湖南省2012届高三六校联考(数学理)无答案

合集下载

2012年高考数学湖南卷理科试题及答案(全word版)

2012年高考数学湖南卷理科试题及答案(全word版)

D C B A图1湖南省2012年高考试题数学( 理科)分值:150分 时量:120分钟 考试日期:2012-06-07一、选择题:本大题共8个小题,每小题5分,共40分. 1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}2.命题“若4απ=,则tan 1α=”的逆否命题是 ( ) A .若4απ≠,则tan 1α≠ B .若4απ=,则tan 1α≠C .若tan 1α≠,则4απ≠D .若tan 1α≠,则4απ=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 ( )4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y(1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( )A. y 与x 具有正的线性相关关系B. 回归直线方程过样本点的中心(,)x yC. 若该大学某女生身高增加1cm,则其体重约增加0.85kgD. 若该大学某女生身高为170cm,则可断定其体重为58.79kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -=D .2212080x y -= 6.函数()sin cos()6f x x x π=-+的值域为( )A .[-2,2]B .] C .[-1,1] D .] 7.在ABC ∆中, AB =2, AC =3,AB BC ⋅=1,则BC = ( ) ABC.D8.已知两条直线1:l y m =和8:(0,l y m m =>≠,1l 与函数2|log |y x =的图象从左至ABPO图2图3图4右相交于点A B 、,2l 与函数2|log |y x =的图象从左至右相交于点C D 、.记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为( ) A . B . C . D .二、填空题:本大题共8个小题,考生作答7个小题,每小题5分,共35分,把答案填写在题中的横线上. (一)选做题(请在第9、10、11两题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xoy 中,已知曲线11,:(12x t C t y t =+⎧⎨=-⎩为参数)与曲线2sin ,:3cos x a C y θθ=⎧⎨=⎩ (θ为参数,a >0) 有一个公共点在x 轴上,则a = .10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若PA =1,AB =2,PO =3,则圆O 的半径等于 . (二)必做题(12〜16题)12.已知复数z=(3+i)2(i 为虚数单位),则|z|= .13.6的二项展开式中的常数项为 (14.如果执行如图3所示的程序框图,输入1,3x n =-=,15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图 象如图4所示,其中P 为图象与y 轴的交点,,A C 为图 象与x 轴的两个交点,B 为图象的最低点.(1)若6ϕπ=,点P 的坐标为,则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取 一点,则该点在ABC ∆内的概率为 . 16.设*2(2,)n N n n N =≥∈,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列113124N N P x x x x x x -=将此操作称为C 变换,将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ,当22i n ≤≤-时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +,例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置; (2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如上表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间x 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥底面ABCD ,4,3,5,90,AB BC AD DAB ABC E ===∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成 的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{a n }的各项均为正数,记A(n)=12n a a a +++,B(n)=231n a a a ++++,C(n)=342n a a a ++++,n=1,2,….(Ⅰ)若121,5a a ==且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{a n }的通项公式. (Ⅱ)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个数(),(),()A n B n C n组成公比为q 的等比数列.BDPE20.(本小题满分13分)某企业接到生产3000台某产品的A,B,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A,B,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xoy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别于曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()ax f x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k 问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.参考答案一、选择题 B,C,D,D A,B,A,B 二、填空题 9.32 10.1{|}4x x > 11. 12. 10 13. -160 14. -4 15.(1) 3 (2)4π16.(1) 6 ,(2)43211n -⨯+三、解答题17.【解】(Ⅰ)由已知得251055y ++=,所以20y =,所以1003025201015x =----=……2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得:153303251(1),( 1.5),(2)10020100101004P X P X P X =========, 201101( 2.5),(3)100510010P X P X ======. 所以X 的分布列如右表所示, X 的数学期望为()E X =1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9…………………………………6分 (Ⅱ) 记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,i X (i =1,2)为该顾客前面第i 位顾客的结算时间,则1()(1P A P X ==且211)(1X P X =+=且211.5)( 1.5X P X =+=且21)X =…………………8分由于各顾客的结算相互独立,且i X (i =1,2)的分布列都与X 的分布列相同,所以…………10分121212()(1)(1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=333333920202010102080=⨯+⨯+⨯= 故该顾客结算前的等候时间不超过2.5分钟的概率为980.………………………………………12分 〖点评〗本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.【解】解法一:(Ⅰ)连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5,又AD =5,E 是CD 得中点,所以CD ⊥AE ,…………………………2分 PA ⊥平面ABCD,CD ⊂平面ABCD.所以PA ⊥CD ,………………3分 而PA,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .………………………………………………5分(Ⅱ)过点B 作BG ∥CD,分别与AE,AD 相交于点F 、G,连接PF, 由CD ⊥平面PAE 知,BG ⊥平面PAE,于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AE .……………………………………7分 由PA ⊥平面ABCD 知,∠PBA 即为直线PB 与平面ABCD 所成的角.由题意∠PBA=∠BPF,因为sin ∠PBA=PA ,sin ∠BPF=BF ,所以PA=BF .……………………9分B由∠DAB=∠ABC=90°知,AD ∥BC,又BG ∥CD.所以四边形BCDG 是平行四边形, 故GD=BC=3,于是AG=2.在RT △BAG 中,AB=4,AG=2,BG ⊥AF,所以也所以BF=2AB BG ==于是.…………………………………………11分 又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 解法二:以A 为坐标原点,AB 、AD 、AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA=h,则相关各点的坐标为A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).……………2分 (Ⅰ)CD =(-4,2,0),AE =(2,4,0),AP =(0,0,h).因为CD AE ⋅=-8+8+0=0,CD AP ⋅=0.………………4分所以CD ⊥AE,CD ⊥AP,而AP,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE.………………………………………………………………………………6分(Ⅱ)由题设和第一问知,,CD PA 分别是平面PAE,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,………………………………7分 所以|cos <,CD PB >|=|cos <,PA PB >|,即||||||||||||CD PB PA PB CD PB PA PB ⋅⋅=⨯⨯………………9分由第一问知CD =(-4,2,0),(0,0,),PA h =-又(4,0,)PB h =-,故2|00|h h ++=,解得h =…………………………………………………11分又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 〖点评〗本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.【解】(Ⅰ) 因为对任意n ∈N*三个数(),(),()A n B n C n 组成等差数列,所以()()()()B n A n C n B n -=-,………………………………………………………………1分即1122n n a a a a ++-=-,亦即21214n n aa a a ++-=-=.故数列{a n }是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-.………………4分 (Ⅱ)证明:(必要性)若数列{a n }是公比为q 的等比数列,对任意n ∈N*,有1n n a a q +=.由0n a >知,(),(),()A n B n C n 均大于0,于是………………………………………5分231121212()()()n n n n a a a q a a a B n q A n a a a a a a +++++++===++++++,…………………………………………6分 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++,………………………………………7分 即()()()()B nC n q A n B n ==,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列;………………8分 (充分性):若对任意n ∈N*,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==,于是()()[()()]C n B n q B n A n -=-,即2211()n n a a q a a ++-=-,亦即2121n n a qa a qa ++-=-……………………………………………………………………10分 由n=1时,(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.………………………………………………11分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个(),(),()A n B n C n 组成公比为q 的等比数列. ………………………………………………………12分20.【解】(Ⅰ)设完成A,B,C 三种部件生产需要的时间(单位:天)分别为123(),(),()T x T x T x 由题设有12323000100020001500(),(),()6200(1)T x T x T x x x kx k x⨯====-+, 其中,,200(1)x kx k x -+均为1到200之间的正整数.…………………………………………4分 (Ⅱ)完成订单任务的时间为123()max{(),(),()}f x T x T x T x =,其定义域为*200{|0,}1x x x N k<<∈+ 所以12(),()T x T x 为减函数,3()T x 为增函数,注意到*21()2()()T x k T x k=∈N①当k=2时,12()()T x T x =,此时10001500()max{,}2003f x x x =-,其中*2000,3x x N <<∈ 所以由函数1310001500,2003T T x x ==-的单调性及图象可知,当100015002003x x =-,即4009x =时, 函数()f x 有最小值.由于40044459<<,且*x N ∈.且13250300(44)(44),(45)(45)1113f T f T ====,且2503001113<, 所以x =44时,完成订单任务的时间最短,时间最短为250(44)11f =.……………………………8分②当2k >,即3k ≥时,12()()T x T x <,所以10001500()max{,}200(1)f x x k x=-+ 其中315001500375(,)200(1)200450T k x k x x x=≥=-+--,所以只须求1000375max{,}50x x -的最小值,其中*050,x x N <<∈. 同理可知当100037550x x =-,即400(36,37)11x =∈所以当36x =时,1000375250250max{,}50911x x =>-, 当37x =时,1000375375250max{,}501311x x =>-, 所以此时完成订单任务的最短时间大于25011.…………………………………………………11分③当2k <,即1k =时,12()()T x T x <,此时2000750()max{,}100f x x x=-,且*0100,x x N <<∈同理令2000750100x x=-,得800(72,73)11x =∈当72x =时,2000750250250(72)max{,}100911f x x ==>-, 当73x =时,2000750750250250(73)max{,}10027911f x x ===>- 所以此时完成订单任务的最短时间也大于25011.………………………………………………12分综上所述,当2k =时,完成订单任务的时间最短,此时,,A B C 三种部件的人数分别为44,88,68. …………………………………………………………………………………………………………13分 〖点评〗本题考查函数模型的构建,考查函数的单调性,分类讨论、数形结合(多想少算)的数学思想,解题的关键是确定分类标准,有难度.21.【解】(Ⅰ)解法一:设(,)M x y ,由已知得|2|3x +,…………………………2分由图可知,点M 在直线2x =-的右侧,故20x +>,5x +化简得曲线1C 的方程为220y x =.……………………………………………………………5分 解法二:由题设知,曲线1C 上任意一点M 到圆心2(5,0)C 的距离等于它到直线5x =-的距离.因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线. 故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,记(4,)(3)P t t -≠±,则过点P 且与圆2C 相切直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,如右图所示, 设两切线的统一方程为(4)y t k x -=+,即40kx y t k -++=,于是3=,整理得22721890k tk t ++-=(0∆>恒成立),又设过两切线,PA PC 的斜率为12,k k ,则212129,472t t k k k k -+=-=……①…………………8分又联立切线PA 与抛物线方程得11240,20k x y t k y x-++=⎧⎨=⎩得2112020(4)0k y y t k -++=设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则易知1121120(4)8020t k ty y k k +==+ 同理可知3428020ty y k =+,……………………………………………………………………11分 所以21212123412124()16400(4)(4)400t t k k k k t ty y y y k k k k +++=++= 212124()1644006400tt t k k k k +-+==所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.……………13分 〖点评〗本题考查轨迹方程,考查直线与圆相切、韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.22.【解】(Ⅰ)若0a <,则对一切0x >,()1axf x e x =-<,这与题设矛盾.又0a ≠,故0a >.……1分而()1ax f x ae '=-,令()0f x '=,得11lnx a a=.当11ln x a a<时,()0f x '<,()f x 递减;当11ln x a a >时,()0f x '>,()f x 递增.故当11ln x a a =时,()f x 取最小值11111(ln )ln f a a a a a=-.………………………………………3分于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥.……①令()ln g t t t t =-,则()ln g t t '=-.当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=,即1a =时,①式成立.………………5分 综上所述,a 的取值集合为{1}.………………………………………………………………………6分(Ⅱ)由题知,21212121()()1ax ax f x f x e e k x x x x --==---, 令2121()()ax ax axe e xf x k ae x x ϕ-'=-=--,则121()12121()[()1],ax a x x e x e a x x x x ϕ-=----- 212()21221()[()1]ax a x x e x e a x x x x ϕ-=----…………………………………………………………8分 令()1,t F t e t =--则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t ≠时,()(0),F t F >即10t e t -->.从而121()21210,()10ax a x x e e a x x x x ->--->-,212()12210,()10ax a x x e e a x x x x ->--->- 所以12()0,()0x x ϕϕ<>,………………………………………………………………………11分 因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在12(,)c x x ∈,使得()0c ϕ=,又2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln,)()ax ax e e x x a a x x -∈-,使()f x k '>.yzhgsb@ ·2012届高三◆数学试卷 第11页 共11页 综上所述,存在在012(,)x x x ∈,使0()f x k '>成立,且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --.……13分 〖点评〗本题考查导数知识的运用,考查函数的单调性与极值,构建新函数确定函数值的符号,从而使问题得解.。

湖南省2012届高三六校联考(理综) 无答案

湖南省2012届高三六校联考(理综) 无答案

湖南省2012届高三六校联考理科综合能力测试时量:150分钟满分:300分注意事项:1.本试题卷分选择题和非选择题两部分,时量150分钟,满分300分.答题前,考生务必将自己的姓名、准考证号填写在答题卡和本试题卷上。

2.回答选择题,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试题卷和草稿纸上无效。

3.回答非选择题时,用0。

5毫米黑色墨水签字笔将答案按题号写在答题卡上.写在本试题卷和草稿纸上无效。

4.考试结束时,将本试题卷和答题卡一并交回。

可能到的相对原子质量:H 1 C 12 O 16一、选择题:本大题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.存在于酵母菌细胞中,但不存在于颤藻细胞中的结构或成分是A.染色质B.胸腺嘧啶C.CO2 D.[H]2.右图表示一个分泌细胞.有关该细胞的叙述,错误的是A.若Y表示胰高血糖素,则该细胞在血糖浓度过低时,活动加强 B.若Y表示抗体,则该细胞是由B细胞或记忆细胞增殖分化而来C.若Y表示性激素,则该细胞受下丘脑分泌的激素直接调节D.若Y表示消化酶,则该酶自该细胞到达消化道跨过的膜层数为03.右图所示的实验装置,可用于多种生物学实验.下列与该装置相关的实验叙述,合理的是A.如果x是葡萄糖,产物Y是酒精,则条件还需添加酵母菌B.如果X是CO2,产物Y是O2,则条件只要加水绵等绿色植物 C.如果x是ADP+Pi,装置内有葡萄糖氧化分解,则Y一定是ATP D.如果X是DNA,产物Y含有U,则装置中必须加入RNA聚合酶等4.甲图中的曲线表示光照强度、温度、CO2浓度对农作物产量的影响,乙图是植物细胞代谢的部分过程示意图。

下列相关叙述,正确的是A.引起甲图中B、D两点净光合速率不同的外界因素是光照强度和CO2浓度B.甲图中A点处的三碳化合物含量少于C点处C.乙图中C6H12O6的生成和物质N的生成均在细胞质基质D.乙图所示状态,该植物细胞的光合作用强度大于呼吸作用强度5.右图是4个患遗传病的家系,图中的黑色为遗传病患者,白色为表现正常个体.下列叙述正确的是A.可能是白化病遗传的家系是甲、乙、丙、丁B.肯定不是红绿色盲遗传的家系是甲、丙、丁C.家系乙中患病男孩的父母一定是该病携带者D.家系丁中的夫妇再生一个正常女儿的几率为25%6.右图中的曲线X表示某种群在理想环境中呈“J”型增长,曲线Y为某种群在有环境阻力条件下呈“S”型增长。

2012高考湖南理科数学试题及答案(高清版)-推荐下载

2012高考湖南理科数学试题及答案(高清版)-推荐下载

D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg
5.已知双曲线
A. x2 y2 1 20 5
C. x2 y2 1 80 20
C:
x2 a2
π
6.函数 f(x)=sinx-cos(x+ )的值域为( )
6
A.[-2,2]
C.[-1,1]

y2 b2
1的焦距为 10,点
样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 y 0.85x 85.71,则
下列结论中不正确的是( ) A.y 与 x 具有正的线性相关关系
为( )
B.回归直线过样本点的中心 (x, y)
C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 kg
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年高考数学湖南卷理科试题及答案(全word版)

2012年高考数学湖南卷理科试题及答案(全word版)

