人教版八年级上第十四章习题14.1
人教版数学八年级上册 第14章 14.1---14.3分节练习含答案
人教版数学八年级上册第14章14.1---14.3分节练习含答案14.1整式的乘法一.选择题1.计算(2m+3)(m﹣1)的结果是()A.2m2﹣m﹣3B.2m2+m﹣3C.2m2﹣m+3D.m2﹣m﹣32.计算(﹣3x2)2x3的结果是()A.﹣5x6B.﹣6x6C.﹣5x5D.﹣6x53.下列各式中,计算结果为a18的是()A.×a6C.a3×(﹣a)6D.(x﹣1)+(x﹣4)(x+1)的结果是()4. 计算式:(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x5.下面四个整式中,不能表示图中阴影部分面积的是()A.﹣6x B.x(x+4)+24C.4(x+6)+x2D.x2+246.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2B.﹣2C.4D.﹣47.已知正方形ABCD边长为x,长方形EFGH的一边长为2,另一边的长为x,则正方形ABCD与长方形EFGH的面积之和等于()A.边长为x+1的正方形的面积B.一边长为2,另一边的长为x+1的长方形面积C.一边长为x,另一边的长为x+1的长方形面积D.一边长为x,另一边的长为x+2的长方形面积8.计算(﹣1.5)2018×()2019的结果是()A.﹣B.C.﹣D.9.若(x+2)(x+a)=x2+bx﹣8,则a b的值为()A.﹣8B.﹣4C.D.10.若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p二.填空题11.若(3x2﹣2x+1)(x+b)的积中不含x的一次项,则b的值为.12.=.13.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.14.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为.15.已知a+b=﹣5,ab=4,化简(a﹣2)(b﹣2)的结果是.三.解答题16.计算:(1)3x2y(﹣2x3y2)2;(2)(﹣2a2)(3ab2﹣5ab3).17.若(x2+nx+3)(x2﹣3x+m)的展开式中不含x2项和x3项,求m,n的值.18.甲、乙二人共同计算2(x+a)(x+b),由于甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x﹣30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.19.如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.参考答案与试题解析一.选择题1.【解答】解:原式=2m2﹣2m+3m﹣3=2m2+m﹣3,故选:B.2.【解答】解:(﹣3x2)2x3=﹣6x5,故选:D.3.【解答】解:A.(﹣a6)3=﹣a18,故本选项不合题意;B.(﹣a3)×a6=﹣a9,故本选项不合题意;C.a3×(﹣a)6=a9,故本选项不合题意;D.(﹣a3)6=a18,故本选项符合题意.故选:D.4.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.5.【解答】解:A、大长方形的面积为:,空白处小长方形的面积为:6x,所以阴影部分的面积为﹣6x,故不符合题意;B、阴影部分可分为两个长为x+4,宽为x和长为6,宽为4的长方形,他们的面积分别为x(x+4)和4×6=24,所以阴影部分的面积为x(x+4)+24,故不符合题意;C、阴影部分可分为一个长为x+6,宽为4的长方形和边长为x的正方形,则他们的面积为:4(x+6)+x2,故不符合题意;D、阴影部分的面积为x(x+4)+24=x2+4x+24,故符合题意;故选:D.6.【解答】解:根据题意得:(x+m)(x+2)=x2+(m+2)x+2m,由结果中不含x的一次项,得到m+2=0,解得:m=﹣2,故选:B.7.【解答】解:根据题意得:正方形ABCD与长方形EFGH面积之和为x2+2x=x(x+2),则正方形ABCD与长方形EFGH的面积之和等于一边长为x,另一边的长为x+2的长方形面积,故选:D.8.【解答】解:(﹣1.5)2018×()2019=(1.5)2018×()2018×====.故选:D.9.【解答】解:(x+2)(x+a)=x2+(2+a)x+2a,则2+a=b,2a=﹣8,解得,a=﹣4,b=﹣2,∴a b=(﹣4)﹣2=,故选:D.10.【解答】解:(x2﹣px+q)(x﹣3)=x3﹣3x2﹣px2+3px+qx﹣3q=x3+(﹣p﹣3)x2+(3p+q)x﹣3q,∵结果不含x的一次项,∴q+3p=0.故选:C.二.填空题(共5小题)11.【解答】解:(3x2﹣2x+1)(x+b)=3x3+3bx2﹣2x2﹣2bx+x+b=3x3+(3b﹣2)x2+(﹣2b+1)x+b,∵积中不含x的一次项,∴﹣2b+1=0,解得:b=,故答案为:.12.【解答】解:原式=22008×()2008×()2=(2×)2008×=1×=.故答案为:.13.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.14.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=4,ab=3时,原式=3+4+1=8.故答案为:815.【解答】解:∵a+b=﹣5,ab=4,∴(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=4﹣2×(﹣5)+4=18,故答案为:18.三.解答题(共4小题)16.【解答】解:(1)3x2y(﹣2x3y2)2=3x2y4x6y4=12x8y5;(2)(﹣2a2)(3ab2﹣5ab3)=(﹣2a2)(3ab2)﹣(﹣2a2)(5ab3)=﹣6a3b2+10a3b3.17.【解答】解:(1)设AB=x,BC=y,由题意得,∵长方形ABCD的周长为16,∴2(x+y)=16,即x+y=8 ①,又∵四个正方形的面积和为68,∴2x2+2y2=68,即:x2+y2=34 ②,①的两边平方得(x+y)2=64,即x2+2xy+y2=64,将②代入得,2xy=30,∴xy=15,即矩形ABCD的面积为15;(2)(x2+nx+3)(x2﹣3x+m)=x4+(﹣3+n)x3+(m﹣3n+3)x2+(mn﹣9)x+3m,∵不含x2和x3项∴﹣3+n=0,m﹣3n+3=0,解得,m=6,n=3,答:m、n的值为6,3.18.【解答】解:(1)甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x﹣30,∴2(x﹣a)(x+b)=2x2+2bx﹣2ax﹣2ab=2x2+(2b﹣2a)x﹣2ab=2x2+4x﹣30,∴2b﹣2a=4,∵乙漏抄了2,得到的结果为x2+8x+15,∴(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab=x2+8x+15,∴a+b=8,解方程组得:,即a=3,b=5;(2)2(x+3)(x+5)=2x2+10x+6x+30=2x2+16x+30.19.【解答】解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S214.2《平方差公式》1. 为了便于直接应用平方差公式计算,应将)变形为()A. B.C. D.2. 可表示为()A. B. C. D.3. 若,则的值为()A. B. C. D.4. 在下列各式中,计算结果是的是()A. B.C. D.5.下列各式中,计算正确的是()A. B.C. D.6.计算:等于()A. B. C. D.7. 计算:________.8. 填空:(1)()();(2)();(3)()()().9.若一个三角形的一条边长为,这条边上的高为,则这个三角形的面积为________.10. 计算:(1)________.(2)( ).11.设=,求的值.12. 利用平方差公式计算:(1);(2).13. 计算:________;________;________;根据上面算式所得的简便方法计算下式:.14.计算:(1);(2);(3).15.计算:(1);(2);(3);(4).16.运用平方差公式计算:(1);(2);(3);(4).参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】A7.略8.【答案】(1)(2)(3)9.【答案】10.【答案】(1)(2)11.====,故=.12.===.===.13.【答案】原式.14.【答案】(1)解:(2)解:(3)解:15.【答案】(1)解:(2)解:(3)解:(4)解:16.【答案】(1)解:(2)解:(3)解:(4)解:14.3《因式分解》一.选择题1.8x m y n﹣1与﹣12x5m y n的公因式是()A.x m y n B.x m y n﹣1C.4x m y n D.4x m y n﹣12.下列计算属于因式分解的是()A.b3+b3=2b3B.(a+b)(a﹣b)=a2﹣b2C.a2﹣b2=(a+b)(a﹣b)D.a2÷a=a3.下列各式能分解因式的是()A.﹣x2﹣1B.C.a2+2ab﹣b2D.a2﹣b4.下列各式中,能用平方差公式进行分解因式的是()A.x2+y2B.x2﹣2x﹣3C.x2+2x+1D.x2﹣45.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解6.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900 C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1987.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.408.已知a,b都是实数,观察表中的运算,则m为()a、b的运算a+b a﹣b a2﹣b2运算的结果﹣410m A.40B.﹣40C.36D.﹣369.已知a,b,c为△ABC的三边长,且满足ac+bc=b2+ab,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形10.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)二.填空题11.分解因式:x3+2x2﹣3x=.12.在实数范围分解因式:x2﹣6=.13.利用因式分解计算:2022+202×196+982=.14.若x2+4x+m=(x﹣2)(x+6),则m=.15.若m3+m﹣1=0,则m4+m3+m2﹣2=.三.解答题16.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.17.将下列各式分解因式:(1)x2+2x﹣15;(2)2x2y﹣8xy2+8y3;(3)9(x+2y)2﹣4(x﹣y)2.18.已知a﹣b=3,ab=4,求下列式子的值:(1)a2b﹣ab2;(2)a4b2﹣2a3b3+a2b4.19.某同学碰到这么一道题“分解因式x2+2x﹣3”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上1,再减去1,这样原式化为(x2+2x+1)﹣4,…”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.请你仔细领会该同学的做法,将a2﹣2ab﹣3b2分解因式.20.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.参考答案一.选择题1.解:8x m y n﹣1与﹣12x5m y n的公因式是4x m y n﹣1.故选:D.2.解:A、从左到右是合并同类项,不是因式分解,故此选项不符合题意;B、从左到右是整式的乘法,不是因式分解,故此选项不符合题意;C、右边是几个整式的积的形式,故此选项符合题意;D、从左到右是单项式的除法运算,不是因式分解,故此选项不符合题意.故选:C.3.解:A、不能分解,故此选项不符合题意;B、能够运用完全平方式分解因式,故此选项符合题意;C、不能分解,故此选项不符合题意;D、不能分解,故此选项不符合题意.故选:B.4.解:A.多项式中的两项同号,不能用平方差公式分解因式;B.多项式含有三项,不能用平方差公式分解因式;C.多项式含有三项,不能用平方差公式分解因式;D.能变形为x2﹣22,符合平方差公式的特点,能用平方差公式分解因式.故选:D.5.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.6.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.7.解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.解:a2﹣b2=(a+b)(a﹣b)=(﹣4)×10=﹣40.∴m=﹣40.故选:B.9.解:由ac+bc=b2+ab得,c(a+b)=b(a+b),∴b=c,∴△ABC是等腰三角形.故选:D.10.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题11.解:x3+2x2﹣3x=x(x2+2x﹣3)=x(x+3)(x﹣1),故答案为:x(x+3)(x﹣1).12.解:x2﹣6=(x+)(x﹣).故答案为:(x+)(x﹣).13.解:原式=2022+2x202x98+982=(202+98)2=3002=90000.14.解:∵x2+4x+m可分解为(x﹣2)(x+6),∴(x﹣2)(x+6)=x2+4x﹣12,则m=﹣12.故答案为:﹣12.15.解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.三.解答题16.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).17.解:(1)原式=(x+5)(x﹣3);(2)原式=2y(x2﹣4xy+4y2)=2y(x﹣2y)2;(3)原式=(3x+6y)2﹣(2x﹣2y)2.=(3x+6y+2x﹣2y)(3x+6y﹣2x+2y)=(5x+4y)(x+8y).18.解:(1)∵a﹣b=3,ab=4,∴a2b﹣ab2=ab(a﹣b)=4×3=12;(2)∵a﹣b=3,ab=4,∴a4b2﹣2a3b3+a2b4=a2b2(a2﹣2ab+b2)=(ab)2(a﹣b)2=42×32=144.19.解:a2﹣2ab﹣3b2=a2﹣2ab+b2﹣4b2=(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).20.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).。
人教版 八年级数学上册 14.1--14.3练习题含答案
人教版 八年级数学上册 14.1--14.3练习题14.1 整式的乘法一、选择题(本大题共10道小题) 1. 计算a 3·a 2正确的是( )A. ɑB. ɑ5C. ɑ6D. ɑ9 2. 单项式乘多项式运算法则的依据是( ) A .乘法交换律 B .加法结合律 C .分配律D .加法交换律3. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .14. 若a 3=b ,b 4=m ,则m 为( ) A .a 7B .a 12C .a 81D .a 645. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab6. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( ) A .4B .-4C .8D .-87. 下列计算错误的是( ) A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知x a =2,x b =3,则x 3a +2b 的值( ) A .48B .54C .72D .179. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( )A .21()0n n a b +=B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11. 填空:()()()324a a a -⋅-⋅-= ; 12. 填空:()()2322a b b ⋅-= ;13. 计算:(2x +1)·(-6x)=____________.14. 填空:()4mmx x ÷=;()224m a a+⋅=;()234nnn na b =;()()()284n a aa ⎡⎤==⎣⎦15. 若a 2b =2,则式子2ab (a -2)+4ab =________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共4道小题)17. 计算:()()32315322154⎛⎫⎛⎫-⨯--÷-⨯- ⎪ ⎪⎝⎭⎝⎭18. 计算:53(3)(3)a b b a --19. 数形结合长方形的长为a 厘米,宽为b 厘米(a >b >8),如果将原长方形的长和宽各增加2厘米,得到的新长方形的面积记为S 1平方厘米;如果将原长方形的长和宽分别减少3厘米,得到的新长方形的面积记为S 2平方厘米. (1)如果S 1比S 2大100,求原长方形的周长;(2)如果S 1=2S 2,求将原长方形的长和宽分别减少8厘米后得到的新长方形的面积;(3)如果用一个面积为S 1的长方形和两个面积为S 2的长方形恰好能没有缝隙、没有重叠地拼成一个正方形,求a ,b 的值.20. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x --的值.14.2《乘法公式》一.选择题1.计算(a +2b )2的结果是( ) A .a 2+4b 2B .a 2+2ab +2b 2C .a 2+4ab +2b 2D .a 2+4ab +4b 22.下列从左到右的变形,错误的是( ) A .(y ﹣x )2=(x ﹣y )2 B .﹣a ﹣b =﹣(a +b ) C .(m ﹣n )3=﹣(n ﹣m )3D .﹣m +n =﹣(m +n )3.下列算式能用平方差公式计算的是( ) A .(3a +b )(3b ﹣a ) B .(﹣1)(﹣﹣1) C .(x ﹣y )(﹣x +y )D .(﹣a ﹣b )(a +b ) 4.若x 2﹣kx +81是完全平方式,则k 的值应是( ) A .16B .9或﹣9C .﹣18D .18或﹣185.已知x +y =5,xy =6,则x 2+y 2的值是( ) A .1B .13C .17D .256.