九年级数学全册 模型构建专题 解直角三角形应用中的“双直角三角形”模型练习

合集下载

最新九年级数学上册4.4解直角三角形的应用小专题构造基本图形解直角三角形的实际问题专题训练新版湘教版

最新九年级数学上册4.4解直角三角形的应用小专题构造基本图形解直角三角形的实际问题专题训练新版湘教版

构造基本图形解直角三角形的理论成绩类型一构造单不断角三角形解决理论成绩【例1】如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一条直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取3≈1.73,结果保留整数)【方法总结】经过构造单一的直角三角形,只需知道其中的一条边长和一个锐角,就可以利用解直角三角形的知识求出其余各边的长.变式练习1 如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,俯视旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,3≈1.732)类型二构造单一非直角三角形解决理论成绩【例2】为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需建筑隧道AB,如图,在山外一点C 测得BC距离为200 m,∠CAB=54°,∠CBA=30°,求隧道AB的长(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位).【方法总结】经过构造一个非直角三角形,已知其中的两角和一边,可过第三个角的顶点作高,将三角形转化为两个直角三角形,再利用解直角三角形的知识求出其余各边长.变式练习2 如图,某天上午9时,朝阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时分分观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处地位B与城市P的距离.(参考数据:sin36.9°≈3/5,tan36.9°≈3/4,sin67.5°≈12/13,tan67.5°≈12/5)类型三 构造双直角三角形解决理论成绩【例3】(张家界中考)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A 点观测到我渔船C 在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B 点,观测我渔船C 在东北方向上.问:渔政310船再按原航向航行多长工夫,离渔船C 的距离比来?(渔船C 捕鱼时挪动距离忽略不计,结果不取近似值)【方法总结】如图,构造两个直角三角形,利用解直角三角形的知识容易知道如下结果:tan β=b h ,tan α=ba h +, ∴a=h/tan α-h/tan β, b=αβαtan tan tan -a ,h=αβαβtan tan tan tan -a . 变式练习3 (益阳中考)“中国·益阳”网上音讯,益阳市为了改善郊区交通形状,计划在康富路的北端建筑通往资江北岸的新大桥.如图,新大桥的两端位于A 、B 两点,小张为了测量A 、B 之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:∠B DA=76.1°,∠BCA=68.2°,CD=82米.求AB 的长(精确到0.1米).(参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5)变式练习4 (岳阳中考)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2 m.为保障安全,学校决定对该楼梯进行改造,降低坡度,拟建筑新楼梯AD ,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)在楼梯口B左侧正前方距离舞台底部C点3 m处有一株大树,修新楼梯AD时底端D能否会触到大树?并阐明理由.变式练习5 (常德中考)如图,A,B,C表示建筑在一座山上的三个缆车站的地位,AB,BC表示连接缆车站的钢缆.已知A,B,C所处地位的海拔AA1,BB1,CC1,分别为160米,400米,1 000米,钢缆AB,BC分别与程度线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)参考答案【例1】在Rt△ACB中,∠CAB=60°,CB=AC·tan60°=323.∴DB=CB-CD=323-16≈39.答:荷塘宽DB的长约为39米.变式练习1 在Rt△ACE中,∠CEA=60°,CE=BD=6,∴tan∠AEC=AC/CE,∴AC=CE·tan∠AEC=6tan60°=63,∴AB=AC+BC=63+1.5≈10.39+1.5=11.89≈11.9(米).答:旗杆AB的高度为11.9米.【例2】过点C作CD⊥AB于D.在Rt△BCD中,∵∠B=30°,BC=200 m.∴CD=1/2BC=100 m,BD=1003 m.在Rt△ACD中,∵tan∠CAB=CD/AD,∴AD=100/tan54°≈72 m,∴AB=AD+BD=245 m.答:隧道AB的长约为245 m.变式练习2 设BC=x海里,由题意,易得AB=21×(14-9)=105(海里),则AC=105-x(海里).在Rt△BCP中,tan36.9°=PC/BC,∴PC=BC·tan36.9°=3/4x.在Rt△ACP中,tan67.5°=PC/AC,∴PC=AC·tan67.5°=12/5(105-x).∴34x=12/5(105-x),解得x=80.∴PC=3/4x=60(海里),∴PB=100(海里).答:此时轮船所处地位B与城市P的距离约为100海里.【例3】作CD⊥AB,交AB的延伸线于D,则当渔政310船航行到D处时,离渔船C的距离比来.设CD=x,在Rt△ACD 中,∵∠ACD=60°,tan∠AC D=AD/CD,∴AD=3x.在Rt△BCD中,∵∠CBD=∠BCD=45°,∴BD=CD=x,∴AB=AD-BD=AD=3x-x=(3-1)x.设渔政船从B航行到D需求t小时,则AB0.5=BDt,∴(3-1)x0.5=xt,(3-1)t=0.5,∴t=413+.答:渔政310船再航行413+小时,离渔船C的距离比来.变式练习3 设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=AB/AC,∴AB=AC·tan∠BCA=2.5(x+82).在Rt △ABD中,tan∠BDA=AB/AD,∴AB=AD·tan∠BDA=4x.∴2.5(x+82)=4x,∴x=410/3.∴AB=4x=410/3×4≈546.7.答:AB的长约为546.7米.变式练习4 (1)在△ABC中,AC⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,斜边AB=2 m,在Rt△ABC中,AC=ABsin45°=2×2/2=2(m).(2)在Rt△ADC中,∠ADC=30°,∴CD=6<3.∴不会触到大树.变式练习5在Rt△ABD中,BD=400-160=240,∠BAD=30°,则AB=BD/sin30°=480 m.在Rt△BCB2中,CB2=1 000-400=600,∠CBB2=45°.则CB=CB2/sin45°=6002m.∴AB+BC=480+6002≈1 329(米).答:钢缆AB和BC的总长度约为1 329米.成都七中实验学校 2015-2016学年(上期)第一学月考试八年级语文考生留意:1.开考之前请考生将本人的考室号、座号等信息精确的填写在指定的地位,一切答案都写在答题卷上,对错误填写的考生成绩以0分计算。