D C B A图1湖南省2012年高考试题数学( 理科)分值:150分 时量:120分钟 考试日期:2012-06-07一、选择题:本大题共8个小题,每小题5分,共40分. 1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}2.命题“若4απ=,则tan 1α=”的逆否命题是 ( ) A .若4απ≠,则tan 1α≠ B .若4απ=,则tan 1α≠C .若tan 1α≠,则4απ≠D .若tan 1α≠,则4απ=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 ( )4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y(1,2,,)i n = ,用最小二乘法建立的回归方程为 0.8585.71y x =-,则下列结论中不正确的是( )A. y 与x 具有正的线性相关关系B. 回归直线方程过样本点的中心(,)x yC. 若该大学某女生身高增加1cm,则其体重约增加0.85kgD. 若该大学某女生身高为170cm,则可断定其体重为58.79kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -=D .2212080x y -= 6.函数()sin cos()6f x x x π=-+的值域为( )A .[-2,2]B .] C .[-1,1] D .] 7.在ABC ∆中, AB =2, AC =3,AB BC ⋅=1,则BC = ( )ABC.D8.已知两条直线1:l y m =和8:(0,l y m m =>≠,1l 与函数2|log |y x =的图象从左至ABPO图2图3图4右相交于点A B 、,2l 与函数2|log |y x =的图象从左至右相交于点C D 、.记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为( ) A . B . C . D .二、填空题:本大题共8个小题,考生作答7个小题,每小题5分,共35分,把答案填写在题中的横线上. (一)选做题(请在第9、10、11两题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xoy 中,已知曲线11,:(12x t C t y t =+⎧⎨=-⎩为参数)与曲线2sin ,:3cos x a C y θθ=⎧⎨=⎩ (θ为参数,a >0) 有一个公共点在x 轴上,则a = .10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若PA =1,AB =2,PO =3,则圆O 的半径等于 . (二)必做题(12〜16题)12.已知复数z=(3+i)2(i 为虚数单位),则|z|= .13.6的二项展开式中的常数项为 (14.如果执行如图3所示的程序框图,输入1,3x n =-=,15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图 象如图4所示,其中P 为图象与y 轴的交点,,A C 为图 象与x 轴的两个交点,B 为图象的最低点.(1)若6ϕπ=,点P 的坐标为,则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取 一点,则该点在ABC ∆内的概率为 .16.设*2(2,)n N n n N =≥∈,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x = .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N和后2N 个位置,得到排列113124N N P x x x x x x -= 将此操作称为C 变换,将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ,当22i n ≤≤-时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +,例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置; (2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如上表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间x 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥底面ABCD ,4,3,5,90,AB BC AD DAB ABC E ===∠=∠= 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成 的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{a n }的各项均为正数,记A(n)=12n a a a +++ ,B(n)=231n a a a ++++ , C(n)=342n a a a ++++ ,n=1,2,….(Ⅰ)若121,5a a ==且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{a n }的通项公式. (Ⅱ)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个数(),(),()A n B n C n组成公比为q 的等比数列.BDPE20.(本小题满分13分)某企业接到生产3000台某产品的A,B,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A,B,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xoy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别于曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()ax f x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k 问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.参考答案一、选择题 B,C,D,D A,B,A,B 二、填空题 9.32 10.1{|}4x x > 11. 12. 10 13. -160 14. -4 15.(1) 3 (2)4π16.(1) 6 ,(2)43211n -⨯+三、解答题17.【解】(Ⅰ)由已知得251055y ++=,所以20y =,所以1003025201015x =----=……2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得:153303251(1),( 1.5),(2)10020100101004P X P X P X =========, 201101( 2.5),(3)100510010P X P X ======. 所以X 的分布列如右表所示, X 的数学期望为()E X =1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9…………………………………6分 (Ⅱ) 记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,i X (i =1,2)为该顾客前面第i 位顾客的结算时间,则1()(1P A P X ==且211)(1X P X =+=且211.5)( 1.5X P X =+=且21)X =…………………8分由于各顾客的结算相互独立,且i X (i =1,2)的分布列都与X 的分布列相同,所以…………10分121212()(1)(1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=333333920202010102080=⨯+⨯+⨯= 故该顾客结算前的等候时间不超过2.5分钟的概率为980.………………………………………12分 〖点评〗本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.【解】解法一:(Ⅰ)连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5,又AD =5,E 是CD 得中点,所以CD ⊥AE ,…………………………2分 PA ⊥平面ABCD,CD ⊂平面ABCD.所以PA ⊥CD ,………………3分 而PA,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .………………………………………………5分(Ⅱ)过点B 作BG ∥CD,分别与AE,AD 相交于点F 、G,连接PF, 由CD ⊥平面PAE 知,BG ⊥平面PAE,于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AE .……………………………………7分 由PA ⊥平面ABCD 知,∠PBA 即为直线PB 与平面ABCD 所成的角.由题意∠PBA=∠BPF,因为sin ∠PBA=PA ,sin ∠BPF=BF ,所以PA=BF .……………………9分B由∠DAB=∠ABC=90°知,AD ∥BC,又BG ∥CD.所以四边形BCDG 是平行四边形, 故GD=BC=3,于是AG=2.在RT △BAG 中,AB=4,AG=2,BG ⊥AF,所以也所以BF=2AB BG ==于是.…………………………………………11分 又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 解法二:以A 为坐标原点,AB 、AD 、AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA=h,则相关各点的坐标为A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).……………2分 (Ⅰ)CD =(-4,2,0),AE =(2,4,0),AP=(0,0,h).因为CD AE ⋅= -8+8+0=0,CD AP ⋅=0.………………4分所以CD ⊥AE,CD ⊥AP,而AP,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE.………………………………………………………………………………6分(Ⅱ)由题设和第一问知,,CD PA分别是平面PAE,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,………………………………7分所以|cos <,CD PB >|=|cos <,PA PB >|,即||||||||||||CD PB PA PB CD PB PA PB ⋅⋅=⨯⨯………………9分 由第一问知CD=(-4,2,0),(0,0,),PA h =- 又(4,0,)PB h =- ,故2|00|h h ++=,解得h =…………………………………………………11分又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 〖点评〗本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.【解】(Ⅰ) 因为对任意n ∈N*三个数(),(),()A n B n C n 组成等差数列,所以()()()()B n A n C n B n -=-,………………………………………………………………1分即1122n n a a a a ++-=-,亦即21214n n a a a a ++-=-=.故数列{a n }是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-.………………4分 (Ⅱ)证明:(必要性)若数列{a n }是公比为q 的等比数列,对任意n ∈N*,有1n n a a q +=.由0n a >知,(),(),()A n B n C n 均大于0,于是………………………………………5分231121212()()()n n n n a a a q a a a B n q A n a a a a a a +++++++===++++++ ,…………………………………………6分 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++ ,………………………………………7分 即()()()()B nC n q A n B n ==,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列;………………8分 (充分性):若对任意n ∈N*,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==,于是()()[()()]C n B n q B n A n -=-,即2211()n n a a q a a ++-=-,亦即2121n n a qa a qa ++-=-……………………………………………………………………10分 由n=1时,(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.………………………………………………11分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个(),(),()A n B n C n 组成公比为q 的等比数列. ………………………………………………………12分20.【解】(Ⅰ)设完成A,B,C 三种部件生产需要的时间(单位:天)分别为123(),(),()T x T x T x 由题设有12323000100020001500(),(),()6200(1)T x T x T x x x kx k x⨯====-+, 其中,,200(1)x kx k x -+均为1到200之间的正整数.…………………………………………4分 (Ⅱ)完成订单任务的时间为123()max{(),(),()}f x T x T x T x =,其定义域为*200{|0,}1x x x N k<<∈+ 所以12(),()T x T x 为减函数,3()T x 为增函数,注意到*21()2()()T x k T x k=∈N①当k=2时,12()()T x T x =,此时10001500()max{,}2003f x x x =-,其中*2000,3x x N <<∈ 所以由函数1310001500,2003T T x x ==-的单调性及图象可知,当100015002003x x =-,即4009x =时, 函数()f x 有最小值.由于40044459<<,且*x N ∈.且13250300(44)(44),(45)(45)1113f T f T ====,且2503001113<, 所以x =44时,完成订单任务的时间最短,时间最短为250(44)11f =.……………………………8分②当2k >,即3k ≥时,12()()T x T x <,所以10001500()max{,}200(1)f x x k x=-+ 其中315001500375(,)200(1)200450T k x k x x x=≥=-+--,所以只须求1000375max{,}50x x -的最小值,其中*050,x x N <<∈. 同理可知当100037550x x =-,即400(36,37)11x =∈所以当36x =时,1000375250250max{,}50911x x =>-, 当37x =时,1000375375250max{,}501311x x =>-, 所以此时完成订单任务的最短时间大于25011.…………………………………………………11分③当2k <,即1k =时,12()()T x T x <,此时2000750()max{,}100f x x x=-,且*0100,x x N <<∈同理令2000750100x x=-,得800(72,73)11x =∈当72x =时,2000750250250(72)max{,}100911f x x ==>-, 当73x =时,2000750750250250(73)max{,}10027911f x x ===>- 所以此时完成订单任务的最短时间也大于25011.………………………………………………12分综上所述,当2k =时,完成订单任务的时间最短,此时,,A B C 三种部件的人数分别为44,88,68. …………………………………………………………………………………………………………13分 〖点评〗本题考查函数模型的构建,考查函数的单调性,分类讨论、数形结合(多想少算)的数学思想,解题的关键是确定分类标准,有难度.21.【解】(Ⅰ)解法一:设(,)M x y ,由已知得|2|3x +,…………………………2分由图可知,点M 在直线2x =-的右侧,故20x +>,5x +化简得曲线1C 的方程为220y x =.……………………………………………………………5分 解法二:由题设知,曲线1C 上任意一点M 到圆心2(5,0)C 的距离等于它到直线5x =-的距离.因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线. 故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,记(4,)(3)P t t -≠±,则过点P 且与圆2C 相切直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,如右图所示, 设两切线的统一方程为(4)y t k x -=+,即40kx y t k -++=,于是3=,整理得22721890k tk t ++-=(0∆>恒成立),又设过两切线,PA PC 的斜率为12,k k ,则212129,472t t k k k k -+=-=……①…………………8分又联立切线PA 与抛物线方程得11240,20k x y t k y x-++=⎧⎨=⎩得2112020(4)0k y y t k -++=设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则易知1121120(4)8020t k ty y k k +==+ 同理可知3428020ty y k =+,……………………………………………………………………11分 所以21212123412124()16400(4)(4)400t t k k k k t ty y y y k k k k +++=++= 212124()1644006400tt t k k k k +-+==所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.……………13分 〖点评〗本题考查轨迹方程,考查直线与圆相切、韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.22.【解】(Ⅰ)若0a <,则对一切0x >,()1axf x e x =-<,这与题设矛盾.又0a ≠,故0a >.……1分而()1ax f x ae '=-,令()0f x '=,得11lnx a a=.当11ln x a a<时,()0f x '<,()f x 递减;当11ln x a a >时,()0f x '>,()f x 递增.故当11ln x a a =时,()f x 取最小值11111(ln )ln f a a a a a=-.………………………………………3分于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥.……①令()ln g t t t t =-,则()ln g t t '=-.当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=,即1a =时,①式成立.………………5分 综上所述,a 的取值集合为{1}.………………………………………………………………………6分(Ⅱ)由题知,21212121()()1ax ax f x f x e e k x x x x --==---, 令2121()()ax ax axe e xf x k ae x x ϕ-'=-=--,则121()12121()[()1],ax a x x e x e a x x x x ϕ-=----- 212()21221()[()1]ax a x x e x e a x x x x ϕ-=----…………………………………………………………8分 令()1,t F t e t =--则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t ≠时,()(0),F t F >即10t e t -->.从而121()21210,()10ax a x x e e a x x x x ->--->-,212()12210,()10ax a x x e e a x x x x ->--->- 所以12()0,()0x x ϕϕ<>,………………………………………………………………………11分 因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在12(,)c x x ∈,使得()0c ϕ=,又2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln,)()ax ax e e x x a a x x -∈-,使()f x k '>.yzhgsb@ ·2012届高三◆数学试卷 第11页 共11页 综上所述,存在在012(,)x x x ∈,使0()f x k '>成立,且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --.……13分 〖点评〗本题考查导数知识的运用,考查函数的单调性与极值,构建新函数确定函数值的符号,从而使问题得解.。

