高三数学二轮复习(11)平面向量教师版 (2)
高三数学第二轮专题复习(平面向量)
【例 4】 求向量 a =(1,2) 在向量 b =(2 ,- 2)方向上的投影、
解: 设向量 a 与 b 的夹角 θ 、
有 cosθ = a b = 1 2 2 ( 2) =- 10
ab
2
22
2
1 2 2 ( 2)
10
∴ a 在 b 方向上的投影 =| a |cosθ =
5 ×(-
10 )= -
2
10
2
【例 5】 已知△ ABC 的顶点分别为 A(2 , 1),B(3 , 2), C(- 3,- 1),BC 边上的
高 AD ,求 AD 及点 D 的坐标、
解: 设点 D 的坐标为 (x,y) ∵ AD 是边 BC 上的高,
∴AD ⊥ BC ,∴ AD ⊥ BC
又∵ C、 B、 D 三点共线,
∴ BC ∥ BD
根据已知条件有: x21+y21≤ 1,x22+y22≤ 1
又因为| α v1 +β v2 | = (αx1 βx2 ) 2 (αy1 βy 2 )2
=
α2
(
2
x1
2
y1 )
β2 ( x2 2
2
y2 ) 2αβ( x1 x2
y1 y2 )
其中 x1x2+y1y2≤ x12 y12
x22
y
2 2
≤1
2
2
| EF | 2=( 2 λ - 1)2+( - 2 λ )2=λ2- 2 λ+1
2
2
∴| PA | 2=| EF | 2,故 PA=EF
(2) PA · EF =( - 2 λ )( 2 λ- 1)+(1 - 2 λ )( - 2 λ )=0
版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版
第2课时平面向量数量积的坐标运算学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示ijxy轴的正半轴同向的单位向量.设,轴、是两个互相垂直且分别与iijjij分别是多少?·思考1 ··,,ijaxybxyabij,(,取思考2 ,,,试将为坐标平面内的一组基底,设)=(,用),=2112ab. 表示,并计算·abab坐标间有何关系?若⊥,,则思考3axybxy).==((,),,梳理若向量2112ab=·数量积____________________________向量垂直平面向量的模知识点二ayxa |(1 思考若=,),试将向量的模|用坐标表示.1→ABBxyxAy (,如何计算向量,,思考2 若(的模?,))2211梳理向量的模及两点间的距离→AB=||→AxyBxyAB 为端点的向量(以,(),,)211222yyxx+--1122向量的夹角知识点三a·b ba xy b y baa x=θ的夹角,则),都是非零向量,θ=(,是),cos =(,与设,2121|a||b|xxyy+2112. =2222yyxx+·+1221类型一平面向量数量积的坐标运算abb a·b=10. 已知(1,2)与,同向,=例1a的坐标;求(1)ca b·ca·b c. ),求(及)(1)(2(2)若=,-2此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一反思与感悟般有两种方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况cbbcaa )··≠,即向量运算结合律一般不成立.(下·(·)ababa________. )·1,2),则(2向量+=(1,-1),==(-1 跟踪训练向量的模、夹角问题类型二BAxOyO.-(16,12),在平面直角坐标系5,15)中,是原点(如图).已知点(例2→→ABOA ||,|(1)求|;OAB. 求∠(2)利用向量的数量积求两向量夹角的一般步骤:反思与感悟 (1)利用向量的坐标求出这两个向量的数量积.22yax|+|=求两向量的模.(2)利用θ的值.θ代入夹角公式求cos ,并根据θ的范围确定(3)baba的取值范λ的夹角α=(λ,1),若与为钝角,求2 跟踪训练已知(1=,-1),围.向量垂直的坐标形式类型三baabab的值为垂直,则实数λλ1,0)(3,2)((1)例3 已知=-,=-,若向量+与-2 _____. 3→→kABCABABCACk是直角三角形,求(2,3),,若△=(1,的值.(2)在△中,)=利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关反思与感悟于三角形的问题中,未明确哪个角是直角时,要分类讨论.→→→OCtOCBCABxOyA,--1),在平面直角坐标系若中,已知((1,4),)⊥(-2,3),,(2跟踪训练3t________.则实数=baba的夹角为,-2),则________1.已知与=(3,-1),.=(1????1331→→??ABCBABC=,________.2.已知向量==,则∠,????2222mnmnmn),则λ-2,2),若(+=)⊥(________. 3.已知向量=(λ+1,1),=(λ+abab a·b b=____________. =5|=14.已知平面向量,且,,若,则向量=(4,-3),|ab=(-1,2)=(4,3),.5.已知ab的夹角的余弦值;与(1)求abab),求实数λ(的值.-λ )⊥(2+(2)若1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.a x,(若可以对比学习、注意区分两向量平行与垂直的坐标形式,3.二者不能混淆,记忆.=1 4 yb xy ab xyxy ab xxyy=-=0,⊥+?0.,则,,)=()∥?221112112224.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.5答案精析 问题导学 知识点一jjiiij 0. =1×1×cos 0=1·,思考1 ·==1×1×cos 0=1,·jyxaxiyjbi =,++=,思考2 ∵221122yyjyyjxxxyjxiyjxixyxyabxii . ()·(+=++)∴=··=(+)++2121122222121111ybabxxya 0. ?=·+思考3 =⊥0?2112yxxy +梳理2112yabxxy 0⊥+?=2211 知识点二yxiyjxa +,∈∵,=R ,思考122222222jiyyjxyxaxiyji ·jxixyi ·j . )++((=)∴2=(+2+ +)=22i ·jji 1,0=1,又∵,==222222yaxyxa =|++=∴,∴|,22yax .∴||+=→→→yyyOAxyxxABOBx -,,)-(,,思考2 ∵)==(-)-=(11221221→22yxABxy.-|+-=∴|1212题型探究ba λλ)(>0)=λ,=(λ,21 例解 (1)设a ·b λ=10则有,=λ+4a =(2,4)λ∴=2,∴.a ·bb ·c 10,=1×2-2×1=0,(2)∵=aab ·c 0)=0,∴=(ca ·b .=(20,-(10))1)=10(2,-11 跟踪训练→OA =(16,12)例2 解 (1)由,→AB ,=-12)(-21,3)-=(-516,15→22OA =|20|=1612+,得→22AB 152.|-|=+3= 6→→ABAO ·→→ABOABAO. =(2)cos ∠cos =, →→ABAO ||||→→→→ABABAOOA 300. =-=-[16×(-其中21,3)··21)+12×3]==-(16,12)·(-2300OAB .故cos ∠==2220×15OAB ∴∠=45°.ba ,1)∵,=(1,-1),=(λ 跟踪训练2 解2baab 1. =|=1+λλ,∴|-|=2|,·ba 为钝角,又∵的夹角,α ,1<0λ-?? ∴2?,2·1+λλ≠1- ,λ<1?? 即?2+1≠0.λλ+2??1. λ≠-<1∴λ且 1,1).∴λ的取值范围是(-∞,-1)∪(-1 (1)例3 - 7133±211. -(2)或或 2331 -跟踪训练3当堂训练π3 3.-1. 2.30° 434????,- 4. ??552552 (2)(1)5. 925 720XX —019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
平面数量积最值问题 教案-2022届高三数学二轮复习微专题复习
微专题:平面向量数量积最值问题——2022年高三数学复习微专题微课一、本专题在高考中的地位1.课标对本专题的要求知识内容知识要求了解理解掌握平面向量1.平面向量的实际背景及基本概念(1)向量的实际背景√(2)平面向量的概念和两个向量相等的含义√(3)向量的几何表示√2.向量的线性运算(1)向量加法、减法运算,并理解其几何意义√(2)向量的数乘运算及其几何意义,理解两个向量共线的含义√(3)向量线性运算的性质及其几何意义√3.平面向量基本定理及坐标表示(1)平面向量的基本定理及其意义√(2)平面向量的正交分解及其坐标表示√(3)坐标表示平面向量的加减法与数乘运算√(4)用坐标表示的平面向量共线的条件√4.平面向量数量积(1)平面向量数量积的含义及其物理意义√(2)平面向量的数量积与向量投影的关系√(3)数量积的坐标表达式,会进行平面向量数量积的运算√(4)运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系√5.向量的应用(1)向量法解决某些简单的平面几何问题√(2)向量方法解决简单的力学问题与其他一些实际问题√明确《考试大纲》对知识的要求层次。
“理解”“掌握”这两个层次要求的知识点往往是高考命题的首选,尤其是“掌握”,通常高考命题会进行深度挖掘,所以在复习时要重视和强化。
2.近五年全国卷考查情况分析年份题序题型考点明细单独命题综合命题分值难易程度2016年全国卷I(理) 3 选择题向量加法坐标运算与垂直√ 5 易2017年全国卷I(理) 13 填空题 向量的模长和数量积应用√ 5 易 2018年全国卷I(理) 6 选择题 向量线性运算 √ 5 易 2018年全国卷I(理) 8 选择题 抛物线、直线及数量积 √ 5 中 2019年课标全国卷I(理) 7 选择题 向量数量积、夹角 √ 5 中 2020年课标全国卷I(理) 14 填空题 向量的数量积与模 √ 5 易 2020年课标全国卷I (文)14 填空题 向量数量积与向量垂直的充要条件 √ 5 易 2021·新高考Ⅱ卷13填空题向量的数量积与模√5易二、真题回顾1.(2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 2.(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=________. 3.(2021·新高考Ⅱ卷)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________.4.(2020·课标全国Ⅰ高考)设a ,b 为单位向量,且|a+b|=1,则|a-b|= .5.(2020·课标全国Ⅱ高考)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k = .三.要点提炼考点 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.四.典型例题:例1.(2021·福建六校联考)已知P 为边长为2的正方形ABCD 所在平面内一点,则PC →·(PB →+PD →)的最小值为________. 【解析】 建立如图所示的平面直角坐标系, 则A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PC →=(2-x ,2-y ),PB →+PD →=(2-x ,-y )+(-x ,2-y )=(2-2x ,2-2y ),∴PC →·(PB →+PD →)=(2-x )(2-2x )+(2-y )(2-2y )=2⎝⎛⎭⎫x -322-12+2⎝⎛⎭⎫y -322-12=2⎝⎛⎭⎫x -322+2⎝⎛⎭⎫y -322-1. ∴当x =y =32时,PC →·(PB →+PD →)取得最小值-1.【探究】 数量积的计算主要有基底法和坐标法,另外解方程也行,数量积的最值问题往往要用到函数思想和数形结合思想,结合求值域的方法求解.变式练习:1.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+2MD →|的最小值为________.例2.(2021·益阳模拟考试)如图所示为边长为2的正△ABC ,以BC 的中点O 为圆心,BC 为直径在三角形外部作半圆弧BC ︵,点P 在圆弧上运动,则AB →·AP →的取值范围为( )A .[2,33]B .[4,33]C .[2,4]D .[2,5]答案 D解析 由题可知当点P 在点C 处时AB →·AP →最小,此时AB →·AP →=|AB →|·|AC →|·cos π3=2×2×12=2,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大,此时AB →·AP →=2×⎝⎛⎭⎫32+1=5,所以AB →·AP →的取值范围为[2,5].故选D.【探究】 本题利用数量积的定义,结合数量量积的几何意义AP →在AB →上的投影,当当点P 在点C 处时AB →·AP →最小,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大。
专题四平面向量高考数学二轮专题复习课件
B. 3 AB 3 AC 14 14
D. 3 AB 4 AC 77
解析:在△ABC 中,设 AM AD , R ,由 BD 2DC ,
可得 AD 1 AB 2 AC ,故 AM AD 1 AB 2 AC .
