 2:1D. 2:34.如图所示,河堤横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),堤高BC=5m,则坡面AB的长度是()A. 10mB. 10 mC. 15mD. 5 m5.如图,在△ABC中,BC=6,∠A=60°.若O是△ABC的外接圆,则O的半径长为()A. B. C. D.6.如图,且则=()A. 2︰1B. 1︰3C. 1︰8D. 1︰97.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A. 33°B. 34°C. 35°D. 36°8.如图,是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆的顶端处有一探射灯,射出的边缘光线和与水平路面所成的夹角和分别是37°和60°(图中的点均在同一平面内,).则的长度约为()(结果精确到0.1米,)参考数据:( =1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. 9.4米B. 10.6米C. 11.4米D. 12.6米9.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(2,2)、B(3,1)、D(5,2),则点A的对应点C的坐标是()A. (2,3)B. (2,4)C. (3,3)D. (3,4)10.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A. m=nB. x=m+nC. x>m+nD. x2=m2+n211.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A. 1B. 2C. 3D. 412.如图,在△ABC中,AC=BC=2,D是BC的中点,过A,C,D三点的⊙O与AB边相切于点A,则⊙O的半径为( )A. B. C. 1 D.二、填空题(共8题;共16分)13.若,则的值是________.14.若a:b=3:2,且3a-2b=4,则a+b=________。

2019年、2020年山东省中考试题分类数学(12)——图形的变换(含答案)

2019年、2020年山东省中考试题分类数学(12)——图形的变换(含答案)

2019年、2020年山东省数学中考试题分类(12)——图形的变换一.轴对称图形(共2小题)1.(2020•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)3.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)三.轴对称-最短路线问题(共1小题)4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 四.翻折变换(折叠问题)(共5小题)5.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 6.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√57.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .68.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√39.(2020•威海)如图,四边形ABCD 是一张正方形纸片,其面积为25cm 2.分别在边AB ,BC ,CD ,DA 上顺次截取AE =BF =CG =DH =acm (AE >BE ),连接EF ,FG ,GH ,HE .分别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形A 1B 1C 1D 1.若四边形A 1B 1C 1D 1的面积为9cm 2,则a = .五.图形的剪拼(共1小题)10.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A .B .C .D .六.旋转的性质(共1小题)11.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α七.中心对称图形(共7小题)12.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .13.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是() A . B . C . D .14.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C.D.15.(2020•临沂)下列交通标志中,是中心对称图形的是()A.B.C.D.16.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4 18.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.八.坐标与图形变化-旋转(共3小题)19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)20.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)21.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为.九.利用旋转设计图案(共1小题)22.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.一十.几何变换综合题(共1小题)23.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.一十一.相似三角形的判定与性质(共5小题)24.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤点O 在M 、N 两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤ 25.(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .4226.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的14;④DF 2+BE 2=OG •OC .其中正确的是( )A.①②③④B.①②③C.①②④D.③④27.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF 与DG的交点.若AC=6,则DH=.28.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.一十二.位似变换(共1小题)29.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.一十三.相似形综合题(共1小题)30.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,试证明CD 2=CE •CF 恒成立;(3)若CD =2,CF =√2,求DN 的长.一十四.计算器—三角函数(共1小题)31.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D . 一十五.解直角三角形(共2小题)32.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175C .35D .45 33.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 .一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15√3)米C.15√3米D.(36﹣10√3)米35.(2020•济宁)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.36.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.37.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)38.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.39.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).一十七.解直角三角形的应用-方向角问题(共2小题)40.(2020•济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里41.(2019•济南)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈3 4,tan53°≈4 3)A.225m B.275m C.300m D.315m 一十八.简单几何体的三视图(共1小题)42.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.一十九.简单组合体的三视图(共4小题)43.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.44.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.45.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图46.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图二十.由三视图判断几何体(共4小题)47.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.48.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A.B.C.D.49.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱50.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.2019年、2020年山东省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共2小题)1.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.关于x轴、y轴对称的点的坐标(共1小题)3.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.三.轴对称-最短路线问题(共1小题)4.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB =∠AOB ,∴CD ∥AO∴BC BO =CD AO∵OC =2,OB =4,∴BC =2,∴24=CD 3,解得,CD =32; ∵CD ∥AO ,∴EO EC =PO DC ,即24=PO 32,解得,PO =34 故选:B .四.翻折变换(折叠问题)(共5小题)5.【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√AF 2−AB 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53,∴tan ∠DAE =DE AD =535=13, 故选:D .6.【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA=OC=2√5,故选:C.7.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.8.