安徽省合肥市2017-2018学年高三下学期第三次教学质量检测数学(理)试题 Word版含答案
2017-2018学年高二数学下学期期末考试试题理(2)
数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。
安徽省合肥市2013届高三第三次教学质量检测数学理试题 Word版含答案
合肥市2013年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)—、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)1. 设集合M={R x ∈|x 2<4},N={-1,1,2},则M N =( ) A{-1,1,2} B.{-1,2} C.{1,2} D{-1,1}2. 已知(1+i)(a-2i)= b-ai(其中a,b 均为实数,i 为虚数单位),则a+b =( ) A. -2B.4C.2D.03. 等比数列{a n }中,a 2=2,a 5 =41,则a 7 =( ) A. 641 B. 321 C. 161 D. 814. “ m < 1 ”是“函数f(x) = x 2-x+41m 存在零点”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件 5. 右边程序框图,输出a 的结果为( ) A.初始值a B.三个数中的最大值 C. 二个数中的最小值 D.初始值c6. 已知⎪⎩⎪⎨⎧≥+-≤--≥+033206322y x y x y x ,且z=x 2+y+,则z 的最小值是( )A.4B.1C. 18D.y7. P 是正六边形ABCDEF 某一边上一点,AF y AB x AP +=,则x+y 的最大值为( ) A.4 B.5 C.6 D.78. 右图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面 积为( )A.20 + 17πB.20 + 16πC. 16 + 17πD. 16 + l6π9. 五个人负责一个社团的周一至周五的值班工作, 每人一天,则甲同学不值周一,乙同学不值周五,且甲,乙不相邻的概率是( )A.103 B. 207 C. 52 D. 3013 10.定义域为R 的函数f(x)的图像关于直线x= 1对称,当a ∈[0,l]时,f(x) =x,且对任意R x ∈只都有f(x+2) = -f(x),g(x)= ⎩⎨⎧<--≥)0)((log )0)((2013x x x x f ,则方程g(x)-g(-x) =0实数根的个数为( )A. 1006B. 1007C. 2012D.2014第II 卷(满分100分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.已知抛物线的准线方程是x=21,则其标准方程是______12.关于x 的不等式log 2|1-x| > 1的解集为_______ 13.曲线C 的极坐标方程为: θρcos 2=,曲线T 的参数方程为⎩⎨⎧+=+-=121t y t x (t 为参数),则曲线C 与T 的公共点有______个.14.如图,一栋建筑物AB 高(30-103)m ,在该建筑 物的正东方向有一个通信塔CD.在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处 测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m.15.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P,Q,R 分 别是棱BC,CD,DD 1的中点.下列命题:①过A 1C 1且与CD 1平行的平面有且只有一个;②平面PQR 截正方体所得截面图形是等腰梯形; ③AC 1与平面PQR 所成的角为60°; ④线段EF 与GH 分别在棱A 1B 1和CC 1上运动,且EF + GH = 1,则三棱锥E - FGH 体积的最大值是121 ⑤线段MN 是该正方体内切球的一条直径,点O 在正 方体表面上运动,则ONOM .的取值范围是[0,2].其中真命题的序号是______(写出所有真命题的序号). 三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知函数f(x)=Asin())2,0(,0,0(),πϕωϕω∈>>+A x 部分图像如图所示.(I)求函数f(x)的解析式; (II)已知)2,0(π∈a ),且32cos =a ,求f(a).17.(本小题满分13分)如图BB 1,CC 1 ,DD 1均垂直于正方形AB 1C 1D 1所在平面A 、B 、C 、D 四点共面.(I)求证:四边形ABCD 为平行四边形;(II)若E,F 分别为AB 1 ,D 1C 1上的点,AB 1 =CC 1 =2BB 1 =4,AE = D 1F =1.(i)求证:CD 丄平面DEF;(ii)求二面角D-EC1-D1的余弦值.18.(本小题满分12分)已知f(x) = log a x- x +1( a>0,且a ≠ 1).(I)若a=e,求f(x)的单调区间;(II)若f(x)>0在区间(1,2)上恒成立,求实数a的取值范围.19.(本小题满分13分)根据上级部门关于开展中小学生研学旅行试点工作的要求,某校决定在高一年级开展中小学生研学旅行试点工作.巳知该校高一年级10个班级,确定甲、乙、丙三条研学旅行路线.为使每条路线班级数大致相当,先制作分别写有甲、乙、丙字样的签各三张,由高一(1)〜高一(9)班班长抽签,再由高一(10)班班长在分别写有甲、乙、丙字样的三张签中抽取一张.(I)设“有4个班级抽中赴甲路线研学旅行”为事件A,求事件A的概率P(A);(II )设高一(l)、高一(2)两班同路线为事件B,高一(1)、高一(10)两班同路线为事件C,试比较事件B的概率P(B)与事件C的概率P( C)的大小;(III)记(II)中事件B、C发生的个数为ξ,求随机变量ξ的数学期望Eξ20.(本小题满分12分)平面内定点财(1,0),定直线l:x=4,P 为平面内动点,作PQ 丄l ,垂足为Q ,且||2||PM PQ =.(I)求动点P 的轨迹方程;(II )过点M 与坐标轴不垂直的直线,交动点P 的轨迹于点A 、B ,线段AB 的垂直平分 线交x 轴于点H ,试判断||||AB HM -是否为定值.21.(本小题满分13分)设数列{a n }的前n 项和为S n ,且对任意的*N n ∈,都有a n >0,S n = 33231...n a a a +++(I)求a 1,a 2的值;(II)求数列{a n }的通项公式a n (III)证明:ln2≤a n ·ln(1+)1na <ln3。
安徽省合肥市2021届高三第三次教学质量检测数学理试题 Word版含答案
合肥市2021年高三第三次教学质量检测数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟,祝各位考生考试顺当! 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()(1)2a i bi i +-=(其中,a b 均为实数,i 为虚数单位),则||a bi +等于 A.2 B.2 C.1 D.1或22.命题“对于任意x R ∈,都有0x e >”的否定是A.对于任意x R ∈,都有0x e ≤B.不存在x R ∈,使得0x e ≤C.存在0x R ∈,使得00x e >D.存在0x R ∈,都有00x e ≤ 3.若函数|2|2y x =--的定义域为集合{|22}A x R x =∈-≤≤,值域为集合B ,则 A.A B = B.A B ⊂ C.B A ⊂ D.A B =∅ 4.在等差数列{}n a 中,已知1823(4)a a =-,则该数列的前11项和11S 等于 A.33 B.44 C.55 D.66 5.执行如图所示的程序框图,若将推断框内“100S >”改为关于n 的不等式“0n n ≥”且要求输出的结果不变,则正整数0n的取值A.是4B.是5C.是6D.不唯一 6.在极坐标系中,已知点(4,1),(3,1)2A B π+,则线段AB 的长度是 A.1 B.214π+ C.7 D.5 7.某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是 A.62 B.1C.22 D.648.某校方案组织高一班级四个班开展研学旅行活动,初选了,,,A B C D 四条不同的研学线路,每个班级只能在这四条线路中选择其中的一条,且同一线路最多只能有两个班级选择,则不同的选择方案有A.240种B.204种C.188种D.96种 9.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a b c B A +=,则A ∠的大小是A.2πB.3πC.4πD.6π10.定义在R 上的函数()f x 满足:()1f x >且()'()1,(0)5f x f x f +>=,其中'()f x 是()f x 的导函数,则不等式ln[()1]ln 4f x x +>-的解集为A.(0,)+∞B.(,0)(3,)-∞+∞C.(,0)(0,)-∞+∞D.(,0)-∞ 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置上. 11.某校为了了解教科研工作开展状况与老师年龄之间的关系,将该校不小于35岁的80名老师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60),由此得到频率分布直方图如图,则这80名老师中年龄小于45岁的老师有人12.设 6260126(32)(21)(21)(21)x a a x a x a x -=+-+-++-,则1350246a a a a a a a ++=+++ 13.在平面直角坐标系中,不等式组02y x x y ≤≤⎧⎨+≤⎩表示的平面区域为1Ω,直线:(1)0(0)l kx y k k ---=<将区域1Ω分为左右两部分,记直线l 的右边区域为2Ω,在区域1Ω内随机投掷一点,其落在区域2Ω内的概率13P =,则实数k 的取值为14.设点F 是抛物线22y x =的焦点,过抛物线上一点P ,沿x 轴正方向作射线//PQ x 轴,若FPQ ∠的平分线PR 所在直线的斜率为2-,则点P 的坐标为 15.已知向量,OA OB 满足1||||1,2OA OB OA OB ==⋅=,动点C 满足OC xOA yOB =+,给出以下命题: ①若1x y +=,则点C 的轨迹是直线; ②若||||1x y +=,则点C 的轨迹是矩形; ③若1xy =,则点C 的轨迹是抛物线; ④若1x y =,则点C 的轨迹是直线;⑤若221x y xy ++=,则点C 的轨迹是圆. 以上命题正确的是 (写出你认为正确的全部命题的序号)三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16(本小题满分12分) 已知函数5()sin()cos()(0)412f x x x ππωωω=+++>的最小正周期为4π. (Ⅰ)求ω的值 (Ⅱ)设12,[,]22x x ππ∈-,求12|()()|f x f x -的最大值.17(本小题满分12分) 已知数列{}n a 满足*()2n n n S a n N =∈,(其中n S 是数列{}n a 的前n 项和,且22a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2((n n n n a b a n ⎧⎪=⎨⎪⎩为奇数为偶数)),求数列{}n b 的前2n 项和2n T .18(本小题满分12分) 已知椭圆22221(0)x y a b a b +=>>,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A 的坐标为(0,)b ,椭圆上存在点,P Q ,使得圆224x y +=内切于APQ ∆,求该椭圆的方程.19(本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是边长为1的正方形,BF ⊥平面,//.ABCD DE BF (Ⅰ)求证:AC EF ⊥;(Ⅱ)若2,1,BF DE ==在EF 上取点G ,使//BG 平面ACE ,求直线AG 与平面ACE 所成角θ的正弦值.20(本小题满分13分) 某校高三班级争辩性学习小组共6人,方案同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观挨次,在每个展厅参观一小时后去其他展厅,全部展厅参观结束后集合返回,设大事A 为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;大事B 为:在参观的其次个小时时间内,该小组在甲展厅人数恰好为2人. (Ⅰ)求()P A 及(|)P B A ; (Ⅱ)设在参观的第三个小时时间内,该小组在甲展厅的人数为ξ,则在大事A 发生的前提下,求ξ的概率分布列及数学期望. 21(本小题满分13分) 已知函数()ln 2 3.f x x x =-+ (Ⅰ)求函数()f x 的单调区间; (Ⅱ)设函数2()1t g x x x =-+,若()()g x f x >对0x >恒成立,求整数t 的最小值.。
2020合肥三模理科数学答案