33
3
3
又 E 是 AB 的中点, FC 1 AF ,所以 AB 2AE , AC 4 AF ,
解析:由题可得 a b x 6 2x 0 ,得 x 2 , 则 a 2b (5, 0) ,故| a 2b | 5 .
7.解决向量在平面几何中的应用问题的方法 (1)坐标法:把几何图形放在适当的坐标系中,则有关点与向 量就可以用坐标表示出来,这样就能进行相应的代数运算,从而 使问题得到解决. (2)基底法:选取一组合适的基底,将未知向量用基底表示出 来,然后根据向量的运算法则、运算律和性质求解.
8.解决向量在物理中的应用问题的策略 (1)力、速度、加速度、位移等都是向量,它们的合成与分解就是向量的加、 减法,运动的叠加亦用到向量的合成; (2)动量 mv 是数乘向量; (3)功 W 是一个标量,它是力 F 与位移 s 的数量积,即W F s | F || s | cos
2.【2022 年 新课标Ⅰ卷】在△ABC 中,点 D 在边 AB 上, BD 2DA ,
B 记 CA m , CD n ,则 CB ( )
A. 3m 2n
B. 2m 3n
C. 3m 2n
D. 2m 3n
解析:如图所示,根据平面向量加法的三角形法则,有 CB CA AB , 而 AB 3AD 3( AC CD) ,所以 CB 2CA 3CD .故选 B.
3 则| b | ___________.
解析:由| a b | 3 ,得 a2 2a b b2 3 ,即 2a b a2 b2 3 ①. 由 a b | 2a b∣,得 a2 2a b b2 4a2 4a b b2 ,整理得 3a2 6a b 0 ,
高三数学二轮复习专题 平面向量共线,极化恒等式,奔驰定理,轨迹等问题(解析版)
平面向量综合问题参考答案与试题解析一.试题(共38小题)1.如图,在ABC ∆中,13AN NC =,P 是BN 上的一点,若211AP mAB AC =+,则实数m的值为( )A .911B .511C .211D .311【分析】由已知中ABC ∆中,13AN NC =,P 是BN 上的一点,设BP BN λ=后,我们易将AP表示为(1)4AB AC λλ-+的形式,根据平面向量的基本定理我们易构造关于λ,m 的方程组,解方程组后即可得到m 的值 【解答】解:P 是BN 上的一点,设BP BN λ=,由13AN NC =,则AP AB BP =+AB BN λ=+()AB AN AB λ=+-(1)AB AN λλ=-+(1)4AB AC λλ=-+211mAB AC =+1m λ∴=-,2411λ=解得811λ=,311m =故选:D .【点评】本题考查的知识点是面向量的基本定理及其意义,其中根据面向量的基本定理构造关于λ,m 的方程组,是解答本题的关键.2.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB 、BC 分别为a 、b ,则(AH = )A .2455a b -B .2455a b +C .2455a b -+D .2455a b --【分析】欲求出向量则AH ,关键是求出向量则AH 与向量AF 的线性.关系过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,利用相似三角形有知识即可得出它们的线性关系,从而解决问题. 【解答】解:过点F 作BC 的平行线交DE 于G , 则G 是DE 的中点,且1124GF EC BC ==14GF AD ∴=,则AHD GHF ∆∆∽ 从而14FH AH =,∴45AH AF =又12AF AD DF b a =+=+ ∴4124()5255AH b a a b =+=+ 故选:B .【点评】本题主要考查了向量加减混合运算及其几何意义、平行四边形的几何性质,属于基础题.3.如图所示,在凸四边形ABCD 中,对边BC ,AD 的延长线交于点E ,对边AB ,DC 的延长线交于点F ,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A .3144EB EF EA =+B .14λμ=C .11λμ+的最大值为1 D .49EC AD EB EA⋅-⋅ 【解答】解:对于A ,因为3AB BF =,所以3()EB EA EF EB -=-,整理得3144EB EF EA =+,故A 正确;对于B ,过点B 作//BG FD ,交AE 于点G ,则AF AD BF DG =,BC DG CE DE =,所以1AF BC ED AD DG ED BF CE DA DG DE DA⋅⋅=⋅⋅=,因为BC CE λ=,ED DA μ=,3AB BF =,所以4AF BF =,BCCEλ=,ED DA μ=, 所以41λμ=,所以14λμ=,故B 正确; 对于C ,由B 知,114()84λμλμλμ+=+=,当且仅当12λμ==时等号成立, 所以11λμ+的最小值为4,故C 错误;对于D ,因为BC CE λ=,ED DA μ=,所以(1)EB EC λ=+,(1)(1)EA DA AD μμ=+=-+, 所以111455(1)(1)9(1)(1)244EC AD EC AD EB EA EC AD λμλμλμλμ⋅⋅-===-=--++⋅-++⋅+++,当且仅当12λμ==时取等号,故D 正确. 故选:ABD .【点评】本题主要考查平面向量的线性运算,基本不等式的应用,考查转化思想与数形结合思想的应用,属于中档题.4.已知向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则( )A .0a e ⋅=B .()0a a e ⋅-=C .()0e a e ⋅-=D .()()0a e a e +⋅-=【分析】由平面向量数量积运算可得22210t te a e a -⋅+⋅-=,对任意t R ∈恒成立,则2(2)4(21)0e a e a ⋅-⋅-,然后求解即可.【解答】解:由向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则2222222a te a t e a e a e -⋅+=-⋅+,即22210t te a e a -⋅+⋅-=,由题意有2(2)4(21)0e a e a ⋅-⋅-,即2(1)0e a ⋅-,即1e a ⋅=,则()0e a e ⋅-=, 故选:C .【点评】本题考查了平面向量数量积运算,重点考查了不等式恒成立问题,属基础题.5.已知e 为单位向量,向量a 满足()(5)0a e a e -⋅-=,则||a e +的最大值为( ) A .4B .5C .6D .7【分析】设(1,0)e =,(,)a x y =,根据向量a 满足()(5)0a e a e -⋅-=,可得x ,y 的关系式,并得出x ,y 的取值范围,||(1)a e x +=+ 【解答】解:设(1,0)e =,(,)a x y =,则()(5)(1a e a e x -⋅-=-,)(5y x ⋅-,22)650y x x y =-++=,即22(3)4x y -+=,则15x ,22y -,所以||(1)a e x +=+=,当5x =6,即||a e +的最大值为6, 故选:C .【点评】本题考查了向量数量积的应用,将所求问题坐标化转化为函数的最值问题是解题关键.6.已知ABC ∆中,对任意t R ∈,||||BA tBC AC -,则ABC ∆是 以C 为直角的直角 三角形.【分析】两边平方后整理成关于t 的一元二次不等式恒成立,再利用判别式小于等于0,以及正弦定理可得.【解答】解:对任意t R ∈,||||BA tBC AC -,即22()|BA tBC AC-,即22222cos 0a t act B c b -+-,则△2222(2cos )4()0ac B a c b =--,化简得222cos 1b B c -,即222sin b B c ,即sin b B c,设ABC ∆外接圆的半径为R ,则由正弦定理可得2b bR c,得2c R ,得sin 1C ,又sin 1C ,sin 1C ∴=,2C π∴=.故答案为:以C 为直角的直角.【点评】本题考查了平面向量数量积的性质及其运算,属中档题. 7.已知ABC ∆,若对任意t R ∈,||||BA tBC AC -,则ABC ∆一定为( )A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定【解答】解:令AM BA tBC =-,则根据向量的减法的几何意义可得M 在BC 上, 由||||BA tBC AC -对一切实数t 都成立可得:||||AM AC ,AC BC ∴⊥,则ABC ∆为直角三角形.故选:C .【点评】本题是一道构造非常巧妙的试题,解题的关键是由||||BA tBC AC -对一切实数t都成立可得到AC 为A 到BC 的距离.8.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC = 18 .【分析】设AC 与BD 交于O ,则2AC AO =,在RtAPO 中,由三角函数可得AO 与AP 的关系,代入向量的数量积||||cos AP AC AP AC PAO =∠可求 【解答】解:设AC 与BD 交于点O ,则2AC AO =AP BD ⊥,3AP =,在Rt APO ∆中,cos 3AO OAP AP ∠==||cos 2||cos 2||6AC OAP AO OAP AP ∴∠=⨯∠==,由向量的数量积的定义可知,||||cos 3618AP AC AP AC PAO =∠=⨯= 故答案为:18【点评】本题主要考查了向量的数量积 的定义的应用,解题的关键在于发现规律:cos 2cos 2AC OAP AO OAP AP ⨯∠=⨯∠=.9.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足向量2AP PM =,则向量()PA PB PC +等于( )A .49-B .43-C .43D .49【分析】由题意M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解.【解答】解:M 是BC 的中点,知AM 是BC 边上的中线, 又由点P 在AM 上且满足2AP PM =P ∴是三角形ABC 的重心∴()PA PB PC +2||PA AP PA ==-又1AM =∴2||3PA =∴4()9PA PB PC +=-故选:A . 【点评】本题考查向量的数量积的应用,解题的关键是判断P 点是三角形的重心,考查计算能力.10.在ABC ∆中,2AB =,3AC =,N 是边BC 上的点,且,BN NC O =为ABC ∆的外心,则(AN AO ⋅= ) A .3B .134C .92D .94【分析】利用平面向量的线性运算法则以及外心的性质、数量积的定义求解. 【解答】解:因为O 为ABC ∆的外心,故2122AO AB AB ⋅==,21922AO AC AC ⋅==, 又BN NC =,故N 为BC 的中点,故1()2AN AB AC =+,所以11()()22AN AO AB AC AO AO AB AO AC ⋅=+⋅=⋅+⋅1913(2)224=+=.故选:B .【点评】本题考查平面向量数量积的定义以及平面向量线性运算的几何意义,属于中档题.11.