湖南省大联考2012雅礼中学高三6次月考数学(理科)试卷答案

湖南省大联考2012雅礼中学高三6次月考数学(理科)试卷答案

炎德·英才大联考雅礼中学2012届高三月考试卷(六)数学(理科)参考答案一㊁选择题选择题答题卡题 号12345678答 案B A D DC C B A 二㊁填空题9.5 10.2-1 11.26 12.4 13.33.6 14.28 15.32 16.(1)140 (2)3961三㊁解答题17.解:(1)m ∥n ,∴(c -a )c -(b -a )(a +b )=0,∴a 2+c 2-b 2=a c ,即a 2+c 2-b 22a c =12,∴c o s B =12,B =π3.(6分)……………………………………………………………………(2)∵B =π3,∴A +C =2π3.∵三角形A B C 为锐角三角形,∴0<A <π2,0<C =2π3-A <π2,∴π6<A <π2.∵a s i n A =b s i n B =c s i n C ,且b =1,∴a +c =b s i n A +b s i n C s i n B =s i n A +s i n (2π3-A )32=23(32s i n A +32c o s A )=3s i n A +c o s A =2s i n (A +π6).∵π6<A <π2,∴π3<A +π6<2π3,∴a +c ∈(3,2].(12分)……………………………………………………18.解:(1)由题意知ξ的可能取值为0,2,4.∵ ξ=0”指的是实验成功2次,失败2次,∴P (ξ=0)=C 24(13)2(1-13)2=2481. ξ=2”指的是实验成功3次,失败1次或实验成功1次,失败3次,∴P (ξ=2)=C 34(13)3(1-13)+C 14(13)(1-13)3=4081. ξ=4”指的是实验成功4次,失败0次或实验成功0次,失败4次,∴P (ξ=4)=C 44(13)4+C 04(1-13)4=1781,∴E ξ=0×2481+2×4081+4×1781=14881,故随机变量ξ的数学期望为14881.(6分)…………………………………(2)由题设: 不等式ξx 2-ξx +1>0的解集是实数集R ”为事件A .当ξ=0时,不等式化为1>0,其解集是R ,说明事件A 发生;当ξ=2时,不等式化为2x 2-2x +1>0,∵Δ=-4<0,所以解集是R ,说明事件A 发生;当ξ=4时,不等式化为4x 2-4x +1>0⇒(2x -1)2>0,其解集为{x |x ∈R ,x ≠12},说明事件A 不发生.∴P (A )=P (ξ=0)+P (ξ=2)=2481+4081=6481.即事件A 发生的概率为6481.(12分)…………………………………………………………………………………19.解:(1)由已知,易证△A D E 和△D C E 是等边三角形,所以A E =E C =2,所以A E =12B E .又∠A E B =60°,∴A B ⊥A E ,∴A B =23,A E =E F =2.取A E 中点O ,连接D O ,F O .由A D =D E ,所以A E ⊥D O ;由A F =E F ,所以A E ⊥F O ,所以A E ⊥平面D O F ,所以A E ⊥D F .(6分)………………………………………………………………………(2)以点O 为原点,以O F ,O E ,O D 为x ,y ,z 轴的正方向建立空间直角坐标系,则O (0,0,0),D (0,0,3),B (23,-1,0),E (0,1,0),A (0,-1,0),→D B =(23,-1,-3),→D E =(0,1,-3).设平面D B E 的法向量n 1=(x ,y ,z ),由→D B ㊃n 1=0,→D E ㊃n 1=0,求得n 1=(1,3,1);同理可求得平面A B D 的一个法向量n 2=(0,-3,1),所以c o s θ=|n 1㊃n 2|n 1||n 2||=55.(12分)…………………20.解:(1)当x ≥2时,f (x )=P (x )-P (x -1)=-3x 2+39x ,x =1也符合.故第x 个月的预期销售量f (x )=-3x 2+39x (x ≤12,x ∈N *).(5分)…………………………………………(2)设月利润为h (x )(千元),则h (x )=-3e x (x -13),1≤x ≤3且x ∈N *x 3-27x 2+240x +100,3<x ≤12且x ∈N {*.令H (x )=-3e x (x -13),1≤x ≤3x 3-27x 2+240x +100,3<x ≤{12,则H '(x )=-3e x (x -12),1≤x ≤33(x -8)(x -10),3<x ≤{12.当1≤x ≤3时,H '(x )>0⇒H (x )m a x =H (3)<30㊃33=810;当3<x ≤12时,H (8)=804,H (12)=820⇒H (x )m a x =H (12)=820.∴当x ∈N *,x ≤12时,h (x )m a x =h (12)=820.故在实际销售过程中,第12个月的月利润达到最大值,最大值是820千元.(13分)……………………………21.解:(1)设M (x ,y ),则由题意得x 2+(y -1)2=|y +1|,化简得x 2=4y .(4分)………………………………(2)由题意可设A B 的方程为y =k x +1,代入x 2=4y 得x 2-4k x -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.由y =14x 2,y '=12x ,易求得l 1,l 2的方程分别为y =12x x 1-14x 21, ①y =12x x 2-14x 22, ②故由①②解得P 的坐标为P (x 1+x 22,14x 1x 2),即P (2k ,-1),从而k P F =-1k,所以k A B ㊃k C D =k (-1k)=-1,因此A B ⊥C D .设C (x 3,y 3),D (x 4,y 4),则同理可得x 3+x 4=-4k ,x 3x 4=-4,所以→A D ㊃→C B =(→A F +→F D )㊃(→C F +→F B )=→A F ㊃→C F +→A F ㊃→F B +→F D ㊃→C F +→F D ㊃→F B =→A F ㊃→F B +→F D ㊃→C F =|→A F ||→F B |+|→F D ||→C F |=(y 1+1)(y 2+1)+(y 3+1)(y4+1)=(k x 1+2)(k x 2+2)+(-1k x 3+2)(-1k x 4+2)=k 2x 1x 2+2k (x 1+x 2)+4+1k2x 3x 4-2k (x 3+x 4)+4=4(k 2+1k 2)+8≥4×2+8=16.当且仅当k 2=1k2,即k =±1时,→A D ㊃→C B 取最小值16.(13分)……………………………………………………22.解:(1)因为a 2n +1=2a 2n +a n a n +1,即(a n +1+a n )(2a n -a n +1)=0.又a n >0,所以有2a n -a n +1=0,所以2a n =a n +1,所以数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4得2a 1+8a 1=8a 1+4,解得a 1=2.故数列{a n }的通项公式为a n =2n (n ∈N *).(4分)…………………………………………………………………(2)b n =n a n (2n +1)㊃2n =n 2n +1,所以b 1=13,b m =m 2m +1,b n =n 2n +1.若b 1,b m ,b n 成等比数列,则(m 2m +1)2=13(n 2n +1),即m 24m 2+4m +1=n 6n +3.由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m2,所以-2m 2+4m +1>0,从而1-62<m <1+62.又m ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12,使得b 1,b m ,b n 成等比数列.(8分)………………………………………………………(3)构造函数f (x )=l n (1+x )-x (x ≥0),则f '(x )=11+x -1=-x 1+x ,当x >0时,f '(x )<0,即f (x )在(0,+∞)上单调递减,所以f (x )<f (0)=0,∴l n (1+x )-x <0,所以l n c n =l n (1+n a n)=l n (1+n 2n )<n 2n ,所以l n T n <12+222+323+ +n 2n ,记A n =12+222+323+ +n 2n ,则12A n =122+223+324+ +n -12n +n 2n +1,所以A n -12A n =12+122+123+ +12n -n 2n +1=1-n +22n +1<1,即A n <2,所以l n T n <2,所以T n <e 2<9.(13分)…………………………………………………………………。

2012年高考理科数学湖南卷(含答案解析)

2012年高考理科数学湖南卷(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N = ( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下 列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为 ( )A .[]2,2- B.[ C .[]1,1- D.[227.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( )A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = . 10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点. (1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置;(2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题CBDPE图5A1.【答案】B 【解析】{0,1}N =,{1,0,1}M =-,{0,1}M N ∴=.【提示】先求出{0,1}N =,再利用交集定义得出MN .【考点】集合的基本运算(交集) 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以“若π4α=,则t a n 1α=”的逆否命题是“若tan 1,α≠则π4α≠”.【提示】根据命题“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,即可求它的逆否命题. 【考点】四种命题及其之间的关系 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C ,都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【提示】根据已知的平面图形的正视图和侧视图,即可求出它的俯视图. 【考点】平面图形的直观图与三视图 4.【答案】D【解析】由回归方程为0.85571ˆ8.x y-=知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程的过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(,)x y ,利用回归方程可以预测估计总体,所以D 不正确.【提示】根据两变量之间的回归方程,即可判断两者之间的关系. 【考点】线性回归分析 5.【答案】A【解析】设双曲线22221x a C yb -=:的半焦距为c ,则210c =,5c =, 又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12ba∴=⨯,即2a b =,又222c a b =+,a ∴=b =C ∴的方程为221205x y -=.【提示】根据给出的双曲线的焦距及其渐近线上一点,即可求出双曲线的标准方程.【考点】双曲线的标准方程 6.【答案】B【解析】π1π()sin cos sin sin 626f x x x x x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭, πsin [1,1]6x ⎛⎫-∈- ⎪⎝⎭,()f x ∴值域为[.【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域. 【考点】两角差的正弦,三角函数的值域 7.【答案】A【解析】由图知,||||cos(π)2||(cos )1AB BC AB BC B BC B =-=⨯⨯-=,1cos 2B BC∴=-,又由余弦定理知222cos 2AB BC AC B AB BC +-=,解得BC =.【提示】根据给出的三角形两边及数量积,结合数量积运算及余弦定理即可求解另一边. 【考点】平面向量的数量积运算,余弦定理8.【答案】B【解析】在同一坐标系中作出y m =,8(0)21y m m =>+,2|log |y x =图象如图, 由2|log |x m =,得12m x -=,22mx =,由28|log |21x m =+,得82132m x -+=,82142m x +=,依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-===-,8141114312122222m m m m +=++-≥-=++,minb a ⎛⎫∴= ⎪⎝⎭【提示】根据给出的三个函数表达式,画出函数图象,结合图象与不等式即可判断b a最小值.【考点】函数图象的应用,基本不等式 二、填空题 9.【答案】32【解析】曲线1112x t C y t=+⎧⎨=-⎩:,直角坐标方程为32y x =-,与x 轴交点为3,02⎛⎫ ⎪⎝⎭;曲线2sin 3cos x a C y θθ=⎧⎨=⎩:,直角坐标方程为22219x y a +=,其与x 轴交点为(,0)a -,(,0)a , 由0a >,曲线1C 与曲线2C有一个公共点在x 轴上,知32a =. 【提示】根据给出的两条直线的参数方程与极坐标方程,分别转化成直角坐标方程,根据题意设交点求解.【考点】参数方程与普通方程的转化,极坐标方程与普通方程的转化10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()|21|2|1|f x x x =+--,则由13,()21()41,(1)23,(1)x f x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩,得()0f x >的解集为14x x ⎧⎫>⎨⎬⎩⎭.【提示】设函数表达式,求其等价的分段函数,再分段求其大于零时的解集即可. 【考点】绝对值不等式 11.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为r ,由割线定理知PA PB PC PD =, 即1(12)(3)(3)r r ⨯+=-+,r ∴=.【提示】根据给出的线段长,由切割线定理PA PB PC PD =,即可求出圆的半径. 【考点】切割线定理 12.【答案】10【解析】22(3i)96i i 86i z =+=++=+,||10z ==. 【提示】根据给出的复数表达式,进行四则运算,即可求出其模. 【考点】复数代数形式的四则运算 13.【答案】160-【解析】6⎛ ⎝的展开式项公式是6631662(1)rr r r r r rr T C C x ---+⎛==- ⎝, 由题意知30r -=,3r =,所以二项展开式中的常数项为333462(1)160T C =-=-. 【提示】根据给出的二项式,即可求出其展开式的常数项.【考点】二项式定理 14.【答案】4-【解析】输入1x =-,3n =,执行过程如下:2i =,6233S =-++=-;1i =,3(1)115S =--++=;0i =,5(1)014S =-++=-,所以输出的是4-.【提示】根据程序框图的逻辑关系,并根据程序框图即可求出S 的值. 【考点】循环结构的程序框图 15.【答案】3π4【解析】①()cos()y f x x ωωϕ'==+,当π6ϕ=,点P的坐标为⎛ ⎝⎭时,πcos 6ω= 3ω∴=;②由图知2ππ22T AC ωω===,1π22ABC S AC ω==△, 设A ,B 的横坐标分别为a ,b ,设曲线段弧ABC 与x 轴所围成的区域的面积为S , 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为π2π24ABC S P S ===△. 【提示】根据给出的函数导数的图象判断ω的大小,由定积分求面积,并结合概率求解即可.【考点】函数图象的应用,定积分的几何意义,几何概型 16.【答案】643211n -⨯+【解析】①当16N =时,0123456P x x x x x x x =…,可设为(1,2,3,4,5,6,…,113571524616P x x x x x x x x x =……,即为(1,3,5……,2159133711152616P x x x x x x x x x x x =…,即(1,5,9,13,3,7,11,15,2,6,,16)…,7x 位于2P 中的第6个位置;②方法同①,归纳推理知173x 位于4P 中的第43211n -⨯+个位置.【提示】根据题意归纳推理求解即可. 【考点】归纳推理 三、解答题17.【答案】(Ⅰ)由已知,得251055y ++=,35x y +=,所以15x =,20y =,该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率,得:153(1)10020P X ===, 303( 1.5)10010P X ===,251(2)1004P X ===,X 的数学期望为()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=;(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且,由于顾客的结算相互独立,且1X ,2X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X PX P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【提示】根据给出的数据求分布列与期望,判断事件之间互斥关系,从而求得对立事件的概率即可.【考点】用样本数字特征估计总体数字特征,对立事件的概率18.【答案】(Ⅰ)如图,连接AC ,由4AB =,3BC =,90ABC ∠=,得5AC =, 又5AD =,E 是CD 的中点,所以CD AE ⊥,PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,而PA ,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE ;(Ⅱ)过点B 作BG CD ∥,分别与AE ,AD 相交于F ,G 连结PF , 由(Ⅰ)CD ⊥平面PAE 知,BG ⊥平面PAE ,于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由PA ⊥平面ABCD 知,PBA ∠为直线PB 与平面ABCD 所成的角,4AB =,2AG =,BG AF ⊥由题意,知PBA BPF ∠=∠,因为sin PA PBA PB ∠=,sin BFBPF PB∠=,所以PA BF =,由90DAB ABC ∠=∠=, 知,AD BC ∥,又BG CD ∥,所以四边形BCDG 是平行四边形,故3GD BC ==,于是2AG =,在Rt BAG △中,4AB =,2AG =,BG AF ⊥,所以BG =,2AB BF BG ===于是PA BF ==, 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=【解析二】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA h =,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B ,(4,3,0)C ,(0,5,0)D ,(2,4,0)E ,(0,0,)P h ;(Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,)AP h =,8800CD AE =-++=,0CD AP =,所以CD AE ⊥,CD AP ⊥,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE ;(Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以cos ,cos ,CD PB PA PB <>=<>,即||||||||C D P BP A P BC D P B P A P B =,由(Ⅰ)知,(4,2,0)CD =-,(0,0,)AP h=-由(4,0,)PB h =-,故2216516h hh++,解得5h =,又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1112851633V S PA =⨯⨯=⨯=【提示】根据定理判定线面垂直;找出四棱锥的高求其体积. 【考点】直线与平面垂直的判定,四棱锥的体积19.【答案】(Ⅰ)对任意n *∈N ,三个数()A n ,()B n ,()C n 是等差数列,所以()()()()B n A n C n B n -=-,即1122n n a a a a ++-=-,亦即21214n n a a a a +--=-=,故数列{}n a 是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-; (Ⅱ)①必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=, 由0n a >知,()A n ,()B n ,()C n 均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==, 所以三个数()A n ,()B n ,()C n 组成公比为q 的等比数列;②充分性:若对于任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列, 则()()B n qA n =,()()C n qB n =,于是()()[()()]C n B n q B n A n -=-, 得2211()n n a a q a a ++-=-,即2121n n a qa a a ++-=-, 由1n =有(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=, 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列.【提示】根据给出的三个关系式,根据三者之间的关系结合等差、等比性质求解即可. 【考点】等差数列的通项公式,等比数列的性质20.【答案】(Ⅰ)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为1()T x ,2()T x ,3()T x 由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+,其中x ,kx ,200(1)k x -+均为1到200之间的正整数;(Ⅱ)完成订单任务的时间为{}123()max (),(),()f x T x T x T x =,其定义域为2000,1x x x k *⎧⎫<<∈⎨⎬+⎩⎭N , 易知,1()T x ,2()T x 为减函数,3()T x 为增函数,注意到212()()T x T x k=,于是:①当2k =时,12()()T x T x =,此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数1()T x ,3()T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得4009x =,由于40044459<<,而1250(44)(44)11f T ==,3300(45)(45)13f T ==,(44)(45)f f <, 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =;②当2k >时,12()()T x T x >,由于k 为正整数,故3k ≥,此时375()50T x x=-,{}1()max (),()x T x T x ϕ=易知()T x 为增函数,则{}{}1311000375()max (),()max (),()()max ,50f x T x T x T x T x x x x ϕ⎧⎫=≥==⎨⎬-⎩⎭,由函数1()T x ,()T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =,由于400363711<<而1250250(36)(36)911T ϕ==>,375250(37)(37)1311T ϕ==>,此时完成订单任务的最短时间大于25011;③当2k <时,12()()T x T x <,由于k 为正整数,故1k =,此时{}232000750()max (),()max ,100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数2()T x ,3()T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =, 类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A ,B ,C 三种部件的人数分别为44,88,68.【提示】根据题意建立模型,判断单调性求最值即可.【考点】分段函数模型,函数单调性的判断,利用函数单调性求最值21.【答案】(Ⅰ)解法一:设M 的坐标为(,)x y,由已知得|2|3x +,易知圆2C 上的点位于直线2x =-的右侧,于是20x +>,5x =+,化简得曲线1C 的方程为220y x =;解法二:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =;(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4)y y k x -=+,即040kx y y k -++=,于是3=,整理得2200721890k y k y ++-=①,设过P 所作的两条切线PA ,PC 的斜率分别为1k ,2k ,则1y ,2y 是方程①的两个实根,故001218724y y k k +=-=-②,由10124020k x y y k y x -++=⎧⎨=⎩,得21012020(4)0k y y y k -++=③,设四点A ,B ,C ,D 的纵坐标分别为1y ,2y ,3y ,4y ,则1k ,2k 是方程③的两个实根,所以0112120(4)y k y y k +=④,同理可得0234220(4)y k y y k +=⑤,于是由②,④,⑤三式,得0102123412400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦==.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【提示】根据给出的圆的方程及两曲线之间的关系,联立方程由韦达定理即可求解. 【考点】曲线与方程,直线与曲线的位置关系 22.【答案】(Ⅰ){1}(Ⅱ)0x 的取值范围为212211e e ln,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦【解析】(Ⅰ)若0a <,则对一切0x >,()f x e 1ax x =-<,这与题设矛盾,又0a ≠,故0a >,而()e 1ax f x a '=-,令()0f x '=,得11lnx aa =,当11ln x a a<时,()0f x '<,()f x 单调递减;当11ln x a a >时,()0f x '>,()f x 单调递增.故当11ln x a a=时,()f x 取最小值11111ln ln f a a a a a⎛⎫=- ⎪⎝⎭,于是对一切x ∈R ,()1f x ≥恒成立,当且仅当111ln 1a a a-≥,令()ln g t t t t =-,则()ln g t t '=-,当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 单调递减.故当1t =时,()g t 取最大值(1)1g =,因此,当且仅当11a=即1a =时,a 的取值集合为{1}; (Ⅱ)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---,令2121e e ()()e ax ax axx f x k a x x ϕ-'=-=--,则121()12121e ()[e ()1]ax a x x x a x x x x ϕ-=-----,212()21221e ()[e ()1]ax a x x x a x x x x ϕ-=----, 令()e 1tF t t =--,则()e 1tF t '=-.当0t <时,()0F t '<,()F t 单调递减;当0t >时,()0F t '>,()F t 单调递增. 故当0t =,()(0)0F t F >=,即e 10t t -->, 从而21()21e()10a x x a x x ---->,12()12e()10a x x a x x ---->,又121e 0ax x x >-,221e 0ax x x >-, 所以1()0x ϕ<,2()0x ϕ>,因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0x ϕ=,2()e 0axx a ϕ'=>,()x ϕ单调递增,故这样的c 是唯一的,且21211e e ln ()ax ax c a a x x -=-,故当且仅当212211e e ln ,()ax ax x x a a x x ⎡⎤-∈⎢⎥-⎣⎦时,0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立,且0x 的取值范围为212211e e ln ,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦. 【提示】给出函数解析式,利用导数判断函数单调性求参数的取值范围;利用导数判断段单调性并求不等式.【考点】利用导数判断或求函数的单调区间,利用导数解决不等式问题。