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG=√22−12=√3,∴BE=DF=MG=√3,∴OF:BE=2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB=√3AM=2√3=CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5×√33=5√33,∴OD=CD﹣OC=2√3−5√33=√33.故选:B.9.【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),12a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.五.图形的剪拼(共1小题)10.【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.六.旋转的性质(共1小题)11.【解答】解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵∠BAD=α,∴∠BED=180°﹣α.故选:D.七.中心对称图形(共7小题)12.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.13.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.14.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.15.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.16.【解答】解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.17.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.18.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.八.坐标与图形变化-旋转(共3小题)19.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.20.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.21.【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).九.利用旋转设计图案(共1小题)22.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折得到.故选:B.一十.几何变换综合题(共1小题)23.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN =12BD ,PN =12CE ,MN ∥BD ,PN ∥CE ,∴MN =PN ,∠ENM =∠EBD ,∠BPN =∠BCE ,∴∠ENP =∠NBP +∠NPB =∠NBP +∠ECB ,∵∠EBD =∠ABD +∠ABE =∠ACE +∠ABE ,∴∠MNP =∠MNE +∠ENP =∠ACE +∠ABE +∠EBC +∠EBC +∠ECB =180°﹣∠BAC =60°,∴△MNP 是等边三角形;(3)根据题意得,BD ≤AB +AD ,即BD ≤4,∴MN ≤2,∴△MNP 的面积=12MN ⋅√32MN =√34MN 2,∴△MNP 的面积的最大值为√3.一十一.相似三角形的判定与性质(共5小题)24.【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中,{∠PAE =∠MAE AE =AE ∠AEP =∠AEM,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP .∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故②正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故③正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故④错误; 连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故选:B .25.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DE AE =FD AB =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .26.【解答】解:①∵四边形ABCD 是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴S四边形CEOF =S△OCD=14S正方形ABCD,故③正确;④∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt △CEF 中,CF 2+CE 2=EF 2,∴BE 2+DF 2=EF 2,∴OG •AC =BE 2+DF 2,故④错误,故选:B .27.【解答】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,故答案为:1.28.【解答】解:连结OC ,如图,∵CD 2=CE •CA ,∴CD CE =CA DC ,而∠ACD =∠DCE ,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴PCPA =PBPD,即4√23r=6√2,∴r=4(负根已经舍弃),∴OB=4,故答案为4.一十二.位似变换(共1小题)29.【解答】解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=−8 x.故答案为:y=−8 x.一十三.相似形综合题(共1小题)30.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF =∠DCE =135°, 在△DCF 和△DCE 中,{CF =CE ∠DCF =∠DCE DC =DC,∴△DCF ≌△DCE (SAS )∴DE =DF ;(2)证明:∵∠DCF =135°, ∴∠F +∠CDF =45°,∵∠FDE =45°,∴∠CDE +∠CDF =45°,∴∠F =∠CDE ,∵∠DCF =∠DCE ,∠F =∠CDE , ∴△FCD ∽△DCE ,∴CF CD =CD CE ,∴CD 2=CE •CF ;(3)解:过点D 作DG ⊥BC 于G , ∵∠DCB =45°,∴GC =GD =√22CD =√2,由(2)可知,CD 2=CE •CF ,∴CE =CD 2CF =2√2,∵∠ECN =∠DGN ,∠ENC =∠DNG , ∴△ENC ∽△DNG ,∴CN NG =CE DG ,即√2−NG NG =√2√2, 解得,NG =√23,由勾股定理得,DN =√DG 2+NG 2=2√53.一十四.计算器—三角函数(共1小题)31.【解答】解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0.9816,∴按下的第一个键是2ndF.故选:D.一十五.解直角三角形(共2小题)32.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC=√AH2+CH2=√42+32=5,∴sin∠ACH=AHAC=45,故选:D.33.【解答】解:过点D作DE⊥BC,垂足为E,∵∠ACB=90°,DE⊥BC,∴DE∥AC,又∵点D为AB边的中点,∴E是BC的中点,∴BE=EC=12BC=2,在Rt△DCE中,cos∠DCB=ECCD=23,故答案为:23.一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.【解答】解:如图所示:过点A 作AF ⊥BC 于点F ,∵斜面坡度为1:√3,∴tan ∠ABF =AF BF =1√3=√33, ∴∠ABF =30°,∵在P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°, ∴∠HPB =30°,∠APB =45°,∴∠HBP =60°,∴∠PBA =90°,∠BAP =45°,∴PB =AB ,∵PH =30m ,sin60°=PH PB =30PB =√32,解得:PB =20√3,故AB=20√3(m),故答案为:20√3.36.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=CDtan60°=√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.37.【解答】解:过点A作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HD AH,∴AH=HDtan∠HAD=31.6tan38°=31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6=72.11≈72.1(m),答:该大楼的高度约为72.1m.38.【解答】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°=CDAD=√3,∴AD=60√3=20√3,∵∠BED=∠BAD=∠ADE=90°,∴四边形ADEB是矩形,∴BE=AD=20√3,在Rt△BCE中,tan∠CBE=tan30°=CEBE=√33,∴CE=20√3×√33=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.39.【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=BE EN,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.一十七.解直角三角形的应用-方向角问题(共2小题)40.【解答】解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30(海里),∴BC=30(海里),即海岛B到灯塔C的距离是30海里.故选:C.41.【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=ECEB,即43=xy,在Rt△AEC中,tan37°=ECAE,即34=x105+y,解得x=180,y=135,∴AC=√EC2+AE2=√1802+2402=300(m),故选:C.一十八.简单几何体的三视图(共1小题)42.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.一十九.简单组合体的三视图(共4小题)43.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.44.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.45.【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.46.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.二十.由三视图判断几何体(共4小题)47.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.48.【解答】解:从正面看所得到的图形为.故选:A.49.【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.50.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.。