合肥市2020届高三第三次教学质量检测数学试题(理科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACDCBCBDACA、填空题:本大题共4小题, 每小题5分,共20分.13.480 14.-960 15.4 16.①②④⑤、解答题:本大题共6小题, 满分70分.17.(本小题满分12分)解:(1)f x cos x sinx .3cos x1 sin2 x31 cos2 x i 2丘sin 2 x2232由1 sin 2 x —1得,f x 的值域是—1 , 3 1.…… ......................... 5分322⑵ T 0 x ,•——2 x —23333由正弦函数的图像可知,fx —在区间0, 上恰有两个实数解,必须2 2- 32 3解得54. .......................................... 12分6318.(本小题满分12分)解:(1) •••四边形AACG 是菱形,• AC AG ,又••• AC .3AG ,••• ACC , =600 , • ACC 是等边三角形. •••点M 为线段AC 的中点,• GM AC . 又T AC // AG , • GM AC 1. •••在等边 ABC 中,BM AC , 由 AC // AG 可得,BM AG . 又 T BM I C 1M M , • AC 1 平面 BMC 1 ,••• A 1C 1 平面ABG ,•平面BMG 丄平面ABG ................................................ 5分 (2) T BM AC ,平面ABCL 平面AACG ,且交线为AC •- BM 平面ACC 1A 1 , •直线MB , MC , MG 两两垂直. 以点M 为坐标原点,分别以MB , MC , MG 所在直线为坐 标轴建立空间直角坐标系,如图,则 B 3 , 0, 0 , G 0, 0, 3 , A 0, uuuir uuu - -•- AC 1 0, 2 0 , BG 3 , 0, 3 , 2, 3 uuuuCC 1 ,C 0, 1, 0 , 1, 3 .0, 设平面ABG 的一个法向量为nuuuur r A C 1 n …uuun rx , y, z1,得nBG n 019.(本小题满分12分)解:(1)由频率分布直方图可得,空气质量指数在(90, 110]的天数为2天,所以估计空气质量指数在 (90, 100]的天数为1天,故在这30天中空气质量等级属于优或良的天数为28无 ................3分 (2)①在这30天中, …P X 0?C 30• X 的分布列为⑵ 由⑴知,当a 2时,fx e x e x 2x 在R 上单调递增,• gx f ln x x 1x 2ln x 在 0, 当n Z 且n 2时, n 1 2l n n 1n.••n Z 且 .n 2 时,1 22n In n n 1n1 1 1 1 1 L 1 i2 i l n i 13 24 n 1 上单调递增. 1 n 21 2ln1 0 ,即卩 2ln n , 1 n 1 1 n 1 n 1 1 1113 n2 n 212分n 1 2 n n 1 2n n 1备孚即点C 到平面ABC 的距离为孚12分1 29,1 22 -29 5②甲不宜进行户外体育运动的概率为—,乙不宜进行户外体育运动的概率为—,10EX 0 -92 14548 145221 9』 …P C 3C 2 10 103 710 1010 567 5000012分20.(本小题满分12分) 解:(1) f x e x e 当ax 2 时,f x e a , a 1 24 2 ,a a 2 4 aa 2 4,InU In 2 22时,由f x在R 上单调递增;a . a 2 4 ln .2时,f x 0 ,••• fx在'『「P 和时,f0.上单调递增,在 lndJ^2,ln122 2上单调递减.…d乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,92145_ 1 _ 1C 6 C 24 48C 6 P X 1 6 £ , P X 26. C 30145C 30解:设点 P X o , y , A X i , y i , B x 2, y 2 . (1) T 直线|经过坐标原点,x 2 x 1, y 2 y 1 .2..X0222X0— y 。
合肥市2018年高三第三次教学质量检测数学试题(理科)参考答案及评分标准
合肥市2018年高三第三次教学质量检测数学试题(理科)参考答案及评分标准二、填空题:本大题共4小题,每小题5分.(13)4 (14)34(15)3 (16)1na=-或1524na n=-三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)(Ⅰ)()11cos cos22cos2234f x x x x x xπ⎛⎫=--=-⎪⎝⎭1sin226xπ⎛⎫=-⎪⎝⎭.令262x k k Zπππ-=+∈,,解得32kxππ=+.∴函数()f x图象的对称轴方程为32kx k Zππ=+∈,. …………………………5分(Ⅱ)易知()12sin223g x xπ⎛⎫=-⎪⎝⎭.∵02xπ⎡⎤∈⎢⎥⎣⎦,,∴222333xπππ⎡⎤-∈-⎢⎥⎣⎦,,∴2sin213xπ⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦,∴()121sin2232g x xπ⎡⎛⎫=-∈-⎢⎪⎝⎭⎣⎦,即当02xπ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦. …………………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人. ………………………8分(ⅱ)由题意可知,X的可能取值有0,1,2,3.()()302193933312128410801220220C C C CP X P XC C======,,()()1203939333121227123220220C C C CP X P XC C======,,∴X∴()01232202202202204E X=⨯+⨯+⨯+⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE ⊥平面ABD ,从而DE⊥BD .注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE ,于是,BD⊥AD . 而AD=BD=1,∴AB =. ………………………5分 (Ⅱ)∵AD=BD,取AB 的中点为O ,∴DO⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO⊥平面ABC.过O 作直线OY∥AC,以点O 为坐标原点,直线OB ,OY ,OD 分别为x y z ,,轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤, 0 0 0 0A B ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭,,2 00 0C a D ⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭,,,0E a ⎛- ⎝⎭,,()0BC a =,, 0BD ⎛= ⎝⎭ . 令平面BCD 的一个法向量为()n x y z =,,.由00BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩得200ay ⎧+=⎪⎨=⎪⎩.令x =1 n a =, . 又∵()0 0DE a =-,, ,∴点E 到平面BCD的距离||DE n d n ⋅==. ∵12a ≤≤,∴当2a =时,d取得最大值,max d .………………………12分(20)(本小题满分12分)(Ⅰ)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小,此时圆的半径为2p OF =,∴24P ππ=,解得2p =. ……………………4分(Ⅱ)依题意得,点M 的坐标为(1,2),圆M 的半径为2. 由F (1,0)知,M F x ⊥轴.由AM F BM F ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=.设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴4422A A y y k k+==-,.将k 换成k -,得42B y k=--,∴22441444A B A B AB A B A B A By y y y k x x y y y y --=====--+--. 设直线AB 的方程为y x m =-+,即0x y m +-=.由直线AB 与圆M2=,解得3m =±经检验3m =+3m =+.∴所求直线AB的方程为3y x =-+-……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--.设()xg x e x a =--,则()1x g x e '=-.令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分(Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a eex ---=+-=-+.设()2x x h x e e x -=-+,0x >,则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<.∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-.∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->. 设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->, ∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-+⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+,∴直线l 的极坐标方程为sin cos 2ρθρθ=+.又∵圆C 的方程为()()22215x y -+-=,将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分(Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=,整理得2sin c os 3c os θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且t a n =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+.(1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;(2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤. ∴原不等式的解集为[]1 5,. …………………5分(Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,,()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。
安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷含答案
安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷(考试时间:120分钟 满分:150分)第I 卷 (满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的。
1.集合M={x|1<x<4},N={x|2≤x≤3},则M ∩N=A.{x|2≤x<4}B.{x|2≤x≤3}C.{x|1<x≤3}D.{x|1<x<4}2.复数1+i i(i 为虚数单位)在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若向量a ,b 为单位向量,|a -2b ,则向量a 与向量b 的夹角为A.30°B.60°C.120°D.150°4.函数y=2sin|2x||1x +在[-π,π]的图象大致为5.在高一入学时,某班班委统计了本班所有同学中考体育成绩的平均分和方差.后来又转学来 一位同学。
若该同学中考体育的绩恰好等于这个班级原来的平均分,则下列说法正确的是A.班级平均分不变,方差变小B.班级平均分不变,方差变大C.班级平均分改变,方差变小D.班级平均分改变,方差变大6.若sin α=13,α=2ππ⎛⎫ ⎪⎝⎭,,则sin(α-32π)的值为A.- 13B.- 3C. 13D. 37.若直线l :x-2y-15=0经过双曲线M: 2222-x y a b =1的一个焦点,且与双曲线M 有且仅有一 个公共点,则双曲线M 的方程为A. 22-520x y =1B. 22-205x y =1C. 22-312x y =1D. 22-123x y 1 8.命题p: ∀x ∈R,e x >2x(e 为自然对数的底数);命题q: ∃x>1,1nx+1ln x≤2,则下列命题中,真命题是A. ⌝ (p ∨q)B.p ∧qC.p ∧ (⌝q)D.( ⌝p) ∧^q9.若数列{a n }的前n 项积b n =1-27n,则a,的最大值与最小值之和为 A-13 B. 57 C.2 D. 73 10.平行六面体ABCD-A 1B 1C 1D 1中,AB=AD=AA 1=2, ∠BAD=60°,点A 1在平面ABCD 内的射影是AC 与BD 的交点O,则异面直线BD,与AA,所成的角为A.90°B.60°C.45°D.30°11.椭圆E: 2222x y a b+=1(a>b>0)的左右焦点分别为F 1,F 2,点P 在椭圆E 上,ΔPF 1F 2的重心为 G.若ΔPF 1F 2的内切圆H 的直径等于121||2F F ,且GH//F 1F 2,则椭圆E 的离心率为 A.B. 23C. 2D. 12 12.若不等式e x -aln(ax-1)+1≥0对∀x ∈1,12⎡⎤⎢⎥⎣⎦恒成立(e 为自然对数的底数),则实数a 的最大值为A.e+1B.eC.e 2+1D.e 2第II 卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题一第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分. 把答案填在答题卡上的相应位置。
安徽省合肥市2017-2018学年高三下学期第三次教学质量检测数学(文)试题 Word版含答案