设a 、b 、c 是单位向量,0a b =,则()()a c b c --的最小值为 1 【分析】利用向量的运算法则展开()()a c b c --,再利用余弦值的有界性求范围. 【解答】解:设c 与a b +的夹角等于θ,()()(a c b c a b c --=-2)a b c ++20||||cos 10||1()1c a b a b a b θ=-++-++=-++2222211a b a b a b =+++=-++1=.故答案为:1【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,考查向量的运算法则:交换律、分配律,但注意不满足结合律,属于中档题.12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()()PB AB PB PC -+的最小值是( ) A .1-B .32-C .2-D .43-【分析】建立坐标系,设(,)P x y ,得出()()PB AB PB PC -+关于x ,y 的表达式,配方即可得出结论.【解答】解:以BC 为x 轴,以BC 边上的高为y 轴建立坐标系,则(0,3)A ,设(,)P x y ,则2(2,2)PB PC PO x y +==--,()(,3)PB AB PA x y -==--, 222233()()222322()22PB AB PB PC x y y x y ∴-+=+-=+--, ∴当0x =,32y =时,()()PB AB PB PC -+取得最小值32-, 故选:B .【点评】本题考查了平面向量的数量积运算,属于中档题.13.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE 的最小值为( )A .2116B .32C .2516D .3【分析】如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,求出A ,B ,C 的坐标,根据向量的数量积和二次函数的性质即可求出. 【解答】解:如图所示,以D 为原点,以DA 所在的直线为x 轴, 以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==, 1cos602AN AB ∴=︒=,3sin 60BN AB =︒,13122DN ∴=+=,32BM ∴=,3tan302CM MB ∴=︒=, 3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,3)2,(0,3)C ,设(0,)E m ,∴(1,)AE m =-,3(2BE =-,3)2m -,03m,∴22233333321()()224216416AE BE m m m m =+-=-+-=-+, 当34m =时,取得最小值为2116. 故选:A .【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题. 14.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .14【分析】根据题意,利用MH 与NH 共线,求出x 与y 的表达式,再利用基本不等式求出4x y +的最小值即可.【解答】解:在ABC ∆中,D 为BC 边的中点,H 为AD 的中点, ,AM xAB AN y AC ==,∴1()4AH AM MH xAB MH AB AC =+=+=+,∴11()44MH x AB AC =-+,同理,11()44NH AB y AC =+-, MH 与NH 共线,∴存在实数λ,使(0)MH NH λλ=<,即1111()()4444x AB AC AB y AC λλ-+=+-,即114411()44x y λλ⎧-=⎪⎪⎨⎪=-⎪⎩,解得14x λ-=,114y λ-=, 1115159442(444444x y λλλλ--∴+=+⨯=--+-=, 当且仅当14λλ-=-,即2λ=-时,“=”成立,4x y ∴+的最小值是94. 故选:C .【点评】本题考查了平面向量的线性运算,以及基本不等式的应用,属于中档题. 15.直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM mAB =,AN nAC =,(0,0)m n >>,则下列结论错误的是( ) A .12m n+为常数 B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为:12m =,2n = 【分析】作出图形,由2BP PC =可得出1233AP AB AC =+,根据三点共线的结论得出123m n+=,结合基本不等式可判断出各选项的正误,即可得出结论. 【解答】解:如下图所示:由2BP PC =,可得2()AP AB AC AP -=-,∴1233AP AB AC =+, 若,,(0,0)AM mAB AN nAC m n ==>>,则11,AB AM AC AN m n==, ∴1233AP AM AN m n=+,M 、P 、N 三点共线,∴12133m n+=,∴123m n +=,故A 正确;所以1,22m n ==时,也满足123m n +=,则D 选项正确;122252252(2)()2333333333n m n m n m n m n mn m +=++=++⋅=, 当且仅当m n =时,等号成立,C 选项成立; 1222()()1211333333n m n m n m n m n m n m +=++=++⋅,当且仅当2n m =时,即1222,33m n ++==时等号成立,故B 选项错误. 故选:B .17.已知点O 、N 、P 在ABC ∆所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O 、N 、P 依次为ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【分析】根据O 到三角形三个顶点的距离相等,得到O 是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P 是三角形的垂心. 【解答】证明:||||||OA OB OC ==,O ∴到三角形三个顶点的距离相等, O ∴是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,∴只要判断第三个条件可以得到三角形的什么心就可以,PA PB PB PC PC PA ⋅=⋅=⋅,∴()0PB PA PC -=,∴0PB CA ⋅=,∴PB CA ⊥,同理得到另外两个向量都与相对应的边垂直,得到P 是三角形的垂心, 故选:C .【点评】本题是一个考查的向量的知识点比较全面的题目,把几种三角形的心总结的比较全面,解题时注意向量的有关定律的应用,不要在运算律上出错. 18.已知非零向量,AB AC 和BC 满足())0||||AB AC BC AB AC +⋅=,且1||||2AC BC AC BC ⋅=,则ABC ∆为( ) A .等边三角形 B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形【解答】解:根据向量的性质可得||||1||||AB ACAB AC == ∴||||AB ACAB AC +在BAC ∠的角平分线上(设角平分线为)AD (())0||||AB ACBC AB AC +⋅= AD BC ∴⊥从而有AB AC =又因为12||||AC BC AC BC ⋅=且||||1||||AC BCAC BC ==所以60C ∠=︒三角形为等边三角形 故选:A .【点评】本题主要考查了平面向量的加法的四边形法则,向量的数量积的运算,考查了等边三角形的性质,属于综合试题.19.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++,[0λ∈,)+∞,则动点P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心【解答】解:设BC 的中点为D , ()2||cos ||cos OB OC AB AC OP AB B AC C λ+=++,∴()||cos ||cos AB ACOP OD AB B AC C λ=++, 即()||cos ||cos AB ACDP AB B AC Cλ=+,两端同时点乘BC ,||||cos()||||cos ()()(||||)0||cos ||cos ||cos ||cos AB BC AC BC AB BC B AC BC CDP BC BC BC AB B AC C AB B AC Cπλλλ⋅⋅⋅-⋅⋅=+=+=-+=DP BC ∴⊥,∴点P 在BC 的垂直平分线上,即P 经过ABC ∆的外心故选:D .【点评】本题主要考查了空间向量的加减法,以及三角形的外心的知识,属于基础题. 20.设点O 在ABC ∆的内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A .2B .32C .3D .53【解答】解:分别取AC 、BC 的中点D 、E ,230OA OB OC++=,∴2()OA OC OB OC+=-+,即2 4OD=-OE,O∴是DE的一个三等分点,∴3ABCAOCSS∆∆=,故选:C.【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.21.已知点O在ABC∆内,且::4:3:2AOB BOC AOCS S S∆∆∆=,AO AB ACλμ=+,则(λμ+= A.1B.29C.59D.23【分析】先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=成立,得到4320OC OA OB++=,利用向量的线性运算得到429AC AB AO+=,求出λ,μ,由此能求出结果.【解答】解:先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,延长AO交BC于Q,由题意得AOB BOC AOC ABCS S S S∆∆∆∆++=,由面积关系得:BOCABCS OQS AQ∆∆=,∴APB CPAABCS SAQ AQS∆∆∆+=⋅,||||||||AOC AOBAOC AOB AOC AOBS SQC QBAQ AB AC AB ACS S S SBC BC∆∆∆∆∆∆=⋅+⋅=⋅+⋅++,∴0AOC AOB BOCS OB S OC S AO∆∆∆⋅+⋅-⋅=,∴0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,由题意知::4:3:2AOB BOC AOCS S S∆∆∆=,4320OC OA OB∴++=,∴429AC AB AO+=,∴24,99λμ==,23λμ∴+=.故选:D.22.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Mercedesbenz的log o很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O是ABC∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC ∆的外心B .BOC A π∠+=C .