山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)

山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)

山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.3.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;①PM+PN=AC;①PE2+PF2=PO2;①△POF∽△BNF;①点O在M、N两点的连线上.其中正确的是()A.①①①①B.①①①①C.①①①①①D.①①①4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .6.(2020•淄博)下列图形中,不是轴对称图形的是( ) A . B .C .D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D . 11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .4212.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C .D .17.(2020•青岛)如图所示的几何体,其俯视图是( )A .B .C .D .18.(2020•临沂)根据图中三视图可知该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱19.(2020•青岛)如图,将△ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√522.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .623.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√324.(2020•枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A .3√55B .√175 C .35 D .45 29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .430.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43) A .225m B .275m C .300m D .315m32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C .D .33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A .①①①①B .①①①C .①①①D .①①36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图37.(2019•东营)下列图形中,是轴对称图形的是( )A .B .C .D .二.填空题(共7小题)38.(2020•烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为 .39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.41.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.42.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.43.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.44.如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)48.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D 旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.49.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.50.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【答案】D【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A .B .C .D .【答案】D 【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .3.(2020•东营)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①△APE ≌△AME ;①PM +PN =AC ;①PE 2+PF 2=PO 2;①△POF ∽△BNF ;①点O 在M 、N 两点的连线上.其中正确的是( )A .①①①①B .①①①①C .①①①①①D .①①①【答案】B【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中, {∠DDD =∠DDD DD =DD DDDD =DDDD,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP . ∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故①正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故①正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故①错误;连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故①正确.故选:B .4.(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32 【答案】B【解答】解:如图,延长CO 交①O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB ,∴∠DCB =90°,又∠AOB =90°,∴∠DCB =∠AOB ,∴CD ∥AO∴DD DD =DD DD∵OC =2,OB =4,∴BC =2,∴24=DD 3,解得,CD =32;∵CD ∥AO ,∴DD DD =DD DD ,即24=DD32,解得,PO =34 故选:B .5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .【答案】C【解答】解:A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .6.(2020•淄博)下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】D【解答】解:A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意.故选:D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是()A .B .C .D .【答案】D【解答】解:∵已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下)的按键顺序是:2ndF ,sin ,0,∴按下的第一个键是2ndF .故选:D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 【答案】D【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√DD 2−DD 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53, ∴tan ∠DAE =DD DD =535=13, 故选:D .9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【答案】D【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .42 【答案】C【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DD DD =DD DD =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .12.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【解答】解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意;B 、不是中心对称图形,是轴对称图形,故此选项不符合题意;C 、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D 、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .【答案】A 【解答】解:从正面看所得到的图形为.故选:A .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α【答案】D【解答】解:∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .【答案】D【解答】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选:D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C.D.【答案】B【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.17.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.18.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)【答案】D【解答】解:如图,△A ′B ′C ′即为所求,则点A 的对应点A ′的坐标是(﹣1,4).故选:D .20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)【答案】A【解答】解:∵将点P (﹣3,2)向右平移3个单位得到点P ',∴点P '的坐标是(0,2),∴点P '关于x 轴的对称点的坐标是(0,﹣2).故选:A .21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√5【答案】C【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC =AF ,OA =OC ,∴BC =3+5=8,在Rt △ABF 中,AB =√52−32=4,在Rt △ABC 中,AC =√42+82=4√5,∴OA =OC =2√5,故选:C .22.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .6【答案】D【解答】解:∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF =AB ,∠AFE =∠B =90°,∴EF ⊥AC ,∵∠EAC =∠ECA , ∴AE =CE ,∴AF =CF ,∴AC =2AB =6,故选:D .23.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( ) A .12√3 B .13√3 C .14√3 D .15√3【答案】B【解答】解:∵EN =1,∴由中位线定理得AM =2, 由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM ,∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1,由勾股定理得MG =√22−12=√3,∴BE =DF =MG =√3,∴OF :BE =2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.24.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)【答案】A【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C .D .【答案】B【解答】解:由题意,选项A ,C ,D 可以通过平移,旋转得到,选项B 可以通过翻折,平移,旋转得到. 故选:B .26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是( )A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图【答案】D【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D .27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D .【答案】B【解答】解:A 、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B 、是中心对称图形但不是轴对称图形.故此选项符合题意;C 、既是轴对称图形,又是中心对称图形.故此选项不合题意;D 、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B .28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175 C .35 D .45 【答案】D【解答】解:如图,过点A 作AH ⊥BC 于H .在Rt △ACH 中,∵AH =4,CH =3,∴AC =√DD 2+DD 2=√42+32=5,∴sin ∠ACH =DD DD =45, 故选:D .29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .4【答案】B【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B .30.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里【答案】C【解答】解:如图.根据题意得:∠CBD =84°,∠CAB =42°,∴∠C =∠CBD ﹣∠CAB =42°=∠CAB ,∴BC =AB ,∵AB =15×2=30(海里),∴BC =30(海里),即海岛B 到灯塔C 的距离是30海里.故选:C .31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m 【答案】C【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=DDDD,即43=DD,在Rt△AEC中,tan37°=DDDD,即34=D105+D,解得x=180,y=135,∴AC=√DD2+DD2=√1802+2402=300(m),故选:C.32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.【答案】D【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C .D .【答案】B【解答】解:A 、不是中心对称图形,也不是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误.故选:B .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米【答案】D【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A.①①①①B.①①①C.①①①D.①①【答案】B【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;①∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故①正确;①∵△COE≌△DOF,∴S△COE=S△DOF,∴D四边形DDDD =D△DDD=14D正方形DDDD,故①正确;①∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故①错误,故选:B.36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.37.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.填空题(共7小题)38.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB 绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【答案】见试题解答内容【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.【答案】见试题解答内容【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),1 2a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=1.【答案】见试题解答内容【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴DD DD =DD DD ,即DD 6=DD 3DD , 解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.41.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 23 . 【答案】见试题解答内容【解答】解:过点D 作DE ⊥BC ,垂足为E ,∵∠ACB =90°,DE ⊥BC ,∴DE ∥AC ,又∵点D 为AB 边的中点,∴E 是BC 的中点,∴BE =EC =12BC =2,在Rt △DCE 中,cos ∠DCB =DD DD =23, 故答案为:23. 42.(2020•德州)在平面直角坐标系中,点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′.若点A '恰在某一反比例函数图象上,则该反比例函数解析式为 y =−8D . 【答案】见试题解答内容【解答】解:∵点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′,∴A ′坐标为:(﹣4,2)或(4,﹣2),∵A '恰在某一反比例函数图象上,∴该反比例函数解析式为:y =−8D .故答案为:y =−8D . 43.(2020•济宁)如图,在四边形ABCD 中,以AB 为直径的半圆O 经过点C ,D .AC 与BD 相交于点E ,CD 2=CE •CA ,分别延长AB ,DC 相交于点P ,PB =BO ,CD =2√2.则BO 的长是 4 .【答案】见试题解答内容【解答】解:连结OC ,如图, ∵CD 2=CE •CA ,∴DD DD =DD DD ,而∠ACD =∠DCE ,∴△CAD ∽△CDE ,∴∠CAD =∠CDE ,∵∠CAD =∠CBD ,∴∠CDB =∠CBD ,∴BC =DC ;设①O 的半径为r ,∵CD =CB ,∴DD̂=DD ̂, ∴∠BOC =∠BAD ,∴OC ∥AD ,∴DD DD =DD DD =2D D =2,∴PC =2CD =4√2,∵∠PCB =∠P AD ,∠CPB =∠APD ,∴△PCB ∽△P AD ,∴DD DD =DD DD ,即4√23D =62,∴r =4(负根已经舍弃),∴OB =4,故答案为4.44.如图,小明在距离地面30米的P 处测得A 处的俯角为15°,B 处的俯角为60°.若斜面坡度为1:√3,则斜坡AB 的长是 20√3 米.【答案】见试题解答内容【解答】解:如图所示:过点A 作AF ⊥BC 于点F , ∵斜面坡度为1:√3,∴tan ∠ABF =DD DD =3=√33, ∴∠ABF =30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=DDDD=30DD=√32,解得:PB=20√3,故AB=20√3(m),故答案为:20√3.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】见试题解答内容【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=12BD,PN=12CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积=12DD⋅√32DD=√34DD2,∴△MNP的面积的最大值为√3.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【答案】见试题解答内容【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=DDDDD60°=3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)。

2020年中考数学专题复习测试:图形的变换(含答案)

2020年中考数学专题复习测试:图形的变换(含答案)