2017-2018学年 数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}20<<∈=x R x A ,则=A C R ( )A .{}0≤x xB .{}2≥x x C .{}20><x x x 或 D .{}20≥≤x x x 或2.i 为虚数单位,复数=-+ii12( ) A .i 2321+ B .i 2123+ C .i 2323+ D .i 2123-3.等比数列{}n a 中,4,1653==a a ,则=7a ( ) A .1 B .-1 C .1± D .414.从1,2,3,5这四个数字中任意选出两个数字,这两个数字之和是偶数的概率为( ) A .32 B .21 C .31 D .61 5.若实数x,y 满足不等式组⎪⎩⎪⎨⎧≥-+≤--≥+-02,084,0632y x y x y x 则z=x-y 的最大值为( )A .-2B .-1C .0D .26.已知0,:2<∈∃x R x p ;0log ,2:21<>∀x x q ,则下列中为真的是( )A .q p ∧B .q p ⌝∧C .q p ∧⌝D .q p ⌝∨7.若函数20162)(-+=x x f x的一个零点)1,(0+∈n n x ,则正整数n=( ) A .11 B .10 C .9 D .88.执行如图所示的程序框图,若输入的x 值为2,则输出v 的值为( ) A .31 B .32 C .63 D .649.已知双曲线12222=-by a x 的左焦点在抛物线x y 202=的准线上,且双曲线的一条渐近线的斜率为34,则双曲线的标准方程是( ) A .116922=-y x B .191622=-y x C .14322=-y x D .13422=-y x 10.某几何体的三视图如图所示,其正视图由一个半圆和一个矩形构成,则该几何体的表面积为( )A .π212+B .π214+C .π+14D .π+1611.直线01)1(22=--+y a ax 的倾斜角的取值范围是( )A .]43,4[ππ B .],43[]4,0[πππ C .),43[]4,0(πππ D .),43[]4,0[πππ 12.若关于x 的不等式a ax x +≤+)1sin(的解集为),1[+∞-,则a 的取值范围为( ) A .),21[+∞ B .),2[+∞ C .),0(+∞ D .),1[+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数ax x x f +=3)(,若10)2(=f ,则a=_____.14.已知2tan =α,则=-+-+)2cos()3sin()2(sin 2απαπαπ______.15.已知)6,(),,1(-==t t ,则a 2_______.16.如图,△ABC 中,AB=4,BC=2,60=∠=∠D ABC ,若△ABC 是锐角三角形,则DA+DC 的取值范围为________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)等差数列{}n a 的首项11=a ,公差d≠0,且1243a a a =⋅. (1)求数列{}n a 的通项公式;(2)设n n n a b 2⋅=,求数列{}n b 的前n 项和n T . 18.(本小题满分12分)某高中为了解全校学生每周参与体育运动的情况,随机从全校学生中抽取100名学生,统计他们每周参与体育运动的时间如下:(1)作出样本的频率分布直方图;(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;②若该校有学生3000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数. 19.(本小题满分12分)如图,直角三角形ABC 中,A=60°,沿斜边AC 边上的高BD 将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DCDE的值. 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x E 的离心率为23,短轴长为2.(1)求椭圆E 的方程;(2)过圆)0(:222b r r y x C <<=+上任意一点作圆C 的切线l 与椭圆E 交于A ,B 两点,都有OA ⊥OB (O 为坐标原点),求r 的值. 21.(本小题满分12分)已知函数ax a x f x-=)((a>0且a≠1),)(x f '是f(x)的导函数.(1)当a>1时,求函数f(x)的极小值点; (2)若ea x f x f a 29log )()(-'≥(e 是自然对数的底数)对一切R x ∈恒成立,求a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,弧AE=弧AC ,DE 交AB 于点F.(1)求证:PB PA PO PF ⋅=⋅; (2)若720,2,4===DF PB PD ,求弦CD 的弦心距.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线)(sin 22,cos 2:为参数ααα⎩⎨⎧+==y x C ,直线)(2,23:为参数t ty t x l ⎩⎨⎧=+=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)写出曲线C 的极坐标方程,直线l 的普通方程;(2)点A 在曲线C 上,点B 在直线l 上,求A 、B 两点间距离AB 的最小值. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数12)(+++=x m x x f . (1)当m=-1时,解不等式3)(≤x f ;(2)若]0,1(-∈m ,求函数12)(+++=x m x x f 的图象与直线y=3围成的多边形面积的最大值.合肥市2016年高三第三次教学质量检测 数学试题(文)参考答案及评分标准一、选择题1.D2.A3.A4.B5.D6.C7.B8.C9.A 10.B 11.D 12.D 二、填空题 13.1 14.5315.52 16.]34,6( 三、解答题17.解:(1)由1243a a a =⋅,得1111)31()21(=⇒+=+⋅+d d d d 或d=0(不和题意舍去), ∴数列{}n a 的通项公式n a n =.(2)依题意,n n n n n a b 22⋅=⋅=,n n n T 2232221321⨯+⋅⋅⋅+⨯+⨯+⨯=, 13222)1(22212+⨯+⨯-+⋅⋅⋅+⨯+⨯=n n n n n T ,两式相减,得132122222+⨯-+⋅⋅⋅+++=-n n n n T ,22)1(221)21(211--=⨯---=-++n n n n n n T ,∴22)1(1+-=+n n n T .18.解:(1)频率分布直方图略; (2)①由数据估计中位数为:6.6440264=⨯+, 估计平均数为:88.602.01806.01428.0104.0624.02=⨯+⨯+⨯+⨯+⨯.(2)由题意,得BC BM 41=, 取BC 的中点F ,则PF ∥MN ,∴PF ∥平面DMN ,由条件PE ∥平面DMN ,PE ∩PF=P ,∴平面PEF ∥平面DMN , ∴EF ∥DM ,∴31==MC MF DC DE . 20.解:(1)1422=+y x ; (2)当直线l 的斜率存在时,设n kx y l +=:,即⎪⎩⎪⎨⎧=++=14,22y x n kx y 得0448)41(222=-+++n knx x k , 设),(),,(2211y x B y x A ,则22212214144,418kn x x k kn x x +-=+-=+, ∴22121221212121)()1())((n x x kn x x k n kx n kx x x y y x x ++++=+++=+=⋅2222222222241)1(454148)44)(1(k k n k n k n n k n k ++-=+++--+=,∵直线l 与圆C 相切,∴r k n =+21,即)1(222k r n +=.∴22241)1)(45(k k r ++-=⋅,OA ⊥OB ,∴0=⋅,故0452=-r ,∴552=r . (2)当x l ⊥轴时,由04452=-=⋅r ,同样可得552=r , 综上,当OA ⊥OB 时,r 的值为552. 21.解:(1)0ln )(=-='a a a x f x,∵a>1,∴a a a xln =,即)(l n l o g 1)ln (log a aax aa -==,∴f(x)在))(ln log 1,(a a --∞上为减函数,在)),(ln log 1(+∞-a a 上为增函数, ∴f(x)的极小值点为)(ln log 1a x a -=. (2)设ea a a a ax a e a x f x f x g a x x a29log ln 29log )()()(++--=+'-= ea a ax a a ax 29log )ln 1(++-⋅-=, ∴a a a a x g x--='ln )ln 1()(,①当0<a<1时,0ln )ln 1(<-a a ,0)(<'x g ,g(x)在R 上单调递减, ∵]1ln []29log 1)ln 1[(29log )ln 1()2(2--<+-⋅-=+-⋅-=a a a a ea a a e a a a a g a a, 设)1,0(,1ln )(∈--=a a a a a ϕ,则0ln )(>-='a a ϕ,∴)(a ϕ在(0,1)上递增,而0)1(=ϕ, ∴0)2(,0)1()(<∴=<g a ϕϕ,∴0<a<1时,不能保证0)(≥x g 对一切x ∈R 恒成立.②当e a ≥时,0ln )ln 1(<-a a ,0)(<'x g ,g(x)在R 上单调递减, ∵0)ln 1(])ln 1[(]29log 1)ln 1[()2(2≤-=-<+-⋅-=a a a a a ea a a g a, ∴e a ≥时,不能保证0)(≥x g 对一切x ∈R 恒成立.③当1<a<e 时,由0)(='x g ,得a a a a xln )ln 1(-=,∴aa ax a ln )ln 1(log -=,∴g(x)在)ln )ln 1(log ,(a a a a--∞上为减函数,在),ln )ln 1((log +∞-aa a a 上为增函数,∴ea a a a a a a a a a x g aa 29log ln )ln 1(log ln )ln 1()ln 1()(min ++---⋅-= 0]ln )ln 1(29[log 29log ]ln )ln 1[(log log ≥⋅-=+⋅-+=a a a e a a a a e a a aa a , ∵1<a<e ,∴1]ln )ln 1(29≥⋅-a a ,∴32ln 31≤≤a ,即3231e a e ≤≤,故a 的取值范围为],[3231e e .22.解:(1)连接OE 、OC ,∵弧AE=弧AC ,∴EOC COA EOA ∠=∠=∠21, 又COA EDC ∠=∠,故COP FDP ∠=∠,∵P P ∠=∠, ∴COP FDP ∆∆~,∴PD PC PO PF POPDPC PF ⋅=⋅⇒=, 由割线定理得PD PC PB PA ⋅=⋅,∴PB PA PO PF ⋅=⋅. (2)由(1)知COP FDP ∆∆~,则POPDOC DF =, 设⊙O 的半径为r ,则524720=⇒+=r rr ,故由PD PC PB PA ⋅=⋅得,2)4(4212=⇒+=⨯CD CD , ∴弦CD 的弦心距为621522=-.23.解:(1)由)(sin 22,cos 2:为参数ααα⎩⎨⎧+==y x C 得,4)2(22=-+y x ,即0422=-+y y x ,根据y y x =+=θρρsin ,22得曲线C 的极坐标方程为θρsin 4=.直线)(2,23:为参数t ty t x l ⎩⎨⎧=+=的普通方程为x-y-3=0.(2)A 、B 两点间距离AB 的最小值即是圆4)2(22=-+y x 的圆心(0,2)到直线x-y-3=0的距离减去半径2,即242522320-=---,故AB 的最小值为2425-.24.解:(1)当m=-1时,不等式31213)(≤++-⇔≤x x x f ,若21-≤x ,则131213)(-≥⇒≤---⇔≤x x x x f ,故211-≤≤-x . 若121≤<-x ,则131213)(≤⇒≤++-⇔≤x x x x f ,故121≤<-x .若1>x ,则131213)(≤⇒≤++-⇔≤x x x x f ,这与x>1矛盾,故∅∈x , 综上所述,当m=-1时,不等式3)(≤x f 的解集为[-1,1].(2)若]0,1(-∈m ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧->++-≤<--+-≤---=+++=m x m x m x m x x m x x m x x f ,1321,121,1312)(,画出函数y=f(x)的图象与直线y=3(草图),则12)(+++=x m x x f 的图象与直线y=3围成的多边形为四边形ABCD , 易得)3,2(),3,32(),21,9),21,21(),3,34(m E mD m m c m B m A +-----+-, ∴四边形ABCD 的面积617443)1(46)52(222++-=+-+=m m m m S , 当]0,1(-∈m 时,四边形ABCD 的面积的最大值为617.。
安徽省合肥市2013年高三第三次教学质量检测化学试卷(解析)
安徽省合肥市2013年高三第三次教学质量检测化学试卷(解析)7.毒品可卡因又称古柯碱(分子结构如下图所示),是一种具有局部麻醉作用的天然生物碱,因其毒性大且易成瘾,现已被其他麻药所替代。
下面有关叙述正确的是A. 古柯碱是高分子化合物B. 古柯碱分子结构中不存在非极性键C. 古柯碱难溶于水和盐酸D. 0. O1mol古柯碱分子中含甲基约1.204X1022个7.【答案】B【解析】本题考查有机化合物的性质判断。
古柯碱分子中没有链节,不是高分子化合物,A 错误;古柯碱分子中存在碳碳键,是非极性键,B错误;古柯碱是天然生物碱,根据性质可与盐酸反应,可溶于盐酸,C错误;古柯碱分子中含有2个甲基,0. O1mol古柯碱分子中含甲基约1.204X1022个,D正确。
8. 下列离子在溶液中能大量共存,通入SO2气体后仍能大量共存的一组是A. B.C. D.8.【答案】A【解析】本题考查特定情境下离子的共存。
SO2气体不能与Ca2+反应生成沉淀,A正确;SO2气体能与ClO—发生氧化还原反应,不能大量共存,B错误;Fe3+与SCN—发生络合反应而不能大量共存,C错误;Al3+与AlO2—能发生双水解反应,不能大量共存,D错误。
9. 下列实验能够达到预期目的的是A. ①可用于表示:0.1mol·L-1的NaOH溶液滴定盐酸的滴定曲线B. ②可用于证明;氧化性:Cl2>Br2>I2C. ③可用于证明:D. ④可用于证明:非金属性:Cl>C>Si9.【答案】C【解析】本题考查特定情境下实验设计分析及判断。
①中曲线没有体现滴定突跃区段,A错误;②中Cl2可直接与KI溶液反应,导致实验有偏差,B错误;③中先生成淡黄色沉淀,再加Na2S溶液时转化为黑色沉淀,可证明溶度积变化规律,C正确;④中锥形瓶挥发出的氯化氢可直接与硅酸钠反应,对实验有干扰,D错误。
10. 汽车尾气净化中的一个反应如下:反应达到平衡后,改变某一个条件,下列示意图曲线①〜⑧中正确的是A.①⑥⑧B.①⑤⑦C.②③④D.③⑥⑦10.【答案】B【解析】本题考查化学平衡移动及图像分析判断。
安徽省合肥市2024届高三第一次教学质量检查数学试题含答案
