李岩
中国历史故事-李岩身世解析 李岩为何投了李自成?
中国历史故事-李岩身世解析李岩为何投了李自成?李岩这个名字不特别,双字名又简单,中国历史上叫“李岩”的不知道有多少。
不过今天给大家说的,却是李自成麾下大将李岩。
没错,就是那个被牛金星谗言杀害的大将。
李岩原名李信,河南开封府杞县人,父亲李精白是山东巡抚加兵部尚书衔。
天启年间,因为与奸宦魏忠贤有关系,所以在崇祯初年之时,被打为阉党,给予“交结近侍,又次等论,徒三年,输赎为民”。
也就是说李精白被削职为民了,不过虽然没了官位,却并不代表李家日子难过。
他在家乡名声不坏,家底殷实,所以成了当地有名的乡绅财主。
李岩出生在这样的家庭,少什么也少不了教育,后来又中了举人。
如此一来,李岩和李自成麾下其他大将不同,可谓是文武双全了。
年长之后,李岩遵循父母之命,与杞县豪门之家汤家的女儿成了亲。
两人门当户对,汤氏也是贤良的大家闺秀,婚后生活还是挺美满的。
出身富贵,家有贤妻,身负功名,李岩为何最后抛弃了安逸的生活,选择加入农民军,在战场上拼命呢?崇祯末年,不知道是不是老天爷也知道大明帝国已经快要灭亡,所以也要来插一脚。
人祸不断,天灾也是频发。
杞县百姓,就因为天灾而饱受痛苦,许多人因为灾祸而死。
当然这灾难对富户没影响,受难的都是穷苦人家。
李岩虽然出身富户,但自幼慷慨侠义,常常周济穷人,为他们打抱不平、伸张正义。
眼见着百姓因为灾祸活不下去,县令宋某却仍然稳坐不动,于是前往请命,希望官府能赈济灾民。
谁知道宋某身为父母官,却并不在乎百姓的死活。
对于李岩的劝谏丝毫不放在心上,好似并不知道外面饿殍遍地似的。
李岩虽说有功名在身,但是却也不能强逼宋某赈灾。
所以回到家中,将家里的余粮都拿来救济灾民。
他一个人的力量始终杯水车薪,于是写《劝赈歌》,劝勉各大富户都出一份力,救救百姓。
人都是自私的,如李岩这般仁慈侠义之人毕竟是少数。
所以不管李岩如何呼吁,响应的人仍然少之又少。
朝政的黑暗,官员的腐败冷漠,以及周遭人的事不关己高高挂起,这些都促使了李岩选择了投靠李自成。
唐山青年书法家李岩
唐山青年书法家李岩简介李岩,河北唐山人,出生于1982年2月,法名:奥赛多杰。
青年书法家,青年企业家,自幼爱好书画,师从韩新生老师,是刘海大师再传弟子。
多年从事国画书法的创作、研究,作品曾得到了中央美院朱军山老师、方胜老师的高度好评。
作品以弘扬仁义道德为主要内容,以倡导德善为艺术追求。
现为中国书法家协会会员、中国青年书法家协会会员、唐山市书法家协会会员。
他多次受邀在国内举办联合书展,多次参加全国各类书法赛事并获奖项,部分作品被国内外多家艺术机构及个人收藏。
唐山青年书法家李岩幼承家学,书法功底深厚,其创作奔放自由,法度严谨,厚重而不失飘逸,灵动而不失庄严。
他注重吸收历代各家各派之所长,无论是作品的题材、构想、章法意境等诸方面,均能多方接纳,为我所用。
近些年,他将书法意境的延伸和深层次的文化挖掘作为自己创作的方向,赋予以历史内涵和时代感,由此开拓了一种书法新气象。
唐山青年书法家李岩性格平易近人,为人淳朴友善。
他生性好学,仰慕书法。
喜欢直抒胸臆的创作,无论何时何地,素纸铺展开来,浓蘸笔墨,下笔如行云流水,神采飞扬,笔锋上下游动,左右擒纵,点画无一处含糊懈怠,法度尽在他的指腕之间。
那流畅的线条,清秀美观的墨迹氤氲满纸,散发出一阵阵沁人心脾的芳香,书法艺术的魅力、神韵展示的酣畅淋漓、熠熠有神。
他说:“书法的写与法、笔与墨将中国文化内涵表达的淋漓尽致。
它的种种笔法如人的坐卧、行立、揖让、颠伏,各尽意态,但它们既相互矛盾又彼此映衬协调。
”通过这种不同节奏感的书写表达,作品生动、自然,让人回味无穷。
中国的书法是中华文明历史发展的一个载体,与中国人的思想观念有着密切的联系。
书法几千年来一直在见证着是文化的发展传承。
从历代的名爵公卿到如今的学者文人,都将其看作是一种至高的艺术追求,他们用各自的点、画书写经营来阐述对书法艺术和历史人生的理解。
历史趣谈李自成为什么杀李岩 为什么李自成要起义
如对您有帮助,可购买打赏,谢谢李自成为什么杀李岩为什么李自成要起义
导语:李自成杀李岩可以用“兔死狗烹”这个词语来进行解释,当然,李岩被杀的原因是多方面的,下面由笔者来为你一一剖析。
首先,由于李岩出身显
李自成杀李岩可以用“兔死狗烹”这个词语来进行解释,当然,李岩被杀的原因是多方面的,下面由笔者来为你一一剖析。
首先,由于李岩出身显赫,他的父亲曾官至山东巡抚,在李自成的眼中,李岩始终和自己这个出身农民阶级的不是一路人。
虽然,前期李自成对于李岩的才华非常赏识,但随着时间的增长,李岩的才华逐渐被大家所了解,他在军中的地位也越来越高。
随着李岩的地位越来越高,李自成对于李岩的顾虑也越来越大,出身农民阶级的他始终认为,如果这样放任下去,李岩最终会取他而代之。
为此,他逐渐疏远李岩,并培植出身和自己差不多的牛金星来和李岩抗衡。
最终,李自成听信了牛金星的谗言,毒杀了李岩。
第二个重要的原因就是当时同为李自成谋士的牛金星的推波助澜了,牛金星是李岩引荐给李自成的。
前期的牛金星也的确对李自成有着很大的作用,他提出的九字建议为以后李自成建立大顺政权奠定了坚实的基础。
但是后期的牛金星自信心膨胀,贪念权势,嫉妒同为谋士的李岩。
在李自成兵败逃出北京城的途中,善于识人心的牛金星向李自成进谗,他借星象之理来污蔑李岩将会取代李自成。
早有杀李岩之心的李自成找到了一个“合适”的借口,用一杯毒酒结束了一代名士的生命。
最后一个重要的原因是李岩自己已经有了求死之心,后期的大顺政权混乱不堪,特别是占领北京城之后,给民众带来了巨大的痛苦。
李岩向李自成提出了几个可以挽救大顺的建议又被否决,此时的李岩可
生活常识分享。
青春在爱与责任中绽放——记长春市二道区东站十委社区党委副书记李岩
2015年第1期她,曾经是长春市一〇八中学小学部的一名优秀青年教师,在三尺讲台上教书育人,以其优异的工作成绩获得吉林省十佳教学优秀教师、长春市十佳教师、长春市骨干教师等称号。
她,曾作为谭竹青事迹报告团中的一员,足迹遍及北京、上海、武汉、西安,在祖国的大江南北、长城内外宣传谭竹青事迹,洒播时代先锋精神。
她,以亲人谭竹青为榜样,为传承谭竹青精神,放弃教师的岗位来到社区,成为一名普通的社区工作者。
从此,社区建设多了一个推动人,社区居民多了一个贴心人,贫困群体多了一个主心骨。
她,就是长春市二道区东站十委社区党委副书记、居委会主任,年轻的社区工作者——李岩。
如今,她用青春、理想、智慧和汗水传承发扬谭竹青精神,继续在东站十委这块土地上砥砺前行、默默耕耘。
用青春与理想完成人生事业的华丽转身李岩是长春市二道区东站十委社区党委副书记,她还有个特殊的身份,就是优秀共产党员的典范、社区工作者的楷模谭竹青的外孙女。