复习测试范围:图形的变换限时:45分钟满分:100分一、选择题(每小题6分,共42分)1.在下列图形中,既是轴对称图形又是中心对称图形的是()图D7-12.如图D7-2,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()图D7-2图D7-33.如图D7-4,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为()图D7-4A.4B.2√5C.6D.2√64.某正方体的平面展开图如图D7-5所示,则原正方体中与“春”字所在的面相对的面上的字是()图D7-5A.青B.来C.斗D.奋5.如图D7-6,在△ABC 中,∠ACB 为钝角,用直尺和圆规在边AB 上确定一点D ,使∠ADC=2∠B ,则符合要求的作图痕迹是( )图D7-66.如图D7-7,在Rt △ABC 中,∠ABC=90°,AB=2√3,BC=2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为 ( )图D7-7A .5√34-π2B .5√34+π2C .2√3-πD .4√3-π27.对角线长分别为6和8的菱形ABCD 如图D7-8所示,点O 为对角线的交点,沿过点O 的直线折叠菱形,B ,C 的对应点分别为B',C',MN 是折痕.若B'M=1,则CN 的长为 ( )图D7-8A .7B .6C .5D .4二、填空题(每小题6分,共24分)8.一个几何体的三视图如图D7-9所示,则这个几何体的表面积是 .图D7-99.如图D7-10,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0°<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=度.图D7-1010.如图D7-11,矩形ABCD,∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N,再分别以点MN的长为半径作弧交于点P,作射线AP交BC于点E,若BE=1,则矩形ABCD的面积等M,N为圆心,以大于12于.图D7-11a.连结AE,将△ABE沿AE折叠,若点B的11.如图D7-12,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35对应点B'落在矩形ABCD的边上,则a的值为.图D7-12三、解答题(共34分)12.(10分)如图D7-13,把平行四边形纸片ABCD沿BD折叠,点C落在点C'处,BC'与AD相交于点E.(1)连结AC',则AC'与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.图D7-1313.(12分)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连结CE(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.图D7-1414.(12分)如图D7-15,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB'C'D',使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C'上取点F,使B'F=AB,连结BF.(1)求证:AE=C'E;(2)求∠FBB'的度数;(3)已知AB=2,求BF的长.图D7-15【参考答案】1.D2.B3.D [解析]由旋转可得,S 正方形ABCD =S 四边形AECF =20, 即AD 2=20,∴AD=2√5. ∵DE=2,∴在Rt △ADE 中,AE=√AD 2+DE 2=2√6, 故选D . 4.D 5.B6.A [解析]连结OD ,在Rt △ABC 中, ∵∠ABC=90°,AB=2√3,BC=2, ∴tan A=BCAB =23=√33,∴∠A=30°,∠DOB=60°. 过点D 作DE ⊥AB 于点E ,∵AB=2√3,∴AO=OD=√3,∴DE=32,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =2√3-3√34-π2=5√34-π2. 故选A .7.D [解析](法一,排除法)连结AC ,BD ,∵菱形ABCD ,AC=6,BD=8,∴CO=3,DO=4,CO ⊥DO ,∴CD=5,而CN<CD , ∴CN<5,故排除A,B,C,故选D .(法二,正确推导)可证△BMO ≌△DNO , ∴DN=BM ,∵B'M=BM=1=DN ,由法一知,CD=5, ∴CN=4. 8.10 cm 29.90 [解析]如图,连结CC 1,AA 1,作CC 1,AA 1的垂直平分线交于点E.∵CC 1,AA 1的垂直平分线交于点E ,∴点E 是旋转中心, ∵∠AEA 1=90°,∴旋转角α=90°.10.3√3 [解析]在矩形ABCD 中,∠BAC=60°, ∴∠B=90°,∠BCA=30°. 由作图知,AE 平分∠BAC , ∴∠BAE=∠EAC=30°. ∵在Rt △ABE 中,BE=1, ∴AE=1sin30°=2,AB=1tan30°=√3.∵∠EAC=∠ECA=30°, ∴EC=AE=2, ∴BC=3,∴S 矩形ABCD =AB ·BC=3√3.11.53或√53[解析]由折叠可得,AB=AB',∠B'=∠B=90°,BE=B'E.由题意可得,点B'的位置有以下两种情况: ①当点B'落在矩形的边AD 上时,则四边形ABEB'为正方形, 所以BE=AB=1,则35a=1,所以a=53;②当点B'落在边CD 上时,则由已知可得BE=EB'=35a ,EC=25a ,所以ECEB '=23.易得,△B'DA ∽△ECB',所以DB 'AB '=ECEB '=23,则DB'=23. 在Rt △ADB'中,由勾股定理可得AD=√53, 则a=√53.综上所述,a 的值为53或√53. 12.解:(1)AC'∥BD (2)EB=ED.证明:由折叠可知∠CBD=∠EBD , ∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠CBD=∠EDB. ∴∠EBD=∠EDB.∴EB=ED. 13.解:(1)如图.(2)∵四边形ABCD 为平行四边形, ∴AD=BC=5,CD=AB=3,∵点E 在线段AC 的垂直平分线上, ∴EA=EC ,∴△DCE 的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8. 14.解:(1)证明:∵四边形ABCD 是矩形, ∴△ABC 为直角三角形. 又∵AC=2AB ,∴cos ∠BAC=AB AC =12,∴∠CAB=60°,∴∠ACB=∠DAC=30°,∠B'AC'=60°, ∴∠C'AD=30°=∠ACB=∠AC'B', ∴AE=C'E.(2)∵∠BAC=60°,AB=AB', ∴△ABB'是等边三角形, ∴BB'=AB ,∠AB'B=60°.又∵∠AB'F=90°,∴∠BB'F=150°. ∵B'F=AB=BB', ∴∠FBB'=∠BFB'=15°.(3)连结AF ,过点A 作AM ⊥BF 于点M.由(2)可知△AB'F 是等腰直角三角形,△ABB'是等边三角形, ∴∠AFB'=45°,∵∠BFB'=15°,∴∠AFM=30°,在Rt △ABM 中,∠ABM=∠ABB'-∠FBB'=45°,∴AM=BM=AB ·cos ∠ABM=2×√22=√2.在Rt △AMF 中,MF=AM tan∠AFM =√2√33=√6.∴BF=√2+√6.。

2020学年中考数学《图形的变换》总复习训练(有答案)

2020学年中考数学《图形的变换》总复习训练(有答案)