2024年合肥市高三第一次教学质量检测数学(答案在最后)(考试时间:120分钟满分:150分)姓名__________座位号__________注意事项:1.答卷前,务必将自己的姓名和座位号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,务必擦净后再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i i (1)2+=z ,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】由题21iz i=+,利用除法法则整理为a bi +的形式,即可得到复数的坐标形式,进而求解即可【详解】由题,()()()2122211112i i i i z i i i i -+====+++-,所以z 在复平面内对应的点为()1,1,故选:A【点睛】本题考查复数的坐标表示,考查复数在复平面的位置,考查复数的除法法则的应用2.记n S 为等差数列{}n a 的前n 项和,若333,3a S ==,则12S =()A.144B.120C.100D.80【答案】B 【解析】【分析】根据等差数列的定义及性质求得数列的首项和公差,利用等差数列前n 项和公式计算即可.【详解】因为3233S a ==,所以21a =,又33a =,所以322d a a =-=,则121a a d =-=-,所以()12121112121202S ⨯=⨯-+⨯=,故选:B .3.已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 1.5)P X >等于()A.0.14B.0.62C.0.72D.0.86【答案】D 【解析】【分析】根据正态分布的性质进行计算即可.【详解】随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,所以(1.52)0.36P X ≤<=,()1( 1.5)10.3620.142P X <=-⨯=,所以( 1.5)10.140.86P X >=-=,故选:D .4.双曲线222:1y C x b-=的焦距为4,则C 的渐近线方程为()A.y =B.y =C.15y x =±D.3y x =±【答案】B 【解析】【分析】根据双曲线方程以及焦距可得b =,可得渐近线方程.【详解】由焦距为4可得24c =,即2c =,所以2214c b =+=,可得23b =,即b =;则C 的渐近线方程为by x a=±=.故选:B5.在ABC 中,内角,,A B C 的对边分别为,,a b c ,若()2cos 2b C a c =-,且π3B =,则=a ()A.1B.C.D.2【答案】A 【解析】【分析】给()2cos 2b C a c =-两边同时乘以a ,结合余弦定理求解即可.【详解】因为()2cos 2b C a c =-,两边同时乘以a 得:()22cos 2ab C a c =-,由余弦定理可得2222cos a b c ab C +-=,则()22222a b c ac +-=-,所以有2222a c b a c +-=,又2222cos a c b ac B =+-,所以22cos a c ac B =,又因为π3B =,所以1a =.故选:A6.已知四面体ABCD 的各顶点都在同一球面上,若AB BC CD DA BD =====ABD ⊥平面BCD ,则该球的表面积是()A.100πB.40πC.20πD.16π【答案】C 【解析】【分析】根据题中条件作出外接球球心,利用勾股定理计算得到半径,进一步计算即可.【详解】过三角形ABD 的中心E 作平面ABD 的垂线,过三角形BCD 的中心F 作平面BCD 的垂线,两垂线交于点O ,连接OD ,依据题中条件可知,O 为四面体ABCD 的外接球球心,因为AB BC CD DA BD =====,所以2,1DF OF ==,则OD ==,则该球的表面积为24π20π=,故选:C .7.已知直线:10l x ay --=与22:2440C x y x y +-+-= 交于,A B 两点,设弦AB 的中点为,M O 为坐标原点,则OM 的取值范围为()A.3⎡+⎣B.1⎤-+⎦C.22⎡-+⎣D.1⎤⎦【答案】D 【解析】【分析】首先求出圆心坐标与半径,再求出直线过定点坐标,设()11,A x y ,()22,B x y ,()00,M x y ,联立直线与圆的方程,消元、列出韦达定理,即可得到()()2200111x y -++=,从而求出动点M 的轨迹方程,再求出圆心到坐标原点的距离,从而求出OM 的取值范围.【详解】22:2440C x y x y +-+-= 即()()22129x y -++=,则圆心为()1,2C -,半径3r =,直线:10l x ay --=,令100x y -=⎧⎨-=⎩,解得10x y =⎧⎨=⎩,即直线恒过定点()1,0,又()()22110249-++=<,所以点()1,0在圆内,设()11,A x y ,()22,B x y ,()00,M x y ,由22102440x ay x y x y --=⎧⎨+-+-=⎩,消去x 整理得()221450a y y ++-=,显然0∆>,则12241y y a +=-+,则()21212224221a a x x a y y a -++=++=+,所以21222121x x a a a +-+=+,122221y y a +=-+,则212022121x x a a x a +-+==+,1202221y y y a +==-+则()()2222200222111111a a x y a a ⎛⎫--⎛⎫-++=+= ⎪ ⎪++⎝⎭⎝⎭,又直线:10l x ay --=的斜率不为0,所以M 不过点()1,0,所以动点M 的轨迹方程为()()22111x y -++=(除点()1,0外),圆()()22111x y -++=的圆心为()1,1N -,半径11r =,又ON ==,所以11ON r OM ON r -≤≤+,11OM -≤≤,即OM 的取值范围为1⎤-+⎦.故选:D【点睛】关键点点睛:本题关键是求出动点M 的轨迹,再求出圆心到原点的距离ON ,最后根据圆的几何性质计算可得.8.已知函数()f x 的定义域为()0,∞+,且()()()()(),1e x y f x y xyf x f y f ++==,记()()1,2,32a f b f c f ⎛⎫=== ⎪⎝⎭,则()A.a b c <<B.b a c <<C.a c b <<D.c b a<<【答案】A 【解析】【分析】根据函数()f x 满足的表达式以及()1e f =,利用赋值法即可计算出,,a b c 的大小.【详解】由()()()()(),1e x y f x y xyf x f y f ++==可得,令12x y ==,代入可得()21111=e 222f f ⎛⎫=⨯ ⎪⎝⎭,即12a f ⎛⎫==± ⎪⎝⎭,令1x y ==,代入可得()()22221e f f ==,即()2e22b f ==,令1,2x y ==,代入可得()()()23e 32122e e 23f f f ==⨯=,即()3e 33c f ==;由e 2.71828≈⋅⋅⋅可得23e e 23±<<,显然可得a b c <<.故选:A【点睛】方法点睛:研究抽象函数性质时,可根据满足的关系式利用赋值法合理选取自变量的取值,由函数值或范围得出函数单调性等性质,进而实现问题求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.现有甲、乙两家检测机构对某品牌的一款智能手机进行拆解测评,具体打分如下表(满分100分).设事件M 表示从甲机构测评分数中任取3个,至多1个超过平均分”,事件N 表示“从甲机构测评分数中任取3个,恰有2个超过平均分”.下列说法正确的是()机构名称甲乙分值90989092959395929194A.甲机构测评分数的平均分小于乙机构测评分数的平均分B.甲机构测评分数的方差大于乙机构测评分数的方差C.乙机构测评分数的第一四分位数为91.5D.事件,M N 互为对立事件【答案】BD 【解析】【分析】直接由平均数、方差、百分位数及对立事件的概念,逐一对各个选项分析判断,即可得出结果.【详解】对于选项A ,甲机构测评分数的平均分9098909295935x ++++==甲,乙机构测评分数的平均分9395929194935x ++++==乙,所以选项A 错误,对于选项B ,甲机构测评分数的方差2222211[(9093)(9893)(9093)(9293)(9593)]9.65D =-+-+-+-+-=,2222221[(9393)(9593)(9293)(9193)(9493)]25D =-+-+-+-+-=,所以选项B 正确,对于选项C ,乙机构测评分数从小排到大为:91,92,93,94,95,又50.25 1.25i np ==⨯=,所以乙机构测评分数的第一四分位数为92,所以选项C 错误,对于选项D ,因为甲机构测评分数中有且仅有2个测评分数超过平均分,由对立事件的定义知,事件,M N 互为对立事件,所以选项D 正确,故选:BD.10.函数()()3R mf x x m x=-∈的图象可能是()A. B.C. D.【答案】ABD 【解析】【分析】利用分类讨论及函数的单调性与导数的关系,结合函数的性质即可求解.【详解】由题意可知,函数()f x 的定义域为()(),00,∞∞-⋃+,当0m >时,()2220mf x x x=+>',函数()f x 在()(),0,0,∞∞-+上单调递增,故B 正确;当0m =时,()3f x x =,()20f x x '=>,所以在()(),0,0,∞∞-+上单调递增,故D 正确;当0m <时,当0x >时,()30m f x x x =->;当0x <时,()30mf x x x=-<;故A 正确;C 错误.故选:ABD.11.已知椭圆22:142x y C +=的左、右顶点分别为,A B ,左焦点为,F M 为C 上异于,A B 的一点,过点M 且垂直于x 轴的直线与C 的另一个交点为N ,交x 轴于点T ,则()A.存在点M ,使120AMB ∠=B.2TA TB TM TN ⋅=⋅C.FM FN ⋅ 的最小值为43-D.FMN 周长的最大值为8【答案】BCD 【解析】【分析】对于A ,判断ACB ∠与2π3的大小即tan a OEB b ∠===即可;对于B ,设(),M m n ,(),0T m ,(),N m n -,利用坐标分别求出等式左右验证即可;对于C ,求出FM FN ⋅,利用二次函数求最值即可;对于D ,利用椭圆的定义,转化求()8MF MF MN '-+'-的最大值,即可.【详解】对于A ,设椭圆的上顶点为E ,则直角三角形BOE 中,tana OEBb ∠===,则2π3AEB ∠<,故A 错误;对于B ,设(),M m n ,则(),0T m ,(),N m n -,且22142m n +=,即2242m n -=,又()()2,0,2,0A B -,则()()()()2,02,022TA TB m m m m ⋅=--⋅-=-+- ()2242m n =--=-,又222TM TN n ⋅=- ,故2TA TB TM TN ⋅=⋅,则B 正确;对于C ,()F ,()()FM FN m n m n ⋅=+⋅+-((222242m m n m -=+-=+-232m =+,22m -<<,则当3m =-时,FM FN ⋅ 取最小值为43-,故C 正确;对于D ,设椭圆的右焦点为F ',FMN 的周长为:44MF NF MN MF NF MN ++=-+-+''()88MF MF MN =-+-'≤',当且仅当,,M N F '三点共线时,等号成立,故D 正确,故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}24,11A xx B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是__________.【答案】()(),33,-∞-+∞ 【解析】【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .13.已知函数()()2sin 3(π0)f x x ϕϕ=+-<<的一条对称轴为π4x =,当[]0,x t ∈时,()f x 的最小值为,则t 的最大值为__________.【答案】π2【解析】【分析】根据条件得到π4ϕ=-,从而得到()π2sin 34f x x ⎛⎫=- ⎪⎝⎭,令π34x t -=,再利用2sin y t =的图象与性质,即可求出结果.【详解】因为函数()()2sin 3(π0)f x x ϕϕ=+-<<的一条对称轴为π4x =,所以ππ3π(Z)42k k ϕ⨯+=+∈,得到ππ(Z)4k k ϕ=-+∈,又π0ϕ-<<,所以π4ϕ=-,所以()π2sin 34f x x ⎛⎫=-⎪⎝⎭,又当[]0,x t ∈时,()f x 的最小值为,令πππ3,3444x t t ⎡⎤-=∈--⎢⎥⎣⎦,则2sin y t =,由2sin y t =的图象与性质知,π5π344t -≤,得到π2t ≤,故答案为:π2.14.已知点()()1122,,,A x y B x y ,定义AB d =为,A B 的“镜像距离”.若点,A B 在曲线()ln 2y x a =-+上,且AB d 的最小值为2,则实数a 的值为__________.【答案】11+【解析】【分析】依题意求出()ln 2y x a =-+的反函数,将“镜像距离”转化成一对反函数图象上两点之间的距离,利用导函数的几何意义求出切线方程即可求得结果.【详解】由函数()ln 2y x a =-+可得()2ln y x a -=-,即2e y x a -=+;所以()ln 2y x a =-+的反函数为2e x y a -=+;由点()22,B x y 在曲线()ln 2y x a =-+上可知点()122,B y x 在其反函数2e x y a -=+上,所以AB d =相当于2e x y a -=+上的点()122,B y x 到曲线()ln 2y x a =-+上点()11,A x y 的距离,即1AB AB d d ==,利用反函数性质可得2e x y a -=+与()ln 2y x a =-+关于y x =对称,所以可得当1AB 与y x =垂直时,1AB AB d d =取得最小值为2,因此1,A B 两点到y x =的距离都为1,过点1,A B 的切线平行于直线y x =,斜率为1,即11y x a'==-,可得()1,ln 122x a y a a =+=+-+=,即()1,2A a +;A 点到y x =的距离1d ==,解得1a =;当1a =()(ln 2ln 12y x a x =-+=-++与y x =相交,不合题意;因此1a =.故答案为:1【点睛】关键点点睛:本题关键在于利用反函数性质将“镜像距离”问题转化为两函数图象上两点距离的最值问题,再由切线方程可解得参数值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e x ax b f x +=,当1x =时,()f x 有极大值1e.(1)求实数,a b 的值;(2)当0x >时,证明:()1x f x x <+.【答案】(1)1,0a b ==(2)证明见解析【解析】【分析】(1)根据题中条件列出方程组,解出验证即可;(2)变形不等式,构造函数利用函数单调性证明即可.【小问1详解】函数()f x 的定义域为(),∞∞-+,且()ex a b ax f x -='-,因为1x =时,()f x 有极大值1e,所以()()11e 10f f ⎧=='⎪⎨⎪⎩,解得1,0a b ==,经检验,当1,0a b ==时,()f x 在1x =时有极大值1e ,所以1,0a b ==;【小问2详解】由(1)知,()e xx f x =,当0x >时,要证()1x f x x <+,即证e 1x x x x <+,即证:e 1x x >+.设()e 1x g x x =--,则()e 1x g x '=-,因为0x >,所以()e 10xg x ='->,所以()g x 在()0,∞+上单调递增,所以()()00g x g >=,即e 10x x -->,即e 1x x >+,故当0x >时,()1x f x x<+.16.如图,三棱柱111ABC A B C -中,四边形1111,ACC A BCC B 均为正方形,,D E 分别是棱11,AB A B 的中点,N 为1C E 上一点.(1)证明:BN //平面1A DC ;(2)若11,3AB AC C E C N == ,求直线DN 与平面1A DC 所成角的正弦值.