代数式(m ﹣2)(m +2)(m 2+4)﹣(m 4﹣16)的结果为( ) A .0B .4mC .﹣4mD .2m 47.如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x ,y 分别表示矩形的长和宽,那么下面式子中不正确的是( )A.x+y=7B.x﹣y=2C.4xy+4=49D.x2+y2=258.如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m+3,则原正方形边长是()A.m+6B.m+3C.2m+3D.2m+6二.填空题9.计算:(m﹣2n)2=.10.计算:x(x+2)﹣(x+1)(x﹣1)=.11.若x2﹣6x+k是x的完全平方式,则k=.12.9992﹣998×1002=.13.(a+b)(a﹣b)(a2+b2)(a4+b4)=.14.如果(a+b﹣2)(a+b+2)=77,那么a+b=.15.已知a,b满足a﹣b=1,ab=2,则a+b=.16.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.三.解答题17.(a+1)(a2﹣1)(a﹣1).18.利用乘法公式计算:982.19.已知a﹣b=4,ab=3(1)求(a+b)2(2)a2﹣6ab+b2的值.20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2 第一步=3002﹣2×300×(﹣4)+42 第二步=90000+2400+16 第三步=92416.第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第几步开始出错;(2)请你写出正确的解题过程.21.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?参考答案一.选择题1.解:(a+2b)2=a2+4ab+4b2.故选:D.2.解:A、(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故本选项不合题意;B、﹣a﹣b=﹣(a+b),故本选项不合题意;C、(m﹣n)3=(m﹣n)(n﹣m)2=﹣(n﹣m)(n﹣m)2=﹣(n﹣m)3,故本选项不合题意;D、﹣m+n=﹣(m﹣n),故本选项符合题意.故选:D.3.解:选项A:没有两项完全相同,也没有两项属于相反数,故不能用平方差公式计算;选项B:和﹣是相反数,﹣1和﹣1是相同项,故可以用平方差公式计算;选项C:x与﹣x是相反数,﹣y与y也是相反数,故不能用平方差公式计算;选项D:﹣a和a是相反数,﹣b和b也是相反数,故不能用平方差公式计算;综上,只有选项B符合题意.故选:B.4.解:∵x2﹣kx+81是完全平方式,81=92,∴k=±2×1×9=±18.故选:D.5.解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.6.解:(m﹣2)(m+2)(m2+4)﹣(m4﹣16)=(m2﹣4)(m2+4)﹣(m4﹣16)=(m4﹣16)﹣(m4﹣16)=0.故选:A.7.解:A、∵此图案的总面积是49,∴(x+y)2=49,∴x+y=7,故本选项正确,不符合题意;B、∵小正方形的面积是4,∴(x﹣y)2=4,∴x﹣y=2,故本选项正确,不符合题意;C、根据题得,四个矩形的面积=4xy,四个矩形的面积=(x+y)2﹣(x﹣y)2=49﹣4,∴4xy=49﹣4,即4xy+4=49,故本选项正确,不符合题意;D、∵(x+y)2+(x﹣y)2=49+4,∴2(x2+y2)=53,解得x2+y2=26.5,故本选项错误,符合题意.故选:D.8.解:设原正方形的边长为x,则x﹣m=3,解得,x=m+3,故选:B.二.填空题9.解:原式=m2﹣4mn+4n2.10.解:原式=x2+2x﹣x2+1=2x+1.故答案为:2x+111.解:∵关于x的多项式x2﹣6x+k是完全平方式,∴x2﹣6x+k=x2﹣2•x•3+32,∴k=32=9,故答案为:9.12.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.13.解:原式=(a2﹣b2)(a2+b2)(a4+b4)=(a4﹣b4)(a4+b4)=a8﹣b8,故答案为:a8﹣b814.解:(a+b﹣2)(a+b+2)=77,即(a+b)2﹣22=77,(a+b)2=81,a+b=,a+b=±9.故答案为:±9.15.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.16.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).三.解答题17.解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.18.解:原式=(100﹣2)2=1002﹣2×100×2+4=10000﹣400+4=9604.19.解:(1)∵a﹣b=4,ab=3,∴(a+b)2=(a﹣b)2+4ab=16+3×4=28;(2)∵a﹣b=4,ab=3,∴a2﹣6ab+b2=(a﹣b)2﹣4ab=16﹣12=4.20.解:(1)从第二步开始出错;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.21.解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.14.3 因式分解一、选择题1. 下列多项式中,能用公式法分解因式的是()A. x2-xyB. x2+xyC. x2-y2D. x2+y32. 2019·晋州期末把下列各式分解因式,结果为(x-2y)(x+2y)的多项式是()A.x2-4y2B.x2+4y2C.-x2+4y2D.-x2-4y23. 计算552-152的结果是()A.40 B.1600 C.2400 D.28004. 计算(a-1)2-(a+1)2的结果是()A.-2 B.-4 C.-4a D.2a2+25. 如图,长、宽分别为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为() A.15 B.30 C.60 D.786. 将a3b-ab分解因式,正确的结果是()A.a(a2b-b) B.ab(a-1)2C .ab (a +1)(a -1)D .ab (a 2-1)7. 2019·毕节 织金期末某同学粗心大意,分解因式时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字是( ) A .8,1 B .16,2 C .24,3 D .64,88. 如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,嘉嘉(图①)和琪琪(图②)分别给出了各自的割拼方法,其中能够验证平方差公式的是( )A .嘉嘉B .琪琪C .都能D .都不能9. 2019·扬州邗江区月考 若2m +n =25,m -2n =2,则(m +3n )2-(3m -n )2的值为( )A .200B .-200C .100D .-10010. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值().A.大于零B.小于零 C 大于或等于零 D .小于或等于零二、填空题11. 2019·张家港期末 已知x ,y 满足⎩⎪⎨⎪⎧2x +y =9,x +2y =6,则x 2-y 2=________.12. 若2a =3b -1则4a 2-12ab +9b 2-1的值为________.13. 分解因式:441x +=__________.14. 已知n 是正整数,且4216100n n -+是质数,那么n =_______.15. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题16. 分解因式()()()3232332125x y x y x y -+---17. 分解因式: 4414x y +18. 分解因式:()()()222241211y x y x y +-++-19. 分解因式:2222()()()()a b a c c d b d +++-+-+20. 分解因式:54321x x x x x +++++人教版 八年级数学 14.3 因式分解 针对训练 -答案一、选择题1. 【答案】C 【解析】观察选项A ,B 都是利用提取公因式法进行因式分解的,选项D 不能进行因式分解,选项C 正好可以利用平方差公式,故正确答案是C.2. 【答案】A3. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.4. 【答案】C [解析] (a -1)2-(a +1)2=(a -1+a +1)(a -1-a -1)=2a·(-2)=-4a.5. 【答案】B [解析] 根据题意,得a +b =5,ab =6,则a 2b +ab 2=ab(a +b)=30.6. 【答案】C [解析] a 3b -ab =ab(a 2-1)=ab(a +1)(a -1).7. 【答案】B [解析] 由(x 2+4)(x +2)(x -▲)得出▲=2,则(x 2+4)(x +2)(x -2)=(x 2+4)(x 2-4)=x 4-16,则■=16.8. 【答案】C [解析] 在图①中,阴影部分的面积相等,左边的图形阴影部分的面积=a 2-b 2,右边的图形阴影部分的面积=(a +b)(a -b),故可得a 2-b 2=(a +b)(a -b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边的图形阴影部分的面积=a 2-b 2,右边的图形阴影部分的面积=12(2b +2a)·(a -b)=(a +b)(a -b),故可得a 2-b 2=(a +b)(a -b),可以验证平方差公式.9. 【答案】B [解析] 因为2m +n =25,m -2n =2,所以(m +3n)2-(3m -n)2=[(m +3n)+(3m -n)][(m +3n)-(3m -n)]=(4m +2n)(-2m +4n)=-4(2m +n)(m -2n)=-4×25×2=-200.10. 【答案】B【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】15 [解析] 由已知可得3x +3y =15,则x +y =5,x -y =3,故x 2-y 2=(x +y)(x -y)=15.12. 【答案】0 [解析] 因为2a =3b -1所以2a -3b =-1.所以4a 2-12ab +9b 2-1=(2a -3b)2-1=(-1)2-1=0.13. 【答案】22(221)(221)x x x x ++-+【解析】442222222414414(21)(2)(221)(221)x x x x x x x x x x +=++-=+-=++-+14. 【答案】3n =【解析】原式422222222010036(10)(6)(610)(610)n n n n n n n n n =++-=+-=-+++. 又因为4216100n n -+是质数,且n 是正整数,且26101n n ++≠,故26101n n -+=,3n =.15. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题16. 【答案】()()()152332x y x y x y ----【解析】原式()()()()()()()33323322332152332x y x y x y x y x y x y x y =-+---+-=----⎡⎤⎣⎦17. 【答案】22221(22)(22)4x xy y x xy y ++-+ 【解析】4414x y +442222222211()()42x y x y x y x y xy =++-=+-22221(22)(22)4x xy y x xy y =++-+ 18. 【答案】(1)(1)(1)(1)x x x xy y x xy y +-------【解析】()()()222241211y x y x y +-++-()()()222242212114y x y x y x y =+--+-- ()()22211(2)(1)(1)(1)(1)y x y xy x x x xy y x xy y ⎡⎤=+---=+-------⎣⎦19. 【答案】2()()a d a b c d -+++【解析】2222()()()()()(2)()(2)2()()a b a c c d b d a d a b d a d a c d a d a b c d +++-+-+=-+++-++=-+++20. 【答案】22(1)(1)(1)x x x x x +-+++【解析】原式3223222(1)(1)(1)(1)(1)(1)(1)x x x x x x x x x x x x x =+++++=+++=+-+++。
人教版八年级数学上册第十四章基础练习题(含答案)
人教版八年级数学上册第十四章基础练习题(含答案)14.1整式的乘法考点1 同底数幂的乘法1.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 42.已知x a =2,x b =3,则x a+b 的值( )A .1B .-1C .5D .63.已知2a +5b ﹣4=0,则4a ×32b =( )A .8B .16C .32D .644.已知2x +4=m ,用含m 的代数式表示2x 正确的是( )A .16m B .8m C .m ﹣4 D .4m考点2 幂的乘方5.计算()()433a a -⋅-的结果为( )A .15aB .10a -C .15a -D .10a -6.已知:2x a =,5y a =,则32x y a -=( ).A .910B .4125C .825D .357.如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a考点3 积的乘方8.计算:(m 3n )2的结果是( )A .m 6nB .m 5n 2C .m 6n 2D .m 3n 29.已知m ,n 是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是( )A .n m m n a a a +=B .()nmmn a a = C .m n m n a a a -÷=D .()nn n ab a b =10.计算()20202019144⎛⎫-⨯- ⎪⎝⎭的结果是( )A .4B .-4C .14D .14-考点4 同底数幂的除法11.计算(﹣a )5÷a 3结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 412.已知a m =9,a n =13,则a m ﹣n 的值为( )A .4B .﹣4C .913D .13913.下列计算正确的是( )A .426a a a +=B .52210()ab a b =C .4312⋅=a a aD .1025a a a ÷=考点5 单项式乘单项式14.计算a 2•ab 的结果是( )A .a 3bB .2a 2bC .a 2b 2D .a 2b15.一个长方形的长为3a 2b ,宽为2ab ,则其面积为( )A .5a 3b 2B .6a 2bC .6a 2b 2D .6a 3b 216.若□·3xy=27x 3y 4 , 则□内应填的单项式是( )A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 3考点6 单项式乘多项式17.计算(-3x)(2x 2-5x-1)的结果是( )A .-6x 3-15x 2-3xB .-6x 3+15x 2+3xC .-6x 3+15x 2D .-6x 3+15x 2-118.若11,2a b a c -=--=,则35()228b c b c --++的值是 ( ) A .14B .38C .1D .-119.若()()3x a x -+-的积不含x 的一次项,则a 的值为A .3B .-3C .13D .13-20.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-21.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定考点7 多项式乘多项式22.如果x 2+ kx +6=(x +2)(x +3),则k =( )A .1B .2C .3D .523.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( )A .2B .12C .-2D .12-24.设A =(x ﹣2)(x ﹣7),B =(x ﹣3)(x ﹣6),则A 、B 的大小关系为( )A .A <B B .A =BC .A >BD .无法确定25.已知4322125d x x x x =-+--,则当2250x x --=,d 的值为( )A .25B .20C .15D .1026.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 227.观察下列各式及其展开式()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b()4a b +=4a +43a b+62a 2b +4a 3b +4b()5a b +=5a +54a b+103a 2b +102a 3b +5a 4b +5b……请你猜想()821x -的展开式中含2x 项的系数是( )A .224B .180C .112D .48考点8 单项式除单项式28.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y29.计算(x 3y )3÷(2xy )3的结果应该是( )A .612x B .618x C .418x y D .218x y 30.如果一个单项式与22a b -的积为3225a bc -,则这个单项式为( )A .215acB .15ac C .45acD .245ac 考点9 多项式除单项式31.计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab32.弟弟把嘉琪的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于( )A .B .C .D .33.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b + D .+a b考点10 整式的混合运算34.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣235.