湘教版九年级数学上册-模型构建专题:解直角三角形应用中的“双直角三角形”模型

湘教版九年级数学上册-模型构建专题:解直角三角形应用中的“双直角三角形”模型

模型构建专题:解直角三角形应用中的“双直角三角形”模型◆类型一叠合式1.(2016·苏州中考)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为【方法16】()A.23m B.26mC.(23-2)m D.(26-2)m第1题图第2题图2.(2016·巴彦淖尔中考)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是【方法16】() A.30003m B.3000(3+1)mC.3000(3-1)m D.15003m3.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO =58°,此时B处距离码头O多远(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)?◆类型二背靠式4.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为() A.300米B.1502米C.900米D.(3003+300)米第4题图第5题图5.(2016·荆州中考)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为11°48′,测得塑像顶部A处的仰角为45°,点D 在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为________米(参考数据:tan78°12′≈4.8).6.(2016·郴州中考)小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度(结果保留到整数,参考数据:2≈1.4,3≈1.7).模型构建专题:解直角三角形应用中的“双直角三角形”模型1.B 2.C3.解:设B 处距离码头Ox km ,在Rt △CAO 中,∠CAO =45°,∵tan ∠CAO =CO AO,∴CO =AO ·tan ∠CAO =(45×0.1+x )·tan45°=(4.5+x )(km).在Rt △DBO 中,∠DBO =58°,∵tan ∠DBO =DO BO,∴DO =BO ·tan ∠DBO =x ·tan58°.∵DC =DO -CO ,∴36×0.1=x ·tan58°-(4.5+x ),∴x ≈13.5.答:B 处距离码头O 大约13.5km.4.D5.58 解析:如图,过点C 作CE ⊥AB 于点E .由题意得EB =CD =10米.∵∠ECB =11°48′,∴∠EBC =78°12′,则tan78°12′=EC BE =EC 10≈4.8,∴EC ≈48米.∵∠ACE =45°,∴AE =EC ≈48米,∴此塑像的高AB =AE +EB ≈48+10=58(米).6.解:在Rt △ADC 中,∠ACD =30°,tan ∠ACD =AD CD ,CD =9米,∴AD =CD ·tan ∠ACD =9×33=33(米).在Rt △CDB 中,∠BCD =45°,tan ∠BCD =BD CD,∴BD =CD =9米,∴AB =AD +BD =33+9≈14(米).答:对面楼房AB 的高度约为14米.。

九年级数学全册模型构建专题解直角三角形应用中的“双直角三角形”模型练习(最新整理)