【答案】(1)证明见解析(2)10【解析】【分析】(1)连接1,,BE BC DE ,则有平面1BEC //平面1A DC ,可得BN //平面1A DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【小问1详解】连接1,,BE BC DE .因为AB //11A B ,且11AB A B =,又,D E 分别是棱11,AB A B 的中点,所以BD //1A E ,且1BD A E =,所以四边形1BDA E 为平行四边形,所以1A D //EB ,又1A D ⊂平面1,A DC EB ⊄平面1A DC ,所以EB //平面1A DC ,因为DE //1BB //1CC ,且11DE BB CC ==,所以四边形1DCC E 为平行四边形,所以1C E //CD ,又CD ⊂平面11,A DC C E ⊄平面1A DC ,所以1C E //平面1A DC ,因为11,,C E EB E C E EB ⋂=⊂平面1BEC ,所以平面1BEC //平面1A DC ,因为BN ⊂平面1BEC ,所以BN //平面1A DC .【小问2详解】四边形1111,ACC A BCC B 均为正方形,所以11,CC AC CC BC ⊥⊥.所以1CC ⊥平面ABC .因为DE //1CC ,所以DE ⊥平面ABC .从而,DE DB DE DC ⊥⊥.又AB AC =,所以ABC 为等边三角形.因为D 是棱AB 的中点,所以CD DB ⊥.即,,DB DC DE 两两垂直.以D 为原点,,,DB DC DE 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系D xyz -.设AB =则()(()((110,0,0,0,0,,0,3,0,0,3,,2D E C C A ,所以()(10,3,0,DC DA == .设(),,n x y z =为平面1A DC 的法向量,则100n DC n DA ⎧⋅=⎪⎨⋅=⎪⎩,即300y =⎧⎪⎨+=⎪⎩,可取()2,0,1n = .因为113C E C N =,所以((0,2,,0,2,N DN = .设直线DN 与平面1A DC 所成角为θ,则||sin |cos ,|10||||n DN n DN n DN θ⋅=〈〉===⋅ ,即直线DN 与平面1A DC所成角正弦值为10.17.2023年9月26日,第十四届中国(合肥)国际园林博览会在合肥骆岗公园开幕.本届园博会以“生态优先,百姓园博”为主题,共设有5个省内展园、26个省外展园和7个国际展园,开园面积近3.23平方公里.游客可通过乘坐观光车、骑自行车和步行三种方式游园.(1)若游客甲计划在5个省内展园和7个国际展园中随机选择2个展园游玩,记甲参观省内展园的数量为X ,求X 的分布列及数学期望()E X ;(2)为更好地服务游客,主办方随机调查了500名首次游园且只选择一种游园方式的游客,其选择的游园方式和游园结果的统计数据如下表:游园方式游园结果观光车自行车步行参观完所有展园808040未参观完所有展园20120160用频率估计概率.若游客乙首次游园,选择上述三种游园方式的一种,求游园结束时乙能参观完所有展园的概率.【答案】(1)分布列见解析,()56E X =(2)0.4【解析】【分析】(1)根据题意结合超几何分布求分布列和期望;(2)根据题意结合全概率公式运算求解.【小问1详解】由题意知:X 所有可能取值为0,1,2,则有:()0257212C C 70C 22P X ===,()1157212C C 351C 66P X ===,()2057212C C 52C 33P X ===,可知X 的分布列为:X012P 7223566533所以X 的数学期望为:()735550122266336E X =⨯+⨯+⨯=.【小问2详解】记事件A 为“游客乙乘坐观光车游园”,事件B 为“游客乙骑自行车游园”,事件C 为“游客乙步行游园”,事件M 为“游园结束时,乙能参观完所有展园”,由题意可知:()()()0.2,0.4,0.4P A P B P C ===,()()()0.8,0.4,0.2P MA P MB P MC ===∣∣∣,由全概率公式可得()()()()()()()0.4P M P A P MA PB P M B PC P M C =++=∣∣∣,所以游园结束时,乙能参观完所有展园的概率为0.4.18.已知抛物线2:2(0)C x py p =>的焦点为()0,1F ,过点F 的直线l 与C 交于,A B 两点,过,A B 作C 的切线12,l l ,交于点M ,且12,l l 与x 轴分别交于点,D E .(1)求证:DE MF =;(2)设点P 是C 上异于,A B 的一点,P 到直线12,,l l l 的距离分别为12,,d d d ,求122d d d的最小值.【答案】(1)证明见解析(2)12【解析】【分析】(1)利用导函数的几何意义求得直线12,l l 的表达式,得出,,D E M 三点的坐标,联立直线l 与抛物线方程根据韦达定理得出DE MF =;(2)利用点到直线距离公式可求得122122d d d =≥,可求出122d d d 的最小值.【小问1详解】因为抛物线C 的焦点为()0,1F ,所以2p =,即C 的方程为:24x y =,如下图所示:设点()()1122,,,A x y B x y ,由题意可知直线l 的斜率一定存在,设:1l y kx =+,联立241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以12124,4x x k x x +==-.由24x y =,得211,42y x y x '==,所以()1111:2x l y y x x -=-,即21124x x y x =-.令0y =,得12x x =,即1,02x D ⎛⎫ ⎪⎝⎭,同理2222:24x l x y x =-,且2,02x E ⎛⎫ ⎪⎝⎭,所以1212DE x x =-==.由2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,得21x k y =⎧⎨=-⎩,即()2,1M k -.所以MF ==故DE MF =.【小问2详解】设点()00,P x y ,结合(1)知()1111:2x l y y x x -=-,即2111:240l x x y x --=因为2211004,4x y x y ==,所以21d -==.同理可得22d -=,所以()2222221244kx x x x x x x x d d ⎡⎤--+-++--==又d==所以()()22212222004416112244kx x kd dd kx x--++==-+.当且仅当0k=时,等号成立;即直线l斜率为0时,122d dd取最小值12;19.“q-数”在量子代数研究中发挥了重要作用.设q是非零实数,对任意*n∈N,定义“q-数”1()1nqn q q-=+++利用“q-数”可定义“q-阶乘”()()!(1)(2)(),0! 1.q q q q qn n==且和“q-组合数”,即对任意*,,k n k n∈∈≤N N,()()()!!!qq qqnnk k n k⎛⎫=⎪-⎝⎭(1)计算:253⎛⎫⎪⎝⎭;(2)证明:对于任意*,,1k n k n∈+≤N,111kq q qn n nqk k k--⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭(3)证明:对于任意*,,,1k m n k n∈∈+≤N N,1.11mn k iiq q qn m n n iqk k k-+=+++⎛⎫⎛⎫⎛⎫-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭∑【答案】(1)155(2)证明见解析(3)证明见解析【解析】【分析】(1)根据题中定义,直接进行计算即可;(2)根据题中定义计算出等式左右两边的值,化简后即可证明;(3)根据题中的定义化简题中的条件,得到111n kq q qn n nqk k k---⎛⎫⎛⎫⎛⎫-=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,利用此等式,等到1m+个等式,相加即可.【小问1详解】由定义可知,()()()[][]2222222222222255!(1)(2)(3)(4)(5)33!2!(1)(2)(3)(1)(2)⎛⎫==⎪⎝⎭()()()232342222122212222(4)(5)155(1)(2)112+++++++===⨯+.【小问2详解】因为()()()()()()!()1!!!!!q q q q q q qq n n n n k k n k k n k ⋅-⎛⎫== ⎪--⎝⎭,()()()()()()1!1!1111!!!1!k q q k q q q q q q n q n n n q k k k n k k n k -⋅---⎛⎫⎛⎫+=+ ⎪ ⎪-----⎝⎭⎝⎭()()()1!()()!!q k q q q qn k q n k k n k -⎡⎤=+⋅-⎣⎦-.又()11()()11k k k n k q q k q n k q q q q q ---+⋅-=+++++++ 11()n q q q n -=+++= ,所以111k q q qn n n q k k k --⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭【小问3详解】由定义得:对任意*N,N ,,q qn n k n k n k n k ⎛⎫⎛⎫∈∈≤= ⎪ ⎪-⎝⎭⎝⎭.结合(2)可知111n k q q q q n n n n q k n k n k n k ---⎛⎫⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭111n k q qn n q k k ---⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭即111n k q q qn n n q k k k ---⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,也即111n k q q qn n n q k k k ---⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.所以111n m k q q q n m n m n m q k k k +-++++⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,11111n m k q q qn m n m n m q k k k +--++-+-⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,……111n k q q q n n n q k k k -+⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭.上述1m +个等式两边分别相加得:0111m n k i i q q qn m n n i q k k k -+=+++⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭∑.【点睛】关键点点睛:本题的关键是充分利用题中的定义进行运算.。
安徽省合肥市2020年高三第三次教学质量检测数学(理科)试卷文字版含答案
合肥市2020年高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150 分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知R 为实数集,集合{}20<<=x x A ,{}3<=x x B 则B A C R I )(=A .{}32<<x xB .{}32<≤x xC .{}320<≤<x x x 或D .{}320<≤≤x x x 或2.若复数21,z z 在复平面内对应的点关于原点对称,i z +=11,则21z z ⋅=A .2-B .i 2-C .2D .i 23.某居委会从辖区内A ,B ,C 三个小区志愿者中各选取2人,随机安排到这三个小区,协助小区保安做好管理和宣传工作.若每个小区安排2人,则每位志愿者不安排在自已居住小区,且每个小区安排的志愿者来自不同小区的概率为A .95B .94C .454D .1352 4.已知双曲线)0(12222>>=-b a b y a x 的顶点到渐近线的距离为2a ,则该双曲线的离心率为 A .32 B .2 C .23 D .332 5.“关于x 的方程x x a 2)12(=+有实数解”的一个充分不必要条件是A .131<<aB .21≥aC .132<<aD .121<≤a 6.已知23)3tan(=+πα,则ααααsin cos 3cos sin 3-+= A .91 B .93 C .31 D .33 7.公元前1650年的埃及莱因德纸草书上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米A .18870109-⨯斗B .10101078810-⨯斗C .1010978810-⨯斗D .1010878810-⨯斗 8.已知△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c .若B c b a cos 2=+,则2)(bc a b +的最小值为 A .22 B .3 C .32 D .49.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,该激光测速仪工作原理是:激光器发出的光平均分成两束后射出,并在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光会发生频移λϕsin 2v f p =,其中v 为测速仪测得被测物体的横向速度,入为激光波长,ϕ为两束探测光线夹角的一半,如图.若该激光测速仪安装在距离高铁1m 处,发出的激光波长为1550nm (1nm=9-10m ) ,测得某时刻频移为)(h /110030.99⨯,则该时刻高铁的速度约等于A .h km /320B .h km /330C .h km /340D .h km /35010.在长方体1111D C B A ABCD -中,AB=AD=6,AA 1=2,M 为棱BC 的中点,动点P 满足∠APD=∠CPM ,则点P 的轨迹与长方体的面DCC 1D 1的交线长等于A .32πB .πC .34π D .π2 11.已知不等式)]1ln([1+->--x x m x e x 对一切正数x 都成立,则实数m 的取值范围是A .]3,(e -∞B .]2,(e -∞ C .]1,(-∞ D .],(e -∞12.在矩形ABCD 中,AB=4,BC=34,点G ,H 分别是直线BC ,CD 上的动点,AH 交DG 于点P .若)(,10212<<==λλλCB CG DC DH ,矩形ABCD 的对称中心M 关于直线AD 的对称点是N ,则△PMN 的周长为A .12B .16C .λ24D .λ32第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题—第21题为必考题,每个试题考生都必须作第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上的相应位置.13.某高中各年级男女生人数统计如下表:性别人数年级高一 高二 高三男生592 563 520 女生 528 517 a 按年级分层抽样,若抽取该校学生80人中,高二学生有27人,则上表中a= .14.5)44(x x +-的展开式中2x 的系数为 .15.已知数列{}n a 中n a n =.数列{}n b 的前n 项和12-=n n S .若数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和M T n <对于*N n ∈∀都成立,则实数M 的最小值等于 .16.已知三棱锥A —BCD 的三条侧棱AB ,AC ,AD 两两垂直.其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为S A ,S B ,S C ,S D ,在下列所给的命题中,正确的有 (请写出所有正确命题的编号)。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