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( )A .(2232x xy y ++)平方米B .(2223x xy y ++)平方米C .2(3)xy y +平方米D .2(64)xy y +平方米36.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2答案1.C 2.D 3.B 4.A 5.C 6.C 7.C 8.C 9.D 10.D 11.B 12.C 13.B 14.A 15.D 16.D 17.B18.C19.B20.A21.C22.D23.A24.A25.A26.C27.C28.D29.B30.A31.A32.B33.C34.A35.C36.D14.2 乘法公式一、选择题(本大题共10道小题)1. 运用乘法公式计算(a+3)(a-3)的结果是()A.a2-6a+9 B.a2-3a+9C.a2-9 D.a2-6a-92. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)3. 将202×198变形正确的是 ( )A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+44. 若(a+3b)2=(a-3b)2+A,则A等于( )A.6ab B.12ab C.-12ab D.24ab5. 计算(x+1)(x2+1)·(x-1)的结果是( )A.x4+1 B.(x+1)4C.x4-1 D.(x-1)46. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]27. 将9.52变形正确的是 ( )A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.528. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,3 9. 如图,阴影部分是边长为a 的大正方形剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③10. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭ 12. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .13. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.14.课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4=________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是_______ _____________.三、解答题(本大题共4道小题)17.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘25;abba第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的数是8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8;(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a (a ≠0),请你帮小明完成这个验证过程.18. 探索、归纳与证明:(1)比较以下各题中两个算式结果的大小(在横线上填“>”“<”或“=”): ①32+42________2×3×4;②52+52________2×5×5;③(-2)2+52________2×(-2)×5;④(12)2+(23)2________2×12×23.(2)观察上面的算式,用含字母a ,b 的关系式表示上面算式中反映的一般规律.(3)证明(2)中你所写规律的正确性.19. 如图,王大妈将一块边长为a m的正方形土地租给了邻居李大爷种植,今年,她对李大爷说:“我把你这块地的一边减少4 m,另一边增加4 m,继续租给你,你也没有吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗?为什么?20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.14.3《因式分解》一.选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.如果多项式abc+ab2﹣a2bc的一个因式是ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.ac D.﹣ac3.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.166.下列多项式,在实数范围内能够进行因式分解的是()A.x2+4 B.C.x2﹣3y D.x2+y27.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)9.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±410.多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A.(y﹣z)(x+y)(x﹣z)B.(y﹣z)(x﹣y)(x+z)C.(y+z)(x﹣y)(x+z)D.(y+z)(x+y)(x﹣z)11.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.812.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形13.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24二.填空题14.分解因式:x2﹣4=.15.因式分解:2x2﹣8=.16.分解因式:x3﹣4x2﹣12x=.17.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.18.若a,b,c分别是△ABC的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC的形状是.三.解答题(共4小题)19.分解因式(1)(2)9y2﹣(2x+y)2.20.将下列各式因式分解(1)2a3b﹣8ab3 (2)﹣x3+x2y﹣xy2(3)(7x2+2y2)2﹣(2x2+7y2)2 (4)(x2+4x)2+(x2+4x)﹣621.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.参考答案一.选择题1.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.解:abc+ab2﹣a2bc=ab(c+b﹣5ac),故另一个因式为(c+b﹣5ac),故选:B.3.解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.4.解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.5.解:∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.6.解:A、x2+4不能分解,故此选项错误;B、x2﹣x+=(x﹣)2,故此选项正确;C、x2﹣3y不能分解,故此选项错误;D、x2+y2不能分解,故此选项错误;故选:B.7.解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.8.解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.9.解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.10.解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选:A.11.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选:C.12.解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.13.解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.二.填空题14.解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.解:2x2﹣8=2(x+2)(x﹣2).16.解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).17.解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.18.解:∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c分别是△ABC的三条边,∴△ABC是等边三角形,故答案为等边三角形.三.解答题(共4小题)19.解:(1)原式=(m2﹣2mn+n2)=(m﹣n)2;(2)原式=[3y+(2x+y)][3y﹣(2x+y)]=4(x+2y)(y﹣x).20.解:(1)2a3b﹣8ab3=2ab(a2﹣4b2)=2ab(a+2b)(a﹣2b);(2)﹣x3+x2y﹣xy2=﹣x(x2﹣xy+y2)=﹣x(x﹣y)2;(3)(7x2+2y2)2﹣(2x2+7y2)2=(7x2+2y2+2x2+7y2)(7x2+2y2﹣2x2﹣7y2)=(9x2+9y2)(5x2﹣5y2)=9×5(x2+y2)(x2﹣y2)=45((x2+y2)(x﹣y)(x+y);(4)(x2+4x)2+(x2+4x)﹣6=(x2+4x﹣2)(x2+4x+3)=(x2+4x﹣2)(x+1)(x+3).21.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.22.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.。
初中数学人教版八年级上册第十四章同步练习题带答案
初初初初初初初初初初初初初初初初初初初初初初初初14.1整式的乘法一、选择题1.计算3a2⋅a3的结果是()A. 4a5B. 4a6C. 3a5D. 3a62.要使(x2+ax+5)⋅(−6x3)的展开式中不含x4的项,则a应等于()D. 1A. −1B. 0C. 163.下列计算错误的是()A. (−a)⋅(−a)2=a3B. (−a)2⋅(−a)2=a4C. (−a)3⋅(−a)2=−a5D. (−a)3⋅(−a)3=a64.已知(x−3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A. m=3,n=9B. m=3,n=6C. m=−3,n=−9D. m=−3,n=95.下列各式中,计算结果错误的是().A. (x+2)(x−3)=x2−x−6B. (x−4)(x+4)=x2−16C. (2x+3)(2x−6)=2x2−3x−18D. (2x−1)(2x+2)=4x2+2x−26.若(x+m)(x+n)=x2−5x−15,则()A. m,n同时为正B. m,n同时为负C. m,n异号且绝对值小的为负D. m,n异号且绝对值大的为负7.已知a m=5,a n=2,则a m+n的值等于()A. 25B. 10C. 8D. 78.下列计算正确的是()A. (x3)2=x5B. (x3)2=x6C. (x n+1)2=x2n+1D. x3⋅x2=x6二、填空题9.若4x=3,则4x+2=________.10.若−x a+b y5与3x4y2b−a的和是单项式,则(2a+2b)(a−3b)的值为.11.若x3n=5,y2n=3,则x6n y4n的值为.12.计算:(m−n)·(n−m)3·(n−m)4=________.13.若m为正偶数,则(a−b)m⋅(b−a)n与(b−a)m+n的结果(填“相等”或“互为相反数”).三、计算题14.计算:(1)(m−2n)(−m−n);(2)(x+1)(x2−x+1);(3)(a−b)(a2+ab+b2);(4)x(x2+x−1)−(2x2−1)(x−4).四、解答题15.小明有一块长为m米,宽为n米的长方形玻璃,长、宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面的大小相同),则台面面积是多少?16.(1)已知m+4n−3=0,求2m⋅16n的值;(2)已知x2m=2,求(2x3m)2−(3x m)2的值.17.若x=2m+1,y=3+4m.(1)请用含x的式子表示y;(2)如果x=4,求此时y的值.18.(1)已知−2x3m+1y2n与4x n−2y6−m的积和−4x4y2是同类项,求m,n的值;a xb y+8与单项式4a2y b3x−y的和为单项式,求这两个单项式的积.(2)已知单项式−23答案和解析1.【答案】C【解析】解:3a2⋅a3=3a5.故选:C.直接利用单项式乘以单项式运算法则化简得出答案.此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】【分析】本题主要考查单项式乘多项式.先展开,然后根据不含x4项可知x4项的系数为0,计算即可.【解答】解:(x2+ax+5)⋅(−6x3)=−6x5−6ax4−30a3,∵展开式中不含x4的项,∴−6a=0,∴a=0,故选B.3.【答案】A【解析】【分析】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.根据同底数幂的乘法法则,结合选项进行判断即可.【解答】解:A、(−a)⋅(−a)2=−a3,原式计算错误,故本选项正确;B、(−a)2⋅(−a)2=a4,计算正确,故本选项错误;C、(−a)3⋅(−a)2=−a5,计算正确,故本选项错误;D、(−a)3⋅(−a)3=a6,计算正确,故本选项错误;故选A.4.【答案】A【解析】【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m−3)x2+(n−3m)x−3n,又∵乘积项中不含x2和x项,∴(m−3)=0,(n−3m)=0,解得,m=3,n=9.故选A.5.【答案】C【解析】【分析】本题主要考查多项式乘多项式,根据多项式乘多项式的运算法则:用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加,逐项计算即可求解.【解答】解:A.(x+2)(x−3)=x2−3x+2x−6=x2−x−6,故正确;B.(x−4)(x+4)=x2−4x+4x−16=x2−16,故正确;C.(2x+3)(2x−6)=4x2−12x+6x−18=4x2−6x−18,故错误;D.(2x−1)(2x+2)=4x2+4x−2x−2=4x2+2x−2,故正确;故选C.6.【答案】D【解析】【分析】本题主要考查多项式乘多项式.根据多项式乘多项式展开,求出m+n=−5,mn=−15,判断即可.【解答】解:(x+m)(x+n)=x2+(m+n)x+mn,∴m+n=−5,mn=−15,∵mn=−15<0,∴m,n异号,又∵m+n=−5<0,∴m,n中负数的绝对值大,故选D.7.【答案】B【解析】【分析】本题考查了同底数幂的乘法,同底数幂的乘法:底数不变指数相加,根据同底数幂的乘法,可得答案.【解答】解:∵a m=5,a n=2,∴a m+n=a m⋅a n=10,故选B.8.【答案】B【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用,着重培养学生的运算能力.解题的关键是会利用同底数幂的乘法、幂的乘方、积的乘方计算.【解答】A.(x3)2=x6,故A错误;B.(x3)2=x6,故B正确;C.(x n+1)2=x2n+2,故C错误;D.x3⋅x2=x3+2=x5,故D错误.故选B.9.【答案】48【解析】【分析】本题考查同底数幂的运算性质,代数式求值.根据a m●a n=a m+n,将所求代数式变形为4x+2=4x×42,再把4x=3代入计算即可.【解答】解:∵4x=3,∴4x+2=4x×42=3×16=48.故答案为48.10.【答案】−64【解析】【分析】此题考查了多项式乘多项式,以及合并同类项,熟练掌握同类项性质及运算法则是解本题的关键.根据题意得到两式为同类项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵−x a+b y5与3x4y2b−a的和是单项式,∴−x a+b y5与3x4y2b−a为同类项,即a+b=4①2b−a=5②①+②得b=3,再代入①得a=1,则(2a+2b)(a−3b)=(2+6)×(1−9)=−64,故答案为:−6411.【答案】225【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用。
人教版八年级数学上册《14.1整式的乘法》练习-带参考答案
人教版八年级数学上册《14.1整式的乘法》练习-带参考答案一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算的结果为()A.1 B.-1 C.2 D.-23.计算:□,□内应填写()A.-10xy B.C.+40 D.+40xy4.长方形一边长为另一边比它小则长方形面积为()A.B.C.D.5.若,则的值是()A.-11 B.-7 C.-6 D.-56.已知,和,那么x,y,z满足的等量关系是()A.B.C.D.7.下列多项式中,与相乘的结果是的多项式是()A.B.C.D.8.若的展开式中常数项为-2,且不含项,则展开式中一次项的系数为()A.-2 B.2 C.3 D.-3二、填空题9..10.比较大小:11.若,则的值是.12.若与的乘积中不含x的一次项,则实数n的值为.13.如图,将两张边长分别为和的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为,n.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为.三、解答题14.计算:(1)(2)15.已知,求:(1)的值;(2)的值.16.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.17.若关于的多项式与的积为,其中,b,,d,e,f是常数,显然也是一个多项式.(1)中,最高次项为,常数项为;(2)中的三次项由,的和构成,二次项时由,和的和构成.若关于的多项式与的积中,三次项为,二次项为,试确定,的值.参考答案:1.C2.D3.D4.D5.A6.C7.B8.D9.10.<11.1812.313.14.(1)解:原式=(2)解:原式=15.(1)解:∵和.∴(2)解:∵∴.16.(1)解:由题意得所以解得(2)解:17.(1);(2)解:多项式与的积中,三次项为,二次项为由题意得:解得:故。