||:||:||cos :cos :cos OA OB OC A B C =D .::tan :tan :tan A B C S S S A B C =【分析】选项A ,将OA OB OB OC ⋅=⋅移项,并结合平面向量的减法和数量积的运算法则,可得OB CA ⊥,同理推出OA CB ⊥,OC AB ⊥,得解; 选项B ,根据选项A 中所得,可知2OBC C π∠+=,2OCB B π∠+=,再由三角形的内角和定理,得解;选项C ,延长CO 交AB 于点P ,结合诱导公式与余弦函数的定义,可证cos :cos :A B OA OB =,进而得解;选项D ,由三角形的面积公式与诱导公式,可得:tan :tan A B S S A B =,进而得解. 【解答】解:对于选项A ,()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇔⋅-=⇔⋅=⇔⊥,同理可得,OA CB ⊥,OC AB ⊥,故O 为ABC ∆的垂心,即A 错误; 对于选项B ,因为OB AC ⊥,OC AB ⊥,所以2OBC C π∠+=,2OCB B π∠+=,所以OBC C OCB B π∠++∠+=,又OBC OCB BOC π∠+∠+∠=,所以BOC C B ∠=+, 又A B C π++=,所以BOC A π∠+=,即B 正确; 对于选项C ,由上可知,A BOC π=-∠,B AOC π=-∠, 延长CO交AB 于点P ,cos :cos cos():cos()cos :cos ::OP OPA B BOC AOC BOP AOP OA OB OB OAππ=-∠-∠=∠∠==, 同理可得,cos :cos :A C OA OC =,所以cos :cos :cos ::A B C OA OB OC =,即C 正确;对于选项D ,11:():():tan :tan tan :tan tan():tan()tan :tan 22A B S S OC BP OC AP BP AP OP POB OP AOP BOC AOC A B A Bππ=⋅⋅⋅⋅==∠∠=∠∠=--=,同理可得,:tan :tan A C S S A C =,所以::tan :tan :tan A B C S S S A B C =,即D 正确.故选:BCD .【点评】本题考查平面向量在几何中的应用,熟练掌握平面向量的数量积,诱导公式,平面几何基础知识是解题的关键,考查逻辑推理能力和运算能力,属于难题.23.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A .3B .22C 5D .2【分析】方法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为25(1θ+,252)θ+,根据AP AB AD λμ=+,求出λ,μ,根据三角函数的性质即可求出最值.方法二:根据向量分解的等系数和线直接可得.【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上, 设圆的半径为r ,2BC =,1CD =,22215BD ∴=+∴1122BC CD BD r ⋅=⋅, 5r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(1θ+252)θ+,AP AB AD λμ=+,25(1θ∴+252)(1θλ+=,0)(0μ+,2)(λ=,2)μ, ∴251θλ+=2522θμ+=,255cos sin 2sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=, 1sin()1θϕ-+,13λμ∴+,故λμ+的最大值为3,方法二:根据向量分解的等系数和线,可得λμ+的最大值为3,如图所述 故选:A .【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.24.平面直角坐标系中,O 为坐标原点,已知两点(3,1)A 、(1,3)B -,若点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,则点C 的轨迹方程为( )A .32110x y +-=B .22(1)(2)5x y -+-=C .20x y -=D .250x y +-=【分析】由点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程.【解答】解:C 点满足OC OA OB αβ=+且1αβ+=,A ∴、B 、C 三点共线. C ∴点的轨迹是直线AB 又(3,1)A 、(1,3)B -,∴直线AB 的方程为:133113y x --=---整理得250x y +-= 故C 点的轨迹方程为250x y +-= 故选:D .【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.25.若动直线:440l mx y m -+-=与圆22:(4)(5)9C x y -+-=相交于A ,B 两点,则()A .||AB 的最小值为42B .CA CB ⋅的最大值为7-C .(OA OB O ⋅为坐标原点)的最大值为78D .AC AB ⋅的最大值为18【解答】解:440mx y m -+-=,(4)(4)0m x y ∴---=,故动直线l 恒过点(4,4)D ; 圆22:(4)(5)9C x y -+-=的圆心为(4,5)C ,半径为3,则22||(44)(45)1CD =-+-=, 故||AB 的最小值为2223142⨯-=;故选项A 正确;对于选项B ,||||cos 9cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,易知当CD AB ⊥时,ACB ∠最小,此时22233(42)7cos 2339maxACB +-∠==-⨯⨯;故7()9()79max CA CB ⋅=⨯-=-;故选项B 正确;对于选项C ,设AB 的中点为M ,()()OA OB OM MA OM MA ⋅=+⋅-22229OM MA OM CM =-=+-,而点M 在以DC 为直径的圆2291(4)()24x y -+-=上,设1(4cos 2M θ+,91sin )([022θθ+∈,2]π,且)2πθ≠,故2222221911119(4cos )(sin )(cos )(sin )9222222OA OB OM CM θθθθ⋅=+-=+++++--284cos 4sin 2842sin()28424πθθθ=++=+++,故错误;对于选项D ,21||||cos ||2AC AB AC AB CAB AB ⋅=⋅∠=, 故当||AB 取最大值,即AB 过圆心C 时,但动直线l 的斜率一定存在, 故动直线l 不包括垂直于x 轴的直线,故AC AB ⋅的最大值不存在,即错误; 故选:AB .【点评】本题综合考查了直线与圆的位置关系的应用及平面向量的综合应用,属于难题.。
高三数学专题复习之平面向量与复数
平面向量与复数
高考分析及预测
从内容上看:向量的基本概念(共线、垂直)及其运算(加法、减法、数乘和数量积)是高考的必考内容;从题型上看,平面向量的考题比较灵活,多以向量的运算为主,平面几何图形作为载体,考查向量加减法的几何意义,考查学生分析问题、解决问题的能力和运算能力,填空题、解答题都有可能出现,可能是容易题,也可能是中档题。
复数题在高考中主要以小题形式呈现,难度不大,主要考查复数的运算。
高考能级要求:
知识梳理:
重点及易错点回顾:
典例精研:
目标达成反馈:
课堂小结:
学教反思:。
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
高三数学二轮复习专题讲解11 导数中的同构问题
高三数学二轮复习专题讲解第11讲 函数与导数—导数中的同构问题专题综述同构法在近几年的模考中频繁出现,把等式或不等式变形为两个形式上一样的函数,利用函数的单调性转化成比较大小,或者解恒成立,求最值等问题.同构法在使用时,考验“眼力”,面对复杂的结构,仔细观察灵活变形,使式子两则的结构一致.构造函数,判断函数单调性,进一步求参数或证明不等式.专题探究探究1:指对跨阶型解决指对混合不等式时,常规的方法计算复杂,则将不等式变形为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦的结构,()f x 即为外层函数,其单调性易于研究.常见变形方式:①ln xx xxe e+=;②ln xx x e e x-=;③ln x xx x e e -=;④()ln ln x x x xe +=;⑤ln ln x e x x x -=. 答题思路:1.直接变形:(1)积型:b b ae aln ≤⇒()ln ln a b x a e b e f x xe ⋅≤⋅⇒=(同左);ln ln a a e e b b ⇒⋅≤⋅()ln f x x x ⇒=(同右); ⇒()ln ln ln ln a a b b +≤+⇒()ln f x x x =+(取对数).说明:取对数是最快捷的,而且同构出的函数,其单调性一看便知.(2)商型:b b a e a ln <⇒ln ln a b e e a b <()x e f x x⇒=(同左); ln ln a ae be b⇒<⇒x x x f ln )(=(同右); ⇒)ln(ln ln ln b b a a -<-⇒x x x f ln )(-=(取对数).(3)和差型:b b a e aln ±>±⇒ln ln abe a eb ±>±⇒x e x f x ±=)((同左);ln ln a a e e b b ⇒±>+⇒x x x f ln )(±=(同右).2.先凑再变形:若式子无法直接进行变形同构,往往需要凑常数、凑参数或凑变量,如两边同乘以x ,同加上x 等,再用上述方式变形.常见的有: ①x aeaxln >ln ax axe x x ⇒>;②[]ln 1ln()ln (1)1ln ln(1)1xxx a e a ax a a e a x e a x a->--⇒>--⇒->--ln ln(1)ln ln(1)1ln(1)x a x e x a x x e x --⇒+->-+-=+-;③ln ln ln log (ln )ln ln xx ax a a xa x e x a e x x a>⇒>⇒>;(2022重庆市市辖区模拟)若关于x 的不等式ln x a e x a -≥+对一切正实数x 恒成立,则实数a 的取值范围是( )A. 1,e ⎛⎫-∞ ⎪⎝⎭B. (],e -∞C. (],1-∞D. (],2-∞【审题视点】不等式中有指、对数结构,不等式两侧都加上x ,即能出现同构法中的“和差型”.【思维引导】由不等式的结构判断,通过将不等式变形为ln x a e x a x x -+-≥+,符合同构法中的指对同阶模型,或者直接构造含参函数,分类讨论.