安徽省合肥市2014届高三第三次教学质量检测数学(文)试题
安徽省合肥市2014届高三第三次教学质量检测数学(文)试题考试时间:120分钟满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰,作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交,第I 卷(满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若1i a bi i =++(a 、b ∈R ,i 为虚数单位),则a+b=( ) A .32 B .l C .0 D .-12.函数f (x )=1n (x -1)的定义域为( ) A .(1,2) B .[1,2) C .(1,2] D .[1,2]3.若等差数列{a n }的前n 项和为S n ,且S 3=12,a 1 =2,则a 4=( )A .20B .10C .6D .8 4.空间中,若a 、b 、c 为三条不同的直线,α、β、γ为三个不同的平面,则下列命题正确的为( )A .若 a ⊥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ⊥α,b ⊥α,则a ∥bD .若α⊥β,α⊥γ,则β∥γ5."1"x ≥是1"2x x+≥( ) A .充分不必要条件 C .必要不充分条件C .充分且必要条件D .既不充分也不必要条件6.已知圆C :(x -l )2+y 2=l 与直线:x -2y+1=0相交于A 、B 两点,则|AB|=( )A B C D7.记直线x -3y -l=0的倾斜角为α,曲线y=1nx 在(2,1n2)处切线的倾斜角为β,则αβ+=( )A .2πB .4πC .34πD .54π8.已知函数f (x )=ax 3+bx 2+cx+d 图像如图所示,f ′(x )是f (x )的导函数,则不等式()f x x '>0的解集为( )A .(-∞,-l )U (0,1)B . (-∞,-1)U (1,+∞)C .(-1,0)U (0,1)D .(-l,0)U (1,+ ∞) 9.已知M (x ,y )落在双曲线22132y x -=的两条渐近线与抛物线y 2= -2 px (p>0)的准线所围成的封闭区域(包括边界)内,且点M 的坐标(x ,y )满足x+2y+a=0.若a 的最大值为-2,则p 为( )A . 2B . 4C . 8D . 1610.矩形ABCD 中,AB=2,AD=1,点E 、F 分别为BC 、CD 边上动点,且满足EF=1,则AE uu u r ·AF uuu r 的最小值为( )A .3B .4C .5+D .5第Ⅱ卷(满分100分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.定义在R 上的奇函数f (x ),若x>0时,f (x )= x (2x -3),则f (-1)=____ .12.执行右边的程序框图,若输出的结果为2,则输入的x为 。
安徽省合肥市2018年高三第三次教学质量检测语文试卷(含文言文翻译)汇编
安徽省合肥市2018年高三第三次教学质量检测语文试题注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。
2.答题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将答题卡和答题卷一并上交。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
20世纪的中国文学,基本是在作为一个框架的“中国”内部展开,是对这个框架内部的个人或群体的书写,而此框架本身并未成为作家们自觉描写的对象。
“中国”可以表现为人,可以表现为山川大地,可以表现为辽阔的疆土,也可以表现为悠久的历史。
但综合来看,对于“中国”的书写表现出发散性的特点,“中国”基本并未作为一个融贯的理念,更很少作为一个文明体得到呈现。
当下中国所处的历史方位被命名为“新时代”,这一命名具有深远的文明史意义。
而作为创造新文明之主体的“中国”,将越来越鲜明地成为一个意蕴深远的理论概念,成为我们向远方眺望的基本视野。
由这种视野出发的新时代文学,也将具有越来越鲜明的纵深感,并最终在客观上将自身发展成为表现新时代之本质性和整体性的史诗。
“新时代”具有深远的文明史意义,这并不是说当中国进入新时代后,就化解了所有的矛盾和问题,以一种文明的完成时态而存在。
新时代对新文明的创造是一个正在展开的过程,这个未有穷期的动态过程包含一种内在的张力,即它一方面在本质上表现为批判、推动现有文明进程的创造性和超越性,另一方面又在具体的现实问题上表现出一系列矛盾。
立足于现实中的各种矛盾和问题来展开文学世界,这是20世纪中国文学的传统,也是当下文学的基本特点。
2017-2018学年安徽省合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)〖详解wor
百度文库一一让每个人平等地提升自我2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷〔理科〕、选择题:本大题共 12个小题,每题 5分,共60分.在每题给出的四个选项中,只 有一项为哪一项符合题目要求的1. (5 分)设集合 A={x|x2 —4x+3<0}, B = {x|3x―6>0},那么 AAB=()A . (-2, 1)B. (-2, 3)C. (1, 2)D, (2, 3)2. (5分)i 是虚数单位,假设复数(1-mi) (1 + i)的实部与虚部相等,那么实数m=()A . - 1B. 0C. 1D. 23. (5分)向量□= (3, -2), b= (1, -4),假设向量4^+b 与a -止平行,那么实数 入中生有一颗类似芦苇的植物,露出水面一尺,假设把它引向岸边,正好与岸边齐〔如图所 示〕,问水有多深,该植物有多长?其中一丈为十尺.假设从该葭上随机取一点,那么该点取 自水下的概率为〔〕“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.〞其意思是:有一水池一丈见方,池 5. 〔5分〕?九章算术?勾股章有一 “引葭赴岸〞问题:那么 f (iog25)=()L1B.二(5分)函数 =3 x+0 ) (A>0, 3>.,假设将函数f 〔x 〕的图象向左平移 g-个单位,那么所得图象对应的函数可以为〔6. 102〔5分〕函数1+工 ,|X |<1,其中 a>0 且 awl,假设 f ( — 1) =f (2),7. 8. 〔5分〕执行如下图的程序框图,那么输出的〔5分〕假设实数x, yi 的值为〔C. 6击的最小值是〔D -1D. 79.10的图象如下图,»A • 尸-2si 门〔2x1 J : 〕 B- 尸2sin ⑵।手 〕4冗 耳冗C.二 一 ,n :二门,'D. 一「一 一 1 门 i 一 二H:—:10. 〔5分〕假设两个正实数 x, y 满足/L ■+ :=1,且 4+去-6冗恒成立,那么实数 m 的取值范围是〔 〕 A. 〔-8, 2〕 B.〔-巴 8〕 U 〔 2, +8〕 C. 〔-2, 8〕D. 〔-8, - 2〕 U 〔8, +8〕11. 〔5分〕在平面直角坐标系 xOy 中,点A 〔-1, 1〕在抛物线 C: x 2= ay 〔aw0〕上,抛 物线C 上异于点A 的两点P, Q 满足的二黑赢〔入<0〕,直线OP 与QA 交于点R, △ PQR 和△ PAR 的面积满足Sh PQR = 3S APAR ,那么点P 的横坐标为〔 〕 A.-4B. - 2C. 2D. 412. 〔5分〕函数f 〔x 〕 = 〔 1+ax+x 2〕 e x -x 2,假设存在正数x0,使得f〔x0〕< 0,那么实数a 的取值范围是〔 〕 A. [e- 2, +8〕B, 〔-8, e- 2]C. [—-2,D. 〔-co,工-2]ee二、填空题〔每题 5分,,茜分20分,将答案填在做题纸上〕13. 〔5分〕在〔x-2〕 8 〔x+1〕的展开式中,x7的系数为 .〔用数字作答〕 14. 〔5分〕k 可-2, - 1],那么双曲线x 2+ky 2=1的离心率的取值范围是15. 〔5分〕某三棱锥的三视图如下图,那么该三棱锥的四个面中最大的面积为俯视图一*、一一、八一、、“一… ,,」a1,a2,…,an 〔nC N 〕满足 an+an+1 = an+2+an+3,就称该数列为相侧视图16. 〔5分〕假设有穷数列邻等和数列〞,各项都为正整数的数列 {an }是项数为8的“相邻等和数列〞 =8, a2+a3=9,那么满足条件的数列{an }有 个.三、解做题〔本大题共 6小题,共70分.解容许写出文字说明、证实过程或演算步骤 .〕17. 〔10分〕递增的等比数列 {an }和等差数列{bn },满足ai+a4=18, a2a3=32, b2是 ai 和a2的等差中项,且b3=a3- 3.〔I 〕求数列{an }和{bn }的通项公式;(I )求AC, CD 的长;[60, 70), [70, 80), [80, 90), [90 , 100]分组,得到如下图的频率分布直方图.〔I 〕假设同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成 绩;〔n 〕估计参加这次知识竞赛的学生成绩的中位数〔结果保存一位小数〕;〔出〕假设规定80分以上〔含80分〕为优秀,用频率估计概率,从全体参赛学生中随机 抽取3名,记其中成绩优秀的人数为E,求E 的分布列与期望.,且 ai+a2(□)假设 ,求数列{Cn }的前n 项和Sn.18. (12 分)如图,在^ ABC 中,C= — 456,COS -ZADB=-Z -. 、J 5 ,不•西=48,点D 在BC 边上,且 AD =19. 〔12分〕2021年?诗词大会?火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国〞 的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这 60名学生的成绩进行统计,并按[40, 50〕, [50, 60〕, (n)求 cos/ BAD 的值.20. (12分)在四棱锥 P-ABCD 中,底面 ABCD 是菱形,AC=AB, PA ,平面 ABCD ,E, F 分别是AB, PD 的中点.(n)假设 AB=2AP=2,求平面PAD 与平面PCE 所成锐二面角的余弦值.21. (12分)椭圆Ci :(a>b>O )的离心率为—,椭圆Ci 截直线y=x 所得的b 22弦长为织〞.过椭圆Ci 的左顶点A 作直线l 与椭圆交于另一点 M,直线l 与圆C2: (x5-4) 2+y 2=r 2 (r>0)相切于点 N. (I )求椭圆C1的方程;(n)右AN=^MN ,求直线।的方程和圆C2的半径r. 22. (12 分)设函数 f(K )=-^^-+x-a+2(a6R) .(I)当曲线y = f (x)在点(1, f (, 1))处的切线与直线 y=x 垂直时,求a 的值; (n)假设函数尸(力二£(*)记一有两个零点,求实数 a 的取值范围.成绩(I )求证:AF//平面 PCE;4x2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1 .【解答】解:求解不等式可得:A={x|1<x<3}, B={x|x>2},A n B= {x|2v xv 3},写为区间的形式即(2, 3).应选:D.2 .【解答】解:♦「( 1-mi) (1 + i) = 1 + m+ (1 - m) i的实部与虚部相等,-- 1 + m= 1 - m,解得m=0.应选:B.3 .【解答]解:4 为+b=4 (3, — 2) + (1, — 4) = (13, —12),己一入b= (3—入,—2+4 X),;向量4a+b与0—北平行,13 (—2+4 A +12 (3— X) =0,解得上一工.4应选:C.4 .【解答】解:由题意知,函数f (x)的定义域为(-8, 0) U (0, +8),:•一_「,,.Jn Jk A L Jite -e e -e・♦・函数f (x)是偶函数,排除C、D;又f(l)二一排除B,e-e应选:A.5 .【解答】解:设水深为x尺,那么(x+1) 2=x2+52,解得x=12,即水深12尺.又葭长13尺,…_ 一一1 2那么所求概率:,6 .【解答】解::函数f(x)=,1+工,其中a>0且aw 1,.••f ( - 1) = ----------- W ----- =且,f (2) = a2,1+ C-l)2 2•••f (― 1) =f (2), •••包工〞,2 S解得a= ',2log14"f (log25) = (1) 1.叼5=普)2 =±应选:D.7 .【解答] 解:当S= 0, i=1时,不满足S> 1,那么S=9, i = 2; -w-当S= —, i= 2 时,不满足S> 1,那么S= —, i = 3;2 4当S= —, i= 3 时,不满足S> 1,那么S= —, i = 4;4 12当S=HL, i = 4时,不满足S> 1,那么S=筌,i = 5;12 24当S=2», i=5 时,满足S>1,24故输出的i值为5,应选:B.8 .【解答】解:作出实数x, y满足〞对应的平面区域如图:L设z=3±£=1+X二二,那么z的几何意义为过Q ( - 1, 1)的直线的斜率加1;z+1 x+1由图象可知当直线经过点A时,直线QBA的斜率最小,G二1 1 91q由, ,解得A (1, 3),此时QA的斜率k=-7—= 4,[x=2y 2 1+1 4应选:C.根据余弦函数图象:工卫2" 8' B 2解得:T=兀. 利用周期公式:- ,■ 3解得:3=2.根据函数的图象,当 x='L 时,二o ,8 8贝u : 2?工f K kn+三〔k Cz 〕,82解得:氏kn+W-〔k &〕. 4由于回|<-^-, 解得0=21, 4 那么:., 「ill.,将函数f 〔X 〕的图象向左平移 三个单位,2得到। ,,整理得:g 〔i 〕=-2sin 〔2x-4^〕. 