人教版 八年级 上册 第14章14.1 ----14.3强化复习题 答案不全
公众号:惟微小筑整式的乘法一、选择题1.计算(−8m4n+12m3n2−4m2n3)÷(−4m2n)的结果为()A. 2m2n−3mn+n2B. 2n2−3mn2+n2C. 2m2−3mn+n2D. 2m2−3mn+n2.假设(x+m)(x+n)=x2−5x−15 ,那么()A. m ,n同时为正B. m ,n同时为负C. m ,n异号且绝|对值小的为负D. m ,n异号且绝|对值大的为负3.假设3x2y2·M=6x2y4−3x4y2−3x2y2 ,那么多项式M是()A. 2y2−x2−1B. 2y2−x2yC. 3y2−xy2−1D. −x8+x64.假设(mx4)⋅(4x k)=−12x12 ,那么适合条件的m ,k的值应是()A. m=3 ,k=8B. m=−3 ,k=8C. m=8 ,k=3D. m=−3 ,k=35.2n=a ,3n=b ,24n=c ,那么a ,b ,c之间的等量关系是()A. c=abB. c=ab3C. c=a3bD. c=a2b6.以下各项中 ,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(x+y)2D. x2与x37.计算x6÷x2正确的结果是()A. 3B. x3C. x4D. x88.将一块边长为x的正方形铁皮按图所示的方法截去一局部后 ,剩余的长方形铁皮(阴影局部)的面积是多少 ?几名同学经过讨论后给出了以下不同的答案 ,其中正确的选项是()①(x−5)(x−6);②x2−5x−6(x−5);③x2−6x−5x;④x2−6x−5(x−6).A. ①②④B. ①②③④C. ①D. ②④9.假设3x=a ,3y=b ,那么32x+y等于()A. abB. a2bC. 2abD. a2b210.假设一个长方体的长、宽、高分别为2x ,x ,3x−4 ,那么长方体的体积为()A. 3x3−4x2B. 6x2−8xC. 6x3−8x2D. 6x3−8x11.以下四个算式中 ,正确的有() ①(a4)4=a8; ②[(b2)2]2=b8; ③[(−x)3]2=x6; ④(−y2)3=y6.A. 0个B. 1个C. 2个D. 3个12.计算(a3)2⋅a2的结果是()A. a7B. a8C. a10D. a1113.以下四个算式中 ,计算正确的有() ①2a3−a3=1; ②(−xy2)3=x3y5; ③(x3)3⋅x=x10; ④(a−b)3⋅(b−a)2= (a−b)5.A. 1个B. 2个C. 3个D. 4个二、填空题14.计算:(3x+y−5)⋅(−2x)=.15.假设−x a+b y5与3x4y2b−a的和是单项式 ,那么(2a+2b)(a−3b)的值为.16.一块长方形草坪的面积为4a2−6ab+2a ,假设它的一条边长为2a,那么它的周长是.公众号:惟微小筑17.在等式x2·x5·()=x11中 ,括号里的代数式应为________.18.(1)(π−3)0=;(2)假设(x−5)0=1 ,那么x的取值范围是.三、解答题19.(1)2×8x×16x=222 ,求x的值;(2)假设2x+3⋅3x+3=36x−2 ,那么x的值为多少⋅20.x(x−m)+n(x+m)=x2+5x−6对任意数都成立 ,求m(n−1)+n(m+1)的值.21.10m=3 ,10n=2 ,求103m ,102n和103m+2n的值.答案和解析1.【答案】C【解析】解:(−8m4n+12m3n2−4m2n3)÷(−4m2n) ,=−8m4n÷(−4m2n)+12m3n2÷(−4m2n)−4m2n3÷(−4m2n) ,=2m2−3mn+n2.2.【答案】D【解答】解:(x+m)(x+n)=x2+(m+n)x+mn ,∴m+n=−5 ,mn=−15 ,∵mn=−15<0 ,∴m ,n异号 ,又∵m+n=−5<0 ,∴m ,n中负数的绝|对值大 ,应选D.3.【答案】A【解答】解:M=(6x2y4−3x4y2−3x2y2)÷3x2y2=2y²−x²−1.应选A4.【答案】B【解答】解:(mx4)⋅(4x k)=4mx4+k,∵(mx4)⋅(4x k)=−12x12 ,∴4m=−12 ,4+k=12 ,解得m=−3 ,k=8.应选B.5.【答案】C【解答】解:24n=(3×8)n=(3×23)n=3n·23n ,∵2n=a ,3n=b ,∴3n·23n= 3n·(2n)3=a3b.应选C.6.【答案】D【解答】解:对于A:x2的底数是x ,a2的底数是a;对于B:(−a)5的底数是−a ,a3的底数是a;对于C:(x−y)2的底数是(x−y) ,(x+y)2的底数是(x+y);对于D:x2的底数是x ,x3的底数也是x.应选D.7.【答案】C【解析】解:x6÷x2=x4.8.【答案】A【解答】解:①由题意得:阴影局部长方形的长和宽分别为x−5、x−6 ,那么阴影的面积=(x−5)(x−6)=x2−11x+30.故该项正确;②如下图:阴影局部的面积=x2−5x−6(x−5) ,故该项正确;④如下图:阴影局部的面积=x2−6x−5(x−6) ,故该项正确;③由④知本项错误.应选A.9.【答案】B【解析】解:32x+y=32x·3y=(3x)23y=a2b 应选B.10.【答案】C【解答】解:由题意知 ,V长方体=(3x−4)⋅2x⋅x=6x3−8x2.应选:C.11.【答案】C【解答】解:①(a4)4=a16 ,故不正确;②[(b2)2]2=(b4)2=b8 ,正确;③[(−x)3]2=(−x)6=x6 ,正确;④(−y2)3=−y6 ,故不正确 ,那么正确的有2个.应选C.12.【答案】B【解答】解:(a3)2⋅a2=a6⋅a2=a8.应选B.13.【答案】B【解答】 ①2a3−a3=a3 ,故错误; ②(−xy2)3=−x3y6 ,故错误; ③(x3)3⋅x= x9·x=x10 ,故正确; ④(a−b)3⋅(b−a)2=(a−b)5 ,故正确;故答案选B.14.【答案】−6x2−2xy+10x【解析】【解答】解:(3x+y−5)⋅(−2x)=−6x2−2xy+10x ,故答案为−6x2−2xy+10x.15.【答案】−64【解答】解:∵−x a+b y5与3x4y2b−a的和是单项式 ,∴−x a+b y5与3x4y2b−a为同类项 ,即a+b=4①2b−a=5②①+②得b=3 ,再代入①得a=1 ,那么(2a+2b)(a−3b)=(2+6)×(1−9)=−64 ,故答案为:−6416.【答案】8a−6b+2【解答】解:∵长方形的面积为4a2−6ab+2a ,它的一边长为2a,∴另一边长为:(4a2−6ab+2a)÷2a=2a−3b+1 ,那么它的周长为:2(2a+2a−3b+1)=8a−6b+2 ,故答案为8a−6b+2.17.【答案】x4【解答】解:设:括号里的代数式为x a ,x2·x5·x a=x11 ,2+5+a=11 ,a=4 ,故答案为x4.18.【答案】(1)1;(2)x≠5解.【解答】解:.故答案为1;(2)∵任何一个不等于零的数的零次幂都等于1,∴x−5≠0 ,解得 ,x≠5.故答案为x≠5.19.【答案】解:(1)∵2×8x×16x= 21+3x+4x=21+7x=222 ,∴1+7x=22.解得x=3.(2)∵2x+3⋅3x+3=(2×3)x+3=6x+3 ,36x−2=(62)x−2=62x−4 ,公众号:惟微小筑根据2x+3⋅3x+3=36x−2 ,得6x+3=62x−4.∴x+3=2x−4.解得x=7.20.【答案】解:∵x(x−m)+n(x+m)=x2−mx+nx+nm=x2+(n−m)x+mn ,∵,∴m(n−1)+x(x−m)+n(x+m)=x2+5x−6对任意数都成立 ,∴{n−m=5mn=−6n(m+1)=n−m+2mn=5−12=−7.21.【答案】解:∵10m=3 ,10n=2 ,∴103m=(10m)3=33=27 ,102n=(10n)2=22=4 ,103m+2n=103m×102n=27×4=108.平方差公式1.计算以下多项式的积.(1 ) (x +1 ) (x -1 ) (2 ) (m +2 ) (m -2 )(3 ) (2x +1 ) (2x -1 ) (4 ) (x +5y ) (x -5y )2.以下哪些多项式相乘可以用平方差公式 ?(1 ))2(b)(a3a-2-+ba-33232(b)(a+ (2 ))b(3))(b2)(23-3-a-ba(b3)(2- (4))23a+-a+b(5))ac(cb-)(-+a-bb+ (6 ))(c)(abc-+a+3.计算:(1 ) (3x +2 ) (3x -2 ) (2 ) (b +2a ) (2a -b )(3 ) ( -x +2y ) ( -x -2y )4.简便计算:(1 )102×98 (2 ) (y +2 ) (y -2 ) - (y -1 ) (y +5 )5.计算:(1 ) )2)(2(x y y x +--- (2 ))25)(52(x x -+(3 ))25.0)(5.0)(5.0(2++-x x x (4 )22)6()6(--+x x(5 )100.5×99.5 (6 )99×101×100016.证明:两个连续奇数的积加上1一定是一个偶数的平方7.求证:22)7()5(--+m m 一定是24的倍数完全平方公式 (一 )1.应用完全平方公式计算:(1 ) (4m +n )2 (2 ) (y -12 )2 (3 ) ( -a -b )2 (4 ) (b -a )22.简便计算:(1 )1022 (2 )9922 23.计算:(1 )2)4(y x - (2 )222)43(c ab b a - (3 )-x 5( )2 =4210y xy +-公众号:惟微小筑(4))3)(3(b a b a --+ (5)2)1(x x +(6 )2)1(x x -4.在以下多项式中 ,哪些是由完全平方公式得来的 ?(1)442+-x x (2)2161a + (3 )12-x(4 )22y xy x ++ (5 )224139y xy x +-完全平方公式 (二 ) 1.运用法那么:(1 )a +b -c =a + ( ) (2 )a -b +c =a -( )(3 )a -b -c =a - ( ) (4 )a +b +c =a -( )2.判断以下运算是否正确.(1 )2a -b -2c =2a - (b -2c ) (2 )m -3n +2a -b =m + (3n +2a -b )(3 )2x -3y +2 = - (2x +3y -2 ) (4 )a -2b -4c +5 = (a -2b ) - (4c +5 )3.计算:(1 ) (x +2y -3 ) (x -2y +3 ) (2 ) (a +b +c )2(3 ) (x +3 )2 -x 2 (4 ) (x +5 )2 - (x -2 ) (x -3 )4.计算:(1 )2)2(c b a +- (2 )22)()(c b a c b a ---++81362++x kx 是一个完全平方公式 ,那么k 的值是多少 ? 3642++kx x 是一个完全平方公式 ,那么k 的值是多少 ? 422=-y x ,那么22)()(y x y x +-的结果是多少 ?5=+b a 5.1=ab ,求22b a +和2)(b a -的值31=+x x ,求221xx + 和2)1(xx -的值 -7=+b a 12=ab ,求ab b a -22+和2)(b a -的值25)12(2-+n 能被4整除【因式分解】一.选择题1.以下变形:①x (x ﹣2y )=x 2﹣2xy ,②x 2 +2xy +y 2=x 2 +y (2x +y ) ,③x 2﹣9= (x +3 ) (x ﹣3 ) ,④x 2y =x •x •y ,其中是因式分解的有 ( )A .1个B .2个C .3个D .4个2.多项式6ab 2 +18a 2b 2﹣12a 3b 2c 的公因式是 ( )A .6ab 2cB .ab 2C .6ab 2D .6a 3b 2c3.假设mn =﹣2 ,m +n =3 ,那么代数式m 2n +mn 2的值是 ( )A .﹣6B .﹣5C .1D .64.将多项式16m 2 +1加上一个单项式后 ,使它能够在我们所学范围内因式分解 ,那么此单项式不能是 ( )A .﹣2B .﹣15m 2C .8mD .﹣8m公众号:惟微小筑5.因式分解与整数乘法一样,都是一种恒等变形,即在变形的过程中,形变值不变,于是将多项式x2﹣y2 + (2x +2y )分解因式的结果为()A.(x +y ) (x﹣y +2 )B.(x +y ) (x﹣y﹣2 )C.(x﹣y ) (x﹣y +2 )D.(x﹣y ) (x﹣y﹣2 )6.a=2005x +2004 ,b=2005x +2005 ,c=2005x +2006 ,那么多项式a2 +b2 +c2﹣ab﹣bc﹣ac的值为()A.1B.2C.3D.47.m2=3n +a ,n2=3m +a ,m≠n ,那么m2 +2mn +n2的值为()A.9B.6C.4D.无法确定8.如果x和y是非零实数,使得|x| +y=3和|x|y +x3=0 ,那么x +y的值是() A.3B.C.D.4﹣9.以下关于x的二次三项式在实数范围内不能够因式分解的是() A.x2﹣3x +2B.3x2﹣x +1C.2x2﹣9x﹣1D.x2﹣4x +210.d=x4﹣2x3 +x2﹣10x﹣4 ,那么当x2﹣2x﹣4=0时,d的值为() A.4B.8C.12D.16二.填空题11.假设m3 +m﹣1=0 ,那么m4 +m3 +m2﹣2=.12.在实数范围内分解因式:2x2﹣6x﹣1=.13.x4﹣5x3 +nx﹣16有因式(x﹣1 ) ,那么n=.14.因式分解:2x3y﹣8x2y2 +8xy3=.15.假设多项式x2 +ax +6可分解为(x +2 ) (x +b ).那么a﹣b的值为.三.解答题16.因式分解:(1 )m2﹣6mn +9n2;(2 )4x2﹣16y2;(3 ) (a﹣b ) (x﹣y )﹣(b﹣a ) (x +y).17.(1 )假设代数式(m﹣2y +1 ) (n +3y ) +ny2的值与y无关,且等腰三角形的两边长为m、n ,求该等腰三角形的周长.(2 )假设x2﹣2x﹣5=0 ,求2x3﹣8x2﹣2x +2021的值.18.阅读以下材料:定义:任意两个实数a ,b ,按规那么c=ab +a +b扩充得到一个新数c ,称所得的新数c 为a ,b的"如意数〞.(1 )假设a=3 ,b=﹣2 ,那么a ,b的"如意数〞c=.(2 )假设a=﹣m﹣4 ,b=m ,试说明a ,b的"如意数〞c≤0.(3 )a=x2 (x≠0 ) ,且a ,b的"如意数〞为c=x4 +x2﹣1 ,请用含x的式子表示b.19.如图1示.用两块a×b型长方形和a×a型、b×b型正方形硬纸片拼成一个新的正方形.(1 )用两种不同的方法计算图1中正方形的面积;(2 )如图2示,用假设干块a×b型长方形和a×a型、b×b型正方形硬纸片拼成一个新的长方形,试由图形推出2a2 +3ab +b2因式分解的结果;(3 )请你用拼图等方法推出3a2 +5ab +2b2因式分解的结果,画出你的拼图.20.|王华由52﹣32=8×2 ,92﹣72=8×4 ,152﹣32=8×27 ,112﹣52=8×12 ,152﹣72=8×22 ,这些算式发现:任意两个奇数的平方差都是8的倍数.(1 )请你再写出两个(不同于上面算式)有上述规律的算式;(2 )请你用含字母的代数式概括|王华发现的这个规律(提示:可以使用多个字母);(3 )证明这个规律的正确性.。
人教版数学八年级上册:14.1--14.3练习题含答案
人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2 =x 2m y 2n .(4)解:原式=(-3)4×(102)4 =81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3.8.B9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12=37x 6y 12.(3)解:原式=(-14)2 018×42 018=(-14×4)2 018=1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2=27×8+(-8)×4=184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。
人教版 八年级 上册数学 14.1 ---14.3练习题含答案