1997年李岩进入长春市一〇八中学小学部做了一名普通教师,上班后从小在姥姥身边长大的李岩总是抽空就去看姥姥,可经常会“扑个空”,在她眼里,姥姥总有忙不完的事儿,常常是下班回家还没来得及歇口气就有人找她解决困难。
那时候的李岩,心中总有些不解,姥姥也是人,姥姥也需要休息,姥姥也得回家啊。
2005年,谭竹青病重,弥留之际还在惦记着社区工作:“居民议事会安排好了没有?明天的会议我怕是去不了了,给我请个假吧。
”那一刻,李岩瞬间彻悟了,眼泪不停地往下流,她终于理解谭竹青老人为何牵挂着她深爱的社会事业,牵挂着东站十委的居民。
姥姥没有留下什么,但却留下了最宝贵的精神财富。
姥姥去世后,李岩多次参加谭竹青事迹报告团汇报,每次汇报结束后,她总思考着这样一个问题,人生的意义是什么?姥姥为什么能够得到那么多人的尊敬和爱戴?后来她得到了答案,根本原因在于姥姥把一生都献给了她钟爱的社区事业。
姥姥不仅是李岩可亲可敬的长辈,更是她人生与事业的领路人。
关于李岩和红娘子的上下五千年故事
关于李岩和红娘子的上下五千年故事在明末的历史上,李岩是一个重要人物。
李自成以饥民造反起家,所过残破,实为流寇,李自成用李岩之策而收拾民心,得以建号大顺,挺进京师。
除此之外,当时李岩还发生过什么事情呢?下面我们一起来看看吧。
李岩和红娘子李自成离开商洛,到河南的时候,河南正发生一场大旱灾,成千上万饥民到处流亡。
李自成一到河南,饥民听到李闯王出山的消息,纷纷前来投奔。
有一天,一群饥民拥着一个读书人模样的青年来找闯王。
李自成询问来历,知道那青年名叫李岩(又名李信),刚被大家从河南杞县牢里救出来。
李岩本来是杞县地方一户富户人家的儿子。
前几年,当地灾荒闹得凶,好多农民断了粮。
李岩拿出家里的一些粮食,接济断粮的穷人。
对于一个富户子弟来说,这样做是少见的。
所以,穷人们觉得李岩为人不错,称呼他“李公子”。
杞县连年灾荒,穷人已经苦得过不了日子。
但是,县官照样派差役向穷人逼税逼债。
李岩怕逼出事来,去见姓宋的县官,劝他暂时停止征税,还希望他拨出一部分官粮借给饥民。
县官对李岩说:“上司向地方派军饷,催得紧。
我不问他们要税要租,拿什么交帐。
再说,官仓里的粮食早就空了,拿什么借给饥民。
要借,只有请你们几家富户人家出粮了。
”李岩见县官不答应,回到家,打开自家的粮仓,把二百多石粮食拿出来让饥民分了。
闹饥荒的百姓见李公子肯捐粮,很高兴。
但是受灾的百姓多,光李家捐粮也不顶事。
有人想个主意,聚集几十个人到别的富户人家去请愿,要他们学李家的样儿。
那些富户人家不但不同意,反而向上门的饥民瞪白眼,说家里根本没粮。
饥民一气之下,闹了起来,冲进一个富户的粮仓,把他家的粮食分了。
富户们发了慌,纷纷向县官哭诉。
县官说:“这不是反了吗?”立刻派了几名差役拿着他的令牌前去制止,还扬言说,如果再聚众要挟,一定要重办。
饥民们正在气头上,哪怕你县官硬压。
他们揪住差役,把令牌扔在地上,砸得粉碎,还拥到县衙门前,嚷嚷说:“我们没有粮,早晚得饿死,不如跟你们拼了吧。
李岩同志简历doc
李岩同志简历
李岩,男,生于1970年1月,博士,天津
市公安医院针灸理疗科主任,主任医师,天津中
医药大学硕士研究生导师,中国当代国医大师贺
普仁教授入室弟子,学术继承人。
中国针灸学会
会员,中国针灸学会刺络与拔罐学会常务理事,
天津针灸学会理事、副秘书长,天津针灸学会针药委员会副主任委员。
国家自然基金委项目评审专家,中国针灸学会针灸临床方案咨询专家。
天津市医学教育专家,天津市科学技术奖评审、科技计划验收和科技成果评价专家,天津市药监局医疗器械评审专家。
参加卫生部中医药管理局《三棱针操作国家标准》、《火针操作国家标准》的制定工作,天津市131人才工程人选。
2000 年荣获第二届天津优秀青年人才奖,获公安局三等功2次,获公安局嘉奖2次。
国内外发表期刊论文60 余篇,主持国家自然基金项目1项,参与2项,主持市科委重点项目2项,参与市科委面上项目2项、主持局级科研课题4项,科研成果获天津市公安局科技成果二等奖2项,三等奖3项,填补天津市火针疗法的研究空白,参编著作4 部。
带教硕士硕士研究生18名。
在天津科教频道《百医百顺》主讲医学健康讲座14讲,天津人民广播电台生活频道进行健康讲座5讲。
在临床工作中,主张针药并用,年门诊量超过10000人次。
1、火针疗法治疗:痤疮、斑秃、扁平疣、带状疱疹、脾胃病、类风湿性关节炎、丹毒、急性扭伤、面瘫、急慢性盆腔炎、乳腺炎、不孕症、痛经及各种疑难痛证。
2、刺血疗法治疗:湿疹、痛风、荨麻疹、黄褐斑、偏头痛、脑血管病后遗症、三叉神经痛等。
3、中药结合穴位贴敷治疗:过敏性鼻炎、哮喘、咳嗽等。
榆林诗人 李岩简介
榆林诗人李岩简介李岩,字子石,号临川,唐代诗人,榆林人。
他的诗歌风格高峰奇绝,以其诗歌超然脱俗的风格和深刻的思想内涵而著称于世。
李岩出生于唐朝贞观年间(627年-649年),祖籍榆林。
他自幼聪慧,喜爱读书,十五岁时便考中进士。
后来他曾在唐太宗的宫廷任职,但很快就离开了宫廷,回到榆林老家,开始了他的诗歌创作。
李岩的诗歌风格独特,充满哲理思考,常常表现出对人生、自然、社会等方面的深刻思考和洞察。
他的诗作不仅表现出对大自然的感受,还表达了对人生的思考和对社会现实的关注。
他的诗歌充满了对人生哲理和人生意义的探索,对于那个时代的人们来说,李岩的诗歌是一种启迪和鼓舞。
李岩的代表作品有《临川集》、《苦寒行》、《榆林诗稿》等。
其中,他的《临川集》是他的代表作之一,这部诗集包括了他一生中的所有诗歌。
这部诗集共有诗歌近千首,内容丰富,涉及了人生、自然、社会等各个方面,是中国古代诗歌史上的一部杰作。
李岩的诗歌作品,不仅在当时就受到了广泛的赞誉,而且在后世也一直被人们所推崇。
他的诗歌风格独特,充满哲理思考,表现出对人生、自然、社会等方面的深刻思考和洞察。
他的诗歌充满了对人生哲理和人生意义的探索,对于那个时代的人们来说,李岩的诗歌是一种启迪和鼓舞。
李岩的诗歌不仅在中国古代文学史上有重要的地位,在世界文学史上也有着不可忽视的地位。
他的诗歌作品被翻译成多种语言,在国际上也获得了广泛的赞誉。
他的诗歌作品不仅对中国古代文学的发展有着深远的影响,而且对世界文学的发展也产生了重要的影响。
总之,李岩是一位伟大的诗人,他的诗歌作品不仅在中国古代文学史上有着重要的地位,而且在世界文学史上也有着不可忽视的地位。
他的诗歌风格独特,充满哲理思考,表现出对人生、自然、社会等方面的深刻思考和洞察。
他的诗歌充满了对人生哲理和人生意义的探索,对于那个时代的人们来说,李岩的诗歌是一种启迪和鼓舞。
历史趣谈李岩哪里得罪了李自成?从来没有得罪过他?