应选:A.【解答】解::Vx+Wy=〔Vx+Wy 〕〕〔JL+3〕 当x=4y,即x=36且y=9时,虫后取最小值16. <4+4>々>3-6口恒成立,贝U 16>m 2-6m,解关于m 的不等式可得-2vmv8, 应选:C.11 .【解答】解:,一点A (― 1, 1)在抛物线 C: x 2= ay (aw0)上,,a= 19. 10 【解答】 解:根据余弦函数的图象的对称性求得: A=2,>16,••・抛物线方程为:x2=y.•••抛物线C上异于点A的两点P, Q满足而工£了(入<0),直线OP与QA交于点R,可得图形如下,且OA//PQ, (P在第二象限).,「koA=-1,可设PQ 的方程为:y= - x+b, P (x1, y1), Q (x2, y2)OA II PQ, S AF AQ=S;A POQ, ? S A PAR= S A ORQ•--S APQR=3S A PRA,'-S A PQR=3S A ORQ••.PR: OR=3: 1? OA: PQ = 1: 3PQ= 30A = 3&由,r= *+b得x% b=o,JX可x1+x2= — 1, x1x2= - bPQ=<1 + 1 ./"])2_4"卜’=3,厄,解得b= 2可得P ( - 2, 4)12 .【解答】解:当a=- 2 时,函数f (x) = ( 1 - 2x+x2) ex-x2,显然x=1 时,f (1)=-1<0,满足题意,排除选项A, C.当2 = 3- 2 时,函数 f (x) = ( ex+1 — 2x+x2) e' — x2= (1—x) 2ex+ e^〔x — x2= (1—x)2ex+x (ex+1- x),x>0时,(1-x) 2ex>0, x (e x+1-x) >0,所以不存在满足题意的正数xo,使得f (xo) <0,排除选项B.应选:D.填空题〔每题 5分,?茜分20分,将答案填在做题纸上〕「2?22-「1?2=96. 故答案为:96.其焦点在x 轴上,2其标准方程为 箕2茎「二1, k 、21其离心率e 2= £—2a又由 kq-2, - 1], 那么有 Wwe 2w2, 2 即丞wg 加,2故答案为: 曲,收•【解答】解:由题意知,该三棱锥的直观图如图中的A- BCD 所示,那么$ABCD 至黑1 X 2二1,江的而乂近X 2=V^,①好匚至乂在X 1=^故其四个面中最大的面积为可得:a2= 8 - a, a3=1+a, a4=7—a, a5=2+a, a6= 6- a, a7= 3+a, as= 5 - a. :数歹U {an}各项都为正整数,13 【解答】解:〔x — 2〕 8=C?x8-;x 7?2+/?22-.x ?27i?28,(x-2) 8 (x+1)的展开式中,x 7的系数为14 【解答】解:根据题意,双曲线的方程为x 2+ky 2=1,且 kC[ —2, - 1],L I -I ,k15 ,△ABD =V * 近又^[2 _3那么有离心率eC16故答案为:,设 a1 = a,-,I _ *解得:1 w aw 4, a CN ,那么满足条件的数列{an}有4个.故答案为:4.三、解做题(本大题共6小题,共70分.解容许写出文字说明、证实过程或演算步骤.)a [ + 3, a 二1817 .【解答】(I)由题意知,〞已1%二行2%二32%<为’七二2解得1 1,射16设等比数列{an}的公比为q,111q = 2,由题意知,•. I :,那么等差数列{bn}的公差d=2,'1• bn= b2+ ( n - 2) d = 3+2 (n - 2) = 2n - 1.(n) r ---------- ------- -<-- ----- -% (2n-D(2n+l) 2 ^2n-l 2n+l)4吟(*i)+…4易r忌T)__ 之18 .【斛答】斛:(I )在^ ABD 中,.8S NADB==",5. 4sinN ADB 5sin / CAD = sin (/ ADB - / ACD& 乂返也乂返必--- A-■—A ".5 2 5 2 10在4ADC中,由正弦定理得——芈——二sinZADC AC_CD〞一返一叵,5 10 2解得:AC=8,CD=^.(n) CA,CB:48, C=—.4V2•・一’・,1:, )sinz_ADBcQs -cusz_ADBsin—£5 ________ AL, sinZCAD sinZACD解得:口二6b,二-1 : 1,在△ ABC 中,:叱2_2XgX6&X *二2疝, 〔2715产+ 〔5料〕2-〔研〕* /2X2后 X5VS 节19 .【解答】解:〔I 〕 设样本数据的平均数为:X , 那么 三二45 乂0. 05+55X0. 15+65 乂0.2+75X0.3+85X0. 2+95 乂0. 1=72. .,估计参赛学生的平均成绩为 72.5分.〔n 〕设样本数据的中位数为 a,由0.05+0.15+0.2+0.3 >0.5知aC 〔70, 80〕. • ・0.05+0.15+0.2+ 〔a — 70〕 X 0.03 = 0.5,解得 ^^^^73,3, 故估计参加这次知识竞赛的学生成绩的中位数约为73.3分.〔出〕由题意知,样本中 80分以上〔包括80分〕的概率为 旦, 10 那么随机抽取一名学生的成绩是优秀的概率为 旦,,hB 〔3,旦〕.1010・"需=.〕=喘〕3裁,p 〔a=i 〕=c ;x 磊X 〔4〕2二就;P02〕pX 扁号掇;pg 步号尸后a[〔.二3X 卷号.20.【解答】 证实:〔I 〕取PC 中点H,连接EH 、FH.・•.E 为AB 的中点,ABCD 是菱形,,AE//CD,且AE 』CD, 2又F 为PD 的中点,H 为PC 的中点,,FH // CD,且FHh^CD , AE// FH ,且AE=FH,那么四边形 AEHF 是平行四边形, AF // EH .又 AF?平面 PCE, EH?面 PCE,・•.AF//平面 PCE.解:〔n 〕取BC 的中点为 O, ABCD 是菱形,AC=AB,第12页〔共18页〕在4ABD 中,由余弦定理可得:G 口 s/BAD=令y=- 1,那么丑=2, .•・平面PCE 的一个法向量为 7=〔我,-L 2〕, 又平面PAD 的一个法向量为ir= 〔1, 0, 0〕..一,-一、—m *n cosv ip,门〉 ~I m I , I n |Vo V【解答】解:〔I 〕由题意知, 工妾,即一 / 4, •- a 2=4b 2, a / a "•.・由椭圆C1截直线y=x 所得的弦长为 丝°,5AO± BC,AO, AD , AP 所在直线分别为 x, y, z 轴,建立空间直角坐标系 A - xyz,B (V5, -i, o), c(V5,i, o), D (O ,PCO, 0, 1), E 除卷,0), T), EC=(淬,y* 0),访二(泥,2, 0).〕,设平面的法向量为7=21即平面PAD 与平面PCE 所成锐二面角的余弦值为・♦.弦在第一象限的端点的坐标为(2杏,等),—^―-I一=1,将a2=4b2代入上式,解得a=2, b=1.5a2 5b22.♦・椭圆Ci的方程为:+/二i;(n)由(I)知, A (― 2, 0),设M (xi, yi), N(X2, y2),• -* 4 —,, • -• 1 -r 40 .. 」一- AN=yMN,一姗万视,倚y2=4yi,设直线l的方程为x= ?y- 2 (入W 0),s= X y-2联立* 丫?9,得〔 ,+4〕 y2-4'=0, v 二―—全+ /=1 1联立*町,得〔?+1〕 y2— 12 少+36 — r2= 0,&-4产+/二产..A n . 2 36 口6 入• △= 0,• • r =_G—,且疗_$—X 2+12 X 2+1••• 6}二4・4:,解得了工得x2+l X 2+452 r2 = 2 0,,直线I的方程为:5K ±2浜片10二0,圆C2的半径r= 2泥.22.【解答】解:(I)由题意知,函数f(x)的定义域为(0, +8),£'〔¥〕二.〔1口:_]〕+], f 〔1〕 = 1 - a= - 1,解得a=2. x2(n)假设函数卜6)二£@)+^—有两个零点,4z那么方程且皿^F+240—二0恰有两个不相等的正实根,x 4x2即方程-皂1口工+ x ^―(a_2) x+~~二0恰有两个不相等的正实根.4x2设函数晨K)=-&lnx+ J-Ca-2)工+^■,.』,%口 / 力、a_ 2s2-(a-2)x-a (2x-a) (x+1)g lx)=2K-(a-2) x------- ----------------- 二 ------------当aw.时,g' (x) >0恒成立,那么函数g (x)在(0, +°0)上是增函数,・♦・函数g (x)最多一个零点,不合题意,舍去;当a>0时,令g' (x) >0,解得x>—,令g' (x) < 0,解得.<算<且,2 2那么函数g (x)在(0, 内单调递减,在伊 +8)上单调递增.易知x—0时,g 〔x〕 >0恒成立,要使函数g 〔x〕有2个正零点, 2 2贝U g〔x〕的取小值名瑞.〕<o,即一皂]—〔0一2〕义"^"+今一<0, 即Flrr1+a<0,丁a> 0,1 成?1,解得a>2e,即实数a的取值范围为〔2e, +8〕■ ■>_>|, Z" .♦y ( 1—一"x2+(——— 5 0y -♦_x+y ~>一»♦_♦_■6—,第17页〔共18页〕'Ll - -一I,“1. ■■ ,■I a-i—IIS ■" .■■■I ,,"。
XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)
XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)XXX闻道2017-2018学年度第三次高中联合质量测评理科数学本试卷共4页,满分150分,考试用时120分钟。
注意事项:1.答题前,考生务必用5毫米黑色签字笔将自己的姓名和准考证号填写在答题卡上。
2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置。
如需改动,先划掉原来的答案,然后再写上新的答案。
不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I卷一、选择题1.设复数$z=3+i$(其中$i$为虚数单位),则复数$z-\frac{1}{z}$的虚部为($\quad$)A。
$z$。
B。
$-1919$。
C。
$-10$。
D。
$xxxxxxxx$2.若集合$M=\{x|x-2x^20\}$,则$M\cap N$($\quad$)A。
$\varnothing$。
B。
$\left\{\frac{1}{4}\right\}$。
C。
$\left\{\frac{1}{2},\frac{1}{1}\right\}$。
D。
$\left\{\frac{1}{4},+\infty\right\}$3.下图是XXX发布的2017年1月至7月的本市楼市价格同比增长与环比增长涨跌幅数据绘制的雷达图(注:2017年2月与2016年2月相比较,叫同比;2017年2月与2017年1月相比较,叫环比)。
根据该雷达图,则下列结论错误的是($\quad$)A。
2017年1月至7月该市楼市价格有涨有跌。
B。
2017年1月至7月分别与2016年1月至7月相比较,该市楼市价格有涨有跌。
C。
2017年2月至7月该市市价格涨跌波动不大,变化比较平稳。
D。
2017年1月至7月分别与2016年1月至7月相比较,1月该市楼市价格涨幅最大。
安徽省合肥市2012届高三第三次质检试题及答案(全科)
合肥2012第三次教学质量检测试题语文(考试时间:5月12日上午)第I卷(阅读题共66分)一、(9分)阅读下面的文字,完成1-3题。
“动漫”是动画和漫画的合称。
随着电影的发明,过去的漫画可以被拍成可运动的影片,使漫画人物活动起来,于是就有了动画,二者共同成就了“动漫艺术”。
在数字媒介时代,人们采用数字图像与图形的处理技术,借助编程或数字技术软件和网页动漫软件等,生成一系列景物与人物画面,用数字媒介连续播放静止图像以产生物体运动的效果,于是,数字动漫艺术应运而生,并迅速成为文化市场的新宠。
数字动漫是传统的动画、漫画艺术与现代数字科技联手打造的当代前沿艺术之一。
中外动漫艺术经验的积累表明,民族文化的想象表达、青春化的审美体验和数字化的审美创造,形成了动漫艺术新的美学原则和审美方式。
民族文化的想象表达是数字动漫艺术审美的精神根脉。
动漫王国是一个人造的虚拟世界,体现着现实世界中我们的思想情感与精神文化,是社会文化与现代科学技术的复合物,其中蕴含着特定民族文化的传统赓续、精神底色和价值取向。
各国动漫作品的思想情感及艺术特色都是本民族文化的艺术表征。
取材于中国传统文化的美国动漫作品《花木兰》等,虽然外在形态具有中国化的特征,但其中的思想内涵和价值导向已经被“美国化”和“他者化”了。
青春化的审美体验是数字动漫艺术的人文认同。
动漫艺术的主要接受者是青少年,那些生动的数字动漫形象正是满足他们生理与心理需求的精神食粮,能为他们带来欲望的宣泄和青春化的审美体验,替他们在虚拟世界中实现青春的幻想,达到现实生活中难以实现的的艺术魅力和广阔的创新空间。
不过在动漫艺术审美时应该看到,艺术的终极价值仍然得靠艺术的方式来获得,技术只是艺术创作的媒介、手段和载体,永远代替不了艺术本身。