【规范解析】解:ln x a e x a -+…,ln x a e x a x x -∴+-+…,ln ln x a x e x a e x -∴+-+…设()t f t e t =+,则()10t f t e '=+>∴()f t 在R 上单调递增故ln ln x ax ex a e x -+-+…即()()ln f x a f x -…,即ln x a x -…即ln x x a -…设()ln g x x x =-,则()111x g x x x-'=-=,令()0g x '>,则1x > ∴()g x 在()1,+∞上单调递减,在()0,1上单调递减故()()min 11g x g ==,故1a …故选.C【探究总结】不等式或函数中指对数结构都存在时,仔细观察结构特征,可优先考虑放缩或同构,化繁为简,降低单调性判断的难度.故要对常见不等关系的结论(专题1.3.8)及上述的常见变形方法牢记于心,能够熟练变形,构造相应函数.(2022山东省泰安市一模)已知()2ln 12a f x x x x =++.(1)若函数()()cos sin ln 1g x f x x x x x x =+---在0,2π⎛⎤⎥⎝⎦上有1个零点,求实数a 的取值范围;(2)若关于x 的方程()212x aa xef x x ax -=-+-有两个不同的实数解,求a 的取值范围.探究2:双变量型含有同等地位的两个变量12,x x 的等式或不等式,同构后使等式或不等式两侧具有一致的结构,便于构造函数解决问题.答题思路:常见的同构类型有:①[]12211121()()()()()()()()g x g x f x f x g x f x g x f x λλλ->-⇒+>+()()()h x g x f x λ⇒=+; ②12121212112212()()()()()()()f x f x k x x f x f x kx kx f x kx f x kx x x -><⇒-<-⇒-<--()()h x f x kx ⇒=-;③1212121212121221()()()()()()f x f x k x x k k k x x f x f x x x x x x x x x --<<⇒->=--1212()()k k f x f x x x ⇒+>+()()k h x f x x⇒=+. (2022江西省萍乡市联考)已知函数()()21ln011x ax f x a x e -=+>--, (1)求函数()f x 的定义域;(2)对1x ∀,21(0,)2x ∈,当21x x >时,都有212111()()11x x f x f x e e -<---成立,求实数a 的取值范围.【审题视点】第(2)问中的双变量不等式,若变量能分离且结构相同,不等式转化函数单调性问题.【思维引导】双变量的恒成立不等式,分离变量,不等式变形212111()()11x x f x f x e e -<---,构造函数()h x,由不等式得出函数()h x 的单调性.【规范解析】解:(1)由题意得 20110x ax x e -⎧>⎪-⎨⎪-≠⎩,即2()(1)00a x x ax ⎧-->⎪⎨⎪≠⎩,①当02a <<时,21a >,函数()f x 的定义域为2(,0)(0,1)(,)a-∞+∞;②当2a =时,21a=,函数()f x 的定义域为{|1x x ≠且0}x ≠,③当2a >时,21a<,函数()f x 的定义域为2(,0)(0,)(1,)a -∞+∞;(2)由题意得1x ∀,21(0,)2x ∈,当21x x >时,212111()()11x x f x f x e e -<---设()12()ln 11x ax h x f x e x -=-=--,则()()21h x h x < ()h x ∴在区间10,2⎛⎫⎪⎝⎭上单调递减设2(1)22()111ax a x a a u x a x x x --+--===+---,即函数()u x 在1(0,)2上是减函数,且1()02u …,2012201120a a a ->⎧⎪⎪-⎪∴⎨⎪-⎪⎪>⎩…,解得24a <…,∴实数a 的取值范围为(2,4].【探究总结】典例2中出现的双边量问题是同构法中较为典型的情况,思路明确.针对上述类型的不等式,分离变量,构造函数得出单调性.构造的函数可能是抽象函数,也可能是具体函数,利用函数单调性,解不等式.(2022江苏省苏州市联考)已知函数21()ln 2f x x a x =+,若对任意1x ,212[2,)()x x x ∈+∞≠,存在3[1,]2a ∈,使1212()()f x f xm x x ->-成立,则实数m 的取值范围是()A. (,2]-∞B. (-∞C. 5(,]2-∞D. 11(,]4-∞探究3:同构放缩或同构换元共存型有些更复杂的指对不等式,利用常见的变形方法(探究一)先进行同构变形再换元,使构造的函数较为简单,或者本身不等式的结构不特殊,可以先结合常用不等结论(专题1.3.8)放缩,使结构特殊再同构,但要注意取等号的条件等. 常见的放缩模型:(1)利用1x e x ≥+放缩:①ln ln 1x x xxe ex x +=≥++ ;②ln ln 1xx x e e x x x-=≥-+;③ln ln 1n x x n x x e e x n x +=≥++(2)利用xe ex ≥放缩:①ln (ln )xx xxe ee x x +=≥+;②ln ln 1x xx x e x x e-=≥-+;③ln (ln )n x x n x x e e e x n x +=≥+.(3)利用ln 1x x ≤-放缩:①ln ln()1x x x x xe xe +=≤-;②ln ln()1n x n xx n x x e x e +=≤-. (4)利用ln x x e≤放缩:①1ln ln()x x x x xe xe -+=≤;②1ln ln()n x n x x n x x e x e -+=≤.(2022河北省石家庄市联考)已知函数()()1ax f x x ea R -=⋅∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 的图象经过点(1,1),求证:0x >时,1ln ()0.xf x x e+⋅… 【审题视点】待证明的不等式中有x xe ,ln x x +,容易联系到指对同阶的常见变形,将不等式同构.【思维引导】第(2)问,求出1a =,显化不等式()1ln 0xf x xe +≥,进行指对变形,换元简化函数. 【规范解析】解:(1)由题意知,函数()f x 的定义域为.R 当0a =时,()exf x =,函数()f x 在(,)-∞+∞上单调递增.当0a ≠时,1111()ee e ()ax ax axf x ax a x a ---'=+=+,令()0f x '>,即1()0a x a+>①当0a <时,1x a <-∴()f x 在区间1(,)a -∞-上单调递增;在区间1(,)a -+∞上单调递减.②当0a >时,1x a >-∴()f x 在区间1(,)a -∞-上单调递减,在区间1(,)a-+∞上单调递增.(2)若函数()f x 的图象经过点(1,1),则1(1)1a f e -==,得1a =,则111ln ()ln 1ln 1e e exx x x f x x x xe x x x +=++-=+-, 设xt xe =,则当0x >时,()0,t ∈+∞ 设()1ln 1g t t t =+-,则()22111t g t t t t-'=-+= 令()0g t '>,则1t >∴()g x 在区间()0,1上单调递减,在区间()1,+∞上单调递增∴()()()min 10g x g x g ≥== ∴当0x >时,1ln ()0x f x xe+…恒成立. 【探究总结】同构法让复杂的函数式在指对结构上呈现“一致性”,再换元,大大降函数研究的难度.但这类问题,方法不唯一,也可利用其他方法,比如不等式证明问题,直接构造函数求最值,或着变形为()()f x g x >的结构,比较最值.(2022江苏省南京市模拟)已知函数()ln f x x ax =-.(1)讨论()f x 的单调性; (2)设1()()x g x exf x -=+,若()0g x …恒成立,求a 的取值范围. 专题升华同构思想不仅仅应用于导数部分,整个高中数学中,在方程、不等式、解析几何、数列部分都有体现,本质上是变形,使结构一致,转化为其它知识点求解.①方程中的应用:()()00f a f b ==⎧⎨⎩⇒两式结构相同,转化为,a b 为方程()0f x =的两根;如:若函数()f x m =在区间[],a b 上的值域为(),122a b b a ⎡⎤>≥⎢⎥⎣⎦,则实数m 的取值范围是.思路:由()f x 单调递增⇒()()22a f a bf b ==⎧⎪⎪⎨⎪⎪⎩⇒,a b 为方程()2x f x =的两个根. ②不等式中的应用:不等式两侧化为相同结构,利用函数单调性,比较大小,或解不等式;如:若()[)5533cos sin 7cos sin ,0,2θθθθθπ-<-∈,则θ的取值范围是.思路:()55335353cossin 7cos sin cos 7cos sin 7sin θθθθθθθθ-<-⇒-<-,构造函数()537f x x x =-研究单调性.③解析几何中的应用:如点()()1122,,,A x y B x y 的坐标满足相同的关系式,即01102211y y mx y y mx =-⎧⎨=-⎩则直线AB 的方程为01y y mx =-,或得出两点在同一条曲线上;④数列中的应用:将递推公式变形为关于(),n a n 与()1,1n a n --的同构式,如()113121311n n n n a a a a n n n n ++⎛⎫⎛⎫=++⇒+=+ ⎪ ⎪+⎝⎭⎝⎭,可以构造辅助数列1n a n ⎧⎫+⎨⎬⎩⎭解题.解题时,针对除变量外完全相同的结构式,要灵活的利用其同构的特点,寻求与问题的某种内在联系,从而找到解决问题的思路方法.同构法体现了发现、类比、化归等思想,是一种富有创造性的解决问题的方法.同构法为解题提供了突破口,从同构式中挖掘隐含条件,能让数学难题豁然开朗.【答案详解】 变式训练1【解答】解:(1)由题意得2()cos sin 2a g x x x x x =+-,(0x ∈,]2π, 则()(sin )g x x a x '=-,①当1a …时,sin 0a x -…,()0g x '>∴所以()g x 在(0,]2π单调递增, (0)0g =,故()g x 在(0,]2π上无零点;②当01a <<时,0(0,)2x π∃∈,使得0sin x a =,∴()g x 在0(x ,]2π上单调递减,在0(0,)x 上单调递增,又(0)0g =,2()128a g ππ=-故()()000g x g >= ∴()g x 在区间()00,x 上无零点i )当21028a g ππ⎛⎫=-> ⎪⎝⎭即28a π>时,()g x 在(0,]2π上无零点,ii )当21028a g ππ⎛⎫=-≤ ⎪⎝⎭即280a π<…时,()g x 在(0,]2π上有一个零点, ③当0a …时,sin 0a x -<,()0g x '<∴()g x 在(0,]2π上单调递减,()g x 在(0,]2π上无零点,综上所述:当280a π<…时,()g x 在(0,]2π上有一个零点;(2)由2()1(0)2x a a xe f x x ax x -=-+->得x a xe xlnx ax -=+, 即x a e lnx a -=+,则有()ln x a x a e e x lnx --+=+, 令()h x x lnx =+,0x >,1()10h x x'=+>,∴函数()h x 在(0,)+∞上递增, ∴方程()()x a h e h x -=即为方程x a e x -=即ln a x x =-有2个不同的正实根设()x x lnx ϕ=-,则11()1x x x xϕ-'=-=, 当01x <<时,()0x ϕ'<,当1x >时,()0x ϕ'>, 所以函数()x x lnx ϕ=-在(0,1)上递减,在(1,)+∞上递增, 所以()min x ϕϕ=(1)1=,当0x →时,()x ϕ→+∞,当x →+∞时,()x ϕ→+∞,∴当1a >时,方程ln a x x =-有2个不同的正实根综上所述:()1,a ∈+∞.