湖南省高三数学六校联考试题 理 (无答案)案湘教

湖南省高三数学六校联考试题 理 (无答案)案湘教

湖南省2012届高三六校联考数学(理科)题本试题卷包括选择题、填空题和解答题三部分,共6分页。

时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内,复数z=131对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.在正项等比数列{a n }中,若a 2+a 3=2,a 2a 4+a 2a 5+a 3a 4+a 3a 5=1,则a 5+a 6= A .14B .12C .1D .2 3.在去年我省某市组织的一次高三数学竞赛中,全体参赛学生的成绩X 服从正态分布X ~N(60,100),已知成绩在90分以上(包括90)的学生有13人,则此次参加竞赛的学生人数是(参考数据:P (μ-3σ<X≤μ+3σ)=0.9974是) A .8000人 B .9000人 C .10000人 D .11000人4.某器物的三视图如右图所示,其上、下两部分的体积分别记为V 1、 V 2,根据图中数据可知V 1:V 2= A4 B .4C1D .15.设Rt△ABC 的三边长分别为a 、b 、c (a <b <c ),则“a:b :c=3: 4:5”是“a、b 、C 等差数列的”的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 6.由曲线y=x 2和直线x=0,x=1,y=14所围成的封闭图形的面积为A .14B .13C .12D .237.如图,某地一天从6~14时的温度变化曲线近似满足函数T= asin (ωt+φ)+b ,则与27℃最接近的时刻大约是 A .11点 B .12点 C .11点半 D .12点半8.若函数f (x )=x 4+ax 3+ax 2+ax+1有零点,则实数a 的取值范围是 A .(-∞,-2]∪[23,+∞) B .[-2,23] C .(-∞,-23]∪[2,+∞) D .[-23,2] 二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应题 号后的横线上(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9.已知在极坐标系下,圆C :ρ=2(cos θ+sin θ)和直线l :ρsin (θ-4π),则圆心C 到直线l 的距离是 。

2012年高考数学(理科)试卷湖南卷(含答案)最完美最高清word版

2012年高考数学(理科)试卷湖南卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学理工农医类(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan α=1”的逆否命题是( ) A .若π4α≠,则tan α≠1 B .若π4α=,则tan α≠1C .若tan α≠1,则π4α≠D .若tan α≠1,则π4α=3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线C :22221x y a b-=的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -= 6.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2] B.[C .[-1,1] D.[ 7.在△ABC 中,AB =2,AC =3,1AB BC ⋅=,则BC 等于( ) ABC. D8.已知两条直线l 1:y =m 和l 2:821y m =+(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为( ) A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线C 1:112x t y t =+⎧⎨=-⎩,(t 为参数)与曲线C 2:sin 3cos x a y θθ=⎧⎨=⎩,(θ为参数,a >0)有一个公共点在x 轴上,则a =________.10.不等式|2x +1|-2|x -1|>0的解集为__________________.11.如图,过点P 的直线与O 相交于A ,B 两点,若P A =1,AB =2,PO =3,则O 的半径等于________.(二)必做题(12~16题)12.已知复数z =(3+i)2(i 为虚数单位),则|z |=________.13.6的二项展开式中的常数项为________.(用数字作答) 14.如果执行如图所示的程序框图,输入x =-1,n =3,则输出的数S =________.理图15.函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若π6ϕ=,点P 的坐标为(0,2),则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段2N个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段2iN个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的已知这100(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.19.已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式; (2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.22.已知函数f (x )=e ax -x ,其中a ≠0.(1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合; (2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2))(x 1<x 2),记直线AB 的斜率为k .问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.1. B 由N ={x |x 2≤x },得x 2-x ≤0⇒x (x -1)≤0, 解得0≤x ≤1.又∵M ={-1,0,1}, ∴M ∩N ={0,1}. 2. C 命题“若π4α=,则tan α=1”的逆否命题是“若tan α≠1,则π4α≠”.3. D 若为D 项,则主视图如图所示,故不可能是D 项.4. D D 项中,若该大学某女生身高为170 cm ,则其体重约为:0.85×170-85.71= 58.79(kg).故D 项不正确. 5. A 由2c =10,得c =5, ∵点P (2,1)在直线by x a=上, ∴21ba=.又∵a 2+b 2=25,∴a 2=20,b 2=5. 故C 的方程为221205x y -=.6. B f (x )=sin x -cos(x +π6)=31sin sin )2x x x -- =33sin 2x x 313(cos )2x x - π3sin()[3,3]6x -∈.故选B 项.7. A ∵||||cos(π)2||(cos )1AB BC AB BC B BC B ⋅=⋅-=⋅-=,∴1cos 2||B BC =-. 又∵222||||||cos 2||||AB BC AC B AB BC +-=⋅ =24||9122||2||BC BC BC +-=-⨯⨯ , ∴2||=3BC .∴|3BC BC=.8. B 由题意作出如下的示意图.由图知a =|x A -x C |,b =|x D -x B |, 又∵x A ·x B =1,x C ·x D =1,∴11||1||||C A A C A C x x b a x x x x -==-.y A +y C =-log 2x A -log 2x C=-log 2x A x C =8218172122122m m m m ++=+-≥++,当且仅当218221m m +=+,即32m =时取等号. 由-log 2x A x C ≥72,得log 2x A x C ≤72-,即0<x A x C ≤722-从而72122||A C b a x x =≥= 当32m =时,ba 取得最小值82B 项.9.答案:32解析:∵C 1:1,12,x t y t =+⎧⎨=-⎩∴C 1的方程为2x +y -3=0.∵C 2:sin ,3cos ,x a y θθ=⎧⎨=⎩∴C 2的方程为22219x y a +=. ∵C 1与C 2有一个公共点在x 轴上,且a >0, ∴C 1与x 轴的交点(32,0)在C 2上, 代入解得32a =. 10.答案:{x |x >14} 解析:对于不等式|2x +1|-2|x -1|>0,分三种情况讨论: 1°,当12x <-时,-2x -1-2(-x +1)>0,即-3>0,故x 不存在; 2°,当112x -≤≤时,2x +1-2(-x +1)>0, 即114x <≤; 3°,当x >1时,2x +1-2(x -1)>0,3>0, 故x >1. 综上可知,14x >,不等式的解集是14x x ⎧⎫>⎨⎬⎩⎭.11.解析:过P 作圆的切线PC 切圆于C 点,连结OC .∵PC 2=P A ·PB =1×3=3,∴PC =.在Rt △POC中,OC ==.12.答案:10解析:∵z =(3+i)2,∴|z |=32+12=10. 13.答案:-160解析:6的通项为616C (rr r r T -+=- =(-1)r 6C r26-r x 3-r .当3-r =0时,r =3. 故(-1)336C26-3=-36C23=-160.14.答案:-4解析:输入x =-1,n =3.i =3-1=2,S =6×(-1)+2+1=-3; i =2-1=1,S =(-3)×(-1)+1+1=5; i =1-1=0,S =5×(-1)+0+1=-4; i =0-1=-1,-1<0,输出S =-4.15.答案:(1)3 (2)π4 f (x )=sin(ωx +φ),f ′(x )=ωcos(ωx +φ). 解析:(1)π6ϕ=时,f ′(x )=ωcos(ωx +π6).∵'(0)f =,即πcos 6ω=∴ω=3.(2)当ωx +φ=π2时,π2x ϕω-=;当ωx +φ=3π2时,3π2x ϕω-=.由几何概型可知,该点在△ABC 内的概率为3π2π212π11||||||||2223π2[0cos()]sin()π2AC P x x ϕωϕωωωωϕωωϕωωϕϕω--⨯⨯⋅⋅==--+-+-⎰=π23ππ22sin()sin()ϕϕωϕωϕωω---⋅++⋅+=π23ππsin()sin()22-+=ππ2114=+. 16.答案:(1)6 (2)3×2n -4+11解析:(1)由题意知,当N =16时,P 0=x 1x 2x 3x 4x 5…x 16,P 1=x 1x 3x 5…x 15x 2x 4…x 16,则 P 2=x 1x 5x 9x 13x 3x 7x 11x 15x 2x 6x 10x 14x 4x 8x 12x 16, 此时x 7位于P 2中的第6个位置.(2)方法同(1),归纳推理知x 173位于P 4中的第3×2n -4+11个位置.17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本.将频率视为概率得153(1)10020P X ===,303( 1.5)30010P X ===,251(2)1004P X ===,201( 2.5)1005P X ===,101(3)10010P X ===.X 的分布列为X 的数学期望为()3311111.52 2.531.920104510E X ⨯⨯⨯⨯⨯=++++=. (2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=333333920202010102080⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.18.解:解法一:(1)如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD 平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE . 由P A ⊥平面ABCD 知,∠PBA为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形.故GD =BC =3,于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG ==2AB BF BG ===.于是P A =BF . 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 111633V S PA =⨯⨯=⨯=解法二:如图所示,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD =(-4,2,0),AE =(2,4,0),AP=(0,0,h ).因为CD AE ⋅ =-8+8+0=0,CD AP ⋅=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD ,PA分别是平面P AE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos ,||cos ,|CD PB PA PB = ,即CD PB PA PB CD PB PA PB⋅⋅=⋅⋅.由(1)知,CD =(-4,2,0),PA=(0,0,-h ). 又PB=(4,0,-h ),故2=.解得5h =.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633V S PA =⨯⨯=⨯=19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以 B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4. 故数列{a n } 是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==.所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即 a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以2211n n a a q a a ++==. 故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.解:(1)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为T 1(x ),T 2(x ),T 3(x ),由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+, 其中x ,kx,200-(1+k )x 均为1到200之间的正整数. (2)完成订单任务的时间为f (x )=max{T 1(x ),T 2(x ),T 3(x )},其定义域为{x |0<x <2001k+,x ∈N *}.易知,T 1(x ),T 2(x )为减函数,T 3(x )为增函数.注意到T 2(x )=2kT 1(x ),于是 ①当k =2时,T 1(x )=T 2(x ),此时 f (x )=max{T 1(x ),T 3(x )} =max{10001500,2003x x-}. 由函数T 1(x ),T 3(x )的单调性知,当100015002003x x=-时f (x )取得最小值,解得4009x =. 由于40044459<<,而f (44)=T 1(44)=25011,f (45)=T 3(45)=30013,f (44)<f (45). 故当x =44时完成订单任务的时间最短,且最短时间为f (44)=25011.②当k >2时,T 1(x )>T 2(x ),由于k 为正整数,故k ≥3,此时150********200(1)200(13)50k x x x≥=-+-+-.记375()50T x x=-,φ(x )=max{T 1(x ),T (x )},易知T (x )是增函数,则f (x )=max{T 1(x ),T 3(x )}≥max{T 1(x ),T (x )} =φ(x )=max{1000375,50x x-}. 由函数T 1(x ),T (x )的单调性知,当100037550x x=-时φ(x )取最小值,解得40011x =. 由于400363711<<,而φ(36)=T 1(36)=250250911>,φ(37)=T (37)=3752501311>. 此时完成订单任务的最短时间大于25011.③当k <2时,T 1(x )<T 2(x ),由于k 为正整数,故k =1,此时f (x )=max{T 2(x ),T 3(x )}=max{2000750,100x x -}. 由函数T 2(x ),T 3(x )的单调性知,当2000750100x x=-时f (x )取最小值,解得80011x =,类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当k =2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68.21.解:(1)方法一:设M 的坐标为(x ,y ),由已知得|2|3x +=.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以5x =+.化简得曲线C 1的方程为y 2=20x .方法二:由题设知,曲线C 1上任意一点M 到圆C 2圆心(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0).又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是3=.整理得72k +18y 0k +y 02-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故001218724y yk k +=-=-.② 由101240,20k x y y k y x -++=⎧⎨=⎩得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以0112120(4)y k y y k +=.④同理可得0234220(4)y k y y k +=.⑤于是由②④⑤三式得010*******400(4)(4)y k y k y y y y k k ++==201201212400[4()16]y k k y k k k k +++=22001212400(16)6 400y y k k k k -+=. 所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.22.解:(1)若a <0,则对一切x >0,f (x )=e ax -x <1,这与题设矛盾.又a ≠0,故a >0. 而f ′(x )=a e ax -1,令f ′(x )=0得11ln x a a=.当11ln x a a <时,f ′(x )<0,f (x )单调递减;当11ln x a a >时,f ′(x )>0,f (x )单调递增.故当11ln x a a =时,f (x )取最小值11111(ln )ln f a a a a a=-.于是对一切x ∈R ,f (x )≥1恒成立.当且仅当111ln 1a a a-≥.① 令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增; 当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当11a=,即a =1时,①式成立. 综上所述,a 的取值集合为{1}.(2)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---. 令φ(x )=f ′(x )-k =a e ax-2121e e ax ax x x --.则φ(x 1)=121e ax x x --[e a (x 2-x 1)-a (x 2-x 1)-1],φ(x 2)=221e ax x x -[e a (x 1-x 2)-a (x 1-x 2)-1].令F (t )=e t -t -1,则F ′(t )=e t -1. 当t <0时,F ′(t )<0,F (t )单调递减; 当t >0时,F ′(t )>0,F (t )单调递增.故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0.从而e a (x 2-x 1)-a (x 2-x 1)-1>0,e a (x 1-x 2)-a (x 1-x 2)-1>0.又121e 0ax x x >-,221e 0ax x x >-,所以φ(x 1)<0,φ(x 2)>0.因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在c ∈(x 1,x 2),使得φ(c )=0.又φ′(x )=a 2e ax>0,φ(x )单调递增,故这样的c 是唯一的,且()21211e e ln ax ax c a a x x -=-.故当且仅当()212211e e ln ,ax ax x x a a x x ⎛⎫-∈ ⎪ ⎪-⎝⎭时,f ′(x )>k .综上所述,存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立,且x 0的取值范围为()212211e e ln ,ax ax x a a x x ⎛⎫- ⎪ ⎪-⎝⎭.。

2012年湖南卷理科数学高考试卷(原卷 答案)