14.1整式的乘法一、选择题1.计算3a2⋅a3的结果是()A. 4a5B. 4a6C. 3a5D. 3a62.下列运算结果是a6的式子是()A. a2·a3B. a12−a6C. (a3)3D. (−a)63.要使(x2+ax+5)⋅(−6x3)的展开式中不含x4的项,则a应等于()D. 1A. −1B. 0C. 164.下列计算错误的是()A. (−a)⋅(−a)2=a3B. (−a)2⋅(−a)2=a4C. (−a)3⋅(−a)2=−a5D. (−a)3⋅(−a)3=a65.有两个连续的奇数,若较小的奇数是n,则它们的积为()A. n2B. n2+2nC. n2−2nD. n2−n6.已知(x−3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A. m=3,n=9B. m=3,n=6C. m=−3,n=−9D. m=−3,n=97.下列计算正确的是()A. (x3)2=x5B. (x3)2=x6C. (x n+1)2=x2n+1D. x3⋅x2=x68.若p=x2y,则−x10y5·(−2x2y)3的计算结果是().A. −8p8B. 8p8C. −6p8D. 6p89.计算2a(a2−1)的结果是()A. 2a3−2aB. 2a3+aC. 2a3+2aD. a3+2a10.若m=2125,n=375,则m,n的大小关系正确的是()A. m>nB. m<nC. m=nD. 无法确定11.计算(3.142−π)0的结果为()A. 0B. 1C. 3.142−πD. π−3.14212.已知a m=5,a n=2,则a m+n的值等于()A. 25B. 10C. 8D. 7二、填空题(本大题共5小题,共15.0分)13.计算:(−m3)2÷m4=______.14.若x3n=5,y2n=3,则x6n y4n的值为.15.已知(x−5)x=1,则整数x的值为.×(π−1)0=.16.计算:2317.已知ab=a+b+1,则(a−1)(b−1)=.三、解答题18.若x=2m+1,y=3+4m.(1)请用含x的式子表示y;(2)如果x=4,求此时y的值.19.已知(a+b)a·(b+a)b=(a+b)5,且(a−b)a+4·(a−b)4−b=(a−b)7,求a a·b b的值.20.若(3x2−2x+1)(x+b)的计算结果中不含x的二次项,求b的值.21.先化简,再求值:(−2x2y)⋅5xy3⋅(−35x3y2),其中x=4,y=14.答案和解析1.【答案】C【解析】解:3a2⋅a3=3a5.2.【答案】D【解答】解:A.a2⋅a3=a5,故此项错误;B.a12−a6无法合并,故此项错误;C.(a3)3=a9,故此项错误;D.(−a)6=a6,故此项正确.故选D.3.【答案】B【解答】解:(x2+ax+5)⋅(−6x3)=−6x5−6ax4−30a3,∵展开式中不含x4的项,∴−6a=0,∴a=0,故选B.4.【答案】A【解答】解:A、(−a)⋅(−a)2=−a3,原式计算错误,故本选项正确;B、(−a)2⋅(−a)2=a4,计算正确,故本选项错误;C、(−a)3⋅(−a)2=−a5,计算正确,故本选项错误;D、(−a)3⋅(−a)3=a6,计算正确,故本选项错误;故选A.5.【答案】B【解答】解:∵两个连续的奇数,较小的奇数是n,则第二个是n+2,∴它们的积为,n(n+2)=n2+2n.故选B.6.【答案】A【解答】解:∵原式=x3+(m−3)x2+(n−3m)x−3n,又∵乘积项中不含x2和x项,∴(m−3)=0,(n−3m)=0,解得,m=3,n=9.故选A.7.【答案】B【解答】A.(x3)2=x6,故A错误;B.(x3)2=x6,故B正确;C.(x n+1)2=x2n+2,故C错误;D.x3⋅x2=x3+2=x5,故D错误.故选B.8.【答案】B【解答】解:−x10y5·(−2x2y)3=−x10y5·(−8x6y3)=8x16y8,若p=x2y,原式=8(x2y)8=8p8.故选B.9.【答案】A【解答】解:原式=2a3−2a,故选A.10.【答案】A【解析】【分析】本题考查了幂的乘方和积的乘方,关键是能把m n的值变形得出m=3225,n=2725.把m=2125化成=3225,n=375化成2725,根据32>27即可得出答案.【解答】解:∵m=2125=(25)25=3225,n=375=(33)25=2725,∴m>n,故选:A.11.【答案】B【解答】解:原式=1.故选B.12.【答案】B【解答】解:∵a m=5,a n=2,∴a m+n=a m⋅a n=10,故选B.13.【答案】m2【解答】解:(−m3)2÷m4=m6÷m4=m2.故答案为:m2.14.【答案】225【解答】∵x3n=5,y2n=3;∴x6n y4n=(x3n)2·(y2n)2=52·32=225故答案为225.15.【答案】0或4或6【解答】解:由题意得:①x=0,x−5≠0,解得:x=0;②x−5=1,解得:x=6;③x−5=−1,x为偶数,解得:x=4,故答案为:0或4或6.16.【答案】23【解答】解:原式=23×1=23, 故答案为23.17.【答案】2【解答】解:∵ab =a +b +1,∴(a −1)(b −1)=ab −(a +b)+1=a +b +1−a −b +1, =2. 故答案为2.18.【答案】解:(1)∵x =2m +1,∴2m =x −1.∴y =3+4m =3+(22)m =3+(2m )2=3+(x −1)2;(2)当x =4时,y =3+(4−1)2=12.19.【答案】解:∵(a +b)a ·(b +a)b =(a +b)5,(a −b)a+4·(a −b)4−b =(a −b)7, ∴(a +b)a+b =(a +b)5, (a −b)a+4+4−b =(a −b)7,∴{a+b=5a−b+8=7,解得{a=2b=3,∴a a b b =22×33=108.20.【答案】解:(3x 2−2x +1)(x +b)=3x 3−2x 2+x +3bx 2−2bx +b=3x 3+(3b −2)x 2−2bx +b , ∵结果不含x 2项,∴3b −2=0∴b =23. 21.【答案】解:原式=(−2) ×5 ×(− 35) x 2+1+3 y 1+3+2= 6x 6 y 6.当x =4,y =14时,原式=6×46×(14)6=6.14.2乘法分式一、选择题22. 用乘法公式计算(2+1)(22+1)(24+1)…(22018+1)的结果( )A. 24036+1B. 24036−1C. 22018+2D. 22018−223. 已知(m −n)2=8,(m +n)2=2,则m 2+n 2的值为( )A. 10B. 6C. 5D. 324. 下列运算中,正确的有( ) ①(x +2y)2=x 2+4y 2; ②(a −2b)2=a 2−4ab +4b 2; ③(x +y)2=x 2−2xy +y 2; ④(x −14)2=x 2−12x +116.A. 1个B. 2个C. 3个D. 4个25. 已知:21=2,22=4,23=8,24=16,25=32,…设A =(2+1)(22+1)…(22017+1)+1,则A 的个位数是( )A. 3B. 4C. 5D. 626.若(2x+3y)(mx−ny)=9y2−4x2,则m,n的值为()A. m=3,n=5B. m=2,n=−3C. m=−2,n=−3D. m=−2,n=327.若多项式x2+kx+19是完全平方式,则常数k的值是().A. 3B. ±3C. 23D. ±2328.若x2−y2=3,则(x+y)2(x−y)2的值是()A. 3B. 6C. 9D. 1829.计算(2+x)(x−2)的结果是()A. 2−x2B. 2+x2C. 4+x2D. x2−430.阅读理解:如果a−1a =1,我们可以先将等式两边同时平方得到(a−1a)2=1,再根据完全平方公式计算得:a2−2a·1a +1a2=1,即a2−2+1a2=1,所以a2+1a2=3.请运用上面的方法解决下面问题:如果x2−2x−1=0,那么x2+1x2的值为()A. 2B. 4C. 6D. 831.下列计算结果为2ab−a2−b2的是()A. (a−b)2B. (−a−b)2C. −(a+b)2D. −(a−b)232.式子(m−2)(m+2)(m2+4)−(m4−16)的结果为()A. 0B. 4mC. −4mD. 2m433.下列各式中与2ab−a2−b2相等的是()A. −(a−b)2B. −(a+b)2C. (−a−b)2D. (−a+b)2二、填空题34.若a−1a =√6,则a2+1a2的值为________.35.已知(a+b)2=11,(a−b)2=7,则ab=________.36.已知a+b=10,a−b=8,则a2−b2=______.37.若关于x的二次三项式x2+ax+1是完全平方式,则a的值是______.438.化简(x+1)2−2x,所得的结果是________.39.若x2−y2=1,则(x+y)2020(x−y)2020=________.三、解答题40.先化简,再求值:(x−1)(x+1)+(2x−1)2−2x(2x−1),其中x=4.41.已知(m−53)(m−47)=24,求(m−53)2+(m−47)2的值.42.先化简,再求值:(2a+b)(2a−b)−(3a−b)2+6a(a−b),其中a=3,b=1.743.(1)化简:(a−b)2+(b−c)2+(c−a)2;(2)利用(1)中的结果,已知a−b=10,b−c=5,求a2+b2+c2−ab−bc−ca的值.答案和解析1.【答案】B【解答】解:原式=(2−1)×(2+1)×(22+1)×(24+1)×…×(22017+1)×(22018+1)=(22−1)×(22+1)×(24+1)×…×(22017+1)×(22018+1)=(24−1)×(24+1)×…×(22017+1)×(22018+1)=(22018−1)×(22018+1)=24036−1.故选:B .2.【答案】C【解答】解:∵(m −n)2=8,∴m 2−2mn +n 2=8①,∵(m +n)2=2,∴m 2+2mn +n 2=2②,①+②得,2m 2+2n 2=10,∴m 2+n 2=5.故选C .3.【答案】B【解答】解: ①(x +2y)2=x 2+4xy +4y 2,故错误; ②(a −2b)2=a 2−4ab +4b 2,故正确; ③(x +y)2=x 2+2xy +y 2故错误; ④(x −14)2=x 2−12x +116故正确.故选B .4.【答案】B解:A=(2+1)(22+1)(24+1)…(22017+1)+1=(2−1)(2+1)(22+1)(24+1)…(22017+1)+1=(22−1)(22+1)(24+1)(28+1)…(22017+1)+1=(24−1)(24+1)(28+1)…(22017+1)+1=24034,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵4034÷4=1008…2,∴A的个位上数字为4,故选B.5.【答案】C【解答】解:∵(2x+3y)(mx−ny)=2mx2−2nxy+3mxy−3ny2=9y2−4x2,∴2m=−4,−3n=9,−2n+3m=0,解得m=−2,n=−3,故选C.6.【答案】D【解答】解:∵x2+kx+19=(x±13)2,∴k=±23.故选D.7.【答案】C【解答】解:∵x2−y2=3,∴(x+y)(x−y)=3,∴原式=[(x+y)(x−y)]2=32=9.故选C.8.【答案】D【解析】解:(2+x)(x−2)=x2−22=x2−4,故选:D.9.【答案】C【解答】解:∵x2−2x−1=0,∴x−2−1=0,x=2,即x−1x(x−1)2=4,x−2=4,所以x2+1x2=6.即x2+1x2故选C.10.【答案】D【解答】解:原式=−(a2−2ab+b2)=−(a−b)2故选D.11.【答案】A【解答】解:(m−2)(m+2)(m2+4)−(m4−16)=(m2−4)(m2+4)−(m4−16)=(m4−16)−(m4−16)=0.故选A.12.【答案】A【解答】解:2ab−a2−b2,=−(a2−2ab+b2),=−(a−b)2.故选A.13.【答案】8【解答】解:∵a−1a=√6,∴(a−1a )2=(√6)2,即a2−2+1a2=6,∴a2+1a2=8.故答案为8.14.【答案】1【解答】解:∵(a+b)2=11,(a−b)2=7,∴(a+b)2−(a−b)2=4ab=11−7,∴4ab=4,解得:ab=1.故答案为1.15.【答案】80【解答】解:∵(a+b)(a−b)=a2−b2,a+b=10,a−b=8,∴a2−b2=10×8=80.故答案为80.16.【答案】±1【解析】解:中间一项为加上或减去x的系数和12积的2倍,故a=±1,解得a=±1,故答案为:±1.17.【答案】x2+1【解答】解:原式=x2+2x+1−2x=x2+1,故答案为x 2+1.18.【答案】1【解答】解:当x 2−y 2=1时,原式=[(x +y)(x −y)]2020=(x 2−y 2)2020=12020=1故答案为:1.19.【答案】解:原式=x 2−1+4x 2−4x +1−4x 2+2x=x 2−2x ,把x =4代入,得:原式=42−2×4=16−8=8.20.【答案】解:令(m −53)=a,(m −47)=b(m −53)2+(m −47)2=a 2+b 2=(a −b )2+2ab=[(m −53)−(m −47)]2+2(m −53)(m −47)=(−6)2+48=84.21.【答案】解:原式=4a 2−b 2−(9a 2−6ab +b 2)+6a 2−6ab=4a 2−b 2−9a 2+6ab −b 2+6a 2−6ab =a 2−2b 2.当a =37,b =1时,原式=(37)2−2×12=949−2=−8949. 22.【答案】解:(1)(a −b)2+(b −c)2+(c −a)2=a 2−2ab +b 2+b 2−2bc +c 2+c 2−2ac +a 2=2a 2+2b 2+c 2−2ab −2ac −2bc ;(2)∵a −b =10,b −c =5,∴a −c =15,∴a 2+b 2+c 2−ab −bc −ca =12[(a −b)2+(b −c)2+(c −a)2] =12(102+52+152)=17514.3因式分解例1.分解因式:(1)x 2-2x 3(2)3y 3-6y 2+3y(3))(3)(2b a y b a x ---(4)3x (m -n )+2(m -n )变式练习:1.分解因式:(1)12ab +6b(2)x 2-x(3)5x 2y +10xy 2-15xy(4)2236a b ab +(5)y (x -y )2-(y -x )3 (6)23(3)(3)a a a ---2.应用简便方法计算: (1)2012-201 (2)4.3×199.8+7.6×199.8-1.9×199.8例2.分解因式:(1)4a 2-9b 2 (2)269a a ++(3)22)1(16)2(-++-x x (4)1)25(2)25(2+---y x y x变式练习:分解因式:(1)162-x (2)25a 2-4(3)241a -= (4) 224129xxy y -+(5) -a 2-2ab -b 2 (6)1+t +42t(7)(2x -1)2-(x +2)2 (8) m 4-81n 4例3.分解因式:(1)a 3-ab 2(2)ab b a b a ++232变式练习: 分解因式:(1)m 3–4m(2)a ax -2 (3)x x 823-(4)a a 5463- (5) m mx mx 2422+- (6)2a 2– 4a + 2(7) x x x -+-232 (8)2336x x +-(9) 3(x +y )2-27 (10) x (x +4)+4例4.在实数范围内分解因式:(1)52-a (2)322-a例5.给出三个整式2a ,2b 和ab 2. (1)当a =3,b =4时,求ab b a 222++的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.变式练习:现有三个多项式:,请你选择其中两个进行加法运算,并把结果因式分解.巩固练习:A 组一、选择题1.下列各式变形中,是因式分解的是( )A .a 2-2ab +b 2-1=(a -b )2-1B .)11(22222xx x x +=+ C .(x +2)(x -2)=x 2-4 D .x 4-1=(x 2+1)(x +1)(x -1)2.将多项式-6x 3y 2 +3x 2y 2-12x 2y 3分解因式时,应提取的公因式是( )A .-3xyB .-3x 2yC .-3x 2y 2D .-3x 3y 33.把多项式提取公因式后,余下的部分是( )A .B .C .D .4.下列多项式能用平方差公式分解因式的是( )()()()111---+x x x ()1-x ()1+x ()1+-x x ()2+-x )11(22222x x x x+=+A .22b a + B.22b a +- C.22b a -- D.b a -5.下列多项式中,能用公式法分解因式的是( ) A.xy x -2 B.xy x +2 C .22y x + D .22y x -6.把代数式 322363x x y xy -+分解因式,结果正确的是( ) A .(3)(3)x x y x y +- B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y -7.将a 2+10a +16因式分解,结果是( )A .(a -2)(a +8)B .(a +2)(a -8)C .(a +2)(a +8)D .(a -2)(a -8)8.下列分解因式正确的是( )A .32(1)x x x x -=-.B .26(3)(2)m m m m +-=+-. C.2(4)(4)16a a a +-=-. D .22()()x y x y x y +=+-.二.填空题1.把下列各式进行因式分解:(1)x 4-x 3y = ; (2)a 2b (a -b )+3ab (a -b )= ;(3)21a 3b -35a 2b 3=_________ ;(4))2()2(6x x x -+-= ;(5)m 2-16= ;(6)49a 2-4= ;(7)22)(4)(9b a b a +--= ; (8)a 2-16a +64= ;(9)122244++b a b a = ; (10)2832--x x = 。
人教版八年级数学上册课堂练习 第十四章 14.1 整式的乘法 第八课时
课时训练1.下列四个算式:①(-3x)4÷(-9x3)=-9x;②x(-x3)2n+1÷(-x3)=-x6n;③a7b3÷(a2b2)=a3b;④-15a5b3÷5a3b2=-3a2b.其中计算不正确的是()A.①③B.②④C.②③D.①④2.下列运算中错误的是()A.(8a3-6a2+2a)÷2a=4a2-3a+1B.(18a3-15a2+3a)÷(-3a)=-6a2+5a-1C.(6ab+8b)÷2a=3b+4abx) =-2x-2D.(x2+x)÷ (−123.计算2x8÷x4的结果是()A.x2B.2x2C.2x4D.2x124.下面计算正确的是()A.x6÷x2=x3B.(-x)6÷(-x)4=-x2C.36a3b4÷9a2b=4ab3D.(2x3-3x2-x)÷(-x)=-2x2+3x5.下列计算中,错误的是()A.(6x3+3x2)÷ (12x) =12x2+6x B.(6m3-4m2+2m)÷2m=3m2-2mC.(9x5-3x3)÷ (−13x3) =-27x2+9 D. (14y2+y)÷ (−12y)=-12y-26.已知长方形的面积为18x3y4+9xy2-27x2y2,长为9xy,则宽为()A.2x2y3+y+3xyB.2x2y2-2y+3xyC.2x2y3+2y-3xyD.2x2y3+y-3xy7.任意给定一个非零数m,按下列程序计算,最后输出的结果是()m→平方→-m→÷m→+2→结果A.mB.m2C.m+1D.m-18.计算:(1)14x3y6÷7xy2=;(2)-24x3y3÷(-8x2y2)=;abc2) =;(3)-a2b4c3÷ (−23(4)(-3x3y2)3÷(-9xy)=.9.计算:(1)4a3b5÷2ab2=;(2)(6x4-8x3)÷(-2x2)=;(3)(-4a3+8a2b-3a3b3)÷(-2a2)=;(4)(3a n+1+6a n+2-9a n)÷3a n-1=.10.被除式为12xy-10xy2,商式为-4xy,余式为2xy2,则除式为.11.已知A,B为多项式,B=2x+1,计算A+B时,某同学把A+B看成A÷B,结果得4x2-2x+1,请你求出A+B的正确答案为.12.计算:(1)(5ab+b2)÷b=;(2)(4a2b2-3ab2)÷5ab=;(3)(21x3y3-15x2y2)÷(-3xy)=;(4)(-4a3+8a2b-3a3b3)÷(-2a2)=;(5) (−45a3b4−0.6a2b3−25ab2)÷35ab=.13.计算:(1)6x3y4z2÷4xz2;(2)12x12y8z6÷4x3y2z·3x9y6z5;(3)(2a2b)3·5ab2÷(-10a2b4);m3n2)] .(4)7m3n2÷ [(−7m5n3)÷ (−1314.计算:(1)(-a·a2)(-b)2+(-2a3b2)2÷(-2a3b2);(2)(-2x3y2-3x2y2+2xy)÷2xy.15.