图形的变换一、选择题1.下列几何图形中,一定是轴对称图形的有()A.2 个 B.3 个 C.4 个 D.5 个2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图 1.若将位于上下地点的两个字牌对换,同时将位于左右地点的两个字牌对换,再将转盘顺时针旋转 90°,则达成一次变换.图 2,图 3 分别表示第 1 次变换和第 2 次变换.按上述规则达成第9 次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形 C .正三角形D.矩形4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④EF 对折后使两部分重合,若∠1=50°,则∠AEF=()5.如图,把矩形ABCD沿A.110°B.115°C.120°D.130°6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1 个 B.2 个 C.3 个 D.4 个10.以下图形中,是轴对称图形的是()A.B.C.D.11.下边的图形中,是中心对称图形的是()A.B.C.D.二、填空题12.如图,点 G是△ ABC的重心, CG的延伸线交 AB于 D, GA=5cm,GC=4cm,GB=3cm,将△ADG绕点 D旋转 180°获得△ BDE,则 DE=2 cm,△ ABC的面积 =cm.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.1cm,获得线段A′B′,则点 A 到点A′的距离是cm.14.将线段AB平移三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图 1、2 中所画的“ L”型图形,而后各补画一个小正方形,使图 1 中所成的图形是轴对称图形,图 2 中所成的图形是中心对称图形;(2)补画后,图 1、 2 中的图形是否是正方体的表面睁开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△ A1 B1C1对于点 E 成中心对称.(1)画出对称中心E,并写出点 E、 A、 C的坐标;(2)P( a,b)是△ ABC的边 AC上一点,△ ABC经平移后点 P 的对应点为 P2(a+6,b+2),请画出上述平移后的△ A2B2C2,并写出点 A2、 C2的坐标;(3)判断△ A2 B2C2和△ A1 B1C1的地点关系.(直接写出结果)17.在一平直河岸l 同侧有 A,B 两个乡村, A,B 到 l 的距离分别是3km和 2km,AB=akm(a >1).现计划在河岸l 上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图 1 是方案一的表示图,设该方案中管道长度为d1,且 d1=PB+BA( km)(此中 BP⊥l 于点 p);图 2 是方案二的表示图,设该方案中管道长度为 d2,且 d2=PA+PB(km)(此中点 A' 与点 A 对于 I 对称, A′B与 l 交于点 P.察看计算:(1)在方案一中, d1 =km(用含 a 的式子表示);(2)在方案二中,组长小宇为了计算 d2的长,作了如图 3 所示的协助线,请你按小宇同学的思路计算,d2 =km(用含 a 的式子表示).研究概括(1)①当 a=4 时,比较大小:②当 a=6 时,比较大小: d1(d1()d2(填“>”、“ =”或“<”);)d2(填“>”、“ =”或“<”);(2)请你参照右侧方框中的方法指导,就 a(当 a> 1 时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?图形的变换参照答案与试题分析一、选择题1.下列几何图形中,一定是轴对称图形的有()A.2 个 B.3 个 C.4 个 D.5 个【考点】轴对称图形.【剖析】对于某条直线对称的图形叫轴对称图形.【解答】解:全部图形沿某条直线折叠后直线两旁的部分能够完整重合,那么必定是轴对称图形的有 5 个,应选 D.【评论】轴对称图形的判断方法:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图 1.若将位于上下地点的两个字牌对换,同时将位于左右地点的两个字牌对换,再将转盘顺时针旋转 90°,则达成一次变换.图 2,图 3 分别表示第 1 次变换和第 2 次变换.按上述规则达成第9 次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.【剖析】依据题意可知每一次变换后相当于逆时针旋转了90°,经过 4 次变换后会回到原始地点,因此按上述规则达成第9 次变换后,相当于第一次变化后的地点关系,剖析比较可得答案.【解答】解:依据题意可知每一次变换后相当于逆时针旋转了90 度,经过 4 次变换后会回到原始地点,因此按上述规则达成第 9 次变换后,“众”字位于转盘的地点是应当是第一次变换后的地点即在左侧,比较可得 C切合要求.应选 C.【评论】本题考察旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三因素:①定点为旋转中心;②旋转方向;③旋转角度.重点是找到旋转的方向和角度.3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形 C .正三角形D.矩形【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解: A、是轴对称图形,不是中心对称图形,不切合题意;B、不是轴对称图形,是中心对称图形,不切合题意;C、是轴对称图形,不是中心对称图形,不切合题意;D、是轴对称图形,也是中心对称图形,切合题意.应选 D.【评论】掌握中心对称图形与轴对称图形的观点.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转 180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和各图的特色求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.知足条件的是①③,应选 A.【评论】掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180 度后两部分重合.5.如图,把矩形ABCD沿 EF 对折后使两部分重合,若∠1=50°,则∠ AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【剖析】依据折叠的性质,对折前后角相等.【解答】解:依据题意得:∠2=∠3,∵∠ 1+∠2+∠3=180°,∴∠ 2=(180°﹣ 50°)÷ 2=65°,∵四边形 ABCD是矩形,∴AD∥ BC,∴∠ AEF+∠2=180°,∴∠ AEF=180°﹣ 65°=115°.应选 B.【评论】本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【剖析】依照中心对称图形的定义即可求解.【解答】解:此中 A 选项、 C选项及 D选项旋转 180 度后新图形中间的桃心向下,原图形中间的桃心向上,因此不是中心对称图形.应选 B.【评论】本题考察中心对称图形的定义:绕对称中心旋转 180 度后所得的图形与原图形完整重合.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】惯例题型.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解: A、不是轴对称图形,是中心对称图形,故 A 选项错误;B、不是轴对称图形,是中心对称图形,故 B 选项错误;C、既是轴对称图形,也是中心对称图形,故 C 选项正确;D、是轴对称图形,不是中心对称图形,故 D 选项错误.应选: C.【评论】本题考察了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转 180 度后两部分重合.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.【考点】生活中的旋转现象.【剖析】依据旋转的意义,找出图中眼,眉毛,嘴 5 个重点处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:依据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确立为 A 图,应选 A.【评论】本题考察了图形的旋转变化,学生主要要看清是顺时针仍是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1 个 B.2 个 C.3 个 D.4 个【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解:依据中心对称图形的观点可知,图案O、I 是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.