如对您有帮助,可购买打赏,谢谢李岩哪里得罪了李自成?从来没有得罪过他?
导语:李自成的大顺军结束了大明的百年统治,自此闯王李自成便在历史上留下了自己的名字,再一次证明了王侯将相宁有种乎。
李岩,是李自成创建大
李自成的大顺军结束了大明的百年统治,自此闯王李自成便在历史上留下了自己的名字,再一次证明了王侯将相宁有种乎。
李岩,是李自成创建大顺政权的重要谋士,而且可以身兼张良、韩信二者功能,上马可带兵,下马可安民。
这么重要的人物,在乱世应当成为统帅的左膀右臂,怎么就被李自成杀了呢,而且还是在兵败北平、退出京城的用人之际。
简单把责任推给献谗言的牛金星,道理很难说得通,还没到争名夺利的时候,牛金星何必非要把李岩置于死地。
因此,李岩的死跟牛金星应该扯不上直接关系,这个牛先生顶多会看相,早就看透了李自成的心思。
本来,李自成起兵就以山大王自居,从来没有想到能够推翻明朝,更没想过要给穷苦老百姓过上好日子,他手下带的人不是流寇就是土匪,一边反抗朝廷,一边祸害百姓。
自从李岩加入后,情况大有好转,闯王军队一度军纪严明,受到老百姓的拥戴和热爱。
李自成能够这么顺利进军北平城,跟整肃军纪和做好群众工作密切相关。
那个时候,李自成尝到了甜头,对李岩能够言听计从,因为他看到皇帝的宝座在向自己招手。
打进北平后,从李自成开始往下算,流氓和土匪们一个个迫不及待撕去伪装,进了城就开始抢房子抢银子抢娘子,恨不得一夜之间就能五子登科,哪里还能顾得上李岩约法三章。
有人说,李自成是因为抢到皇帝宝座就开始屠杀功臣,其实不然,功臣何止李岩一人,而且,李岩被杀是在退出北平城之后。
也就是说,李岩之死另有原因。
生活常识分享。
李岩的油画
88
李岩的油画
李岩,职业油画家,宁夏美术家协会会员、银川市美术家协会会员、宁夏摄影
家协会会员、银川市摄影家协会会员,漫葡小镇特邀画家、港深珠澳摄影联盟成员,
银川电视台主任记者。
油画作品《四川风光》入选“宁夏女画家小幅精品展”,《草原驿站》入选“山
河之源”宁夏油画艺术展,《放牧贺兰山下》被银川市档案馆和银川市地方志研究室
永久收藏,《贺兰山下》《绽放》入选贺兰山美术馆“天籁•桃花源跨年展”,《山
下岩羊》入选贺兰山美术馆“刹那间•万物静默如谜”艺术展,《蜀葵》入选“宁夏
女画家精品线上展”,《向日葵花海》入选“中国梦,巾帼情——2023第八届宁夏
女画家作品展”,《黄河流经宁夏川》入选“大河之洲”第四届宁夏油画艺术展。
《蜀葵》
《雪莲花》
89
《家园》《红红火火》《葡萄熟了》
《黑河流经额济纳》。
西安 廉洁故事
西安廉洁故事从古至今,廉洁正直一直是中华民族的传统美德之一。
在古老的西安城中,也有许多关于廉洁故事的传说,这些故事虽然源远流长,但其精神依然有着现实的指导意义。
故事一:贪欲与正直的较量在西安城中有一位官员名叫李岩,他是一位足智多谋、聪明能干的官员。
然而,李岩却有着一颗贪欲之心。
他经常利用职务之便收受贿赂,谋取私利。
虽然他表面上似乎能够得意洋洋,但贪欲的心却让他日夜不安,时时刻刻面临着被揭发的风险。
有一天,李岩接到了一位商人的贿赂,商人希望李岩能够为其提供某项特权。
虽然这笔贿赂对李岩来说异常诱人,但他却犹豫不决。
他内心深处有着一股声音在提醒他,让他选择正直和公道。
最终,在良知的召唤下,李岩拒绝了商人的贿赂。
时间过去了很久,李岩曾被调离了西安城,但他做出的正直的选择却得到了众人的赞扬和尊重。
他的行为感染了周围的人,也留下了西安城中正直官员的榜样。
故事二:正直守护公平西安城中,曾有一位法官名叫王宇,他是一位公正廉洁的法官,以聪明、正直而著称。
有一次,一位商人和一位农民因土地纠纷而上了法庭,事情的结果对双方来说都十分重要。
商人财大气粗,想要利用权势贿赂王宇,争取输赢的结果。
然而,王宇始终秉持着法律的公正与正义,毫不动摇地坚持自己的庭审原则,拒绝接受商人的贿赂。
最终,在王宇主持下的庭审中,农民得到了公正的判决。
农民感激不尽,商人则深感懊悔和羞愧。
这起案件成了西安城中的佳话,人们纷纷称赞王宇为“西安廉洁的典范”。
故事三:不受诱惑的勇气在西安城中有一家小药店,老板名叫杨明。
这家药店的生意常常十分冷清,一直以来都遭受着巨大的财政压力。
有一天,杨明机缘巧合地得知附近的一家医院即将进行采购药品的公开投标。
杨明怀着一丝希望决定参与投标,但他明白自己无法承受过高的报价。
在采购药品的过程中,杨明却得知投标中出现了一些内定的现象,让他感到非常愤怒和失望。
面对这一切,杨明并没有退缩,他决定站出来揭发这一内定行为。
他向监督机构举报,并提供了大量的证据。
李岩书法作品
李岩书法作品李岩,女,中国书法家协会会员,中华文化交流发展委员会副主席,多年来以汉隶为基础,融张迁、石门、好大王之精髓,研王羲之、米芾、王铎、黄庭坚、张瑞图等名家名帖,形成自己独到的书风。
我国当代著名女书法家。
下面是店铺为你整理的李岩书法作品,希望对你有用!李岩艺术简介李岩,女,中国书法家协会会员,中华文化交流发展委员会副主席,武汉大学女书研究中心副研究员,白银黄河石林书画院副院长,中学高级教师。
多年来以汉隶为基础,融张迁、石门、好大王之精髓,研王羲之、米芾、王铎、黄庭坚、张瑞图等名家名帖,形成自己独到的书风。
作品曾入展“中日女书法家作品展”、“第八回中国韩国书法交流展”、“第三届全国妇女展”、“甘肃省第二届张芝奖书法展”。
曾获得“白银市纪念邓小平诞辰100周年”书画一等奖、白银市建市20周年“陇烨杯”书画一等奖、“电力杯”首届全国书画展银奖、全国首届“走进青海”书法三等奖、“2008迎奥运甘肃省书法系列展”妇女展优秀奖、中华文化艺术(香港)巡展金奖。
书法中的“运腕”辨正执笔作书,大致不越三个生理环节:一是直接执笔的手指,二是腕,三是肘—当然也还有手臂。
也许再扩大了说,当写壁案大书时,连人的身体、膜、背都会有运动,不过这毕竟太泛泛,且技巧特征也叼屯太明显,可以置而不论。
手指直接控制笔,如在执笔一节中所述,它应该是最具有技巧性格。
抓压勾格抵,再加上导送,无不是五指协调动作而成。
但手指直接控制力最强,其活动范围却最有限,因此只有在写小楷时才会有全凭运指的情况。
稍大些的字,仅仅是指就难以应付了。
运眺向来被,提得很神秘,以为其中有什么不二秘诀。
手腕的上下左右的翻转摇动,也的确可以强调节奏、调正笔锋,并成为运指的一种支排。
这是它有益的一面。
但它也有局限:只能写中楷之内的尺寸,一旦写大字,连竹都要运动,仅靠手腕的翻侧显然是不能敷用的。
时人对运院奉若书法唯州秘诀,与运指相比,运碗并没有更特殊的技巧要求。
运肘的问题比较简单。
历史趣谈李自成为何杀辅佐自己的功臣李岩?李岩怎么死的
如对您有帮助,可购买打赏,谢谢李自成为何杀辅佐自己的功臣李岩?李岩怎么死
的
导语:李自成为什么要杀李岩?明末爆发了李自成农民起义。
在李自成的起义队伍中,有一位著名的谋士李岩,他提出“迎闯王,不纳粮”的口号,为起
李自成为什么要杀李岩?
明末爆发了李自成农民起义。
在李自成的起义队伍中,有一位著名的谋士李岩,他提出“迎闯王,不纳粮”的口号,为起义部队赢得了民心。
对李岩的结局,《绥寇纪略》中作了记载:定州失败后,有人说河南全境都向明朝军队投降了。
李自成大惊失色,同部下商议对策。
李岩主动请缨,愿意亲率两万精兵,赶到中州,附近的郡县一定不敢再轻举妄动,就是有敢暴乱者,也能及早收拾它。
另一谋士牛金星要闯王答应李岩的请求,闯王当时没有回答。
不久,闯王恐怕李岩另有所图,这时牛金星向闯王进言,要寻找机会除掉李岩,得到闯王首肯。
第二天,牛金星以李自成的名义召李岩到军营中饮酒,安排伏兵在营中隐蔽处,李岩和他的弟弟李年同时被擒杀。
宋太祖赵匡胤有句名言:卧榻之侧,岂容他人鼾睡!李自成带领农民军进入北京后,对内忧外患视若无睹,君臣上下耽于享乐。
各营将士以搜刮为能,完全不把民心得失当作回事,充分暴露出农民军的短视和不足。
在此情形之下,唯有李岩弟兄能约束所部,不事掳掠,因此而受到百姓的欢迎。
但却受到了那些混迹于革命队伍中的野心家和贪赃无度者的敌视和仇恨。
当时民间有“十八子,得天下”的童谣,而李岩向以精明干练著称,自然不能不引起李自成的猜忌,担心自已的龙椅有失,而“十八子”合起
生活常识分享。
明末李自成起义军的重要将领谋士李岩简介 他生平都经历了什么
明末李自成起义军的重要将领谋士李岩简介他生平都经历了什么本文导读:人物生平李岩,明末李自成起义军的重要将领。
在明末的历史上,李岩是一个重要人物。
李岩原名李信,河南开封府杞县人,天启丁卯年举人。
其父李精白是山东巡抚加兵部尚书衔,崇祯初年在魏忠贤逆案中被定以“交结近侍,又次等论,徒三年,输赎为民”的处罚。
在明末官场中,这其实算不了什么。
因此,李精白在家乡的名声并不坏,虽被削职为民,但李家仍是杞县的数一数二的乡绅财主。
李岩读书很用功,年纪轻轻就中了举,《明季北略》上说他“有文武才”,从他后来所从事的军事实践活动看,却非虚语。
这样一个文才武略的少年公子,大概在当时也是很罕见的。
他生性慷慨豪爽,常常周济穷人;又爱打抱不平,伸张正义。
他的性格倒像一个江湖侠士,很喜欢结交朋友,他在杞县名声很好,百姓都称他为“李公子”。
他后来成了家,娶了汤氏,汤氏出身于杞县豪门之家,知书达礼,贤良淑德,是一位美丽的大家闺秀。
他是一个被称为“有文武才”、“好施尚义”的知识分子。
崇祯13年,李自成从巴西鱼腹山(今重庆市奉节县东,夔州古城)突围出来,轻骑由郧县、均县走河南,李岩参加起义军。
《明季北略》卷二十三中惟妙惟肖地记述了李自成与李岩初见面时“相得甚欢”的情景:李岩对李自成说,“恨谒见之晚”,李自成对李岩说,“承不远千里而至,益增孤陋兢惕之衷”。
李岩又说,“将军恩德在人,愿效前驱”,李自成说,“足下龙虎鸿韬,英雄伟略,必能与孤共图义举,创业开基者也”。
由此清楚可见,两人谈得很投机,真是相见恨晚。
李自成以饥民造反起家,所过残破,实为流寇。
李自成用李岩之策而收拾民心,得以建号大顺,挺进京师;李自成进京后,军纪大坏,不用李岩建言以安抚前明官绅,招致根基难固。
一片石大战,大顺军闻得“辫子兵来了”竟然立时大溃。
在清兵与吴三桂夹击下,李自成退出京师,途中李自成听信了牛金星之谗,杀害了李岩,部众离心,失去河南根据地,李自成复为流寇,最后抢粮时竟被乡民程九伯所毙。
李岩[历史人物]
李岩[历史人物]概述画像出身官宦门弟,为人行侠仗义,乐善好施,人称“李公子”。
在晚明历史上李岩是一位著名人物,清初记述李的主要史籍如吴伟业的《绥寇纪略》、彭孙贻的《平寇志》、计六奇的《明季北略》以及乾隆钦定的《明史》,还有讲史小说懒道人《剿闯小史》(即李闯小史)、蓬蒿子《定鼎奇闻》(即《新世宏勋》)、陆应阳《樵史》(即《樵史通俗演义》)等对他的事略都有述及。
生平简介李岩(?-1644),电视剧《碧血剑》中的李岩剧照出身官宦门弟,为人行侠仗义,乐善好施,人称“李公子”。
明代自万历以来,官府加派“三饷”,横征暴敛,民力枯竭。
崇祯年间,水、旱、蝗、风交替肆虐,豫东大地歉收连年。
其间督师杨嗣昌又率兵来杞,苛求供应,纵兵扰民,致使杞境饿殍遍野,斗栗千钱。
李信目睹此状,挺身而出,请求县府“停征赈济”,知县不允,李信便拿出家粮200石救济灾民。
官府以“散财收买人心,图谋不轨”罪名将其逮捕入狱。
饥民群起营救,在卖艺女红娘子率领下,攻破县城,救出李信,于崇祯十三年(1640)一起投奔李自成起义军。
李自成大喜,亲自改“信”为名“岩”。
由于李岩多谋善断,带兵履创官军,战无不胜,很受李自成的器重。
李自成积极采纳李岩“勿滥杀、济贫苦、招人才、收人心、据河洛以争天下”的建议,倡导“均田免赋”,整顿军纪,使起义军迅速发展壮大。
崇祯十六年李岩被封为中营制将军。
崇祯十七年起义军攻占北京,李岩与刘宗敏等分居明勋戚府第,拘捕明官吏“追饷”。
刘等酷刑毙死千人,追银千万两;李岩执行宽松,不忍刑讯,追银不及其半,及与弟李牟及部下另筹银400两上交。
当时起义军将骄兵惰,军纪涣散,戒备松弛。
李岩及时提出“清六官,择日即帝位;分等处置降官,惟贪污抗拒者严惩;移军城外,不与民众混居;招降吴三桂,妥善安置明太子”等建议,自成不听。
李岩则身体力行,与李牟各率部下秩序井然地移居城外,绝不扰民。
不久,镇守山海关的明将吴三桂降清,李自成于是年四月十三日仓促东征,李岩与牛金星留守北京。
将相故事-李岩是谁?李岩是怎么死的?
将相故事-李岩是谁?李岩是怎么死的?李岩这个名字并不特殊,单名,取的又是普普通通的“岩”字,历史上叫这个名字的人数不胜数。
本文要给大家讲的李岩,是当年闯王李自成的部将,曾经跟随李自成立下大功,作为李自成的心腹幕僚,提出收拢民心的建议。
李岩原名叫李信,是河南开封府杞县人氏,出身官宦之家,父亲精白是山东巡抚加兵部尚书衔。
虽然后来李精白因为阉党事败,而被定以“交结近侍,又次等论,徒三年,输赎为民”的处罚。
但是李精白在家乡十分有脸,所以尽管削职为民,离家还是乡绅大家。
李岩自幼学习经史,读书用功,天启年间中举人。
李岩虽然自幼接受教育,但是却不是一个只会读书的书呆子。
他为人慷慨好爽,乐善好施,专好打抱不平。
豪爽大方的性子,倒像是行走江湖的侠义之士,交友遍地。
李岩长大成人之后,其父为其定下当地豪门之家唐家的女儿。
汤氏知书达理,贤良淑德,大家闺秀出身。
两人成亲之后,琴瑟和鸣,相得益彰。
若是在盛世之年,李岩可能会走上官途,亦或是在乡里成为受人敬仰的绅士。
然而当时处于明朝末年,战乱天灾,百姓流离失所,社会动荡不堪,讨生活不容易。