已知多项式2x3-4x2-1除以一个多项式A,得商式为2x,余式为x-1,求这个多项式.16.计算:(1)24x2y÷(-6xy);(2)(-5r2)2÷5r4;(3)7m(4m2p)2÷7m2;(4)6a6b4÷3a3b4+a2·(-5a).17.计算:(1)(12a3-6a2+3a)÷3a;(2)(a2b-2ab2-b3)÷b-(a-b)·(a+b);(3)[x(x2y2-xy)-y(x2-x3y)]÷3x2y;(4) [− (12a2x)2+ (13ax2·ax)]÷ (−16ax) .18.先化简,再求值.(1)[(5x+2y)(3x+2y)+4y(x-y)]÷2x,其中x=8,y=4;(2)[b(a-3b)-a(3a+2b)+(3a-b)(2a-3b)]÷(-3a),其中a,b满足2a-8b-5=0.19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心一滴墨水污染了这道习题,只看见了被除式最后一项是“-3x2y”和中间的“÷”号,污染后的习题形式如下:[●-3x2y]÷●,小明翻看了书后的答案是“4x2y2-3xy+6x”,你能够复原这个算式吗?20.由(x-3)(x+4)=x2+x-12,可以得到(x2+x-12)÷(x-3)=x+4.这说明x2+x-12能被x-3整除,同时也说明多项式x2+x-12有一个因式x-3.另外,当x=3时,多项式x2+x-12的值为0.根据上面材料回答下列问题:(1)如果一个关于字母x的多项式A,当x=a时,A的值为0,那么A与代数式x-a之间有何关系?(2)利用上面的结果求解:已知x+3能整除x2+kx-18,求k的值.答案:1.C2.C3.C4.C5.B6.D7.C8.(1)2x2y4(2)3xy(3)32ab 3c (4)3x 8y 59. (1)2a 2b 3(2)-3x 2+4x (3)2a-4b+32ab 3 (4)a 2+2a 3-3a 10. -3+3y11.8x 3+2x+2 12. (1) 5a+b(2)45ab-35b(3)-7x 2y 2+5xy (4)2a-4b+32ab 3 (5) -43a 2b 3-ab 2-23b 13. (1)解:原式=32x 2y 4; (2)解:原式=9x 18y 12z 10;(3)解:原式=8a 6b 3·5ab 2÷(-10a 2b 4)=40a 7b 5÷(-10a 2b 4)=-4a 5b ;(4)解:原式=7m3n2÷21m2n=1mn.314. 解:(1)原式=-a3·b2+4a6b4÷(-2a3b2) =-a3b2-2a3b2=-3a3b2;(2)原式=-x2y-3xy+1.215. 解:A=[(2x3-4x2-1)-(x-1)]÷2x=(2x3-4x2-x)÷2x=x2-2x-1.216.(1)解:原式=[24÷(-6)]·x2-1·y1-1=-4x;(2)解:原式=25r4÷5r4=(25÷5)·r4-4=5;(3)解:原式=7m·16m4p2÷7m2=16m3p2;(4)解:原式=2a3-5a3=-3a3.17. (1)解:原式=4a 2-2a+1;(2)解:原式=a 2-2ab-b 2-(a 2-b 2)=a 2-2ab-b 2-a 2+b 2=-2ab ;(3)解:原式=(x 3y 2-x 2y-x 2y+x 3y 2)÷3x 2y=23xy-23; (4)解:原式= (−14a 4x 2+13a 2x 3) ÷ (−16ax) =32a 3x-2ax 2. 18. (1)解:原式=(15x 2+10xy+6xy+4y 2+4xy-4y 2)÷2x =(15x 2+20xy)÷2x=152x+10y. 当x=8,y=4时,原式=152×8+10×4=100. (2)解:原式=(ab-3b 2-3a 2-2ab+6a 2-9ab-2ab+3b 2)÷(-3a) =(3a 2-12ab)÷(-3a)=-a+4b.由题意,得2a-8b=5,a-4b=52,-a+4b=-52.∴原式=-52.19.解:除式为(-3x2y)÷6x=-12xy,被除式为(4x2y2-3xy+6x)· (−12xy)=-2x3y3+32x2y2-3x2y,∴算式为 (−2x3y3+32x2y2−3x2y)÷ (−12xy) .20.解:(1)多项式A能被x-a整除,同时也说明多项式A有一个因式x-a.(2)由上面的材料可知,如果x+3能整除x2+kx-18,就是说当x+3=0时,多项式x2+kx-18的值也为0,因此当x=-3时,x2+kx-18=0,所以(-3)2-3k-18=0,所以k=-3.。
人教版数学八年级上册:14.1--14.3练习题含答案
人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2=x 2m y 2n .(4)解:原式=(-3)4×(102)4=81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3. 8.B 9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12 =37x 6y 12.(3)解:原式=(-14)2 018×42 018 =(-14×4)2 018 =1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2 =27×8+(-8)×4 =184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。
人教版数学八年级上第十四章 14.1 同底数幂的乘法
1若m=-2,则-m2·(-m)4·(-m)3的值是______.
2已知2012m=a,2012n=b,则20123m+2n=;
3若xm=4,xn=3,则x3n=,xm+2n=;
4已知2m+5n=3,则4m·32n=;
5已知am+n=10,an=2,则am=;
6下列各式中,正确的是( )
A. B. C. D.
7. 等于 ( )
A. B. C. D.
8.已知n是大于1的自然数,则 等于 ( )
A. B. C. D.
9.计算 的结果是 ( )
A. B. C. D.
10.下列运算中与 结果相同的是 ( )
A. B. C. D.
11.已知 ,求m的值
12、若am=2,an=3,则am+n等于( )
(A)已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=____,n=____.
15、
16、 的结果是
17、 =
18、若 则 =
19、已知:8·22m-1·23m=217.求m的值.
20、若2x+5y—3=0,求4x·32y的值
21、已知x3=m,x5=n,用含有m,n的代数式表示x14=
26.计算(-a2)5+(-a5)2的结果是()
A.0 B.2a10C.-2a10D.2a7
27.下列各式成立的是()
A.(a3)x=(ax)3B.(an)3=an+3C.(a+b)3=a2+b2D.(-a)m=-am
28.如果(9n)2=312,则n的值是()
A.4 B.3 C.2 D.1
29.已知x2+3x+5的值为7,那么3x2+9x-2的值是( )
新人教版八年级上14.1变量与函数(第二课时)同步练习题及答案
14.1变量与函数(第二课时)◆随堂检测1、函数自变量的取值范围既要满足关系式又要满足实际问题2、在判断变量之间的关系是不是函数关系时,应满足两个特征:①必须有个变量,②给定其中一个变量(自变量)的值,另一个变量(因变量)都有与其相对应。
3. 设地面气温是20°C,如果每升高1km,气温下降6°C,则气温t(°C)与高度h(km)的关系是__________________,其中常量是,变量是。
对于每一个确定的h值都有的t 值与其对应;所以自变量,是因变量,是的函数4、购买单价是0.4元的铅笔,总金额y(元),与铅笔数n(个)的函数关系是___________.5、等腰三角形的顶角的度数y与底角的度数x的函数关系式是_______________.◆典例分析例题:如图是一天中一段时间内气温c(摄氏度)随时间t(小时)变化而变化的情况,请问;c是t的函数吗?t是c的函数吗?分析:函数不是数函数是关系函数是变量之间的关系函数是两个变量之间的关系函数是两个变量之间一种特殊的对应关系这种特殊的对应关系:一个自变量的值对应唯一的因变量的值也可以这样理解,如果一个自变量的值对应两个或更多的因变量的值,那么这种变量间的对应关系就不称做函数了。
解:①当t是自变量,c是因变量时,一个t的值只对应一个c的值,所以c是t的函数②当c是自变量,t是因变量时,一个c的值可能对应两个c的值,(如c=15时,t=1或5)所以t不是c 的函数◆课下作业●拓展提高1、周长为10 cm 的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为__________________.2、函数1-=x y 中,自变量x 的取值范围是______________;函数11+=x y 中,自变量x 的取值范围是______________3、一弹簧,不挂重物时,长6cm ,挂上重物后,重物每增加1kg ,弹簧就伸长0.25cm ,但所挂重物不能超过10kg ,则弹簧总长y (cm )与重物质量x (kg )之间的函数关系式为__________ _。
最新人教版八年级数学上册14.1-14.2 同步练习及答案(精校版)
(第10题) 第14章《整式乘除与因式分解》同步练习(§14.1~14.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.若a b c x x x x g g g =2014x ,则c b a ++=______________.2.(2)(2)a b ab --g =__________,2332()()a a --g =__________.3.如果2423)(a a a x =⋅,则______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________. 7.若3230123(2)x a a x a x a x -=+++,则220213()()a a a a +-+的值为 .8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________. 9.用图所示的正方形和长方形卡片若干张,拼成一个长为2a b +,宽为a b +的矩形,需要A类卡片_______张,B 类卡片_______张,C 类卡片_______张.10.我国北宋时期数学家贾宪在他的著作《开方作法本源》中的“开方作法本源图”如下图所示,通过观察你认为图中a =__________.二、选择题(每题3分,共24分)11.下列运算正确的是 ( )A .236x x x =gB .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=g(第6题) (第9题)aa ab b A 类 B 类 C 类12.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ) A .14ac B .214a c C .294a c D .94ac 13.计算233[()]()a b a b ++g的正确结果是( ) A .8()a b + B .9()a b + C .10()a b + D .11()a b +14.若x 2-y 2=20,且x +y =-5,则x -y 的值是( )A .5B .4C .-4D .以上都不对15.若25x 2+30xy +k 是一个完全平方式,则k 是( )A .36y 2B .9y 2C .6y 2D .y 216.已知2a b +=,则224a b b -+的值是( )A.2 B.3 C.4 D.6 17.计算)12)(25(-+a a 等于( )A .2102-aB .25102--a aC .24102-+a aD .2102--a a18.下列计算正确的是( )A .56)8)(7(2-+=-+x x x xB .4)2(22+=+x xC .2256)8)(27(x x x -=+-D .22169)43)(43(y x y x y x -=-+三、解答题(共46分)19.(8分)利用乘法公式公式计算(1)(3a +b )(3a -b ); (2)10012.20.(6分)计算(52x +1)2-(52x -1)2.21.(7分)化简求值:()()()()22232232323a b a b a b a b --+-++. 其中:31,2=-=b a .22.(7分)解方程2(x-2)+x2=(x+1)(x-1)+x.23.(9分)如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.(9分)学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?参考答案一、填空题1.2013 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+ 24.能,35551113243=;4441114256=;3331115125=.因为256243125>>,所以111111111256243125>>.所以444555333435>>.。
八年级数学上册第14章14.1作业新版
第14章全等三角形14.1全等三角形知识要点基础练知识点1全等形1.下列说法:①用同一张底片冲洗出来的10张1寸相片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.其中正确的有(C)A.1个B.2个C.3个D.4个2.在下列各组图形中,是全等的图形的是(C)知识点2全等三角形及对应元素3.如图,已知图中有两对三角形全等,填空:(1)△ABM≌△ACN,在这两个全等三角形中,AB的对应边是AC ,BM的对应边是CN ,MA 的对应边是NA ;(2)△ABN≌△ACM,在这两个全等三角形中,∠BAN的对应角是∠CAM ,∠B的对应角是∠C ,∠ANB的对应角是∠AMC .【变式拓展】如图,△ABC≌△ADE,∠E和∠C是对应角,AB与AD是对应边,写出另外两组对应边和对应角.解:对应边:AC与AE,BC与DE;对应角:∠BAC与∠DAE,∠B与∠D.知识点3全等三角形的性质4.若△ABC与△EDF全等,A和E,B和D分别是对应点,则下列结论错误的是(A)A.BC=EFB.∠B=∠DC.∠C=∠FD.AC=EF5.如图,已知△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则CB的长为(B)A.8B.7C.6D.56.已知△ABC≌△DEF,点A与点D、点B与点E分别是对应顶点.(1)若△ABC的周长为32,AB=10,BC=14,则AC=8,DE=10,EF=14;(2)∠A=48°,∠B=53°,则∠D=48°,∠F=79°.综合能力提升练7.如图,Rt△ABC沿直角边BC所在直线向右平移得到Rt△DEF,则下列结论中错误的是(A)A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF8.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是(C)A.1B.2C.3D.49.如图,∠C=∠CAM=90°,AC=8,BC=4,P,Q两点分别在线段AC和射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则AP的长度为4或8.10.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.解:AB与AC,AE与AD,BE与CD是对应边;∠D与∠E是对应角.11.如图,已知△ABE≌△ACD,且AB=AC.(1)说明△ABE经过怎样的变化后可与△ACD重合.(2)∠BAD与∠CAE有何关系?请说明理由.(3)BD与CE相等吗?为什么?解:(1)△ABE翻折180°后可与△ACD重合.(2)∵△ABE≌△ACD,∴∠B=∠C,∠AEB=∠ADC,∴∠AEB-∠C=∠ADC-∠B,∴∠CAE=∠BAD.(3)∵△ABE≌△ACD,∴BE=CD,∴BD=CE.12.如图,已知图中的两个三角形全等,B和C,D和E是对应点.(1)用符号表示这两个三角形全等;(2)用等号表示各对应角,对应边之间的关系;(3)请在图中找出与∠BAD相等的角,并说明理由.解:(1)△ABE≌△ACD.(2)对应角:∠BAE=∠CAD,∠B=∠C,∠E=∠D;对应边:AB=AC,AE=AD,BE=CD.(3)∠BAD=∠CAE.理由:∵∠BAE=∠CAD,∴∠BAE-∠BAC=∠CAD-∠BAC,∴∠BAD=∠CAE.13.如图,△ABD≌△EBC,AB=3 cm,BC=4.5 cm,点A,B,C在一条直线上.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.解:(1)∵△ABD≌△EBC,∴AB=EB,BD=BC.∴DE=BD-BE=4.5-3=1.5(cm).(2)AC⊥BD.理由:∵△ABD≌△EBC,∴∠ABD=∠EBC.又∵∠ABD+∠EBC=180°,∴∠EBC=90°.∴AC⊥BD.14.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.又∵∠CAD=35°,∠EAB=105°,∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°.∴∠DFB=∠DAB+∠B=70°+20°=90°,∠BED=∠BFD-∠D=90°-20°=70°.拓展探究突破练15.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)证明:BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?解:(1)∵△BAD≌△ACE,∴BD=AE,AD=CE,又∵AE=AD+DE=CE+DE,∴BD=DE+CE.(2)∵△BAD≌△ACE,∴∠ADB=∠CEA.若BD∥CE,则∠CED=∠BDE,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=90°.即△ABD是以∠ADB=90°的直角三角形时,BD∥CE.。
人教版初中数学八年级上册第十四章14.1.1同底数幂乘法
解:(1) bm+1·bn·bn+1=bm+2n+2
(2) 5m×5m+n×5n+5= 52m+2n+5
(3) a·a4·a5·am+1=am+11 (4) -a·am+4·an-1·am+n-5=-a2m+2n-1 (5) -7m×7m+5×7m-2=-73m+3 (6) -b·bm+2n·bn-2·bm+n-3=-b2m+4n-4
(7)xm+5·x2m+1.