2012年湖南卷理科数学高考试卷(原卷 答案)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)理科数学本试卷共24题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{−=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{−D .}1,0,1{− 2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠D .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ−=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg5.已知双曲线1:2222=−b y a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=−y x B .120522=−y x C .1208022=−y x D .1802022=−y x 6.函数)6cos(sin )(π+−=x x x f 的值域为A .]2,2[−B .]3,3[−C .]1,1[−D .]23,23[−7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCABC .D8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l 与函数x y 2log =的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,的最小值为 A . B . C .348 D .344二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧−=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a . 10.不等式01212>−−+x x 的解集为 .11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 13.6)12(xx −的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入3,1=−=n x ,则输出的数=S .ba15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点. (1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 . 16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列113124N N P x x x x x x −=,将此操作称为C 变换.将1P 分成两段,每段个数,并对每段作C 变换,得到2P ;当22i n ≤≤−时,将i P 分成2i段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 18.(本小题满分12分)ABC 2N 2N 2N如图5,在四棱锥P ABCD −中,PA ⊥平面ABCD ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点. (Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD −的体积. 19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++,231()n B n a a a +=+++,342()n C n a a a +=+++,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式. (Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分) 在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y −+=外,且对1C 上任意一点M ,M 到直线2x =−的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =−上运动时,四点,A B ,,C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()axf x e x =−,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)理科数学 (参考答案)1.【答案】B 【解析】 M={-1,0,1} M ∩N={0,1}.2. 【答案】C【解析】因为“若,则”的逆否命题为“若,则”,所以 “若α=,则tan α=1”的逆否命题是 “若tan α≠1,则α≠”.3.【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.4. 【答案】D【解析】【解析】由回归方程为=0.85x-85.71知随的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知,所以回归直线过样本点的中心(,),利用回归方程可以预测估计总体,所以D 不正确. 5.【答案】A【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,,即. 又,,C 的方程为-=1.6.【答案】B{}0,1N =∴p q p ⌝q ⌝4π4πy y x ˆ()y bx a bx y bx a y bx =+=+−=−x y 22x a 22y bc 210,5c c ==b y x a =±12ba∴=2a b =222c a b =+a ∴==∴220x 25y【解析】f (x )=sinx-cos(x+),,值域为]. 7.【答案】A【解析】由下图知..又由余弦定理知,解得.8.【答案】B【解析】在同一坐标系中作出y=m ,y=(m >0),图像如下图,由= m ,得,= ,得.依照题意得.,9.【答案】 6π1sin cos sin )226x x x x π=−+=−[]sin()1,16x π−∈−()f x ∴AB BC = cos()2(cos )1AB BC B BC B π−=⨯⨯−=1cos 2B BC ∴=−222cos 2AB BC AC B AB BC+−=⋅BC =821m +2log y x =2log x 122,2m mx x −==2log x 821m +821821342,2m m x x +−+==8218218218212222,22,22m m mmmm m m b a b a++−−+−−+−=−=−=−821821222m m mm +++==8141114312122222m m m m +=++−≥−=++min ()b a ∴=32AC821m =+xm【解析】曲线:直角坐标方程为,与轴交点为;曲线 :直角坐标方程为,其与轴交点为, 由,曲线与曲线有一个公共点在X 轴上,知. 10.【答案】 【解析】令,则由得的解集为.11.【解析】设交圆O 于C,D ,如图,设圆的半径为R ,由割线定理知12.【答案】10【解析】=,. 13.【答案】-160 【解析】()6的展开式项公式是.由题意知,所以二项展开式中的常数项为. 14.【答案】【解析】输入 ,n =3,,执行过程如下:;;,所以输出的是.15. 【答案】(1)3;(2)(lbylfx )1C 1,12x t y t=+⎧⎨=−⎩32y x =−x 3(,0)22C sin ,3cos x a y θθ=⎧⎨=⎩22219x y a +=x (,0),(,0)a a −0a >1C 2C 32a =14x x ⎧⎫>⎨⎬⎩⎭()2121f x x x =+−−()f x 13,()2141,(1)23,(1)x x x x ⎧−<−⎪⎪⎪=−−≤≤⎨⎪>⎪⎪⎩()f x 0>14x x ⎧⎫>⎨⎬⎩⎭PO ,1(12)(3-)(3),PA PB PC PD r r r ⋅=⋅⨯+=+∴=即2(3)z i =+29686i i i ++=+10z ==663166C (C 2(1)r r r r rr r r T x −−−+==−30,3r r −==33346C 2(1)160T =−=−4−1x =−2:6233i S ==−++=−1:3(1)115i S ==−−++=0:5(1)014i S ==−++=−4−4πO【解析】(1),当,点P 的坐标为(0,)时 ; (2)由图知,,设的横坐标分别为. 设曲线段与x 轴所围成的区域的面积为则,由几何概型知该点在△ABC 内的概率为. 16.【答案】(1)6;(2)【解析】(1)当N=16时,,可设为, ,即为,,即, x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第个位置.17.【解析】(1)由已知,得所以该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为X 的数学期望为 . (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则()y f x '=cos()x ωωϕ=+6πϕ=2cos,362πωω=∴=222T AC ππωω===122ABCS AC πω=⋅=,A B ,a b ABC S ()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+−+=⎰224ABCSP Sππ===43211n −⨯+012345616P x x x x x x x =(1,2,3,4,5,6,,16)113571524616P x x x x x x x x x =(1,3,5,7,9,2,4,6,8,,16)2159133711152616P x x x x x x x x x x x =(1,5,9,13,3,7,11,15,2,6,,16)43211n −⨯+251055,35,y x y ++=+=15,20.x y ==153303251(1),( 1.5),(2),10020100101004p X p X p X =========201101( 2.5),(3).100510010p X p X ======X 33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=(1,2)i X i =i. 由于顾客的结算相互独立,且的分布列都与X 的分布列相同,所以. 故该顾客结算前的等候时间不超过2.5分钟的概率为. 18. 【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,,E是CD的中点,所以所以而内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是为直线PB与平面PAE 所成的角,且.由知,为直线与平面所成的角.由题意,知因为所以 由所以四边形是平行四边形,故于是在中,所以于是 又梯形的面积为所以四棱锥的体积为 121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且12,X X 121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=9803BC =90 5.ABC AC ∠==,得5,AD =又.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面.PA CD ⊥,PA AE 是平面PAE ,,,,.BG CD AE AD F G PF //分别与相交于连接BPF ∠BG AE ⊥PA ABCD ⊥平面PBA ∠PB ABCD 4,2,,AB AG BG AF ==⊥,PBA BPF ∠=∠sin ,sin ,PA BF PBA BPF PB PB∠=∠=.PA BF =90//,//,DAB ABC AD BC BG CD ∠=∠=知,又BCDG 3.GD BC ==2.AG =Rt ΔBAG 4,2,,AB AG BG AF ==⊥25AB BG BF BG =====5PA BF ==ABCD 1(53)416,2S =⨯+⨯=P ABCD −解法2:如图(2),以A 为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB 与所成的角和PB 与所成的角相等,所以由(Ⅰ)知,由故解得. 又梯形ABCD 的面积为,所以四棱锥的体积为 . 19.【解析】(l bylfx )解(1)对任意,三个数是等差数列,所以即亦即故数列是首项为1,公差为4的等差数列.于是 (Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有111633515V S PA =⨯⨯=⨯⨯=,,AB AD AP x y z轴,轴,轴,PAh =(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h (4,2,0),(2,4,0),(0,0,).CD AE AP h =−==8800,0,CD AE CD AP ⋅=−++=⋅=,.CD AE CD AP ⊥⊥,AP AE PAE .CD PAE ⊥平面,CD AP PAE 平面ABCD 平面PAE 平面ABCD 平面cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即(4,2,0),(0,0,),CD AP h =−=−(4,0,),PB h =−=5h =1(53)4162S =⨯+⨯=P ABCD −111633515V S PA =⨯⨯=⨯⨯=N n *∈(),(),()A n B n C n ()()()(),B n A n C n B n −=−112,n n a a a ++−=2121 4.n n a a a a +−−=−={}n a 1(1)44 3.n a n n =+−⨯=−{}n a N n *∈由知,均大于0,于是即==,所以三个数组成公比为的等比数列. (2)充分性:若对于任意,三个数组成公比为的等比数列, 则,于是得即由有即,从而. 因为,所以,故数列是首项为,公比为的等比数列, 综上所述,数列是公比为的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数组成公比为的等比数列.20.【解析】 解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为由题设有期中均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为其定义域为易知,为减函数,为增函数.注意到 于是(1)当时, 此时1.n nq a a −=0n a >(),(),()A n B n C n 12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++()()B n A n ()()C n B n q (),(),()A n B n C n q N n *∈(),(),()A n B n C n q ()(),()()B n qA n C n qB n ==[]()()()(),C n B n q B n A n −=−2211(),n n a a q a a ++−=−2121.n n a qa a a ++−=−1n =(1)(1),B qA =21a qa =210n n a qa ++−=0n a >2211n n a a q a a ++=={}n a 1a q {}n a q (),(),()A n B n C n q 123(),(),(),T x T x T x 12323000100020001500(),(),(),6200(1)T x T x T x x x kx k x⨯====−+,,200(1)x kx k x −+{}123()max (),(),(),f x T x T x T x =2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭12(),()T x T x 3()T x 212()(),T x T x k=2k =12()(),T x T x =,由函数的单调性知,当时取得最小值,解得 .由于 . 故当时完成订单任务的时间最短,且最短时间为. (2)当时, 由于为正整数,故,此时易知为增函数,则.由函数的单调性知,当时取得最小值,解得 .由于 此时完成订单任务的最短时间大于. (3)当时,由于为正整数,故,此时由函数的单调性知,当时取得最小值,解得.类似(1)的讨论.此时 完成订单任务的最短时间为,大于. 综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬−⎩⎭13(),()T x T x 100015002003x x=−()f x 4009x =134********4445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而44x =250(44)11f =2k >12()(),T x T x >k 3k ≥{}1375(),()max (),()50T x x T x T x xϕ==−()T x {}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬−⎩⎭1(),()T x T x 100037550x x =−()x ϕ40011x =14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而250112k <12()(),T x T x <k1k ={}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬−⎩⎭23(),()T x T x 2000750100x x =−()f x 80011x =2509250112k =分别为44,88,68.21.【解析】(Ⅰ)解法1 :设M 的坐标为,由已知得,易知圆上的点位于直线的右侧.于是,所以.化简得曲线的方程为.解法2 :由题设知,曲线上任意一点M 到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.(Ⅱ)当点P 在直线上运动时,P 的坐标为,又,则过P 且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得①设过P 所作的两条切线的斜率分别为,则是方程①的两个实根,故② 由得 ③ 设四点A,B,C,D 的纵坐标分别为,则是方程③的两个实根,所以④同理可得⑤于是由②,④,⑤三式得(,)xy 23x +=2C 2x =−20x +>5x =+1C 220y x =1C 2C (5,0)5x =−1C (5,0)5x =−220y x =4x =−0(4,)y −03y ≠±2C k 0(4),y y k x −=+0即kx-y+y+4k=0 3.=2200721890.k y k y ++−=,PA PC 12,k k 12,k k 001218.724y yk k +=−=−101240,20,k x y y k y x −++=⎧⎨=⎩21012020(4)0.k y y y k −++=1234,,,y y y y 0112120(4).y k y y k +⋅=0234220(4).y k y y k +⋅=.所以,当P 在直线上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.22.【解析】(Ⅰ)若,则对一切,,这与题设矛盾,又,故.而令 当时,单调递减;当时,单调递增,故当时,取最小值 于是对一切恒成立,当且仅当. ① 令则当时,单调递增;当时,单调递减. 故当时,取最大值.因此,当且仅当即时,①式成立. 综上所述,的取值集合为.(Ⅱ)由题意知, 令则 010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤−+⎣⎦=4x =−0a <0x >()f x 1axe x =−<0a ≠0a >()1,axf x ae '=−11()0,ln .f x x a a'==得11ln x a a <()0,()f x f x '<11ln x a a >()0,()f x f x '>11ln x a a=()f x 11111(ln )ln .f a a a a a=−,()1x R f x ∈≥111ln 1a a a−≥()ln ,g t t t t =−()ln .g t t '=−01t <<()0,()g t g t '>1t >()0,()g t g t '<1t =()g t (1)1g =11a=1a =a {}121212121()() 1.ax ax f x f x e e k x x x x −−==−−−2121()(),ax ax axe e xf x k ae x x ϕ−'=−=−−121()12121()()1,ax a x x e x e a x x x x ϕ−⎡⎤=−−−−⎣⎦−212()21221()()1.ax a x x e x e a x x x x ϕ−⎡⎤=−−−⎣⎦−令,则.当时,单调递减;当时,单调递增. 故当,即 从而,又所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, .综上所述,存在使成立.且的取值范围为.(lbyl fx )()1t F t e t =−−()1tF t e '=−0t <()0,()F t F t '<0t >()0,()F t F t '>0t =()(0)0,F t F >=10.te t −−>21()21()10a x x ea x x −−−−>12()12()10,a x x ea x x −−−−>1210,ax e x x >−2210,ax e x x >−1()0,x ϕ<2()0.x ϕ>()y x ϕ=[]12,x x 012(,)x x x ∈0()0,x ϕ=2()0,()axx a e x ϕϕ'=>c 21211ln ()ax ax e e c a a x x −=−212211(ln,)()ax ax e e x x a a x x −∈−0()f x k '>012(,)x x x ∈0()f x k '>0x 212211(ln ,)()ax ax e e x a a x x −−。

2012六校第三次联考理科数学答案

2012六校第三次联考理科数学答案

2012届第三次六校联考高三数学(理科)试题答案 2012. 2.8一.选择题:1、B ;2、A ;3、C ;4、C ;5、A ;6、B ;7、D ;8、D二、填空题:9.4π ; 10. π ; 11. -1 ; 12. ; 13. 15;选做题:14. 1 15.三、解答题: 16.解:(1)//a b 24c o s s i n c o s 202BBB ∴⋅+= 21cos 4cos 2cos 102B B B -∴⋅+-= 1cos 2B ∴=0(0,180)B ∠∈ 60B ∴∠=……………………6分(2)83S = 1sin 2ac B ∴=7分得 4c =……………………8分2222cos b a c ac B =+-22084284cos120=+-⋅⋅……………………10分b ∴=12分17.解:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (1A )=1-32()327答:甲射击3次,至少1次未击中目标的概率为1927;……………………4分(2) 记“乙恰好射击4次后,被中止射击”为事件A 2,由于各事件相互独立,故P (A 2)=41×41×43×41+41×41×43×43 =364, 答:乙恰好射击464……………………8分(3)根据题意ξ服从二项分布,2323E ξ=⨯=……………………12分(3)方法二:03311(0)()327p C ξ==⋅=123216(1)()()3327p C ξ==⋅⋅=22132112(2)()()3327p C ξ==⋅⋅= 3303218(1)()()3327p C ξ==⋅⋅=161280123227272727E ξ=⨯+⨯+⨯+⨯=……………………12分 说明:(1),(2)两问没有文字说明分别扣1分,没有答,分别扣1分。

湖南省2012届高三六校联考数学文(无答案)

湖南省2012届高三六校联考数学文(无答案)