明崇祯十三年十四年,河南发生灾荒,天下大旱,百姓流离失所,饿死在地的人数不胜数。
如此严峻的情形下,官府不思如何赈灾救民,仍然在不停地催征钱粮。
这对于生存都成问题的百姓而言,简直是雪上加霜。
李岩仁义,见此情形,跑去找杞县县令,为民请命。
然而杞县县令,却不是一个合格的地方官。
他只对自己的上级负责,就想着怎么完成上级交给自己的任务,以保留自己头上的乌纱帽。
至于百姓的死活,根本不在他考虑的范围之类,所以李岩自然是无功而返。
官府不管,回到家中的李岩,于是自己出了三千石粮食来赈济灾民。
杯水车薪,但却是李家能拿出的所有。
于是李岩又想到了劝周围富户,共同捐粮赈灾的办法。
他写《劝赈歌》拿到各富户家中,劝他们赈灾。
《劝赈歌》年来蝗旱苦频仍,嚼啮禾苗岁不登。
米价升腾增数倍,黎民处处不聊生。
草根木叶权充腹,儿女呱呱相向哭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Biomass and BioenergyVolume 26, Issue 4, April 2004, Pages 377-388--------------------------------------------------------------------------------doi:10.1016/j.biombioe.2003.08.003 | How to Cite or Link Using DOIPublished by Elsevier Science Ltd.Permissions & ReprintsHigh-pressure co-gasification of coal and biomass in a fluidized bedT. R. McLendon, , a, A. P. Luib, R. L. Pineaulta, S. K. Beera and S. W. Richardsonaa National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown WV 26507, USAb Parsons Infrastructure and Technology Group, 3610 Collins Ferry Road, Morgantown WV 26507, USAReceived 14 May 2003; revised 29 July 2003; accepted 5 August 2003. ; Available online 25 September 2003.AbstractMixtures of coal and biomass were co-gasified in a jetting, ash-agglomerating, fluidized-bed, pilot scale-sized gasifier to provide steady-state operating data for numerical simulation verification. Biomass used was sanding waste from furniture manufacture. Powder River Basin subbituminous and Pittsburgh No. 8 bituminous coals (screened from −1.2 to +0.25 mm) were mixed with sawdust (screened to −1.2 mm) and pneumatically conveyed into the gasifier at an operating pressure of 3.03 MPa. Feed mixtures ranged up to 35% by weight biomass. The results of gasification tests of subbituminous coal/sawdust mixtures showed few differences in operations compared to subbituminous coal only tests. The bituminous coal mixture had marked differences. Transport properties of coal/biomass mixtures were greatly improved compared to coal only.Author Keywords: Biomass gasification; Co-gasification; Coal and biomass gasification; Biomass solids fluidization; Jetting fluidized bed gasificationArticle Outline1. Introduction2. Experimental3. Results/discussion4. ConclusionsAcknowledgementsReferences1. IntroductionDisposal costs of waste biomass and increasing environmental penalties of mining coal have suggested to many that trying to utilize waste biomass as a partial fuel substitute for coal was potentially beneficial. Also, the possibility of using less desirable or waste coals in conjunction with biomass to explore whether synergies would exist is appealing. Considerable excellent work in co-gasification from bench scale to large pilot scale has been undertaken during the last decade [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13]. Davidson [14] provides a very good summary of pertinent efforts prior to 1997. The first step is simply to determine whether it is realistic (or even possible) to use the intended resource(s) in whichever of the many gasifier types are available. Whether synergies occur is dependent upon the test conditions such as: feedstock type, direct particle contact, pressure, reactor type, temperature, etc. Tars are a significant problem for some of the systems reported and some researchers report that biomass with coal reduces them. The salient issue for consideration is that there are numerous varieties of both gasifiers and feedstocks and the possible permutations of gasifiers with feedstocks are considerable. Only actual tests can determine if synergies or insurmountable obstacles will occur. Numerical simulation is most valid for screening studies, extrapolation of experimentally determined data, and evaluation of the possible applications.Madsen and Christensen [1] report on a series of air-blown fluidized bed and entrained bed co-gasification tests with coal and straw. Pressures in the larger unit (based on U-Gas design) were up to 14.2 bar and feed rates of the feedstock were a maximum of 720 kg/h. Feeding presented problems, but some synergies were noted. Sjostrom et al. [2 and 3] also report synergies in fluidized bed co-gasification of wood and coal mixtures at small particle sizes with maximum feed rates of 5.2 kg/h and maximum pressures of 15 bar. Reinoso et al. [4] report on a comprehensive experimental program including a series of tests in larger pilot scale air-blown circulating fluid bed gasifiers at near atmospheric pressures. Feedstocks were waste coal, lignite, and pine chips at solids feed rates up to 800 kg/h. Results indicated that using waste coals in circulating fluid beds of the type tested would not be viable because of economic, operational and design constraints. Modeling comparisons indicated synergies existed between coal and biomass. Kurkela et al. [5] describe evaluations of a variety of biomasses and coals (and mixtures) in a fluidized bed gasifier with maximum feed rates of 80 kg/h at pressures up to 5 bar. de Jong et al. [6] report synergies with co-gasification of coal, miscanthus and straw in an air-blown fluidized bed gasifier operating at up to 5 bar. Pan et al. [7] co-gasified coals with pine chips at atmospheric pressure in an air-blown, bench scale fluidized bed gasifier. Some synergies were noted.2. ExperimentalThe purpose of the experimental program was to provide highly instrumented, steady-state operating data for numerical simulation matching and verification. The gasifier used was the National Energy Technology Laboratory's (NETL) pilot scale-sized Fluidized Bed Gasifier (FBG) located in Morgantown WV. Since many of the operational and technical details of the present system have never been described completely in