变式训练2【解析】解:令21()()ln 2g x f x mx x a x mx =-=+-,由1212()()f x f x m x x ->-得()1212()0g x g x x x ->-∴()g x 在[2,)+∞递增,[)()2,,0a x g x x m x '∴∀∈+∞=+-≥,即am x x+…恒成立,设()a h x x x =+,[)2,x ∈+∞,3[1,]2a ∈,则()ah x x x=+在[2,)+∞上单调递增,∴11 / 11 min ()(2)22a h x h ==+,故有22a m +…,3[1,]2a ∃∈,使得22a m +…成立,故(2)max 2a m +…,即11.4m …故选:D . 变式训练3【解析】解:(1)由题意得1().f x a x'=- ①当0a …时,()0f x '>,则()f x 在(0,)+∞上单调递增;②当0a >时,令()0f x '=得到1x a =, 当10x a <<时,()0f x '>,()f x 单调递增;当1x a>时,()0f x '<,()f x 单调递减;综上:当0a …时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在1(0,)a 上单调递增,在1(,)a+∞上单调递减;(2)12()ln x g x e x x ax -=+-,令1x =,则(1)10g a =-…,故1a …, 当1a …时,()l 2n 1211()ln 1ln ln 1x x x x g x e x x ax e x x x e x x x ----⎡⎤=--=+--⎦-+⎣-…, 设()ln 1h x x x =--,则()111x h x x x-'=-= 令()0h x '>,则1x > ∴()h x 在()0,1上单调递减,在()1,+∞上单调递增设()[)1,0,x t x e x x =--+∞,则()10x t x e '=-≥∴()t x 在[)0,+∞上单调递增()()00t x t ∴≥=故()ln 1ln 110x x e x x ------≥,即()ln 1ln 110x x x e x x --⎡⎤----≥⎣⎦综上所述:当1a …时,()0g x ≥.()()()min 10h x h x h ∴≥==。
北京市高三数学二轮复习:平面向量(共19张PPT)
rr r r r 例 1.若非零向量 a, b 满足| a b || b | ,则( )
rr r
rr r
A.| 2b || a 2b | B.| 2b || a 2b |
uuur uuur 同理, P0B P0C
uuuur 2 P0M
uuur 2 BC
4
uuur uuur uuur uuur ,因为 PB PC P0B P0C ,
A
所以
uuuur PM
2
uuur 2 BC
4
uuuur 2 P0M
uuur 2 BC
4
uuuur 2 ,故 PM
rr r 分析:对于| a b || b | ,可以通过数形结合的方法转化为等腰三角形处理.
rr r
uuur r uuur r
D
如图,| a b || b | ,设 AD a, AB b,
a A
b
a-b Bb
r r uuur r uuur | a b || BD || b || AB |
考试内容
平面向量
向量的线性 运算
平面向量的相关概念 向量的加法与减法 向量的数乘
两个向量共线
要求层次
A
BC
√
√
√
√
平 面 向 量 的 平面向量的基本定理
√
平 面 基 本 定 理 及 平面向量的正交分解及坐标表示
向量 坐标表示
用坐标表示平面向量的加法、减法与数
安徽省阜阳三中高考数学二轮复习平面向量2学案理
二轮复习专题:平面向量§2平面向量的数量积及应用【学习目标】1.理解平面向量数量积的含义及其物理意义,了解平面向量数量积与向量投影的关系2.理解平面向量数量积的性质,掌握数量积的坐标表达和坐标运算3.以极度的热情投入到课堂学习中,体验学习的快乐【学法指导】1.先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;4.重点理解的内容:向量数量积的含义、几何意义和性质。
【高考方向】1. 向量的数量积运算2. 向量的垂直问题。
【课前预习】:一、知识网络构建1.平面向量数量积的定义和几何意义2.平面向量数量积的性质有哪些?指出其中常用的重要性质3.平面向量数量积的坐标表示和坐标运算二、高考真题再现[2014·安徽卷] 已知两个不相等的非零向量,a b 两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值.②若,⊥则min S .③若,∥则min S .>,则0min >S .⑤若2min ||2||,8||b a Sa ==,则a 与b 的夹角为4π三、基本概念检测1.如图,BC 、DE 是半径为1的圆O 的两条直径,2BF FO =,则FD FE 等于( )A .-34B .-89C .-14D .-492.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .3. 已知单位向量1e 与2e 的夹角为α,且1c o s 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .【课中研讨】:例1. 已知4,3a b ==,()()23261a ba b -+= (1) 求a b 与的夹角θ(2) 求a b +(3) 若AB a =,BC b =,求△ABC 的面积例2. 若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b =( ) A .2 B.1 D .2 例3.在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+。
2017届高三数学二轮复习教师用书:题型专题(二) 平面向量含答案
题型专题(二) 平面向量(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量的终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[题组练透]1.(2016·河北三市联考)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则mn等于( )A .-12 B.12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.2.(2016·唐山模拟)在等腰梯形ABCD 中,M 为BC 的中点,则=( )解析:选B 因为,所以.又M 是BC 的中点,所以,故选B.3.(2016·广州综合测试)在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若(m ,n ∈R ),则mn=( )A .-3B .-13 C.13D .3解析:选A 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,∴∴m n =1-13=-3. 4.(2016·杭州综合测试)设P 是△ABC 所在平面内的一点,且,则△P AB与△PBC 的面积的比值是( )A.13B.12C.23D.34解析:选B ∵,∴,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,∴S △P ABS △PBC==12.[技法融会]1.平面向量线性运算的2种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b ≠0时,a ∥b ⇔存在唯一实数λ,使得a =λb )来判断.2.(易错提醒)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(1)两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值确定.(2)求非零向量a ,b 的夹角,一般利用公式cos 〈a ,b 〉=a ·b|a ||b |先求出夹角的余弦值,然后求夹角.(3)向量a 在向量b 方向上的投影为a ·b|b |=|a |cos θ(θ为两向量的夹角).[题组练透]1.(2016·全国丙卷)已知向量=⎝⎛⎭⎫12,32,=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120° 解析:选A 因为=⎝⎛⎭⎫12,32,=⎝⎛⎭⎫32,12,所以·=34+34=32.又因为·=||||cos ∠ABC =1×1×cos ∠ABC =32,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.2.(2016·合肥质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( )A. 2 B .2 C .2 2 D .4解析:选B 由a ⊥(a -2b )得,a ·(a -2b )=|a |2-2a ·b =0,则|a -b |=(a -b )2=|a |2-2a ·b +|b |2=|b |=2,选项B 正确.3.(2016·重庆二测)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b 在a 方向上的投影为( )A .-332B .- 3 C. 3 D.332解析:选A 依题意得e 1·e 2=1×1×cos2π3=-12,|a |=(e 1+2e 2)2=e 21+4e 22+4e 1·e 2=3,a ·b =(e 1+2e 2)·(2e 1-3e 2)=2e 21-6e 22+e 1·e 2=-92,因此b 在a 方向上的投影为a ·b |a |=-923=-332,选A.4.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则的值为( )A .-58 B.18 C.14 D.118解析:选B 如图所示,=+又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以,,所以.又,则.又=1,∠BAC =60°, 故=34-12-14×1×1×12=18.故选B. 5.(2016·长春质检)已知向量a =(1,3),b =(0,t 2+1),则当t ∈[-3,2]时,⎪⎪⎪⎪a -t b |b |的取值范围是________.