应选 B.【评论】解答本题要掌握中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180 度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..以下图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【剖析】依据轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也能够说这个图形对于这条直线(成轴)对称,从而得出答案.【解答】解: A、不是轴对称图形,故 A 错误;B、是轴对称图形,故 B 正确;C、不是轴对称图形,故 C 错误;D、不是轴对称图形,故 D 错误.应选: B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.11.下边的图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解: A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选 B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转 180 度后与原图重合.二、填空题12.如图,点 G是△ ABC的重心, CG的延伸线交 AB于 D, GA=5cm,GC=4cm,GB=3cm,将△ADG2绕点 D旋转 180°获得△ BDE,则 DE= 2 cm,△ ABC的面积 = 18 cm.【考点】旋转的性质.【专题】压轴题.【剖析】三角形的重心是三条中线的交点,依据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明 BG⊥ CE,从而得出△ BCD的高,可求△ BCD的面积.【解答】解:∵点G是△ ABC的重心,∴DE=GD=GC=2,CD=3GD=6,∵GB=3,EG=GC=4, BE=GA=5,222∴BG+GE=BE,即 BG⊥ CE,∵CD为△ ABC的中线,∴S△ACD=S△BCD,2∴S△ABC=S△ACD+S△BCD=2S△BCD=2×× BG×CD=18cm.填:2,18.【评论】本题考察旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.要注意旋转的三因素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是 6,则它底边上的高为4.【考点】等腰三角形的性质;勾股定理.【剖析】依据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:依据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是 3,再依据勾股定理得:底边上的高为 4.故答案为: 4【评论】考察等腰三角形的三线合一及勾股定理的运用.14.将线段 AB平移 1cm,获得线段 A′B′,则点 A 到点 A′的距离是1cm.【考点】平移的性质.【专题】压轴题.【剖析】依据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是同样的,此刻将线段平移1cm,则每一点都平移1cm,即 AA′=1cm,∴点 A 到点 A′的距离是 1cm.【评论】本题考察了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应当借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.1 中所成的图形是(1)察看图 1、2 中所画的“ L”型图形,而后各补画一个小正方形,使图轴对称图形,图 2 中所成的图形是中心对称图形;(2)补画后,图 1、 2 中的图形是否是正方体的表面睁开图?(填“是”或“不是”)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【剖析】( 1)依据轴对称图形与中心对称的定义即可作出,第一确立对称轴,即可作出所要作的正方形;(2)利用折叠的方法进行考证即可.【解答】解:( 1)如图(画对一个得 3 分).(2)图 1(不是)或图 2(是),图 3(是).【评论】掌握轴对称的性质:沿着向来线折叠后重合.中心对称的性质:绕某一点旋转 180°此后重合.16.如图,在平面直角坐标系中,△ABC和△ A1 B1C1对于点 E 成中心对称.(1)画出对称中心E,并写出点 E、 A、 C的坐标;(2)P( a,b)是△ ABC的边 AC上一点,△ ABC经平移后点 P 的对应点为 P2(a+6,b+2),请画出上述平移后的△ A2B2C2,并写出点 A2、 C2的坐标;(3)判断△ A2 B2C2和△ A1 B1C1的地点关系.(直接写出结果)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【剖析】( 1)连结对应点,对应点的中点即为对称中心,在网格中可直接得出点 E、 A、 C 的坐标;(2)依据“( a+6,b+2)”的规律求出对应点的坐标 A2(3, 4), C2(4,2),按序连结即可;(3)由△ A2 B2C2和△ A1B1C1的地点关系直接看出是对于原点O成中心对称.【解答】解:( 1)如图, E(﹣ 3,﹣ 1), A(﹣ 3,2), C(﹣ 2,0);( 4 分)(2)如图, A2(3,4), C2( 4, 2);( 8 分)(3)△ A2B2C2与△ A1B1C1对于原点 O成中心对称.( 10 分)【评论】本题考察的是平移变换与旋转变换作图.作平移图形时,找重点点的对应点也是重点的一步.平移作图的一般步骤为:①确立平移的方向和距离,先确立一组对应点;②确立图形中的重点点;③利用第一组对应点和平移的性质确定图中所相重点点的对应点;④按原图形次序挨次连结对应点,所获得的图形即为平移后的图形.作旋转后的图形的依照是旋转的性质,基本作法是①先确立图形的重点点;②利用旋转性质作出重点点的对应点;③按原图形中的方式按序连结对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转 180 度时的特别状况.17.在一平直河岸 l 同侧有 A,B 两个乡村, A,B 到 l 的距离分别是 3km和 2km,AB=akm(a>1).现计划在河岸 l 上建一抽水站 P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图 1 是方案一的表示图,设该方案中管道长度为d1,且 d1=PB+BA( km)(此中 BP⊥l 于点 p);图 2 是方案二的表示图,设该方案中管道长度为 d2,且 d2=PA+PB(km)(此中点 A' 与点 A 对于 I 对称, A′B与 l 交于点 P.察看计算:(1)在方案一中, d1 = a+2km(用含 a 的式子表示);(2)在方案二中,组长小宇为了计算 d2的长,作了如图 3 所示的协助线,请你按小宇同学的思路计算,d2 =km(用含 a 的式子表示).研究概括(1)①当 a=4 时,比较大小: d1()d2(填“>”、“ =”或“<”);②当 a=6 时,比较大小: d1()d2(填“>”、“ =”或“<”);(2)请你参照右侧方框中的方法指导,就 a(当 a> 1 时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.22【剖析】运用勾股定理和轴对称求出 d2,依据方法指导,先求 d1﹣d2,再依据差进行分类议论选用合理方案.【解答】解:( 1)∵ A 和 A' 对于直线 l 对称,∴PA=PA',d1 =PB+BA=PB+PA'=a+2;故答案为: a+2;(2)由于22BK=a ﹣1,222222A'B=BK+A'K =a﹣1+5 =a +24因此 d =.2研究概括:(1)①当 a=4 时, d1 =6,d2=, d1<d2;②当 a=6 时, d1=8,d2=,d1> d2;(2)=4a﹣20.22①当 4a﹣20>0,即 a>5 时, d1﹣ d2>0,∴d1>d2;②当 4a﹣20=0,即 a=5 时, d12﹣d22=0,∴d1﹣d2=0,∴d1=d2③当 4a﹣20<0,即 a<5 时, d12﹣ d22<0,∴d1﹣d2< 0,∴d1<d2综上可知:当 a> 5 时,选方案二;当 a=5 时,选方案一或方案二;当 1<a<5(缺 a> 1 不扣分)时,选方案一.【评论】本题为方案设计题,综合考察了学生的作图能力,运用数学知识解决实质问题的能力,以及察看研究和分类议论的数学思想方法.。