the open literature [15] key specific information will be given here. With a good understanding of the phenomena occurring within the gasifier results are better understood. A simplified picture of the FBG is shown in Fig. 1 with reactor dimensions. The reactor is dense-refractory lined and has no internal heat-loss compensation mechanism. The coal for these tests was screened from −1.2 to +0.25 mm, and the sawdust(sanding waste from furniture manufacture) was screened to −1.2 mm. Solid feed was premixed and conveyed to the Batch Hopper from the Silo with N2. The Batch Hopper pressure was lowered to receive the feed and raised to match system pressure when dumping to the Feed Hopper directly below. For coal only feed, the Feed Hopper is constantly fluidized to prevent bridging and rat-holing. The feeder is directly below the Feed Hopper and the solids fall into one of the “pockets” in a rotating shaft where it is expelled by air pressure at the upside down position. The feed is then pneumatically conveyed with cool air into the jet in the axial center of the FBG bottom.Full-size image (33K)Fig. 1.Fluidized bed gasifier.View Within ArticleThe FBG in the jetting mode is a dry-bottom, ash-agglomerating gasifier with the solids/air mixture being surrounded by an annular stream of heated air and steam. In order to prevent excessive agglomeration of the char particles during the rapid pyrolysis conditions just above the jet, particle velocities are kept high. The minimum desirable velocity is 15 m/s. The jet area is where the free radical oxidation reactions occur and it is the hottest place in the gasifier. Once through the initial pass inside the jet, the coal particles (thus the biomass also) are assumed to be essentially completely pyrolyzed. Analyses of solids removed from the reactor verify this. Considerable problems with clinkering have been experienced with this type of gasifier [16]. A delicate balance must be maintained where some ash agglomeration occurs, but at a slow controlled rate, if possible. This is not easy. Regardless of the issues associated with this type of gasifier, it has many positive features leading to its use in the Pinon Pine IGCC demonstration project [17].The pyrolyzed char particles are jetted upward into the upper parts of the gasifier where circulation patterns develop. The general direction of the particles in the center is upward and along the walls it is down. Reentrainment of the particles occurs at the jet, aided by auxiliary jets inside the refractory insert at the main jet level. Modeling videos and analysis of conditions have indicated that the most significant particle mixing occurs at the level of the jets. More detail is provided in an unpublished report [18]. At nominal conditions, average coal char particle residence times are on the order of 1.5–2 h, and gas residence times are less than 1 min. At the gas flow rates in these tests, the fine particles are entrained in the gas flows and probably have residence times inside the gasifier on the order of a few minutes. Therefore, any catalytic effect of wood ash may not be as pronounced in the FBG as in other gasifier types. Differential pressure gauges are used to determine particulate densities in the FBG. Solids are removed in three places: heavier agglomerated particles come out the very bottom (underflow); medium particles comeout at the level of the first freeboard junction (overflow); and fly ash is removed in the Cyclone.The reactor is provided with numerous internal thermocouples as per Fig. 1 locations. Key process gas flows are very accurately measured to within 2% on a cold flow comparison to traceable standards. Process control is by both traditional PID controllers and a redundant distributed control system (APACS/Process Suite) provided by Moore products. The data are captured by APACS on a continuous basis, on about a 1-s interval depending on conditions. Gases for analysis are cleaned up downstream of the cyclone. The primary gas analyzer is a Perkin-Elmer magnetic sector mass spectrometer (MS), with continuous backup by an Ametekquadrupole MS and periodic sampling by a gas chromatograph. Gas analyses are reported on a dry basis. It should be noted that for feeds normally used in the FBG, tar production is not a problem. This gasifier has sufficient high-temperature gas residence time and enough char suspended throughout the reactor to provide ample opportunity for tar degradation. Downstream equipment is not designed for tars and problems with tars do not occur.Reactor temperature is not controlled. The modeling effort is stand-alone work and each steady-state operational period can be used as is, but for the series of tests reported here, only one parameter at a time was varied (where possible) to prevent second order interactions. However, when changing coal feed rate, there is an associated effect of changing char particle buildup in the gasifier. This is significant because the suspended char reacts with gases to gasify the char. The diffusion control constraint is lessened by having more char as reactant. More char particles suspended gives more surface area.The issue of when steady state has been achieved is not a trivial consideration. There are considerable fluctuations in gas analyses, bed temperatures, and reactor internal differential pressures even when the system has been operating with no set point changes for many hours. Of course, a constant set point does not preclude movement within an instrument's dead-band range. There are short-term changes, intermediate-term changes and long-term drifts. Feedstocks vary slightly from drum to drum. In addition, when