九年级数学全册模型构建专题解直角三角形应用中的“双直角三角形”模型练习(最新整理)

九年级数学全册模型构建专题解直角三角形应用中的“双直角三角形”模型练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学全册模型构建专题解直角三角形应用中的“双直角三角形”模型练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学全册模型构建专题解直角三角形应用中的“双直角三角形”模型练习的全部内容。

模型构建专题:解直角三角形应用中的“双直角三角形”模型—-形成思维模式,快准解题错误!类型一叠合式1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50错误! B.51C.50错误!+1 D.101第1题图第2题图2.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里/时的速度前往救援,海警船到达事故船C处所需的时间大约为________小时(用根号表示).3.(2016·眉山中考)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).◆类型二背靠式4.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C 处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为( )A.300米 B.150错误!米C.900米 D.(3003+300)米第4题图第5题图5.如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,则乙货船每小时航行________海里.6.(2016·郴州中考)小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度(结果保留到整数,参考数据:错误!≈1.4,错误!≈1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型构建专题:解直角三角形应用中的“双直角三角形”模型
——形成思维模式,快准解题
◆类型一叠合式
1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( )
A.50 3 B.51
C.503+1 D.101
第1题图
第2题图
2.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里/时的速度前往救援,海警船到达事故船C 处所需的时间大约为________小时(用根号表示).
3.(2016·眉山中考)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).
◆类型二背靠式
4.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为( ) A.300米 B.1502米
C.900米 D.(3003+300)米
第4题图
第5题图
5.如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,则乙货船每小时航行________海里.
6.(2016·郴州中考)小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度(结果保留到整数,参考数据:2≈1.4,3≈1.7).
模型构建专题:解直角三角形应用中的“双直角三角形”模型
1.C 解析:设AG =x 米.在Rt△AEG 中,∵tan∠AEG =AG EG ,∴EG =AG tan60°=3
3
x 米.在
Rt△ACG 中,∵tan∠ACG =AG CG ,∴CG =x
tan30°=3x 米,∴3x -3
3
x =100,解得x =50 3.
则AB =(503+1)米.
2.
3
2
解析:如图,过点C 作CD ⊥AB 交AB 的延长线于D .在Rt△ACD 中,∵∠ADC =90°,∠CAD =30°,AC =60海里,∴CD =1
2AC =30海里.在Rt△CBD 中,∵∠CDB =90°,∠CBD
=90°-30°=60°,∴BC =CD
sin∠CBD
=203(海里),∴海警船到达事故船C 处所需的时
间大约为203÷40=
3
2
(小时).
3.解:过C 作CD ⊥AB 于D ,交海面于点E .设BD =x 米.∵∠CBD =60°,∴tan∠CBD =CD BD
=3,∴CD =3x 米.∵AB =2000米,∴AD =(x +2000)米.∵∠CAD =45°,∴tan∠CAD =
CD
AD
=1,∴3x =x +2000,解得x =10003+1000,∴CD =3(10003+1000)=(3000
+10003)(米),∴CE =CD +DE =3000+10003+500=(3500+10003)(米).
答:黑匣子C 点距离海面的深度为(3500+10003)米.
4.D 解析:∵在Rt△ACD 中,∠A =30°,CD =300米,∴AD =CD
tan30°=3003(米).∵
在Rt△BCD 中,∠B =45°,CD =300米,∴BD =CD =300米,∴AB =AD +BD =(3003+300)米.
5.2 2 解析:作PC ⊥AB 于点C .∵甲货船从A 港沿北偏东60°的方向以4海里/时的速度出发,∴∠PAC =30°,AP =4×2=8(海里),∴PC =AP ×sin30°=8×1
2=4(海里).∵
乙货船从B 港沿西北方向出发,∴∠PBC =45°,∴PB =PC ÷sin45°=4÷2
2
=42(海里),∴乙货船航行的速度为42÷2=22(海里/时).
6.解:在Rt△ADC 中,∠ACD =30°,tan∠ACD =AD
CD
,CD =9米,∴AD =CD ·tan∠ACD =9×
33=33(米).在Rt△CDB 中,∠BCD =45°,tan∠BCD =BD
CD
,∴BD =CD =9米,∴AB =AD +BD =33+9≈14(米).
答:对面楼房AB 的高度约为14米.。

相关文档
最新文档