2019年中考数学真题分类专项训练--图形的变换(含答案)

2019年中考数学真题分类专项训练--图形的变换(含答案)

2019年中考数学真题分类专项训练--图形的变换一、选择题1.(2019江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有A .3种B .4种C .5种D .6种【答案】D2.(2019金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕.若正方形EFGH 与五边形MCNGF 的面积相等,则FMGF的值是AB 1C .12D 【答案】A3.(2019北京)下列倡导节约的图案中,是轴对称图形的是A .B .C .D .【答案】C4.(2019舟山)如图,在直角坐标系中,已知菱形OABC 的顶点A (1,2),B (3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是A.(2,–1)B.(1,–2)C.(–2,1)D.(–2,–1)【答案】A5.(2019海南)如图,在Y ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.21【答案】C6.(2019绍兴)在平面直角坐标系中,抛物线y=(x+5)(x–3)经变换后得到抛物线y=(x+3)(x–5),则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【答案】B7.(2019河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为A.10 B.6 C.3 D.2【答案】C8.(2019贵阳)如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是A.19B.16C.29D.13【答案】D9.(2019福建)下列图形中,一定既是轴对称图形又是中心对称图形的是A.等边三角形B.直角三角形C.平行四边形D.正方形【答案】D10.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】C11.(2019黑龙江)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C12.(2019吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C13.(2019黄冈)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是A.(6,1)B.(–2,1)C.(2,5)D.(2,–3)【答案】D14.(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A 落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)【答案】C15.(2019湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)【答案】B16.(2019云南)下列图形既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】B17.(2019乐山)下列四个图形中,可以由下图通过平移得到的是A.B.C.D.【答案】D二、填空题18.(2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD 交BC的延长线于点E,则DE的长为__________.【答案】–219.(2019海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.20.(2019山西)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.【答案】10–21.(2019杭州)如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A 点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的面积为1,则矩形ABCD 的面积等于__________.【答案】65+1022.(2019温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.当∠AOC =90°时,点A 离地面的距离AM 为__________分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则B 'E '–BE 为__________分米.【答案】,4.三、解答题23.(2019宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.24.(2019安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段C D.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.25.(2019黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).解:(1)如下图所示,点A 1的坐标是(–4,1); (2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA=∴线段OA 在旋转过程中扫过的面积是:290360⨯π⨯=174π.26.(2019绍兴)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,AD =30,DM =10. (1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM 的长.②当A ,D ,M 三点为同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外的点D 1转到其内的点D 2处,连结D 1D 2,如图2,此时∠AD 2C =135°,CD 2=60,求BD 2的长.解:(1)①AM=AD+DM=40,或AM=AD–DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2–DM2=302–102=800,舍弃).∴AM当∠ADM为直角时,AM2=AD2+DM2=302+102=1000,∴AM或(–舍弃).综上所述,满足条件的AM的值为2或.(2)如图2中,连接CD1.由题意得∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2,又∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==,∵∠BAC=∠D2AD1=90°,∴∠BAC–∠CAD2=∠D2AD1–∠CAD2,∴∠BAD2=∠CAD1,∵AB=AC,AD2=AD1,∴△ABD 2≌△ACD 1, ∴BD 2=CD 1.27.(2019金华)如图,在等腰Rt △ABC 中,∠ACB =90°,ABD ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD =BD ,点E 与点C 重合,AF 与DC 相交于点O .求证:BD =2DO . (2)已知点G 为AF 的中点.①如图2,若AD =BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由.解:(1)证明:由旋转性质得:CD =CF ,∠DCF =90°. ∵△ABC 是等腰直角三角形,AD =BD . ∴∠ADO =90°,CD =BD =AD , ∴∠DCF =∠ADC . 在△ADO 和△FCO 中,AOD FOC ADO FCO AD FC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADO ≌△FCO . ∴DO =CO . ∴BD =CD =2DO .(2)①如图1,分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF . ∴∠DNE =∠EMF =90°. 又∵∠NDE =∠MEF ,DE =EF , ∴△DNE ≌△EMF ,∴DN =EM .又∵BD,∠ABC =45°,∴DN =EM =7, ∴BM =BC –ME –EC =5,∴MF =NE =NC –EC =5. ∴BF.∵点D ,G 分别是AB ,AF 的中点, ∴DG =12BF =52.②过点D 作DH ⊥BC 于点H .∵AD =6BD ,AB,∴BD .i )当∠DEG =90°时,有如图2,3两种情况,设CE =t . ∵∠DEF =90°,∠DEG =90°,点E 在线段AF 上. ∴BH =DH =2,BE =14–t ,HE =BE –BH =12–t . ∵△DHE ∽△ECA, ∴DH HEEC CA =,即21214t t -=,解得t =6±. ∴CE或CE =6–.ii)当DG∥BC时,如图4.过点F作FK⊥BC于点K,延长DG交AC于点N,延长AC并截取MN=N A.连结FM.则NC=DH=2,MC=10.设GN=t,则FM=2t,BK=14–2t.∵△DHE∽△EKF,∴KE=DH=2,∴KF=HE=14–2t,∵MC=FK,∴14–2t=10,解得t=2.∵GN=EC=2,GN∥EC,∴四边形GECN是平行四边形,而∠ACB=90°,∴四边形GECN是矩形,∴∠EGN=90°.∴当EC=2时,有∠DGE=90°.iii)当∠EDG=90°时,如图5.过点G,F分别作AC的垂线,交射线AC于点N,M,过点E作EK⊥FM于点K,过点D作GN的垂线,交NG的延长线于点P,则PN=HC=BC–HB=12,设GN=t,则FM=2t,∴PG=PN–GN=12–t.由△DHE∽△EKF可得:FK=2,∴CE=KM=2t–2,∴HE=HC–CE=12–(2t–2)=14–2t,∴EK=HE=14–2t,AM=AC+CM=AC+EK=14+14–2t=28–2t,∴MN=12AM=14–t,NC=MN–CM=t,∴PD=t–2,由△GPD∽△DHE可得PG PDHD HE=,即122 2142t tt--=-,解得t1=10.CE=2t–2=18–所以,CE的长为:6–,,2或18–28.(2019福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=1(180°–30°)=75°,2∴∠ADE=90°–75°=15°;(2)证明:如图2,AC,∵点F是边AC中点,∴BF=12AC,∴BF=AB,∵∠ACB=30°,∴AB=12∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.29.(2019台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.解:(1)设AP=FD=a,∴AF=2–a,∵四边形ABCD是正方形,∴AB∥CD,∴△AFP∽△DFC,∴AP AFCD FD=,即22a aa-=,∴a=1,∴AP=FD=1,∴AF=AD–DF=3AFAP=(2)证明:如图,在CD上截取DH=AF,∵AF =DH ,∠PAF =∠D =90°,AP =FD , ∴△PAF ≌△FDH (SAS ),∴PF =FH , ∵AD =CD ,AF =DH ,∴FD =CH =AP =1,∵点E 是AB 中点,∴BE =AE =1=EM ,∴PE =PA +AE =∵EC 2=BE 2+BC 2=1+4=5,∴EC =∴EC =PE ,CM =1,∴∠P =∠ECP ,∵AP ∥CD ,∴∠P =∠PCD , ∴∠ECP =∠PCD ,且CM =CH =1,CF =CF ,∴△FCM ≌△FCH (SAS ),∴FM =FH ,∴FM =PF .(3)若点B '在BN 上,如图,以A 原点,AB 为y 轴,AD 为x 轴建立平面直角坐标系,∵EN ⊥AB ,AE =BE ,∴AQ =BQ =AP =1,由旋转的性质可得AQ =AQ '=1,AB =AB '=2,Q 'B '=QB =1,∵点B (0,–2),点N (2,–1),∴直线BN 解析式为:y 12=x –2, 设点B '(x ,12x –2),∴AB '==2, ∴x 85=,∴点B '(85,65-), ∵点Q '1,0),∴B'Q'∴点B旋转后的对应点B'不落在线段BN上.。