解析:由题意,b |b |=(0,1),根据向量的差的几何意义,⎪⎪⎪⎪a -t b |b |表示同起点的向量t b|b |的终点到a 的终点的距离,当t =3时,该距离取得最小值1,当t =-3时,该距离取得最大值13,即⎪⎪⎪⎪a -t b|b |的取值范围是[1,13 ]. 答案:[1,13 ][技法融会]1.平面向量数量积运算的2种形式(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.(易错提醒)两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.一、平面向量与其他知识的交汇平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[新题速递]1.已知向量a ,b 满足|a |=2|b |≠0,且关于x 的函数f (x )=-2x 3+3|a |x 2+6a ·b x +5在R 上单调递减,则向量a ,b 夹角的取值范围是( ) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤0,π3C.⎝⎛⎭⎫0,π6D.⎣⎡⎦⎤2π3,π解析:选D 设向量a ,b 的夹角为θ,因为f (x )=-2x 3+3|a |x 2+6a ·b x +5,所以f ′(x )=-6x 2+6|a |x +6a ·b ,又函数f (x )在R 上单调递减,所以f ′(x )≤0在R 上恒成立,所以Δ=36|a |2-4×(-6)×(6a ·b )≤0,解得a ·b ≤-14|a |2,因为a ·b =|a ||b |cos θ,且|a |=2|b |≠0,所以|a ||b |cos θ=12|a |2cos θ≤-14|a |2,解得cos θ≤-12,因为θ∈[0,π],所以向量a ,b 的夹角θ的取值范围是⎣⎡⎦⎤2π3,π,故选D. 2.(2016·广东茂名二模)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83 D.53解析:选B ∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,∴3x +2y =⎝⎛⎭⎫3x +2y ×13(2x +3y )=13(6+9y x +4x y +6)≥13⎝⎛⎭⎫12+29y x ·4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y 的最小值是8.故选B.[技法融会]这两题考查的是平面向量与函数、不等式的交汇.第1题由函数的性质把问题转化为平面向量问题,求解时应注意两向量的夹角θ∈[0,π].而第2题是利用平面向量的知识得到有关x 和y 的一个等式,再利用基本不等式求解.二、新定义下平面向量的创新问题近年,高考以新定义的形式考查向量的概念、线性运算、数量积运算的频率较大,其形式体现了“新”.解决此类问题,首先需要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,通过转化思想解决,这是破解新定义信息题的关键所在.[新题速递]1.已知向量a 与b 的夹角为θ,定义a ×b 为a 与b 的“向量积”,且a ×b 是一个向量,它的长度|a ×b |=|a ||b |sin θ,若u =(2,0),u -v =(1,-3),则|u ×(u +v )|等于( )A .4 3 B. 3 C .6 D .2 3解析:选D 由题意v =u -(u -v )=(1,3),则u +v =(3,3),cos 〈u ,u +v 〉=32,得sin 〈u ,u +v 〉=12,由定义知|u ×(u +v )|=|u |·|u +v |sin 〈u ,u +v 〉=2×23×12=2 3.故选D.2.定义平面向量的一种运算a ⊙b =|a +b |×|a -b |×sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |×|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |×|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |×|a -b |×sin 〈a ,b 〉≤|a +b |×|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.答案:①③[技法融会]此类题目是新定义下平面向量的运算,破题的关键是把此定义运算转化为我们所学的平面向量数量积运算,学会转化,是解决此类问题的切入口.一、选择题1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53 D.32解析:选A 因为c =a +k b =(1+k ,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2016·山西四校联考)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A.π6B.π4C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22,∴〈a ,b 〉=π4. 3.已知A ,B ,C 三点不共线,且点O 满足=0,则下列结论正确的是( )解析:选D ∵=0,∴O 为△ABC 的重心,∴=-23×12()=-13()=-13()=-13(2)=,故选D .4.(2016·贵州模拟)若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R ),且|a |=32,则λ=( )A .-12 B.32-1 C.12 D.32解析:选A 由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12,选项A 正确. 5.(2016·湖南六校联考)设向量a =(cos α,-1),b =(2,sin α),若a ⊥b ,则tan ⎝⎛⎭⎫α-π4=( )A .-13 B.13C .-1D .0解析:选B 由已知可得,a ·b =2cos α-sin α=0,∴tan α=2,tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=13,故选B. 6.已知向量a ,b ,c 中任意两个向量都不共线,但a +b 与c 共线,b +c 与a 共线,则a +b +c =( )A .aB .bC .cD .0解析:选D ∵a +b 与c 共线,b +c 与a 共线,∴可设a +b =λc ,b +c =μ a ,两式作差整理后得到(1+λ)c =(1+μ)a ,∵向量a ,c 不共线,∴1+λ=0,1+μ=0,即λ=-1,μ=-1,∴a +b =-c ,即a +b +c =0.故选D .7.(2016·山西质检)已知a ,b 是单位向量,且a ·b =-12.若平面向量p 满足p ·a =p ·b =12,则|p |=( )A.12B .1 C. 2 D .2 解析:选B 由题意,不妨设a =(1,0),b =⎝⎛⎭⎫-12,32,p =(x ,y ),∵p ·a =p ·b =12,∴⎩⎨⎧x =12,-12x +32y =12,解得⎩⎨⎧x =12,y =32,∴|p |=x 2+y 2=1,故选B.8.(2016·石家庄一模)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0) 解析:选B 由题意可得(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.9.(2016·江西赣南五校联考)△ABC 的外接圆的圆心为O ,半径为1,若,则向量在方向上的投影为( )A.12B.32 C .-12 D .-32 解析:选A 由可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以,由题意知,故△OAB 为等边三角形,所以∠ABC =60°.所以向量在方向上的投影为||cos ∠ABC =1×cos 60°=12.故选A.10.已知△ABC 中,||=10,=-16,D 为边BC 的中点,则||等于( )A .6B .5C .4D .3解析:选D 由题知=12(),∵=-16,∴||·||cos ∠BAC=-16.在△ABC中,,∴102=+32,=68,∴||2=14(+2)=14(68-32)=9,∴||=3.11.在平面直角坐标系中,点A与B关于y轴对称.若向量a=(1,k),则满足不等式的点A(x,y)的集合为()A.{(x,y)|(x+1)2+y2≤1}B.{(x,y)|x2+y2≤k2}C.{(x,y)|(x-1)2+y2≤1}D.{(x,y)|(x+1)2+y2≤k2}解析:选C由A(x,y)可得B(-x,y),则=(-2x,0),不等式+a·≤0可化为x2+y2-2x≤0,即(x-1)2+y2≤1,故选C.12.(2016·广州五校联考)已知Rt△AOB的面积为1,O为直角顶点,设向量a=,b=,=a+2b,则的最大值为()A.1 B.2 C.3 D.4解析:选A如图,设A(m,0),B(0,n),∴mn=2,则a=(1,0),b=(0,1),=a+2b=(1,2),=(m-1,-2),=(-1,n-2),·=5-(m+2n)≤5-22nm=1,当且仅当m=2n,即m=2,n=1时,等号成立.二、填空题13.(2016·兰州模拟)已知m∈R,向量a=(m,1),b=(2,-6),且a⊥b,则|a-b|=________.解析:∵a⊥b,∴a·b=2m-6=0,m=3,∴a-b=(1,7),∴|a-b|=1+49=5 2.答案:5 214.已知a,b是非零向量,f(x)=(a x+b)·(b x-a)的图象是一条直线,|a+b|=2,|a|=1,则f(x)=________.解析:由f(x)=a·b x2-(a2-b2)x-a·b的图象是一条直线,可得a·b=0.因为|a+b|=2,所以a2+b2=4.因为|a|=1,所以a2=1,b2=3,所以f(x)=2x.答案:2x15.(2016·合肥质检)已知等边△ABC 的边长为2,若=3,=,则=________.解析:如图所示,=(-)·(+)=()·()=(12-)·()=16-23=16×4-23×4=-2. 答案:-216.(2016·福州模拟)已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设=a ,=b ,则=a -b .∵非零向量a ,b ,c 满足|a |=|b |=|a -b |,∴△OAB 是等边三角形.设=c ,则=c -a ,=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上(如图所示),∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案](1)D(2)A
两类平面向量综合问题的解决方法
(1)用向量解决平面几何问题,主要是通过建立平面直角坐标系将问题坐标化,然后利用平面向量的坐标运算求解有关问题.