湖南省2012届高三六校联考数 学(文科)试题本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分.一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有 一项是符合题目要求的1.已知全集{}{}2,3,4,|(1)(4)0,U U A x x x x Z A ==--<∈=集合则ð ( )A .{}4B .{}2,3,4C .{}2,3D.{}1,4 2.已知i 为虚数单位,则212i i +=-+ ( ) A .1.B.i D .-I D.2355i + 3.“m=2”是2"3)m x -函数f(x)=(m 为幂函数"的 ( ). A.充分但不必要条件 B.必要但不充分条件C.充要条件D.既不充分也不必要条件4.已知向量a,b 满足a ⊥b,|a|=2,|b|=1,则|a-2b|= ( )B. C.0 D.45.函数f (x )=1n x 2-2的零点个数是 ( )A.0B.1C.2D.36.已知一工厂生产某原料的生产成本y (万元)为产量x (千吨)之间的关系为y=x+400x+1,则生产成本最少时该工厂的产量x 为 ( )A.17千吨B.18千吨C.19千吨 C.20千吨7.如果执行下面的程序框图,那么输出的s= ( )A.96B.120C,144 D.3008.若直线mx+ny=16和圆x 2+y 2=64没有交点,则过点(m,n)的直线与椭圆22194y x +=的交点个数为 A.0个B.2个C.1个D.不确定9.对x ,y ∈R,记max {},x y =,,x x y y x y ≥⎧⎨<⎩,已知方程max {},x x -=a x +1仅有一负根,则a 的取值范围是A.a<1B.a≤1C.a>1D.a≥1二、填空题:本大题共7小题,考生作答6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第10,11两题中任选一题作答,如果全做,则按前一题记分)10.(极坐标与参数方程选做题)已知极坐标系的原点和极轴分别与直角坐标系的原点和x 轴正半轴重合,圆C 的参数方程为cos (1sin x y ϕϕϕ=⎧⎨=+⎩为参数),直线l 的极坐标方程为s i n (24πρθ⋅+=则l 被圆C 所截得的弦所对应的(小于π)的圆心角为 .11.(优选法选做题)白油膏是生产擦字橡皮的主要原料,对产品质量起着决定作用,它是蓖麻油、胚芽油、7JHJ 机油、重体C a CO 3、S 2Cl 2和H 2O 在一定温度下反应而成的,根据经验和分析,可以确定油类、重体C a CO 3的配比,现在需要对S 2Cl 2T 和H 2O 的用量进行优选,则下列方法不适合选用的是(填序号).①0.618法; ②从好点出发法; ③平行线法; ④盲人爬山法 ⑤纵横对折法.(二)必做题(12~16题)12.某几何体的三视图如下,则该几何的体积 .3cos ,(0,)52πθθ=∈,则 13.已知tan(π-2θ)= .14.已知x,y 满足不等式组22040240x x x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩,z=2x y +,则z 取最大值的最优解是 .15.已知221(0)()(3)(60)x x x f x f x x ⎧-+≥=⎨+-≤<⎩,则()1f x >的解集是 .16.如图,将菱形ABCD 的每条边1,2,3,…,n,…等分,并按图1, 图2,图3,;图4,…的方式连结等分点,将每个点依图示规律填上1,2,3,4,5,6,,…,例如图3中菱形ABCD 的四个顶点上所填数字之和为34.(1)图5中,菱形ABCD 的四个顶点上所填数字之和是 ;(2)图n 中,菱形ABCD 的四个顶点上所填数字之和是 .三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(1)角θ的终边过点(4,-3),{}n a θθ是以sin 为首项,si n 为公差的等差数列,试求{}n a 的前n项和n S ;(2)若1(cos (,sin )2m x n x ωω==-,函数()f x m n =⋅的最小正周期为π,将()f x 的;图像向左平移12π个单位,得()y g x =的图象,求()y g x =的对称轴方程及单调增区间.18.(本小题满分12分)某同学做了五次试验,其试验结果分别为-1 ,-2,2,4,7.(1)求五次试验结果的平均数与方差;(2)从五次试验结果中任取两个不同的数分别作为点的横坐标与纵坐标,试求这些点落在区域0040x y x y ≥⎧⎪≤⎨⎪--≥⎩的概率.19.(本小题满分12分)如图, 已知△BCD 中,∠BCD=900,BC=CD=1,AB ⊥平面BCD ,∠ADB=600,E 、F 分别是AC 、AD 上的动点,且(01).AE AF AC ADλλ==<< (1)求证:不论λ为何值,总有EF ⊥平面ABC ;(2)若12λ=,求三棱锥A -BEF 的体积.20.(本小题满分13分)某校学生社团心理研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当t ∈(0,14)时,曲线是二次函数图象的一部分,当[14,40]t ∈时,曲线是函数1(5)83(01a p o g Ta a =-+>≠且图象的一部分。

湖南省衡阳市2012届高三12月六校联考试题(数学理)

湖南省衡阳市2012届高三12月六校联考试题(数学理)

湖南省衡阳市2012届高三12月六校联考试题数学理联考学校: 衡东一中 衡南一中 衡阳县一中 祁东二中 岳云中学 衡阳市一中试题满分:150分 考试时量:120分钟 考试时间:2011—12-8___________________________________________________________________________________________________________________注意事项:将答案用0.5毫米的黑色墨水签字笔直接答在答卷上每题对应的答题区域内,答在试题卷上无效。

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若(),,,11R b a bi a ii ∈+=+-则a b的值是 ( )A. 1B. 0C. 1-D. 2-2.全集,R U =且},086|{},21|{2<+-=>-=x x x B x x A 则=⋂B A C U)(( )A .)4,1[-B 。

)3,2(C 。

]3,2(D. )4,1(-3.命题“"041,2≥+-∈∀x x R x 的否定是( )A .041,2<+-∈∀x x R x B .041,2<+-∉∀x x R xC .041,2<+-∉∃x x R xD .041,2<+-∈∃x x R x4.给定性质: ①最小正周期为π;②图象关于直线x =3π对称,则下列四个函数中,同时具有性质①、②的是( ) A .y = sin(2x +6π) B .y = sin(2x -6π) C .y = sin (2x+6π)D .y = sin|x |5.已知等差数列{}na 的前n 项和为nS ,若M 、N 、P 三点共线,O 为坐标原点,且156ON a OM a OP =+(直线MP 不过点O ),则S 20等于( ) A .10 B .15 C .20 D .406.已知函数)(x f 是),(+∞-∞上的偶函数,若对于0≥x ,都有)()2(x f x f -=+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则=+-)2012()2011(f f ( )A .3log 12+B .3log 12+- C .1- D .17.实数y x ,满足条件⎪⎩⎪⎨⎧≥++-≤+≥05242y x y x x 则该目标函数y x z +=3的最大值为( )A .10B .12C .14D .15 8.定义域为[,a b ]的函数()y f x =图像的两个端点为A 、B ,M (x ,y )是()f x 图象上任意一点,其中[]1,0,)1(∈-+=λλλb a x .已知向量()OB OA ON λλ-+=1,k 恒成立, 则称函数()f x 在[,a b ]上“k 阶线性近似”.若函数xx y1-=在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( )A .[0,+∞)B .⎪⎭⎫⎢⎣⎡+∞,121 C .⎪⎭⎫⎢⎣⎡+∞+,223 D .⎪⎭⎫⎢⎣⎡+∞-,223二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上.(一)选做题(请考生在第9,10,11题中任选两题,如果全做,按前两题给分)9.若曲线的极坐标方程为=2sin 4cos ,ρθθ+,以极点为原点,极轴为x 轴正半轴 建立直角坐标系,10.如图,圆O 是ABC ∆的外接圆,过点C 的切线交AB 的延长线于点D ,27,3CD AB BC ===,则AC 的长为 .11.已知函数f (x )=|x -2|,若a ≠0,且a ,b ∈R ,都有不等式|a +b |+|a -b |≥|a |·f (x )成立,则实数x 的取值 范围是 。

2012高考湖南理科数学试题及答案(高清版)

2012高考湖南理科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan α=1”的逆否命题是( )A .若π4α≠,则tan α≠1 B .若π4α=,则tan α≠1C .若tan α≠1,则π4α≠ D .若tan α≠1,则π4α=3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i =1,2,…,n ),用最小二乘法建立的回归方程为 0.8585.71y x =-,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 5.已知双曲线C :22221x y ab-=的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -=C .2218020xy-= D .2212080xy-= 6.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-C .[-1,1]D .[22-7.在△ABC 中,AB =2,AC =3,1AB BC ⋅=,则BC 等于( )A .B .C . D8.已知两条直线l1:y=m和l2:821ym=+(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,ba的最小值为()A.B.C.D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy中,已知曲线C1:112 x ty t =+⎧⎨=-⎩,(t为参数)与曲线C2:sin3cosx ayθθ=⎧⎨=⎩,(θ为参数,a>0)有一个公共点在x轴上,则a=________.10.不等式|2x+1|-2|x-1|>0的解集为__________________.11.如图,过点P 的直线与O相交于A,B两点,若P A=1,AB=2,PO=3,则O 的半径等于________.(二)必做题(12~16题)12.已知复数z=(3+i)2(i为虚数单位),则|z|=________.13.6的二项展开式中的常数项为________.(用数字作答)14.如果执行如图所示的程序框图,输入x=-1,n=3,则输出的数S=________.理图文图15.函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y 轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若π6ϕ=,点P 的坐标为(0,2),则ω=________;(2)若在曲线段 A B C 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段2N 个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段2iN 个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n(n ≥8)时,x 173位于P 4中的第________个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.19.已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式;(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.20.某企业接到生产3 000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.在直角坐标系xOy中,曲线C1上的点均在圆C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.(1)求曲线C1的方程;(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.22.已知函数f(x)=e ax-x,其中a≠0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k.问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.1.B由N={x|x2≤x},得x2-x≤0⇒x(x-1)≤0,解得0≤x≤1.又∵M={-1,0,1},∴M∩N={0,1}.2.C命题“若π4α=,则tanα=1”的逆否命题是“若tanα≠1,则π4α≠”.3.D若为D项,则主视图如图所示,故不可能是D项.4.D D项中,若该大学某女生身高为170 cm,则其体重约为:0.85×170-85.71=58.79(kg).故D项不正确.5.A由2c=10,得c=5,∵点P(2,1)在直线by xa=上,∴21ba=.又∵a2+b2=25,∴a2=20,b2=5.故C的方程为221 205x y-=.6.B f(x)=sin x-cos(x+π6 )=1sin(sin)22x x x--=3sin 22x x -1cos )22x x -π)[6x -∈-.故选B 项.7. A ∵||||cos(π)2||(cos )1AB BC AB BC B BC B ⋅=⋅-=⋅-=,∴1cos 2||B BC =-. 又∵222||||||cos 2||||AB BC AC B AB BC +-=⋅=24||9122||2||BC BC BC +-=-⨯⨯, ∴2||=3B C.∴|BC BC =8. B 由题意作出如下的示意图.由图知a =|x A -x C |,b =|x D -x B |, 又∵x A ·x B =1,x C ·x D =1,∴11||1||||C A A C A C x x b a x x x x -==-.y A +y C =-log 2x A -log 2x C =-log 2x A x C =8218172122122m m m m ++=+-≥++,当且仅当218221m m +=+,即32m =时取等号.由-log 2x A x C ≥72,得log 2x A x C ≤72-,即0<x A x C ≤722-从而7212||A C b a x x =≥=当32m =时,b a取得最小值B 项.9.答案:32解析:∵C 1:1,12,x t y t =+⎧⎨=-⎩∴C 1的方程为2x +y -3=0.∵C 2:sin ,3cos ,x a y θθ=⎧⎨=⎩∴C 2的方程为22219x ya +=.∵C 1与C 2有一个公共点在x 轴上,且a >0, ∴C 1与x 轴的交点(32,0)在C 2上,代入解得32a =.10.答案:{x |x >14}解析:对于不等式|2x +1|-2|x -1|>0,分三种情况讨论: 1°,当12x <-时,-2x -1-2(-x +1)>0,即-3>0,故x 不存在; 2°,当112x -≤≤时,2x +1-2(-x +1)>0,即114x <≤;3°,当x >1时,2x +1-2(x -1)>0,3>0,故x >1. 综上可知,14x >,不等式的解集是14x x ⎧⎫>⎨⎬⎩⎭.11.解析:过P 作圆的切线PC 切圆于C 点,连结OC .∵PC 2=PA ·PB =1×3=3,∴PC =.在Rt △POC 中,OC ==. 12.答案:10解析:∵z =(3+i)2,∴|z |=32+12=10. 13.答案:-160解析:61的通项为6161C (r rr r T -+=-=(-1)r 6C r 26-r x 3-r.当3-r =0时,r =3.故(-1)336C 26-3=-36C 23=-160.14.答案:-4解析:输入x =-1,n =3.i =3-1=2,S =6×(-1)+2+1=-3; i =2-1=1,S =(-3)×(-1)+1+1=5; i =1-1=0,S =5×(-1)+0+1=-4; i =0-1=-1,-1<0,输出S =-4. 15.答案:(1)3 (2)π4f (x )=sin(ωx +φ),f ′(x )=ωcos(ωx +φ).解析:(1)π6ϕ=时,f ′(x )=ωcos(ωx +π6).∵'(0)2f =,即πcos 62ω=,∴ω=3.(2)当ωx +φ=π2时,π2x ϕω-=;当ωx +φ=3π2时,3π2x ϕω-=.由几何概型可知,该点在△ABC 内的概率为3π2π212π11||||||||2223π2[0cos()]sin ()π2A C P x x ϕωϕωωωωϕωωϕωωϕϕω--⨯⨯⋅⋅==--+-+-⎰=π23ππ22sin()sin()ϕϕωϕωϕωω---⋅++⋅+=π23ππsin()sin()22-+=ππ2114=+. 16.答案:(1)6 (2)3×2n -4+11解析:(1)由题意知,当N =16时,P 0=x 1x 2x 3x 4x 5…x 16,P 1=x 1x 3x 5…x 15x 2x 4…x 16,则 P 2=x 1x 5x 9x 13x 3x 7x 11x 15x 2x 6x 10x 14x 4x 8x 12x 16, 此时x 7位于P 2中的第6个位置.(2)方法同(1),归纳推理知x 173位于P 4中的第3×2n -4+11个位置.17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20, 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本.将频率视为概率得153(1)10020P X ===,303( 1.5)30010P X ===,251(2)1004P X ===,201( 2.5)1005P X ===,101(3)10010P X ===. X 的分布列为X 的数学期望为()331111 1.52 2.53 1.920104510E X ⨯⨯⨯⨯⨯=++++=.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=333333920202010102080⨯+⨯+⨯=.故该顾客结算前的等候时间不超过2.5分钟的概率为980.18.解:解法一:(1)如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD 平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =P A P B,sin ∠BPF =B F P B,所以PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形. 故GD =BC =3,于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG ==,25A BB F B G===于是PA =BF5.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633515V S PA =⨯⨯=⨯⨯=.解法二:如图所示,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD =(-4,2,0),AE =(2,4,0),AP=(0,0,h ).因为C D AE ⋅ =-8+8+0=0,CD AP ⋅=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD ,PA分别是平面PAE ,平面ABCD 的法向量. 而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos ,||cos ,|C D PB PA PB =,即C D P B P A P B C D P B P A P B⋅⋅=⋅⋅ .由(1)知,CD =(-4,2,0),PA=(0,0,-h ). 又PB=(4,0,-h ),故2=.解得5h =.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633515V S PA =⨯⨯=⨯⨯=.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以 B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4. 故数列{a n } 是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是231121212()()()n n n n a a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………,即()()()()B nC n q A n B n ==.所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即 a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0.因为a n >0,所以2211n n a a q a a ++==.故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.解:(1)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为T 1(x ),T 2(x ),T 3(x ),由题设有1230001000()6T x x x ⨯==,22000()T x kx =,31500()200(1)T x k x=-+,其中x ,kx,200-(1+k )x 均为1到200之间的正整数. (2)完成订单任务的时间为f (x )=max{T 1(x ),T 2(x ),T 3(x )},其定义域为{x |0<x <2001k+,x ∈N *}.易知,T 1(x ),T 2(x )为减函数,T 3(x )为增函数.注意到T 2(x )=2kT 1(x ),于是①当k =2时,T 1(x )=T 2(x ),此时 f (x )=max{T 1(x ),T 3(x )} =max{10001500,2003xx-}.由函数T 1(x ),T 3(x )的单调性知,当100015002003xx=-时f (x )取得最小值,解得4009x =.由于40044459<<,而f (44)=T 1(44)=25011,f (45)=T 3(45)=30013,f (44)<f (45). 故当x =44时完成订单任务的时间最短,且最短时间为f (44)=25011.②当k >2时,T 1(x )>T 2(x ),由于k 为正整数,故k ≥3,此时150********200(1)200(13)50k x x x ≥=-+-+-. 记375()50T x x=-,φ(x )=max{T 1(x ),T (x )},易知T (x )是增函数,则f (x )=max{T 1(x ),T 3(x )}≥max{T 1(x ),T (x )} =φ(x )=max{1000375,50xx-}.由函数T 1(x ),T (x )的单调性知,当100037550xx =-时φ(x )取最小值,解得40011x =.由于400363711<<,而φ(36)=T 1(36)=250250911>,φ(37)=T (37)=3752501311>. 此时完成订单任务的最短时间大于25011.③当k <2时,T 1(x )<T 2(x ),由于k 为正整数,故k =1,此时 f (x )=max{T 2(x ),T 3(x )}=max{2000750,100xx-}.由函数T 2(x ),T 3(x )的单调性知,当2000750100x x =-时f (x )取最小值,解得80011x =,类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当k =2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68.21.解:(1)方法一:设M 的坐标为(x ,y ),由已知得|2|3x +=.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以5x =+.化简得曲线C 1的方程为y 2=20x .方法二:由题设知,曲线C 1上任意一点M 到圆C 2圆心(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0).又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.3=.整理得72k 2+18y 0k +y 02-9=0.① 设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故001218724y y k k +=-=-.②由101240,20k x y y k y x-++=⎧⎨=⎩得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以0112120(4)y k y y k +=.④同理可得0234220(4)y k y y k +=.⑤于是由②④⑤三式得010*******400(4)(4)y k y k y y y y k k ++==201201212400[4()16]y k k y k k k k +++=22001212400(16)6 400y y k k k k -+=.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400. 22.解:(1)若a <0,则对一切x >0,f (x )=e ax -x <1,这与题设矛盾.又a ≠0,故a >0.而f ′(x )=a e ax-1,令f ′(x )=0得11lnx aa=.当11ln x a a<时,f ′(x )<0,f (x )单调递减;当11ln x a a>时,f ′(x )>0,f (x )单调递增.故当11ln x a a =时,f (x )取最小值11111(ln )lnf a a a a a =-.于是对一切x ∈R ,f (x )≥1恒成立.当且仅当111ln 1a a a -≥.①令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增; 当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当11a=,即a =1时,①式成立.综上所述,a 的取值集合为{1}. (2)由题意知,21212121()()ee1ax ax f x f x k x x x x --==---.令φ(x )=f ′(x )-k =a e ax-2121eeax ax x x --.则φ(x 1)=121eax x x --[e a (x 2-x 1)-a (x 2-x 1)-1],φ(x 2)=221eax x x -[e a (x 1-x 2)-a (x 1-x 2)-1].令F (t )=e t -t -1,则F ′(t )=e t -1. 当t <0时,F ′(t )<0,F (t )单调递减; 当t >0时,F ′(t )>0,F (t )单调递增.故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0.从而e a (x 2-x 1)-a (x 2-x 1)-1>0,e a (x 1-x 2)-a (x 1-x 2)-1>0.又121e0ax x x >-,221e0ax x x >-,所以φ(x 1)<0,φ(x 2)>0.因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在c ∈(x 1,x 2),使得φ(c )=0.又φ′(x )=a 2e ax>0,φ(x )单调递增,故这样的c 是唯一的,且()21211eelnax ax c aa x x -=-.故当且仅当()212211e e ln ,ax axx x a a x x ⎛⎫-∈ ⎪ ⎪-⎝⎭时,f ′(x )>k .综上所述,存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立,且x 0的取值范围为()212211e e ln ,ax axx a a x x ⎛⎫- ⎪ ⎪-⎝⎭.。