2019-2020学年度最新中考数学试题分项版解析汇编第04期专题04图形的变换含解析

2019-2020学年度最新中考数学试题分项版解析汇编第04期专题04图形的变换含解析
A.B.C.D.
【答案】C.
考点:剪纸问题.
2. (20xx贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为( )
A.11B.12C.13D.14
【答案】C.
【解析】
试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,
10. (20xx黑龙江绥化第4题)正方形的正投影不可能是( )
A.线段 B.矩形 C.正方形 D.梯形
【答案】D
考点:平行投影.
11. (20xx黑龙江绥化第6题)如图, 是在点为位似中心经过位似变换得到的,若的面积与的面积比是,则为( )
A. B. C. D.
【答案】A
【解析】
试题分析:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
【答案】A
【解析】
试题分析:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).
故选A.
考点:轴对称图形.
4. (20xx内蒙古通辽第4题)下列图形中,是轴对称图形,不是中心对称图形的是( )
A.B.C.D.
【答案】D
B是中心对称图形,故本选项不符合题意;
C是中心对称图形,故本选项不符合题意;
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故选C.
考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.
8. (20xx哈尔滨第3题)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
【答案】D
考点:1.中心对称图形;2.轴对称图形.
∴△A′B′C′∽△ABC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考图形的变换专题复习题及答案
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.在图形的平移中,下列说法中错误的是()
A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同
C.图形上可能存在不动点; D.图形上任意对应点的连线长相等
2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)
3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()
①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.
A.①②④ B.①②③ C.②③④ D.①③④
4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF
5.下列说法正确的是()
A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,•则△ADE•是△ABC 放大后的图形;
B.两个位似图形的面积比等于位似比;
C.位似多边形中对应对角线之比等于位似比;
D.位似图形的周长之比等于位似比的平方
6.下面选项中既是中心对称图形又是轴对称图形的是()
A.等边三角形 B.等腰梯形 C.五角星 D.菱形
7.下列图形中对称轴的条数多于两条的是()
A.等腰三角形 B.矩形 C.菱形 D.等边三角形
8.在如图所示的四个图案中既包含图形的旋转,•又有图形的轴对称设计的是()
9.钟表上2时15分,时针与分针的夹角是()
A.30° B.45° C.22.5° D.15°
10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D•落在CB的延长线上的D′处,那么tan∠BAD′等于()
A.1 B.2 C.
2
2
D.22
(1) (2) (3)
二、填空题(本大题共8小题,每小题3分,共24分)
11.一个正三角形至少绕其中心旋转________度,就能与本身重合,•一个正六边形至少绕其中心旋转________度,就能与其自身重合.
12.如图2中图案,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.
13.如图3,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.14.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,•这时得到的图形应是一个_______,且它的最大内角是______度.
15.•如果两个位似图形的对应线段长分别为3cm•和5cm,•且较小图形的周长为30cm,则较大图形周长为________.
16.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).
17.如图4,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.
(4) (5)
18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.
20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的
图案是什么?
21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.
22.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.
(1)试证明:△ADE≌△ABF.
(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.
(3)指出线段AE与AF之间的关系.
23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?
24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.
25.如图,正方形ABCD 内一点P ,使得PA :PB :PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP 绕点B 顺时针旋转90°至△BCP ′,连结PP ′)
答案:
一、选择题
1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B
二、填空题
11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,120
15.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4
三、解答题
19.解:略 20.解:略.
21.解:由放置的性质可知PBP ′=∠ABC=90°,
BP ′=BP=3,在Rt △PBP ′中,PP ′=22'BP BP +=32.
22.解:(1)90909090EAF BAF BAE BAD DAE BAE ∠=︒⇒∠+∠=︒⎫⇒⎬∠=︒⇒∠+∠=︒⎭
∠EAF=∠EAD , 而AD=AB ,∠D=∠ABF=90°,故△ADE ≌△ABF .
(2)可以通过旋转,将△ADE 绕点A 顺时针旋转90°就可以到△ABF 的位置.
(3)由△ADE ≌△ABF 可知AE=AF .
23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,
而图中只有方块4是中心对称图形,故方块4被旋转过.
24.解:由题意可知△ABD ≌△EBD ,
∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.
∵∠CDE=30°,∴CD=DE·cos30°=4×
3
2
=23.
25.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,
∴PP′=22x,所以∠BP′P=45°.
在△PP′C中,P′P2+P′C2=8x2+x2=9x2,
又∵PC2=9x2,∴P′P2+P′C2=PC2.
∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.
∴∠APB=135°.。

相关文档
最新文档