(3) =λ +μ (λ,μ为实数),若A、B、C三点共线,则λ+μ=1.
1.在矩形ABCD中,AB=1,AD=,P为矩形内一点,且AP=.若 =λ +μ (λ,μ∈R),则λ+μ的最大值为()
A.B.
C.D.
解析:选B据已知| |2=(λ +μ )2⇒2=λ2+3μ2,整理变形可得(λ+μ)2-2λμ=,由均值不等式,可得(λ+μ)2-22≤,解得λ+μ≤.
[答案](1)A(2)D(3)D
在本例(1)中,若 + + =0,则∠BAC的大小是多少?
解:由已知可得 + = ,由向量加法的平行四边形法则可知,四边形OACB是四条边均为外接圆半径R的平行四边形,故△OAC为等边三角形,∠OAC=2∠BAC=60°,所以∠BAC=30°.
解决数量积运算应注意三点
答案:2
5.向量a,b,c,d满足:|a|=1,|b|=,b在a方向上的投影为,(a-c)·(b-c)=0,|d-c|=1,则|d|的最大值为________.
解析:由投影公式可得=b·a=,∴|b+a|2=|a|2+|b|2+2a·b=4,|b+a|=2.由(a-c)·(b-c)=a·b-c·(a+b)+c2=0,整理得+|c|2=|c|·|a+b|·cosθ≤2|c|(θ=〈c,a+b〉),解不等式+|c|2-2|c|≤0,得|c|≤1+,即|c|的最大值为1+.又|d-c|=1,即d终点的轨迹是以c的终点为圆心、1为半径的圆,故|d|的最大值为|c|max+1=2+.
A.∠ABC=90°B.∠BAC=90°
C.AB=ACD.AC=BC
[自主解答](1)由已知得4 =-3 -5 ⇒|4 |2=(-3 -5 )2,即16=34+30 · ,解得 · =-;同理3 =-4 -5 ,两边平方得 · =-,因此 · = ·( - )= · - · =-.
(2)∵ 1⊥ 2,∴ 1· 2=( 1- )·( 2- )= 1· 2- 1· - · 2+ 2=0,
2.在△ABC中,∠A=60°,∠A的平分线AD交边BC于D,已知AB=3,且 = +λ (λ∈R),则AD的长为()
A.1B.
C.2D.3
解析:选C如图所示,因为B,D,C三点共线,
所以λ+=1,即λ=.
在AB上取一点E使 = ,在AC上取一点F使 = ,由 = + = + ,
可知四边形AEDF为平行四边形,又∠BAD=∠CAD=30°,所以▱AEDF为菱形.因为 = ,AB=3,所以菱形的边长为2.在△ADF中,=,所以AD=sin 120°·=2.
解析:因为=====≤2,当且仅当=-时取得等号,故的最大值为2.
答案:2
4.(2013·山东高考)已知向量 与 的夹角为120°,且| |=3,| |=2.若 =λ + ,且 ⊥ ,则实数λ的值为________.
解析: = - ,由于 ⊥ ,所以 · =0,即(λ + )·( - )=-λ + +(λ-1) · =-9λ+4+(λ-1)×3×2×=0,解得λ=.
答案:2+
热点三
平面向量的综合应用
[例3](1)(2013·安徽高考)在平面直角坐标系中,O是坐标原点,两定点A,B满足| |=| |= · =2,则点集{P| =λ +μ ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()
A.2B.2
C.4D.4
(2)已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M(x,y)在直线PQ上,且2 +3 =0, · =0,则4x+2y-3的最小值为()
∴ 1· 2- 1· - · 2=- 2.
∵ = 1+ 2,
∴ - = 1- + 2- ,
∴ = 1+ 2- .
∵| 1|=| 2|=1,
∴ 2=1+1+ 2+2( 1· 2- 1· - 2· )=2+ 2+2(- 2)=2- 2.
∵| |<,∴0≤| 2|<,∴0≤2- 2<,
∴< 2≤2,即| |∈.
答案:
5.(2013·江苏高考)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若 =λ1 +λ2 (λ1,λ2为实数),则λ1+λ2的值为________.
解析: = + = +( + )=- + ,所以λ1=-,λ2=,即λ1+λ2=.
答案:
1.平面向量的两个重要定理
(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.
①给定向量b,总存在向量c,使a=b+c;
②给定向量b和c,总存在实数λ和μ,使a=λb+μc;
③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μc;
④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μc.
上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是()
(1)a·b=0未必有a=0或b=0.
(2)|a·b|≤|a|·|b|.
(3)a·(b·c)与(a·b)·c不一定相等.
3.如图所示,P为△AOB所在平面内一点,向量 =a, =b,且P在线段AB的垂直平分线上,向量 =c.若|a|=3,|b|=2,则c·(a-b)的值为()
A.5B.3
C.D.
解析:选C设AB中点为D,c= = + ,所以c·(a-b)=( + )· = · + · = · =(a+b)·(a-b)=(|a|2-|b|2)=.
考点
考情
平面向量的概念及线性运算
1.对平面向量的概念及线性运算主要考查线性运算法则及其几何意义以及两个向量共线的条件,或以向量为载体求参数的值,如2013年辽宁T3等.
2.对平面向量的基本定理及坐标运算的考查主要侧重以下两点:
(1)以平面向量的基本定理为基石,利用一组基底表示相关向量;(2)利用坐标运算解决平行、垂直问题,如2013年山东T15等.
(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.
2.两个非零向量平行、垂直的充要条件
若a=(x1,y1),b=(x2,y2),则:
(1)a∥b⇔a=λb(λ≠0)⇔x1y2-x2y1=0.
解析:选D根据新定义,得a∘b===cosθ,b∘a===cosθ.又因为a∘b和b∘a都在集合中,设a∘b=,b∘a=(n1,n2∈Z),那么(a∘b)·(b∘a)=cos2θ=,又θ∈,所以0<n1n2<2,所以n1,n2的值均为1,故a∘b==.
7.关于实数x的方程ax2+bx+c=0,其中a,b,c都是非零平面向量,且a,b不共线,则该方程的解的情况是()
3.数量积的运算是每年必考的内容,主要涉及:(1)向量数量积的运算;(2)求向量的模;(3)求向量的夹角,如2013年浙江T17等.
平面向量基本定理及坐标表示
平面向量的数量积
平面向量的应用
1.(2013·辽宁高考)已知点A(1,3),B(4,-1),则与向量 同方向的单位向量为()
A.B.
C.D.
解析:选A由已知,得 =(3,-4),所以| |=5,因此与 同方向的单位向量是 =.
A.1B.2
C.3D.4
(2)(2013·合肥模拟)在梯形ABCD中,AB∥CD,AB=2CD,M,N分别为CD,BC的中点,若 =λ +μ ,则λ+μ=________.
[自主解答](1)显然①②正确;对于③,当μ<|a|sina,b时,不存在符合题意的单位向量c和实数λ,③错;对于④,当λ=μ=1,|a|>2时,易知④错.
(3)设AB=4,以AB所在直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,则A(-2,0),B(2,0).又P0是边AB上一定点,P0B=AB,所以P0(1,0).设C(a,b),P(x,0),∴ =(2-x,0), =(a-x,b).∴ =(1,0), =(a-1,b). · ≥ · 恒成立⇒(2-x)·(a-x)≥a-1恒成立,即x2-(2+a)x+a+1≥0恒成立.∴Δ=(2+a)2-4(a+1)=a2≤0恒成立.∴a=0.即点C在线段AB的中垂线上,∴AC=BC.
A.-4B.-3
C.3D.4
[自主解答](1)由| |=| |= · =2,可得∠AOB=,又A,B是两定点,可设A(,1),B(0,2),P(x,y),
由 =λ +μ ,可得⇒
因为|λ|+|μ|≤1,所以+≤1,当,时,由可行域可得S0=×2×=,所以由对称性可知点P所表示的区域面积S=4S0=4.
4.设G为△ABC的重心,若△ABC所在平面内一点P满足 +2 +2 =0,则 的值等于________.
解析:取BC的中点D,由已知 +2 +2 =0得 =2( + )=4 ,说明P,A,D三点共线,即点P在BC边中线的延长线上,且| |=4| |.
如图所示,故| |=| |,| |=| |,因此 =×=2.
(2)依题意得 = + + = + - = + , = + = + ;又 =λ +μ ,于是有 =λ +μ = + ;又 与 不共线,因此有由此解得λ=-,μ=-2λ,所以λ+μ=的线性运算应注意三点
(1)三角形法则和平行四边形法则的运用条件.
(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.