湖南省六校2012届高三联考理科综合试题(无答案).pdf

湖南省六校2012届高三联考理科综合试题(无答案).pdf

Unit 2 Colour Reading 2 教学课题Unit2 Colours课 型新授总课时数: 12第 3课时Reading2备课日期:教 学 目 标:1.To get familiar with the text further 2. The language points in the text教学重点、难点:1. To match colors to characters. 2. The language points in the text教 学 过 程:教师活动学生活动设计意图Step1 Revision Show some colors to the student, 1.Which group does this color belong to, calm colors , warm colors, energetic colors or strong colors? 2.What does this color represent? 3.What’s your favorite color ? Why? Talk about the questions and answer them. To revise the last lesson and lead in the new lesson.Step2.Leading in. First, ask them questions about colors to check how they understand colors. 1.What do you know about colors? 2.What if there’s no color in the world? 3.Choose different rooms painted different colors when you have different feelings. Then, tell students that we are going to know more about the relationship between colors and moods Answer some questions. Warm- upStep 3. Presentation Tell students that we are going to learn the relationships between colors and moods. Listen to the tape for the first time to compare your choice with that in the book. Read the text by themselves, then do some “T” or “F” questions and match the feeling with correct colors. Explain some language points to them. Listen to the tape and try to get the general meaning of text. Make sure students understand the general meaning of the text by listening to the tape.Step4 Presentation Review the whole passage, and complete the outline about colors and moods. 2. Have an interview in groups, ask their partners about colors. Read the whole passage by themselves. To get more details about the text.Step 5 Consolidation and improvement1.Provide them some idioms about colors, let them guess the meaning about colors in different idioms.2.Ask them to translate some phrases. 3.Do more exercises. 翻译句子。

湖南省蓝山二中2012届高三第六次联考数学(理)试题

湖南省蓝山二中2012届高三第六次联考数学(理)试题

(考试范围:集合与逻辑、算法、函数、导数、三角函数、平面向量、复数、数列、推理与证明、不等式、计数原理、二项式定理、概率与统计、直线、平面、简单几何体、空间向量)本试题卷包括选择题、填空题和解答题三部分,共8页。

时量120分钟。

满分150分。

得分:一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若M ={x ||x -1|<2},N ={x |x (x -3)<0},则M ∩N = A.{x |0<x <3} B.{x |-1<x <2} C.{x |-1<x <3} D.{x |-1<x <0}2.已知函数f (x )=sin(2x -π4),若存在α∈(0,π),使得f (x +α)=f (x +3α)恒成立,则α的值是A.π6B.π3C.π4D.π23.已知α,β是两个不同的平面,m ,n 是两条不同的直线,又知α∩β=m ,且n ⊄α,n ⊄β,则“n ∥m ”是“n ∥α且n ∥β”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.6名同学安排到3个宿舍,每个宿舍两人,其中甲必须在一号宿舍,乙和丙均不能到三号宿舍,则不同的安排方法种数为A.6B.9C.12D.185.若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=A.nB.9n +1C.nn +1D.16.已知m 是一个给定的正整数,如果两个整数a ,b 被m 除得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod4).若22010≡r (mod7),则r 可以为A.2008B.2009C.2010D.20117.在△ABC 所在的平面内有一点P ,满足P A +PB +PC =AB ,则△PBC 与△ABC 的面积之比是A.13B.12C.23D.348.若函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=1-x 2,函数g (x )=错误!,则函数h (x )=f (x )-g (x )在区间[-5,10]内零点的个数为A.12B.14C.13D.8选择题答题卡二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.已知a 是实数,(a -i)(1-i)i是纯虚数,则a 的值是 .10.若x 1,x 2,x 3,…,x 2009,x 2010的方差是2,则3(x 1-1),3(x 2-1),…,3(x 2009-1),3(x 2010-1)的方差是 .11.已知某一几何体的正视图与侧视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为 (填你认为正确的图序号)12.已知函数f (x )=-x 2+ax -2b .若a ,b 都是区间[0,4]内的数,则使f (1)>0成立的概率是 .13.某机构对小学生作业负担的情况进行调查,设每个学生平均每天作业的时间为x (单位:分钟),且x ~N (60,100),已知P (x ≤50)=0.159.现有1000名小学生接受了此项调查,下图是此次调查中某一项的流程图,则输出的结果大约是 .14.已知关于x 的方程9x -(4+a )·3x +4=0有两个实数解x 1,x 2,则x 21+x 22x 1x 2的最小值是 .15.对有10个元素的总体{1,2,3,…,10}进行抽样,先将总体分成两个子总体A ={1,2,3,4}和B ={5,6,7,8,9,10},再从A 和B 中分别随机抽取2个元素和3个元素组成样本,用P ij 表示元素i 和j 同时出现在样本中的概率,则P 15= ,所有P ij (1≤i <j ≤10)的和等于 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x4),f (x )=m ·n .(1)若f (x )=1,求cos(2π3-x )的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足a cos C +12c =b ,求函数f (B )的取值范围.17.(本小题满分12分)在高三年级某班组织的欢庆元旦活动中,有一项游戏规则如下:参与者最多有5次抽题并答题的机会.如果累计答对2道题,立即结束游戏,并获得纪念品;如果5次机会用完仍未累计答对2道题,也结束游戏,并不能获得纪念品.已知某参与者答对每道题答对的概率都是23,且每道题答对与否互不影响.(1)求该参与者获得纪念品的概率;(2)记该参与者游戏时答题的个数为ξ,求ξ的分布列及期望.18.(本小题满分12分)如图,在体积为1的三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥AC ,AC =AA 1=1,P 为线段AB 上的动点.(1)求证:CA 1⊥C 1P ;(2)当AP 为何值时,二面角C 1-PB 1-A 1的大小为π6?19.(本小题满分13分)已知函数f (x )=-x 2+ax -ln x (a ∈R ).(1)求函数f (x )既有极大值又有极小值的充要条件;(2)当函数f (x )在[12,2]上单调时,求a 的取值范围.20.(本小题满分13分)某旅游景区的观景台P 位于高(山顶到山脚水平面M 的垂直高度PO )为2km 的山峰上,山脚下有一段位于水平线上笔直的公路AB ,山坡面可近似地看作平面P AB ,且△P AB 为等腰三角形.山坡面与山脚所在水平面M 所成的二面角为α(0°<α<90°),且sin α=25.现从山脚的水平公路AB 某处C 0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n -1段依次为C 0C 1,C 1C 2,C 2C 3,…,C n -1C n (如图所示),且C 0C 1,C 1C 2,C 2C 3,…,C n -1C n 与AB 所成的角均为β,其中0<β<90°,sin β=14.试问: (1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q 处修建上山缆车索道站,索道PQ 依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?(2)若修建x km 盘山公路,其造价为x 2+100 a 万元.修建索道的造价为22a 万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.21.(本小题满分13分)已知正项数列{a n}的首项a1=12,函数f(x)=x1+x,g(x)=2x+1x+2.(1)若正项数列{a n}满足a n+1=f(a n)(n∈N*),证明:{1a n}是等差数列,并求数列{a n}的通项公式;(2)若正项数列{a n}满足a n+1≤f(a n)(n∈N*),数列{b n}满足b n=a nn+1,证明:b1+b2+…+b n<1;(3)若正项数列{a n}满足a n+1=g(a n),求证:|a n+1-a n|≤3 10·(37)n-1.数学(理科)参考答案一、选择题1.A2.D3.C4.B5.A6.C7.C 解:由P A +PB +PC =AB 得P A +PB +BA +PC =0,即PC =2AP ,所以点P 是CA 边上的三等分点,故S △PBC ∶S △ABC =2∶3.8.B 解:如图,当x ∈[0,5]时,结合图象知f (x )与g (x )共有5个交点,故在区间[-5,0]上共有5个交点;当x ∈(0,10]时,结合图象知共有9个交点,故函数h (x )=f (x )-g (x )在区间[-5,10]上共有14个零点.二、填空题9.-1 10.18 11.①② 12.96413.15914.2 解:原方程可化为(3x )2-(4+a )·3x +4=0,∴3x 1·3x 2=4,∴x 1+x 2=2log 32,∴x 1x 2≤(log 32)2.∴x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=4(log 32)2x 1x 2-2≥2. 15.1410 解:(1)由题意有:P 15=C 13·C 25C 24·C 36=14.(2)当1≤i <j ≤4时,P ij =1C 24=16,这样的P ij 共有C 24个,故所有P ij (1≤i <j ≤4)的和为16·6=1;当5≤i <j ≤10时,P ij =C 14·C 22C 36=15.这样的P ij 共有C 26=15个,故所有P ij (5≤i <j ≤10)的和为15·15=3; 当1≤i ≤4,5≤j ≤10时,P ij =14,这样的P ij 共有4·6=24,所有P ij (1≤i ≤4,5≤j ≤10)的和为24·14=6,综上所述,所有P ij (1≤i <j ≤10)的和等于1+3+6=10. 三、解答题(2)∵a cos C +12c =b ,∴a ·a 2+b 2-c 22ab +12c =b ,即b 2+c 2-a 2=bc ,∴cos A =12.又∵A ∈(0,π),∴A =π3.(10分)又∵0<B <2π3,∴π6<B 2+π6<π2,∴f (B )∈(1,32).(12分)17.解:(1)设“参与者获得纪念品”为事件A ,则P (A )=1-P (A )=1-[(13)5+C 15(13)4(23)]=232243.(4分) 故该参与者获得纪念品的概率为232243.(5分)(2)ξ的可能取值为2,3,4,5,P (ξ=2)=(23)2=49;P (ξ=3)=C 1223·13·23=827; P (ξ=4)=C 1323(13)223=427;P (ξ=5)=C 14(23)(13)3+C 04(13)4=19.(8分) 故ξξ 2 3 4 5P 49 827 427 427(10分)Eξ=2×49+3×827+4×427+5×19=7927.(12分)18.解:(1)证明:∵AA 1⊥底面ABC ,∴AA 1⊥AC ,AA 1⊥AB . 又∵AB ⊥AC ,∴以A 为原点,AC ,AB ,AA 1所在的直线分别为x 轴,y 轴,z 轴建立直角坐标系.又∵VABC -A 1B 1C 1=12AB ×AC ×AA 1=1,∴AB =2.(2分)设AP =m ,则P (0,m,0),而C 1(1,0,1),C (1,0,0),A 1(0,0,1), ∴CA 1=(-1,0,1),C 1P =(-1,m ,-1), ∴CA 1·C 1P =(-1)×(-1)+0×m +1×(-1)=0,∴CA 1⊥C 1P .(6分)(2)设平面C 1PB 1的一个法向量n =(x ,y ,z ),则错误!,即错误!. 令y =1,则n =(2,1,m -2),(9分) 而平面A 1B 1P 的一个法向量AC =(1,0,0),依题意可知cos π6=|n ·AC ||n ||AC |=2(m -2)2+5=32,∴m =2+33(舍去)或m =2-33. ∴当AP =2-33时,二面角C 1-PB 1-A 1的大小为π6.(12分)19.解:(1)∵f ′(x )=-2x +a -1x =-2x 2+ax -1x(x >0),∴f (x )既有极大值又有极小值⇔方程2x 2-ax +1=0有两个不等的正实数根x 1,x 2. (3分)∴错误!,∴a >2错误!,∴函数f (x )既有极大值又有极小值的充要条件是a >2 2.(6分)(2)f ′(x )=-2x +a -1x ,令g (x )=2x +1x ,则g ′(x )=2-1x 2,g (x )在[12,22)上递减,在(22,2]上递增.(8分)又g (12)=3,g (2)=92,g (22)=22,∴g (x )max =92,g (x )min =2 2.(10分)若f (x )在[12,2]单调递增,则f ′(x )≥0即a ≥g (x ),∴a ≥92.若f (x )在[12,2]单调递减,则f ′(x )≤0,即a ≤g (x ),∴a ≤2 2.所以f (x )在[12,2]上单调时,则a ≤22或a ≥92.(13分)20.解:(1)在盘山公路C 0C 1上任选一点D ,作DE ⊥平面M 交平面M 于E ,过E 作EF ⊥AB 交AB 于F ,连结DF ,易知DF ⊥C 0F .sin∠DFE =25,sin ∠DC 0F =14.∵DF =14C 0D ,DE =25DF ,∴DE =110C 0D ,所以盘山公路长度是山高的10倍,索道长是山高的52倍,所以每修建盘山公路1000米,垂直高度升高100米.从山脚至半山腰,盘山公路为10km.从半山腰至山顶,索道长2.5km.(6分)(2)设盘山公路修至山高x (0<x <2)km ,则盘山公路长为10x km ,索道长52(2-x )km.设总造价为y 万元,则y =(10x )2+100a +52(2-x )·22a =(10x 2+1-52x )a +102a .令y ′=10axx 2+1-52a =0,则x =1.当x ∈(0,1)时,y ′<0,函数y 单调递减;当x ∈(1,2)时,y ′>0,函数y 单调递增,∴x =1,y 有最小值,即修建盘山公路至山高1km 时,总造价最小,最小值为152a 万元.(13分)(2)证明:∵a n +1≤a n 1+a n ,a n >0,∴1a n +1≥1+a n a n ,即1a n +1-1a n≥1.当n ≥2时,1a n -1a 1=(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)≥n -1,∴1a n ≥n +1,∴a n ≤1n +1. 当n =1时,上式也成立,∴a n ≤1n +1(n ∈N *),∴b n =a n n +1≤1(n +1)2<1n (n +1)=1n -1n +1, ∴b 1+b 2+…+b n <(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.(8分)(3)∵a 1=12,a 2=g (a 1)=45,a 2-a 1=45-12=310>0.又∵a n +1-a n =2a n +12+a n -2a n -1+12+a n -1=3(a n -a n -1)(a n +2)(a n -1+2),由迭代关系可知,a n +1-a n >0,∴a n ≥a 1=12.又∵(2+a n )(2+a n -1)=(2+2a n -1+12+a n -1)(2+a n -1)=5+4a n -1≥7,∴3(2+a n )(2+a n -1)≤37, ∴|a n +1-a n |=3(2+a n )(2+a n -1)|a n -a n -1|≤37|a n -a n -1|,∴|a n +1-a n |≤37|a n -a n -1|≤(37)2|a n -1-a n -2|≤…≤(37)n -1|a 2-a 1|=310(37)n -1.(13分)附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:/wxt/list.aspx?ClassID=3060。