解:139 4 x10
2 x10 5a4
3 x12 6213
(3)-x4·x8 (6)24×29;
x 7 3m6
扩展探索
1. am • an • ap ?
解法1:am an a p am an a p
amn a p amn p
解法2:am an a p am an a p
应用: 一种电子计算机每秒可进行1012次运算,它工作 105秒可 进行多少次运算?(能否用我们学过的知识来解决这个问题呢?)
运算次数= 运算速度×工作时间
1012 105 10 10 1010101010
12个10
10 10 1017
17个10
(乘方的意义)
新课引入:
你能计算下列式子吗?
2 2 5 5 1
am an p amn p
解法3:am an a p
aa aaa aaa a
m个a
n个a
p个a
amn p
所以有:
am1 am2 amn am1m2 mn
(1)bm+1·bn·bn+1 (2) 5m×5m+n×5n+5 (3) a·a4·a5·am+1 (4)-a·am+4·an-1·am+n-5 (5) -7m×7m+5×7m-2 (6) -b·bm+2n·bn-2·bm+n-3
14.1.1 同底数幂的乘法 八年级上册数学人教版课后习题(含答案)
14.1.1 同底数幂的乘法知能演练提升一、能力提升1.若32×3x=38,则x的值为( )A.6B.5C.4D.32.下列算式中,结果等于x6的是( )A.x2·x2·x2B.x2+x2+x2C.x2·x3D.x4+x23.计算(-x3)·(-x3)结果正确的是( )A.-x6B.x6C.x5D.-x54.在下列计算中,正确的个数是( )①102×103=106;②5×54=54;③a2-a2=2a2;④c·c4=c5;⑤b+b3=b4;⑥b5+b5=2b5;⑦33+23=53;⑧x5·x2=x10.A.1B.2C.3D.45.计算a2p·(-a)3(p为正整数)的结果是( )A.-a2p+3B.a2p+3C.(-a)6pD.(-a)5p6.若x a=1 024,x b=2,则x a+b的值是 .7.小焦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:2 017a×2 017b,例如把(3,2)放入其中,就会得到2 0173×2 0172=2 0175.现将实数对(m,2m)放入其中,得到实数2 0176,则m的值是 .8.已知a3·a m·a2m+1=a25,求m-1的值.9.计算:(1)(-x)3·(-x)4·(-x)5;(2)m·m2·m4+m2·m5;(3)4×25×32×(-2)6.10.已知4×23n+1=64,求n的值.★11.比较大小:228×320与220×325.二、创新应用★12.已知2a=3,2b=5,2c=30,求a,b,c之间的数量关系.知能演练·提升一、能力提升1.A2.A3.B4.B5.A6.2 0487.28.解∵a3·a m·a2m+1=a3+m+2m+1=a25,∴3+m+2m+1=25,解得m=7,则m-1=7-1=6.9.解(1)(-x)3·(-x)4·(-x)5=(-x)7·(-x)5=(-x)12=x12.(2)m·m2·m4+m2·m5=m7+m7=2m7.(3)4×25×32×(-2)6=22×25×25×26=218.10.解因为4×23n+1=22×23n+1=23n+3,64=26,所以23n+3=26,所以3n+3=6,解得n=1.11.解∵228×320=28×220×320,220×325=220×320×35,而28=256,35=243,∴28>35.∴28×220×320>220×320×35,∴228×320>220×325.二、创新应用12.解∵2a=3,2b=5,∴2a×2b×2=3×5×2=30,∴2a×2b×2=2c,∴2a+b+1=2c,∴a+b+1=c.。
2021最新人教版八年级上册第十四章14.1--14.3分节练习题 含答案
人教版八年级上册第十四章14.1--14.3分节练习题含答案14.1《整式的乘法》一.选择题1.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6B.﹣6x3y5C.﹣5x3y5D.﹣24x7y5 2.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 4.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6 B.m=1,n=﹣6 C.m=1,n=6 D.m=5,n=﹣6 5.等式(x+4)0=1成立的条件是()A.x为有理数B.x≠0 C.x≠4 D.x≠﹣46.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.17.计算的结果是()A.B.C.D.8.若2m=3,2n=4,则23m﹣2n等于()A.1 B.C.D.9.若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()A.2a+4b+1 B.2a+4b C.4a+4b+1 D.8a+8b+2 10.如果一个三角形的底边长为2x2y+xy﹣y2,底边上的高为6xy,那么这个三角形的面积为()A.6x3y2+3x2y2﹣3xy3B.6x2y2+3xy﹣3xy2C.6x2y2+3x2y2﹣y2D.6x2y+3x2y211.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a 12.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④二.填空题13.计算(﹣3a2b3)2•2ab=.14.计算6m5÷(﹣2m2)的结果为.15.计算:﹣2a2(a﹣3ab)=.16.计算:82014×(﹣0.125)2015=.17.代数式(x2+nx﹣5)(x2+3x﹣m)的展开式中不含x3,x2项,则mn=.18.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是.19.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=.三.解答题20.计算:(1)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]2(2)(﹣3a3)2﹣3a5•a﹣(﹣2a2)321.计算:(4x3y﹣xy3+xy)÷(﹣xy).22.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.23.已知3m=2,3n=5.(1)求3m+n的值;(2)求9m﹣n(3)求3×9m×27n的值.24.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)0+p2019q2020的值25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).参考答案一.选择题1.解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5.故选:B.2.解:∵()×(﹣xy)=3x2y2,∴括号里应填的单项式是:3x2y2÷(﹣xy)=﹣3xy.故选:C.3.解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选:C.4.解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选:B.5.解:∵(x+4)0=1成立,∴x+4≠0,∴x≠﹣4.故选:D.6.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.7.解:=••=•=1×=.故选:A.8.解:23m﹣2n=23m÷22n=(2m)3÷(2n)2=33÷42=.故选:D.9.解:另一边长是:(4a2+8ab+2a)÷2a=2a+4b+1,则周长是:2[(2a+4b+1)+2a]=8a+8b+2.故选:D.10.解:三角形的面积为:×(2x2y+xy﹣y2)×6xy=6x3y2+3x2y2﹣3xy3.故选:A.11.解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.12.解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选:D.二.填空题13.解:原式=9a4b6•2ab=18a5b7,故答案为:18a5b7.14.解:6m5÷(﹣2m2)=﹣3m3,故答案为:﹣3m3.15.解:﹣2a2(a﹣3ab)=﹣2a3+6a3b.故答案为:﹣2a3+6a3b.16.解:原式=82014×(﹣0.125)2014×(﹣0.125)=(﹣8×0.125)2014×(﹣0.125)=﹣0.125,故答案为:﹣0.125.17.解:原式=x4+(n+3)x3+(3n﹣m﹣5)x2+(﹣mn﹣15)x+5m,根据展开式中不含x3,x2得:,解得:,∴mn=42,故答案为:42.18.解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.19.解:∵=27,∴(x+1)(x﹣1)﹣(x+2)(x﹣3)=27,∴x2﹣1﹣(x2﹣x﹣6)=27,∴x2﹣1﹣x2+x+6=27,∴x=22;故答案为:22.三.解答题20.解:(1)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]2=﹣(x﹣y)2•(x﹣y)7•(x﹣y)6=﹣(x﹣y)15;(2)(﹣3a3)2﹣3a5•a﹣(﹣2a2)3=9a6﹣3a6+8a6=14a6.21.解:原式=4x3y÷(﹣xy)﹣xy3)÷(﹣xy)+xy÷(﹣xy)=﹣8x2+2y2﹣3.22.解:原式=x2﹣4xy+4y2﹣x2﹣3xy﹣4y2=﹣7xy,当x=﹣4,y=时,原式=﹣7×(﹣4)×=14.23.解:(1)3m+n=2×5=10;(2)原式=(2)3×9m×27n=3×32m×33n=3×4×125=1500.24.解:(1)(x2+px﹣)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx﹣x2+x﹣q=x4+(p﹣3)x3+(q﹣3p﹣)x2+(pq+1)x﹣q∵(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项∴∴(2)∵p=3,q=﹣(﹣2p2q)2+(3pq)0+p2019q2020的值=4p4q2+1+(pq)2019•q=4×81×+1﹣1×(﹣)=37+=37∴代数式(﹣2p2q)2+(3pq)0+p2019q2020的值为.25.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).14.2 乘法公式14.2.1 平方差公式基础题1.下列各式中能用平方差公式的是( )A.(x+y)(y+x) B.(x+y)(-y-x) C.(-x+y)(y-x) D.(x+y)(y-x) 2.将图1中阴影部分的小长方形变换到图2位置,你根据两个图形的面积关系得到的数学公式是.图1 图23.如图1,把一张长方形纸片沿着线段AB剪开,把剪成的两张纸片拼成如图2所示的图形.图1 图2(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的式子表示S1,S2;(2)请写出上述过程所揭示的乘法公式.4.运用平方差公式计算:(1)(m +2n)(m -2n); (2)(xy +5)(xy -5); (3)(-4a +3)(-4a -3); (4)(-x -y)(x -y).5.先化简,再求值:(x +1)(x -1)+x 2(1-x)+x 3,其中x =2.6.计算:(1)1 001×999; (2)1122-113×111.7.下列计算正确的是( )A .(a +3b)(a -3b)=a 2-3b 2B .(-a +3b)(a -3b)=-a 2-9b 2C .(-a -3b)(a -3b)=-a 2+9b 2D .(-a -3b)(a +3b)=a 2-9b 2中档题 8.若(2x +3y)(mx -ny)=9y 2-4x 2,则( )A .m =2,n =3B .m =-2,n =-3C .m =2,n =-3D .m =-2,n =39.计算(x 2+14)(x +12)(x -12)的结果为( )A .x 4+116B .x 4-116C .x 4-12x 2+116D .x 4-18x 2+11610.三个连续奇数,若中间一个为n ,则它们的积是( )A .6n 3-6nB .4n 3-nC .n 3-4nD .n 3-n11.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是 .12.计算:(1)(-3x 2+y 2)(y 2+3x 2);(2)(-3a -12b)(3a -12b); (3)(a +2b)(a -2b)-12b(a -8b).13.试说明:(14m 3+2n)(14m 3-2n)+(2n -4)(2n +4)的值和n 无关.14.解方程:(3x)2-(2x +1)(3x -2)=3(x +2)(x -2).15.某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a -3b)m ,请你计算一下这个游泳池的容积是多少?综合题16.(1)计算并观察下列各式:(x-1)(x+1)=;(x-1)(x2+x+1)=;(x-1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x-1) =x6-1;(3)利用你发现的规律计算:(x-1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算:1+4+42+43+…+42 018=.14.2.2 完全平方公式基础题1.根据完全平方公式填空:(1)(x+1)2=(x)2+2×(x)×(1)+(1)2=;(2)(-x+1)2=(-x)2+2×(-x)×(1)+(1)2=;(3)(-2a-b)2=(-2a)2+2×(-2a)×(-b)+(-b)2=.2.下列计算正确的是( )A.(x+y)2=x2+y2B.(x-y)2=x2-2xy-y2C .(x +1)(x -1)=x 2-1D .(x -1)2=x 2-13.计算: (1)(y +3)2= ;(2)(-4x +12)2= . 4.如图1,从边长为a 的正方形中剪去一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形(如图2),则上述操作所能验证的公式是( )A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b) 5.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +b)2=(a -b)2+4ab 6.计算:(a +1)2-a 2= .7.已知a 2+b 2=7,ab =1,则(a +b)2= .8.直接运用完全平方公式计算:(1)(3+5p)2; (2)(7x -2)2; (3)(-2a -5)2; (4)(-2x +3y)2.9.运用完全平方公式计算:(1)2012;(2)99.82.10.已知(a+b)2=25,ab=6,则a-b等于( )A.1 B.-1 C.1或-1 D.以上都不正确中档题11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+,但不小心把最后一项染黑了,你认为这一项是( )A.5y2B.10y2 C.100y2D.25y2 12.若(y+a)2=y2-6y+b,则a,b的值分别为( )A.a=3,b=9 B.a=-3,b=-9 C.a=3,b=-9 D.a=-3,b =913.已知a+b=5,ab=2,则(a-b)2的值为( )A.21 B.25 C.17 D.1314.将边长为a cm的正方形的边长增加4 cm后,所得新正方形的面积比原正方形的面积大( )A.4a cm2B.(4a+16)cm2C.8a cm2D.