the Feed Hopper is fluidized the feed particles segregate as per density and size; so the feed at the bottom will be different from the feed at the top. Therefore, for the biomass tests the fluidization feature was turned off. In addition, the issue of reactor temperature is important. It is significant that any thermocouple inside the gasifier reads the local temperature and there is considerable variation between the readings from the bed thermocouples. Reporting one temperature as the temperature of gasification is problematic. We simply report temperature at location as per time. To avoid the oxymoron condition of transient steady state, considerable judgement must be used.The strategy of the experimental effort was to establish a base case of operation about which one variable at a time could be changed. The base case was Powder River Basin subbituminous coal at a feed rate of 31.8 kg/h, with a reactor internal pressure of 3.03 MPa. The bituminous coal was Pittsburgh No. 8. Feedstock analyses are given in Table 1. The coal/biomass mixtures were as given in Table 2. For all tests: reactor pressure was 3.03 MPa, convey air was 42.9 m3/h at standard conditions, reactor air was 27.5 m3/h at standard conditions and steam was 27.2 kg/h. It should be noted that the coal feed rate was not constant for all tests. This introduced morethan one variable change for each test.--------------------------------------------------------------------------------Table 1. Analyses of feeds used in biomass testingFull-size table (<1K)View Within Article--------------------------------------------------------------------------------Table 2. Steady-state operating conditionsFull-size table (<1K)View Within Article3. Results/discussionFig. 2 shows the comparison of CO for all coal/biomass tests reported compared to the base case. It should be noted that the time period shown for the bituminous coal mixture includes an earlier part of the test when steady state had not yet been reached. This unsteady-state operation was included because the run was terminated early due to a malfunction. At the beginning of the bituminous/biomass run, the bed was mostly subbituminous coal char but the feed had been bituminous coal for at least 30 min. The CO level at time zero is nearly the same for all tests, but CO begins to drift down for the bituminous coal as the bed eventually fills with its char. Of significance is that the CO for the subbituminous coals, regardless of addition of biomass, is nearly the same. Fig. 2 shows another consistent feature of results from this gasifier. There is considerable fluctuation of readings from the gas analyzers with time. This is typical and is not an artifact of the instruments. The thermocouples and the differential pressure instruments show the same transient behavior. In fact, all figures presented in this paper are time averaged because all data points plotted show a wide band. Since the system is so well controlled, the fluctuations are obviously the result of feed differences with time. However, in the case of the bituminous coal mixture, adjustments of some control features were causing additional variations. We were trying to lower temperatures in the jet area (to prevent clinkering) without compromising the test.--------------------------------------------------------------------------------Full-size image (17K)Fig. 2.CO comparison.View Within ArticleFig. 3 shows that CO2 production is slightly higher for all biomass tests compared to the base case. Fig. 4 shows that the H2 production was within a range of 2 or 3% for most of the test periods. The bituminous mixture H2 could have been lower during the latter part of its run because of the efforts to lower temperatures. Regardless of the causes, the inherent characteristic of fluctuations must be taken into account by persons using such data for evaluation and design. From the perspective of considerable operational experience, it could not be concluded that there is a significant difference in H2 or CO production from any of the runs using subbituminous coal, with or without biomass included.--------------------------------------------------------------------------------Full-size image (15K)Fig. 3.CO2 comparison.View Within Article--------------------------------------------------------------------------------Full-size image (15K)Fig. 4.H2 comparison.View Within ArticleFig. 5 shows the comparison of readings for all runs from TE-733 (just above the jet less than 1 cm inside the bed). TE 733 is not in a thermowell, therefore, it is more sensitive than some of the others. But because it is near the wall it will normally read lower than a thermocouple sticking out further. Anything sticking out into the bed near the jet must be in a thermowell in order to survive for any significant time. All biomass tests show higher temperatures than the base case and the bituminous test shows about twice the temperature reading of the subbituminous tests. Because of its location near the wall, TE-733 is within the zone of descending char particles. Note that when the bituminous test began, TE-733 read about the same as it did for the other runs. As the bed began to contain more bituminous char, TE-733 began to show increased temperatures. Fig. 6 shows temperatures from TE-700 (inside a thermowell nearly 4 cm inside the bed at the same elevation as TE-733). Fig. 7 shows temperatures from TE-701 (inside a thermowell about 7.6 cm inside the bed, same elevation). The further inside the bed, the closer the temperatures become (differences are less). This is because the char from the bituminous coal is nearly absent from the lower part of the bed when the bed becomes nearly all bituminous in origin (to be discussed later). At the temperatures near the jet, heat transfer is predominantly by radiation. The bituminous coal has so little char that TE-733 can see the heat source from the jet. With the subbituminous coal char present, radiant energy from the jet must be absorbed and re-radiated to get to the wall. The further up the reactor, the closer all temperatures get and at the top they are essentially the same for all tests. It is of interest to note that TE-701 shows temperatures that approach ash fusion temperatures for the Pittsburgh No. 8 bituminous coal we used.