数字技术为动漫艺术提供了更好的表现手段和应用领域,将人类的艺术创作呈现出更具视觉冲击力的效果,但数字化艺术首先必须让技术的方法服从和服务于艺术的行为,用技术的手段实现艺术的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年 数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若集合{}042<-∈=x x R x M ,集合{}4,0=N ,则=N M ( )A .[0,4]B .[0,4)C .(0,4]D .(0,4) 2.设i 为虚数单位,复数iiz -=3,则z 的共轭复数=z ( ) A .-1-3i B .1-3i C .-1+3i D .1+3i 3.在正项等比数列{}n a 中,100110091008=⋅a a ,则=+⋅⋅⋅++201621lg lg lg a a a ( ) A .2015 B .2016 C .-2015 D .-20164.已知双曲线12222=-b y a x 的焦距为10,一条渐近线的斜率为2,则双曲线的标准方程是( )A .120522=-y x B .152022=-y x C .1802022=-y x D .1208022=-y x 5.直线01)1(:2=+-+y a x m ,直线01)22(:=--+y a x n ,则“a=-3”是“直线m 、n 关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.执行如图所示的程序框图,若输入的m,n 分别为204,85,则输出的m=( ) A .2 B .17 C .34 D .857.若等差数列{}n a 的公差d ≠0,前n 项和为n S ,若*∈∀N n ,都有10S S n ≤,则( )A .*∈∀N n ,1+≤n n a a B .0109>⋅a a C .172S S > D .019≥S8.设不等式组⎪⎩⎪⎨⎧≥-+≤--≥+-02,084,0632y x y x y x 表示的平面区域为Ω,则当直线y=k(x-1)与区域Ω有公共点时,k 的取值范围是( )A .),2[+∞-B .]0,(-∞C .]0,2[-D .),0[]2,(+∞--∞ 9.52)2)(21(x x+-的展开式中,x 项的系数是( ) A .58 B .62 C .238 D .24210.某品牌饮料瓶可以近似看作是由一个半球和一个圆台组成,其三视图如图所示,该饮料瓶的表面积为( )A .π81B .π125C .π)145741(+D .π)145773(+11.甲、乙两名选手参加职工技能操作比赛,比赛项目由现场抽签决定.甲选手先从一个不透明的盒中摸出一小球,记下技能名称后放回盒中,再由乙选手摸球.若盒中4个小球分别贴了技能1号到4号的标签,则甲未抽到技能1号,乙未抽到技能2号且甲乙比赛项目不同的概率等于( )A .1615 B .43 C .169 D .16712.关于x 的不等式a ax x x x x x +≤+++++2222sin )22(22的解集为),1[+∞-,则实数a 的取值范围是( )A .),1[+∞B .),2[+∞C .),3[+∞D .),4[+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知)4,(),,1(t b t a ==,若b a ∥,则t=_______. 14.已知函数)2,0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象如图所示,则f(x)函数的解析式为______.15.已知函数⎩⎨⎧<-≥+=1),2(,1),1(log )(2x x f x x x f ,则不等式f(x)>2的解集是______.16.已知数列{}n a 满足:3)14)(54(,211-=--=+n n a a a ,则=-+⋅⋅⋅+-+-+-11111111321n a a a a ____. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分) 如图,在△ABC 中,32,3==∠AC B π.(1)若θ=∠BAC ,求AB 和BC 的长(结果用θ表示);(2)当AB+BC=6时,试判断△ABC 的形状.18.(本小题满分12分)从某校的一次学科知识竞赛成绩中,随机抽取了50名同学的成绩,统计如下:(1)求这50名同学成绩的样本平均数x (同一组中的书库用该组区间的中点值作代表); (2)用频数分布表可以认为,本次学科知识竞赛的成绩Z 服从正态分布)196,(μN ,其中μ近似为样本平均数x .①利用该正态分布,求P(Z>74);②某班级共有20名同学参加此次学科知识比赛,记X 表示这20名同学中成绩超过74分的人数,利用①的结果,求EX. 附:若),(~2σμN Z ,则9544.0)22(,6828.0)(=+<<-=+<<-σμσμσμσμZ P Z P .19.(本小题满分12分)如图,直角三角形ABC 中,∠A=60°,∠ABC=90°,AB=2,E 为线段BC 上一点,且BC BE 31=,沿AC 边上的中线BD 将△ABD 折起到△PBD 的位置.(1)求证:PE ⊥BD ;(2)当平面PBD ⊥平面BCD ,求二面角C-PB-D 的余弦值. 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x E 的离心率为23,短轴长为2,过圆)0(:222b r r y x C <<=+上任意一点作圆C 的切线与椭圆E 交于A ,B 两点,O 为坐标原点.(1)当r 为何值时,OA ⊥OB ;(2)过椭圆E 上任意一点P 作(1)中所求圆的两条切线分别交椭圆于M ,N ,求△PMN 面积的取值范围. 21.(本小题满分12分) 已知函数x a e x x f xln 1)(++=有极值点,其中e 为自然对数的底数. (1)求a 的取值范围;(2)若]1,0(e a ∈,求证:]2,0(∈∀x ,都有aea a x f 21)(-+<. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,弧AE=弧AC ,DE 交AB 于点F.(1)求证:PB PA PO PF ⋅=⋅; (2)若720,2,4===DF PB PD ,求弦CD 的弦心距.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线)(sin 22,cos 2:为参数ααα⎩⎨⎧+==y x C ,直线)(2,23:为参数t ty t x l ⎩⎨⎧=+=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)写出曲线C 的极坐标方程,直线l 的普通方程;(2)点A 在曲线C 上,点B 在直线l 上,求A 、B 两点间距离AB 的最小值. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数12)(+++=x m x x f . (1)当m=-1时,解不等式3)(≤x f ;(2)若]0,1(-∈m ,求函数12)(+++=x m x x f 的图象与直线y=3围成的多边形面积的最大值.合肥市2016年高三第三次教学质量检测 数学试题(理)参考答案及评分标准一、选择题1.A2.C3.D4.A5.A6.B7.D8.D9.C 10.C 11.D 12.B 二、填空题13.t=-2或t=2 14.)32sin(2)(π+=x x f 15.),3()1,(+∞--∞16.232231--+n n 三、解答题(2)∵AB+BC=6,由(1)得,23)6sin(,6)3sin(4sin 4=+∴=++θπθπθ, ∵32636),32,0(πθππθππθ=+=+∴∈或,∴26πθπθ==或. ∴△ABC 为直角三角形. 18.解:(1)样本平均数6050295502855067550156550125550104550335=⨯+⨯+⨯+⨯+⨯+⨯+⨯=x . (2)①由(1)可知,Z~N(60,196), 故1587.02)14601460(1)74(=+<<--=>Z P Z P .②由①知,某位同学参加学科知识比赛的成绩Z 超过74分的概率为0.1587,依题意可知,X~B(20,0.1587),所以EX=20×0.1587=3.174.19.解:由已知得DC=PD=PB=BD=2,32=BC 。
(1)取BD 的中点O ,连接OE 、PO , ∵OB=1,332=BE ,∴33=OE ,∴OE ⊥BD , ∵PB=PD ,O 为BD 中点,∴PO ⊥BD ,又PO ∩OE=O , ∴BD ⊥平面POE ,∴BD ⊥PE.(2)∵平面PBD ⊥平面BCD ,∴PO ⊥平面BCD ,如图建立空间直角坐标系,O 为坐标原点,则)0,2,3(),3,0,0(),0,1,0(-C P B , ∴)0,3,3(),3,1,0(-=-=BC BP ,设平面PBC 的法向量),,(z y x =,则⎩⎨⎧=-=+-033,03y x z y ∴⎪⎩⎪⎨⎧==yx y z 3,33不妨令3=y ,得)1,3,3(=,又平面PBD 的法向量)0,0,1(=m ,∴13133,cos >=<n m , 即二面角C-PB-D 的余弦值为13133. 20.解:(1)由已知,得⎪⎪⎩⎪⎪⎨⎧==+=,22,23,222b acc b a 得⎩⎨⎧==,1,2b a ∴椭圆14:22=+y x E . 设),(),,(2211y x B y x A ,当直线AB 的斜率不存在时,直线r x AB ±=:,即r x x ±==21,代入椭圆方程,得4122221r y y -==,145)41(22221212121-=--=-=+=⋅r r r y x y y x x ,∵0<r<1,∴当552=r 时,0=⋅OB OA ,即OA ⊥OB , 当直线l 的斜率存在时,设n kx y l +=:,即⎪⎩⎪⎨⎧=++=14,22y x n kx y 得0448)41(222=-+++n knx x k , 则22212214144,418k n x x k kn x x +-=+-=+,∴22121221212121)()1())((n x x kn x x k n kx n kx x x y y x x OB OA ++++=+++=+=⋅2222222222241)1(454148)44)(1(k k n k n k n n k n k ++-=+++--+=,∵直线l 与圆C 相切,∴r k n =+21,即)1(222k r n +=.∴22241)1)(45(k k r OB OA ++-=⋅,∵0<r<1,∴当552=r 时,0=⋅OB OA ,即OA ⊥OB , 综上可知,552=r . (2)由(1)知,OP ⊥OM ,OP ⊥ON ,∴OP ⊥MN 且MN 过原点O , 当MN 的斜率存在且不为0时,设)0(:11≠=k x k y MN ,由⎪⎩⎪⎨⎧=+=14221y x xk y ,得21212212414,414k k y k x M M +=+=, ∴212122411422k k yx OM MN MM++=+==,同理:21212121412141112k k k k OP ++=++=, ∴)2,58[)41)(4()1(4212121221∈+++=⋅=∆k k k MN OP S PMN,当MN 与坐标轴垂直时,2=∆PMN S ,故△PMN 面积的取值范围是]2,58[.21.解:(1)x x x x exx a x a e e x e x f -=++-=')1()(, 依题意,函数)(1)(2x x ex a x e x x a x f -=-='存在正的零点,且在零点两侧附近)(x f '的值异号.令)0()(2>=x e x x g x ,则x e x a 2=有正根⇔)0()(2>=x ex x g x 的图象与直线y=a 有交点.∵xe x x x g )2()(-=',∴当)2,0(∈x 时,0)(>'x g ;当),2(+∞∈x 时,0)(<'x g , ∴x ex x g 2)(=在)2,0(上单调递增,在),2(+∞上单调递减,故x>0时,2max4)2()(e g x g ==,又)0()(2>=x ex x g x 在),0(+∞上恒成立,∴240e a <<时,0)(2=-=x e x a x h 存在正根1x ,即)(1)(2x x ex a x e x x a x f -=-='有正零点1x ,且当0)(),,0(1>∈x h x x ,即0)(>'x f ,当0)(),2,(1<∈x h x x ,即0)(<'x f .∴1x x =是函数x a e x x f x ln 1)(++=(a>0)的极值点,故a 的取值范围是)4,0(2e. (2)由(1)可知,当]1,0(e a ∈时,函数x a ex x f x ln 1)(++=(a>0)有一个极值点1x ,即,201<<x x e x a 2=,∵]1,0(e a ∈,∴e e x x 10121≤<,由x ex x g 2)(=在]2,0(上单调递增,且e g 1)1(=得,101≤<x .∵0)(1111=-='x ex x a x f 且当),0(1x x ∈时,0)(>-='x e x x a x f ,当]2,(1x x ∈时,0)(<-='xe xx a x f , ∴f(x)在),0(1x 上单调递增,在]2,(1x 上单调递减,∴]2,0(∈∀x ,111ln 1)()(1x a e x x f x f x ++=≤.① ∵x e x a 2=,∴12111ln 1)(11x e x e x x f x x ++=, 令])1,0((ln 1)(2∈++=x x ex e x x F x x ,则x e x x x x F ln )2()(-=', 故由10≤<x 得0ln )2()(≤-='x ex x x x F 在(0,1]上恒成立, 即x ex e x x F x x ln 1)(2++=在(0,1]上单调递减, 又0)(112111111>-=-=-x e e x e x x a x x x x 在]1,0(1∈x 时恒成立,∴101≤<<x a , ∴aa e a a e a a F x F x f ln 1)()()(211++=<=,② 又ea 10≤<时,22ln 1ln a a a a -≤⇒-≤, ∴aa a e a a e a a e a a F 221ln 1)(-+<++=,③ 综合①②③得,当]1,0(e a ∈时,]2,0(∈∀x ,都有a ea a x f 21)(-+<. 22.解:(1)连接OE 、OC ,∵弧AE=弧AC ,∴EOC COA EOA ∠=∠=∠21, 又COA EDC ∠=∠,故COP FDP ∠=∠,∵P P ∠=∠,∴COP FDP ∆∆~,∴PD PC PO PF POPD PC PF ⋅=⋅⇒=, 由割线定理得PD PC PB PA ⋅=⋅,∴PB PA PO PF ⋅=⋅. (2)由(1)知COP FDP ∆∆~,则PO PD OC DF =, 设⊙O 的半径为r ,则524720=⇒+=r rr , 故由PD PC PB PA ⋅=⋅得,2)4(4212=⇒+=⨯CD CD ,∴弦CD 的弦心距为621522=-.23.解:(1)由)(sin 22,cos 2:为参数ααα⎩⎨⎧+==y x C 得,4)2(22=-+y x ,即0422=-+y y x , 根据y y x =+=θρρsin ,22得曲线C 的极坐标方程为θρsin 4=. 直线)(2,23:为参数t ty t x l ⎩⎨⎧=+=的普通方程为x-y-3=0.(2)A 、B 两点间距离AB 的最小值即是圆4)2(22=-+y x 的圆心(0,2)到直线x-y-3=0的距离减去半径2,即242522320-=---,故AB 的最小值为2425-. 24.解:(1)当m=-1时,不等式31213)(≤++-⇔≤x x x f , 若21-≤x ,则131213)(-≥⇒≤---⇔≤x x x x f ,故211-≤≤-x . 若121≤<-x ,则131213)(≤⇒≤++-⇔≤x x x x f ,故121≤<-x . 若1>x ,则131213)(≤⇒≤++-⇔≤x x x x f ,这与x>1矛盾,故∅∈x , 综上所述,当m=-1时,不等式3)(≤x f 的解集为[-1,1].(2)若]0,1(-∈m ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧->++-≤<--+-≤---=+++=mx m x m x m x x m x x m x x f ,1321,121,1312)(, 画出函数y=f(x)的图象与直线y=3(草图), 则12)(+++=x m x x f 的图象与直线y=3围成的多边形为四边形ABCD , 易得)3,2(),3,32(),21,9),21,21(),3,34(m E m D m m c m B m A +-----+-,∴四边形ABCD 的面积617443)1(46)52(222++-=+-+=m m m m S , 当]0,1(-∈m 时,四边形ABCD 的面积的最大值为617.。