2012六校第三次联考理科数学试题

2012六校第三次联考理科数学试题

主视图左视图2222012届第三次六校联考 高三数学(理科)试题 2012. 2.8命题人:田立新 张和发本试卷共4页,21小题,满分150分.考试用时120分钟. 参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 第 Ⅰ 卷一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,A B 是非空集合,命题甲:AB B =,命题乙:A B ⊂≠,那么 ( )A.甲是乙的充分不必要条件B. 甲是乙的必要不充分条件C.甲是乙的充要条件D. 甲是乙的既不充分也不必要条件 2.复数21ii =- ( ) A . 1i - B. 1i -+ C. 1i + D. 1i --3.已知点(,)N x y 在由不等式组002x y x y x +≥⎧⎪-≥⎨⎪≤⎩确定的平面区域内,则(,)N x y 所在平面区域的面积是( )A .1B .2C .4D .84.等差数列{a n }中,已知35a =,2512a a +=,29n a =,则n 为 ( ) A. 13 B. 14 C. 15 D. 165. 函数21log 1xy x+=-的图像 ( ) A . 关于原点对称 B. 关于主线y x =-对称 C. 关于y 轴对称 D. 关于直线y x =对称6.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.B.7.已知平面,,αβγ,直线,m l ,点A ,有下面四个命题: A . 若l α⊂,mA α=则l 与m 必为异面直线;B. 若,l l m α则m α;C. 若 , , ,l m l m αββα⊂⊂则 αβ;D. 若 ,,,m l l m αγγαγβ⊥==⊥,则l α⊥.其中正确的命题是 ( )8.某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须异面直线(其中i 是正整数).设黑“电子狗”爬完2012段、黄“电子狗”爬完2011段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( ) A. 0B. 1C.2D.3第 Ⅱ 卷二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答.9. 0-=⎰.10.函数2()sin cos2f x x x =+,x R ∈的最小正周期为 11.在直角ABC ∆中, 90=∠C ,30=∠A , 1=BC ,D 为斜边AB 的中点,则 CD AB ⋅= .12.若双曲线22219x y a -=(0)a >的一条渐近线方程为320x y -=,则以双曲线的顶点和焦点分别为焦点和顶点的椭圆的离心率为__________.13.将“杨辉三角”中的数从左到右、从上到下排 成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…, 右图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S 的值是__________.ONMBA(二)选做题:第14、15题是选做题,考生只能从中选做一题.14.(坐标系与参数方程选做题)已知曲线1C 、2C 的极坐标方程分别为2cos()2πρθ=-+,cos()104πθ-+=,则曲线1C 上的点与曲线2C 上的点的最远距离为________.15.(几何证明选讲选做题) 如图,点M 为O 的弦AB 上的一点,连接MO .MN OM ⊥,MN 交圆于N ,若2MA =,4MB =,则MN = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,S 是该三角形的面积, (1)若(2sin cos ,sin cos )2B a B B B =-,(sin cos ,2sin )2Bb B B =+,//a b ,求角B 的度数;(2)若8a =,23B π=,S =b 的值.17(本小题满分12分)甲、乙两人各射击一次,击中目标的概率分别是32和4假设两人射击是否击中目标,相互 之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击3次,至少1次未击中...目标的概率; ⑵假设某人连续2次未击中...目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?⑶设甲连续射击3次,用ξ表示甲击中目标的次数,求ξ的数学期望E ξ. (结果可以用分数表示)图1图218. (本小题满分14分)如图,四边形ABCD 中(图1),E 是BC 的中点,1,DC =BC =,AB AD ==将(图1)沿直线折起,使二面角A BD C --为060(如图2) (1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.19(本小题满分14分)已知函数()241(12)ln(21)22x a f x a x x +=-+++ .(1)设1a =时,求函数()f x 极大值和极小值; (2)a R ∈时讨论函数()f x 的单调区间.20.(本小题满分l4分)如图,P 是抛物线C :212y x =上横坐标大于零的一点,直线l 过点P 并与抛物线C 在点P 与抛物线C 相交于另一点Q .(1)当点P 的横坐标为2时,求直线l 的方程;(2)若0OP OQ ⋅=,求过点,,P Q O 的圆的方程.21. (本小题满分l4分)已知数列{}n a 的前n 项和为n S ,正数数列{}n b 中 ,2e b =(e 为自然对数的底718.2≈)且*N n ∈∀总有12-n 是n S 与n a 的等差中项,1 1++n n n b b b 与是的等比中项.(1) 求证: *N n ∈∀有n n n a a 21<<+; (2) 求证:*N n ∈∀有13ln ln ln )1(2321-<+++<-n n n a b b b a .。

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年湖南省高考数学卷(理科)一、选择题:本大题共8小题,每小题5分,共40分。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 2.命题“若4πα=,则1tan =α”的逆否命题是A .若πα≠,则1tan ≠α B .若4πα=,则1tan ≠αD .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,5.已知双曲线1:2222=-by ax C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为B .120522=-yxC .1208022=-yxD .1802022=-yx6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-C .]1,1[-D .]23,23[-7.在ABC ∆中,2=AB ,3=AC ,1AB BC ⋅=,则=BCB .C .D 8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log=的图像从左至右相交于点B A ,,2l 与函数x y 2log=的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为A .C .348D .344 【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图, 由2log x = m ,得122,2mmx x -==,2log x =821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm mm b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,m in ()ba∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.821m =+xm二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分 9.在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=ty t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a 32.【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x ya +=,其与x 轴交点为(,0),(,0)a a -,由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =.【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得. 10.不等式01212>--+x x 的解集为 .【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组). 11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z 10 .【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =求得.13.6)12(xx -的二项展开式中的常数项为 -160 .(用数字作答) 【解析】()6的展开式项公式是663166C (C 2(1)rrr r rr rr T x---+=-=-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.(1)若6πϕ=,点P 的坐标为)233,0(,则=ω 3 ;(2)若在曲线段A B C 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为4π.【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,2)时cos,362πωω=∴=;(2)由图知222TAC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b . 设曲线段A B C与x轴所围成的区域的面积为S 则()()sin()sin()2b b aaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABCS P S ππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.设*2(,)n N n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x = .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列113124N N P x x x x x x -= ,将此操作称为C 变换.将1P 分成两段,每段2N 个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i 段,每段2iN 个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 6 个位置;(2)当2()n N n =≥8时,173x 位于4P 中的第43211n -⨯+个位置. 【解析】(1)当N=16时,012345616P x x x x x x x = ,可设为(1,2,3,4,5,6,,16) ,113571524616P x x x x x x x x x = ,即为(1,3,5,7,9,2,4,6,8,,16) ,2159133711152616P x x x x x x x x x x x = ,即(1,5,9,13,3,7,11,15,2,6,,16) , x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 153303251(1),(1.5),(2),10020100101004p X p X p X =========201101(2.5),(3).100510010p X p X ====== X 的分布为X 的数学期望为33111()11.522.531.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(11.5)(1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)(1.5)(1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.18.(本小题满分12分)如图5,在四棱锥P A B C D -中,P A ⊥平面ABCD ,4A B =,3BC =,5AD =,90D A B A B C ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面P A E ;(Ⅱ)若直线P B 与平面P A E 所成的角和P B 与平面ABCD 所成的角相等,求四棱锥P A B C D -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++ ,231()n B n a a a +=+++ ,342()n C n a a a +=+++ ,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 ()()()B n A nC n B n-=- 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列.(2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()B n q A nC n q Bn==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列,综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有12323000100020001500(),(),(),6200(1)T x T x T x x x k x k x⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时{}1310001500()max (),()max ,2003f x T x T x xx ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003xx=-时()f x 取得最小值,解得4009x =.由于134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()m ax (),()50T x x T x T x xϕ==-易知()T x 为增函数,则{}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550xx =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011.(3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()m ax (),()m ax ,.100f x T x T x xx ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100xx=-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想. 21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =. (Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=-②由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分) 已知函数()axf x ex =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线A B 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,ax f x ae '=-令11()0,ln.f x x aa'==得当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11lnx a a=时,()f x 取最小值11111(ln)ln .f aaaa a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当111l n 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立.综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()()1.ax ax f x f x eek x x x x --==---令2121()(),ax ax axeex f x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x ex e a x x x x ϕ-⎡⎤=----⎣⎦-212()21221()()1.ax a x x ex e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.te t -->从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax ex x >-2210,ax ex x >-所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a ex ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln()ax ax eec aa x x -=-.故当且仅当212211(ln,)()ax ax e ex x aa x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax eex a a x x --.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为m in ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2012届高三六校联考
数学(理科)题
本试题卷包括选择题、填空题和解答题三部分,共6分页。

时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有
一项是符合题目要求的。

1.在复平面内,复数z=
1
31
对应
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.在正项等比数列{a n }中,若a 2+a 3=2,a 2a 4+a 2a 5+a 3a 4+a 3a 5=1,则a 5+a 6= A .
14
B .
1
2
C .1
D .2 3.在去年我省某市组织的一次高三数学竞赛中,全体参赛学生的成绩X 服从正态分布X ~N
(60,100),已知成绩在90分以上(包括90)的学生有13人,则此次参加竞赛的学生人数是(参考数据:P (μ-3σ<X≤μ+3σ)=0.9974是) A .8000人 B .9000人 C .10000人 D .11000人
4.某器物的三视图如右图所示,其上、下两部分的体积分别记为V 1、 V 2,根据图中数据可知V 1:V 2= A .15:4 B .4:15
C .15:1
D .1:15
5.设Rt △ABC 的三边长分别为a 、b 、c (a <b <c ),则“a :b :c=3: 4:5”是“a 、b 、C 等差数列的”的
A .充分非必要条件
B .必要非充分条件
C .充分必要条件
D .既非充分又非必要条件 6.由曲线y=x 2和直线x=0,x=1,y=1
4所围成的封闭图形的面积为
A .
1
4
B .13
C .12
D .
2
3
7.如图,某地一天从6~14时的温度变化曲线近似满足函数T= asin (ωt+φ)+b ,则与27℃最接近的时刻大约是 A .11点 B .12点 C .11点半 D .12点半
8.若函数f (x )=x 4+ax 3
+ax 2+ax+1有零点,则实数a 的取值范围是 A .(-∞,-2]∪[2
3
,+∞) B .[-2,23
]
C .(-∞,-
2
3]∪[2,+∞) D .[-
2
3
,2] 二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..
卡.
中对应题 号后的横线上
(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9.已知在极坐标系下,圆C :ρ=2(cos θ+sin θ)和直线l :ρsin (θ-
4π)=2
2
,则圆心C 到直线l 的距离是 。

10.如图,已知PA 是圆O 的切线,切点为A ,直线PO 交圆O 于B ,C 两点,AC=2,∠PAB=
120°,则弧 AC 的长为 。

11.函数f (x )=3x +3(1)x -的最大值为 。

(二)必做题(12~16题)
12.某射击爱好者一次击中目标的概率为P ,在某次射击训练中向目标射击3次,记X 为击中目标的次数,且DX=
3
4
,则P= 。

13.按下列程序框图来计算,如果x=5,应该运算 次才停止。

14.已知(x +
412x
)n (n ∈N*,n ≥2)的展开式前三项中的系数成等差数列,则其展开式中二项式系数最大的项是 。

15.从抛物线y 2=4X 上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦
点为F ,则△MPF 的面积为 。

16.已知函数f (x )=1ga x -2x +a (a >0,a ≠1)满足(4)<f (1)<f (9)<f (0),则实数a 的取值范围是 。

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知sinB=5
13
,且a ,b ,c 成等比数列。

(1)求
1tan A +1
tan C
的值; (2)若accosB=12,求a+c 的值。

18.(本小题满分12分) 某品牌的汽车4S 店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
已知分3期付款的频率为0.2,4S 店经销一辆该品牌的汽车,顾客分1期付款,期利润为1 万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润2万元,用η表示经销一辆汽车的利润。

(1)求上表中a ,b 的值;
(2)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位
采用3期付款”的概率P (A ); (3)求η的分布列及数学期望E η。

19.(本小题满分12分)
如图,已知等腰直角三角形RBC ,其中∠RBC=90°,RB =BC=2,点A 、D 分别是RB 、RC 的中点,现将△PAD 沿 着边AD 折起到△PAD 位置,使 PA ⊥AB 连结PB 、PC 。

(1)求证:BC ⊥PB ;
(2)求二面角A —CD —P 的平面角的余弦值。

20.(本小题满分13分)
2011年我省某市的中学生科技节活动共举办了n (n >1)天,为了鼓励和表彰中学
生的科技发明活动,科技节组委会在活动期间对参加活动的各项作品进行了评奖,
付款方式 分1期 分2期 分3期 分4期 分5期 频数
40
20
a
10
b
共评选出获奖作品件并颁发了获奖证书m 本,若第一天颁发1本获奖证书又余下的m -1本的
17,第二天颁发2本又余下的1
7
,依次类推,最后在第n 天颁发获奖证书n 本而没有剩余。

(1)设第k 天颁发的获奖证书本数a k ,试求a k+1与a k 的关系; (2)问:这次科技节共举办了多少天?共颁发了多少本获奖证书? 21.(本小题满分13分)
如图,已知椭圆C :22x a +2
2y b =1(a >b >0)的左、右焦点分别
是F 1、F 2,其半焦距为c ,M 是椭圆C 的上顶点,直线x=2
a c
与x 轴交于点N ,且23MF =1MF +
2MN ,||MN
=5。

(1)求椭圆C 的标准方程; (2)若⊙O 是以F 1F 2为直径的圆,直线l :y=kx+m 与⊙O 相切,并与椭圆C 交于不同的
两点A 、B 当OA ·0B =λ,且满足23≤λ≤3
4
时,求△AOB 面积S 的了值范围。

22.(本小题满分13分)
(1)已知定理:若函数()f X 的图象在区间[a ,b]上连续,且在(a ,b )内可导,则
至少存在一点ξ∈(a ,b )使得()()()()f a f a f b a ξ'==- 成立。

应用上述定理证明:
①1-x
y <lny -lnx <y x -1(0<x <y );②2n k =∑1k <lnn <1
1
n k -=∑1k (n >1);
(2)设
()
(n
f x x n N =∈.若对任意的实数
x 1,x 2,
12
1212()()(
)(_)2
x x f x x f x x +'-=恒成立,求n 所有可能的值。

相关文档
最新文档