--------------------------------------------------------------------------------Full-size image (17K)Fig. parison of TE-733.View Within Article--------------------------------------------------------------------------------Full-size image (18K)Fig. parison of TE-700.View Within Article--------------------------------------------------------------------------------Full-size image (17K)Fig. parison of TE-701.View Within ArticleThat the lower bed was nearly absent of char during the bituminous run is shown by Fig. 8. It is the differential pressure transducer located across the section just above the jet, PDT-707. Fig. 8 compares only the base case to the bituminous test but all subbituminous runs are about the same and all are several times the values recorded during the bituminous test. Fig. 9, PDT-708, the next differential pressure transducer up from PDT-707, shows that the difference is decreasing and at the top of the reactor the values are nearly the same. Fig. 10, from PDT-709 (the next pressure transducer up from PDT-708), shows another interesting feature discussed earlier. The 65/35 subbituminous test had significantly less coal feed than the base case and all other biomass tests. Note that the char particulate loading for this test decreases in the PDT-709 zone. The bed was being depleted of coal char and this behavior is consistent with other tests where th e coal feed was insufficient to “build the bed” with char. Its equilibrium value is probably about the value indicated after the 200 min interval shown in Fig. 10.--------------------------------------------------------------------------------Full-size image (12K)Fig. parison of PDT-707.View Within Article--------------------------------------------------------------------------------Full-size image (14K)Fig. parison of PDT-708.View Within Article--------------------------------------------------------------------------------Full-size image (16K)Fig. parison of PDT-709.View Within ArticleTable 4 shows the partitioning of the solids removed from the FBG for the various test periods (i.e. which of the ports from which the char is removed as shown in Fig. 1). Toward the end of the bituminous test, essentially no solids were removed from the underflow. Table 3 shows why. It is a comparison of overflow solids for the base case and the 75/25 biomass experiments. The bituminous coal char has about half the bulk density as the subbituminous char and the screen analyses show dramatic differences. This is consistent for a coal with a free swelling index of 7.5.--------------------------------------------------------------------------------Table 3. Overflow solids comparisonFull-size table (<1K)View Within Article--------------------------------------------------------------------------------Table 4. Carbon consumption/solids partitioningFull-size table (<1K)View Within ArticleThe data do not show much in the way of synergies for the subbituminous tests. One can hardly see the difference in the respective tests. However, there is one very significant synergy present for the bituminous coal/biomass mixture. Without the biomass present, it is not possible to use Pittsburgh No. 8 in the FBG [15]. It has always clinkered almost immediately when used alone. It is speculated that the presence of the biomass somehow deposits a coating on the bituminous char at the exit of the jet to prevent the typical uncontrollable agglomeration.There was no opportunity to try to optimize the operation of the FBG during the bituminous coal/biomass mixture test. Since we had never run such a coal in the gasifier before, we were trying various tweaks to keep temperatures low to keep it from clinkering. We discovered that frequent dumping of the overflow was necessary due to it filling up quickly. We had to eventually dump every 15 min in order to keep up. This precluded focusing on other issues. The run was terminated when an unscreened piece of sawdust pellet plugged the feed tube and we had to shut down to unplug the tube.Table 4 shows carbon consumption and solids partitioning for the base case and biomass tests. It should be noted that the conclusion that more biomass, hence less coal, leads to more efficient use of carbon could be misleading. The general experimental evidence is that biomass is easy to gasify. Coal char is not. With less coal char, there is more reactive gas available to consume the coal char, since the gas flow rates were unchanged. Table 5 compares carbon utilization for several fluidized bed coal/biomass operations. Care should be taken when comparing results such as these. Experiments are not necessarily designed to optimize conditions. They are conducted to evaluate whatever parameters are of most interest, while attempting to reduce experimental uncertainty.