(8a+16)cm215.若(x-1)2=2,则式子x2-2x+5的值为.16.计算:(1)(a+b)2-(a-b)2;(2)(a-b)2(a+b)2;(3)(a-1)(a+1)(a2-1);(4)(2x-y)2-4(x-y)(x+2y).17.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)-(x+1)2+2x=x2+2xy-x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.综合题18.【关注数学文化】杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4……按照前面的规律,则(a+b)5=.参考答案:14.2 乘法公式14.2.1 平方差公式1.D2.(a+b)(a-b)=a2-b2.3.解:(1)S1=(a+b)(a-b),S2=a2-b2.(2)(a+b)(a-b)=a2-b2.4.(1)(m+2n)(m-2n);解:原式=m2-4n2.(2)(xy+5)(xy-5);解:原式=x2y2-25.(3)(-4a+3)(-4a-3);解:原式=(-4a)2-32=16a2-9.(4)(-x-y)(x-y).解:原式=(-y)2-x2=y2-x2.5.解:原式=x2-1+x2-x3+x3=2x2-1.当x=2时,原式=2×22-1=7.6.(1)1 001×999;解:原式=(1 000+1)×(1 000-1) =1 0002-12=999 999.(2)1122-113×111.解:原式=1122-(112+1)×(112-1) =1122-(1122-1)=1122-1122+1=1.7.C8.B9.B10.C11.10.12.(1)(-3x 2+y 2)(y 2+3x 2);解:原式=(y 2)2-(3x 2)2=y 4-9x 4.(2)(-3a -12b)(3a -12b);解:原式=(-12b)2-(3a)2=14b 2-9a 2.(3)(a +2b)(a -2b)-12b(a -8b).解:原式=a 2-(2b)2-12ab +4b 2=a 2-12ab.13.解:原式=(14m 3)2-(2n)2+(2n)2-42=116m 6-4n 2+4n 2-16 =116m 6-16.∴原式的值和n 无关.14.解:9x 2-(6x 2-4x +3x -2)=3(x 2-4),9x 2-6x 2+4x -3x +2=3x 2-12, x =-14.15.解:(4a 2+9b 2)(2a +3b)(2a -3b)=(4a 2+9b 2)(4a 2-9b 2) =16a 4-81b 4.答:这个游泳池的容积是(16a 4-81b 4)m 3.16.(1)x 2-1;x 3-1;x 4-1;(2)(x 5+x 4+x 3+x 2+x +1);(3)x 7-1; (4)42019-13.14.2.2 完全平方公式1.(1)x 2+2x +1;(2)x 2-2x +1;(3)4a 2+4ab +b 2.2.C3.(1)y 2+6y +9;(2)16x 2-4x +14.4.A5.D6.2a +1.7.9.8.(1)(3+5p)2;解:原式=9+30p +25p 2.(2)(7x -2)2;解:原式=49x 2-28x +4.(3)(-2a -5)2;解:原式=4a 2+20a +25.(4)(-2x +3y)2.解:原式=4x 2-12xy +9y 2.9.(1)2012;解:原式=(200+1)2=2002+2×200×1+12=40 000+400+1(2)99.82.解:原式=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.10.C11.D12.D13.C14.D15.6.16.(1)(a+b)2-(a-b)2;解:原式=(a2+2ab+b2)-(a2-2ab+b2) =a2+2ab+b2-a2+2ab-b2=4ab.(2)(a-b)2(a+b)2;解:原式=[(a-b)(a+b)]2=(a2-b2)2=a4-2a2b2+b4.(3)(a-1)(a+1)(a2-1);解:原式=(a2-1)(a2-1)=a4-2a2+1.(4)(2x-y)2-4(x-y)(x+2y).解:原式=4x2-4xy+y2-4(x2+2xy-xy-2y2)=4x2-4xy+y2-4x2-4xy+8y2=9y2-8xy.17.(1)一;(2)解:x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.18.a5+5a4b+10a3b2+10a2b3+5ab4+b5.14.3 因式分解一、选择题1. 2019·唐山滦州期末若关于x的二次三项式x2-ax+36是完全平方式则a的值是( ) A.-6 B.±6 C.12 D.±122. 若a+b=3,a-b=7,则b2-a2的值为( )A.-21 B.21 C.-10 D.103. 计算(-2)2020+(-2)2019所得的正确结果是( )A.22019B.-22019C.1 D.24. 计算552-152的结果是( )A.40 B.1600 C.2400 D.28005. 2019·武汉期中把多项式3x3-6x2+3x分解因式下列结果正确的是( )A.x(3x+1)(x-3)B.3x(x2-2x+1)C.x(3x2-6x+3)D.3x(x-1)26. 2019·绍兴柯桥区月考若多项式x2-3(m-2)x+36能用完全平方公式分解因式则m的值为( )A.6或-2 B.-2 C.6 D.-6或27. 当a,b互为相反数时,式子a2+ab-4的值为( )A.-4 B.-3 C.0 D.48. 2019·毕节织金期末某同学粗心大意,分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字是( )A.8,1 B.16,2 C.24,3 D.64,89. 2019·扬州邗江区月考若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为( )A .200B .-200C .100D .-10010. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零 D .小于或等于零二、填空题11. 因式分解:m 2n -6mn +9n =________.12. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)13. 分解因式x (x -2)+(2-x )的结果是________.14. 分解因式(x +2)2-3(x +2)的结果是____________.15. 把多项式x 2+mx +6分解因式得(x -2)(x +n ),则m =________.16. 2019·沈阳分解因式:-x 2-4y 2+4xy =________.17. 若2a=3b-1则4a2-12ab+9b2-1的值为________.18. 我们已经学过用面积来说明公式.如x2+2xy+y2=(x+y)2就可以用如图甲中的面积来说明.请写出图乙的面积所说明的公式:x2+(p+q)x+pq=________.三、解答题19. 分解因式:2-+x x613620. 已知2246130+的值.a b a b+--+=,求a b21. 分解因式:2222+++abcx a b c x abc()22. 分解因式:2222++-++-x x x x x x(1)(2)(1)人教版九年级数学14.3 因式分解课后训练-答案一、选择题1. 【答案】D [解析] 依题意得ax=±2×6x解得a=±12.2. 【答案】A3. 【答案】A [解析] (-2)2020+(-2)2019=-2×(-2)2019+(-2)2019=(-2)2019×(-2+1)=22019.4. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.5. 【答案】D [解析] 原式=3x(x2-2x+1)=3x(x-1)2.6. 【答案】A [解析] 因为多项式x2-3(m-2)x+36能用完全平方公式分解因式所以-3(m-2)=±12.所以m=6或m=-2.7. 【答案】A [解析] 因为a,b互为相反数,所以a+b=0.所以a2+ab-4=a(a+b)-4=0-4=-4.8. 【答案】B [解析] 由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.9. 【答案】B [解析] 因为2m+n=25,m-2n=2,所以(m+3n)2-(3m-n)2=[(m+3n)+(3m-n)][(m+3n)-(3m-n)]=(4m+2n)(-2m+4n)=-4(2m+n)(m-2n)=-4×25×2=-200.10. 【答案】B【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+ 即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】n (m -3)2 【解析】m 2n -6mn +9n =n (m 2-6m +9)=n (m -3)2.12. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解13. 【答案】(x -2)(x -1) 【解析】公因式是(x -2),所以x (x -2)+(2-x )=(x -2)(x -1).14. 【答案】(x +2)(x -1) [解析] (x +2)2-3(x +2)=(x +2)(x +2-3)=(x +2)(x -1).15. 【答案】-5 [解析] 把x 2+mx +6分解因式得(x -2)(x +n),即x 2+mx +6=(x -2)(x +n)=x 2+(n -2)x -2n ,所以-2n =6,m =n -2.解得n =-3,m =-5.16. 【答案】-(x -2y)217. 【答案】0 [解析] 因为2a =3b -1所以2a -3b =-1.所以4a 2-12ab +9b 2-1=(2a -3b)2-1=(-1)2-1=0.18. 【答案】(x +p)(x +q) [解析] 根据题意可知 x 2+(p +q)x +pq =(x +p)(x +q).三、解答题19. 【答案】(32)(23)x x --【解析】26136(32)(23)x x x x -+=--20. 【答案】5a b +=【解析】∵2246130a b a b +--+=,∴2244690a a b b -++-+= ∴()()22230a b -+-=,∴2030a b -=⎧⎨-=⎩,∴23a b =⎧⎨=⎩,∴5a b +=21. 【答案】()()abx c cx ab ++【解析】2222()()()abcx a b c x abc abx c cx ab +++=++22. 【答案】2(1)(21)(1)x x x x --++【解析】原式424322=--+221x x xx x x x x x x212=+++----433(21)(21)(1)(21)(1)x x x x=--++.=--2x x x=---3(21)(1)x x31。
人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案
人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案一、选择题1.计算a3•a2的结果是()A.2a5B.a5C.a6D.a92.计算(x3)5的结果是()A.x2B.x8C.x15D.x163.已知2x+y=3,则4x×2y的值为()A.2 B.4 C.8 D.164.计算(−13)2021×32020的结果是()A.−3B.3 C.−13D.135.已知a=355,b=444,c=533则a、b、c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b 6.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为()A.﹣6 B.﹣3 C.0 D.17.下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2y D.(12x3﹣6x2+3x)÷3x=4x2﹣2x8.设(x m−1y n+2)(x5m y2)=x5y7,则(−12m)n的值为()A.−18B.−12C.1 D.12二、填空题9.已知33x+1=81,则x=.10.计算:(x−1)2⋅x3=.11.已知(a n b m+2)3=a6b15,则m n=.12.计算(x+3)(x+4)−2(x+6)的结果为.13.已知(x+4)(x﹣9)=x2+mx﹣36,则m的值为三、解答题14.计算:(1)(a2)3⋅(a2)4÷(a2)5;(2)(x-4y)(2x+3y)(3)[(3x+4y)2−3x(3x+4y)]÷(−4y)(4)(−7x2y)(2x2y−3xy3+xy);15.已知n是正整数,且,求的值.16.在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了-a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.17.学习了《整式的乘除》这一章之后,小明联想到小学除法运算时,会碰到余数的问题,那么类比多项式除法也会出现余式的问题.例如,如果一个多项式(设该多项式为A)除以的商为,余式为,那么这个多项式是多少?他通过类比小学除法的运算法则:被除数=除数×商+余数,推理出多项式除法法则:被除式=除式×商+余式.请根据以上材料,解决下列问题:(1)请你帮小明求出多项式A;(2)小明继续探索,如果一个多项式除以3x的商为,余式为,请你根据以上法则求出该多项式参考答案1.B2.C3.C4.C5.A6.A7.C8.A9.110.x11.912.x2+5x x+x213.-514.(1)解:(a2)3⋅(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4(2)解:(x-4y)(2x+3y)=2x2−8xy+3xy−12y2=2x2−5xy−12y2(3)解:[(3x+4y)2−3x(3x+4y)]÷(−4y)=(9x2+24xy+16y2−9x2−12xy)÷(−4y)=(12xy+16y2)÷(−4y)=−3x−4y(4)解:(−7x2y)(2x2y−3xy3+xy)=−14x4y2+21x3y4−7x3y215.解:原式∵∴=9×4+[-8×4]=416.(1)解:由甲计算得:(x+a)(x+6)=x2+8x+12∴6a=12∴a=2;代入乙的式子,得(x−2)(x+b)=x2+x−6∴−2b=−6∴b=3.(2)解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6.17.(1)解:由题意得;(2)解:由题意可得该多项式为:。
【精品讲义】人教版 八年级数学(上) 专题14.1 整式的乘法(知识点+例题+练习题)含答案
第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。
人教版数学八年级上 习题14.1 word
习题14.1
【复习巩固】
1. 购买一些铅笔,单价为0.2元/枝,总价y 元随铅笔枝数x 变化,指出其中的常量与变量,
自变量和函数,并写出函数解析式。
2. 一个三角形的底边长为5,高h 可以任意伸缩,写出面积S 随h 变化的解析式,并指出
其中的常量与变量,自变量和函数,以及自变量的取值范围。
3. 下列式子中的y 是x 的函数吗?为什么?请再举出一些函数的例子。
(1)y=3x-5 (2)1
2--=x x y (3)1-=x y 4. 分别对第3题的各式讨论:
(1)自变量x 在什么范围内取值时函数解析式有意义?
(2)当x=5时对应的函数值是多少?
5. 画出函数y=0.5x 的图象,指出自变量及其取值范围。
6. 下列各曲线中哪些表示y 是x 的函数?
【综合运用】
7. 下面的图象反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店
买笔,然后散步走回家。
其中x 表示时间,y 表示张
强离家的距离。
根据图象回答下列问题:。