--------------------------------------------------------------------------------Table 5. Carbon conversion comparison to other research in fluidized bed coal/biomass utilization Full-size table (4K)View Within ArticleAnother unexpected synergy existed for the greatly improved transport and handling properties of the coal/biomass mixtures compared to coal alone. It was not necessary to fluidize the Feed Hopper with the biomass present. In addition, when calibrating the Feeder about 5% of the coalis lost to the dust collection system when coal alone is used. With all mixtures this was reduced to about 3%.The most significant alteration of flow properties occurred when we were calibrating the Feeder with mixtures. The Feed Hopper is normally kept at less than 20 kPa above the pressure in the reactor in order to assure no back flow of hot gas up the feed tube. During one calibration with biomass mixtures the differential pressure controller was inadvertently set at several times that value. The calibration showed an increase of several times the expected flow rate. Had that occurred with coal only, the feeder would have instantly plugged. Also, we were not fluidizing the Feed Hopper. Because of the mechanical configuration and the constant rotational speed, the only way for the coal/biomass mixture to have had such a remarkable increase in flow rate was for the feed to be undergoing dense packing in the pocket. Why this behavior occurs is not readily apparent. The speculation is that the fine biomass dust may act like miniature roller bearings or it will fill in depressions in the coal particles to make them smoother and rounder. Perhaps, the biomass affects static electric charges on the quite dry feeds. An extensive literature survey was conducted and much work has been done in the area of copier toner materials wherea few weight percent of various materials are added to significantly affect solids flow properties[19]. Considerable additional work is being done in the pharmaceutical industry with deliveries of inhalent powders [20]. However, nothing was revealed in the search that indicated anyone had published any work with materials like coal and biomass.4. Conclusions•Synergies with subbituminous coal/biomass mixtures are not readily apparent in gasification. •A most significant synergy exists with gasification of highly caking coals and biomass in the FBG since without the biomass, such coal cannot be processed at all.•The transport (rheological) properties of all the coal/biomass mixtures are greatly improved relative to coal only for our system. Plugging is greatly reduced and handling is much easier. •The particulate flow patterns in the FBG for swelling bituminous coals are greatly altered compared to particulate flow patterns for subbituminous coals.•Carbon utilization for the FBG is about the same as similar fluidized bed gasifiers using biomass.AcknowledgementsWe greatly appreciate the support of John Rockey and David Wildman of the US Dept of Energy, NETL. Their foresight and efforts made this work possible and valuable.References1. Madsen M, Christensen E. Combined gasification of coal and straw coal. In: APAS Clean Coal Technology Programme, vol. 3. 1992–1994. p. C2.2. Sjostrom K, Bjornbom E, Chen G, Brage C, Rosen C, Yu Q. Synergetic effects in co-gasification of coal and biomass. In: APAS Clean Coal Technology Programme, vol.3. 1992–1994. p. C3.3. K. Sjostrum, G. Chen, Q. Yu, C. Brage and C. Rosen, Promoted reactivity of char in co-gasification of biomass and coal: synergies in the thermochemical process. Fuel 78 (1999), pp. 1189–1194.4. Reinoso C, Cuevas A, Janssen K, Morris M, Lassing K, Nilsson T, Grimm HP, Puigjaner L, Ying Gang P, Velo E, Zaplana M, McMullan JT, Williams BC, Sloan EP, McIlveen-Wright D. Fludised bed combustion and gasification of low-grade coals and biomass in different mixtures in pilot plants aiming to high efficiency and low emission processes. In: APAS Clean Coal Technology Programme, vol. 3. 1992–1994. p. C5.5. Kurkela E, Laatikainen J, Stahlburg P. Cogasification of biomass and coal. In: APAS Clean Coal Technology Programme, vol. 3. 1992–1994. p. C9.6. de Jong W, Andries J, Hein KRG. Coal-biomass gasification in a pressurized fluidized bed gasifier. In: ASME International GT and Aerospace Congress, Stockholm, SE, June 2–5, 1998. p. 1–7.7. Y.G. Pan, E. Velo, X. Roca, J.J. Manya and L. Puigjaner, Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel 79 (2000), pp. 1317–1326. Article | PDF (312 K) | View Record in Scopus | Cited By in Scopus (33)8. Keil JHA, Bos A, den Uil H, Plaum JM. The development of cogasification for coal/biomass and for other coal/waste mixtures and the reduction of emissions from the utilisation of the derived fuel gas. In: APAS Clean Coal Technology Programme, vol. 3. 1992–1994. p. C8.9. Olsen A, Rathman O, Gjernes E, Fjellerup J, Illerup JB, Hald P, Hansen LK, Kirkegard M. Combustion and gasification of coal and straw under pressurized conditions. Riso-R-808(EN).10. A. Collot, Y. Zhuo, D. Dugwell and R. Kandiyoti, Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors. Fuel 78 (1999), pp. 667–679. Article | PDF (636 K) | View Record in Scopus | Cited By in Scopus (57)11. Z. Xie, J. Feng, W. Zhao, K.C. Xie, K.C. Pratt and C.Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. Fuel 80 (2001), pp. 2131–2138. Article | PDF (303 K) | View Record in Scopus | Cited By in Scopus (35)12. Chen G, Sjostrom K, Bjornborm E, Brage C, Rosen C, Yu QZ. Coal/wood co-gasification in a pressurized fluidized bed. Proceedings of Third International Symposium on Coal Combustion Science and Technology, Beijing, China, September 1995. p. 383–90.13. Brage C, Yu QZ, Sjostrom K. Characterisation of tars from coal-biomass gasification. Proceedings of Third International Symposium on Coal Combustion Science and Technology, Beijing, 1995. p. 45–52.。