《数值分析》习题6
数值分析试题与答案
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析课后习题与解答
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式()(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?〔1〕〔2〕解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
〔1〕〔2〕4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1与n=2的Lagrange插值或Newton插值,并应用误差估计〔5.8〕。
线性插值时,用0.5与0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式〔5.8〕,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048与cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式〔5.17〕得其中计算时用Newton后插公式〔 5.18)误差估计由公式〔5.19〕得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析课后习题及答案
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案
0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析课后参考答案06
第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。
证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。
2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。
解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。
3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。
解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析习题六解答
数值分析习题六解答习题六解答1、在区间[0,1]上⽤欧拉法求解下列的初值问题,取步长h=0.1。
(1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=?解:(1)取h=0.1,本初值问题的欧拉公式具体形式为21(1)(0,1,2,)n n n y y y n +=--=由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出:可以看出,实际上求出的所有数值解都是1。
(2)取h=0.1,本初值问题的欧拉公式具体形式为21(sin )(0,1,2,)n x n n n y y h x e n -+=++=由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1,021000(sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+=x 2=0.2,122110.1(sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2x y y h x e e --=++=+?+=+?+=指出:本⼩题的求解过程中,函数值计算需要⽤到计算器。
2、⽤欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。
22(00.5)(0)1y x y x y '?=-≤≤?=? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为21(2)(0,1,2,)n n n n y y h x y n +=+-=由初值y 0=y(0)=1出发计算,所得数值结果如下:x 0=0,y 0=1;x 1=0.1,221000(2)10.1(021)0.8y y h x y =+-=+?-?= x 2=0.2,222111(2)0.80.1(0.120.8)0.641y y h x y =+-=+?-?= (2)由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y hy f x y f x y ++?=+?=++n+1n+1y y ,取h=0.1,本初值问题的预测-校正公式的具体形式为122210.1(2)0.05[(2)(2)]nn n n n n n n y x y y x y x y ++?=+?-??=+-+-??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.8205y x y y x y x y =+?-==+?-+-=+?-+-?=11y yx 2=0.2,211122211122220.1(2)0.82050.1(0.120.8205)0.65740.05[(2)(2)]0.82050.05[(0.120.8205)(0.220.0.6574]0.6752y x y y x y x y =+?-=+?-?==+?-+-=+?-?+-?=22y y3、试导出解⼀阶常微分⽅程初值问题000(,)()()y f x y x a x b y x y '==≤≤??=?的隐式欧拉格式111(,)(0,1,2,)n n n n y y hf x y n +++=+=并估计其局部截断误差。
李庆扬-数值分析第五版第6章习题答案(20130819)
试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
a A 11 a21
则
a12 a22
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
x ( k 1) x ( k )
10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k
数值分析练习题附答案
1
2-3 对矩阵 A 进行 LDLT 分解和 GGT 分解,求解方程组 Ax=b,其中
16 4 8
1
A=( 4 5 −4) , b=(2)
8 −4 22
3
解:(注:课本 P26 P27 根平方法)
设 L=(l i j ),D=diag(di),对 k=1,2,…,n,
其中������������=������������������-∑������������=−11 ���������2��������� ������������
������31=(������31 − ∑0������=1 ������3������������1������ ������������)/ ������1=186=12
������32=(������32
−
∑1������=1
������3������������2������
������������ )/
6.6667
,得 ������3 = 1.78570
−1 209
������4
0
������4
0.47847
(
56
−1
780 (������5) 209)
(200)
(������5) ( 53.718 )
1 −1
4
1 −4
15
������1
25
������2
6.6667再由1源自− 15561
− 56
209
x (k1) 1
1 5
(12
2 x2( k )
x (k) 3
)
2 5
x (k) 2
数值分析习题(含标准答案)
]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析习题
习题11. 填空题(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.95123450304051104000003346087510., ., , ., .x x x x x -==⨯===⨯5. 证明1.2.3之定理1.1.6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有r r xf x f x k x k f x εε'≈=()(())(),()其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2x π≈时是病态问题.11. 定义多元函数运算111,,(),n ni i i i i i S c x c x εε====≤∑∑其中求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:111 11212 11-cos23 14 00xy x x xy x xy x x y p p q p q -=-++===>>(),()()()(),()(),(,,)习题21. 填空题(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 . 平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 ;(3) 直接LU 分解法解线性方程组时的计算量以乘除法计为 , 追赶法解对角占优的三对角方程组时的计算量以乘除法计为 ; (4) ,⎪⎪⎭⎫⎝⎛=2011A =1A , =2A , =)(A ρ ; (5) 1100>⎪⎪⎭⎫⎝⎛=t t A , )(A ρ , 2cond ()A = ; (6) 0>>>⎪⎪⎪⎭⎫⎝⎛=a b c c b a A , )(A ρ , 2cond ()A = ; 2.用Gauss 消元法求解下列方程组b Ax =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=101,112221111)1(b A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111,4321343223431234)2(b A 3.用列主元消元法解下列方程组b Ax =.⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛---=674,5150710623)1(b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=6720,5616103423221020)2(b A 4. 用Gauss -Jordan 消元法求:1011012111-⎪⎪⎪⎭⎫ ⎝⎛-- 5.用直接LU 分解方法求1题中两个矩阵的LU 分解,并求解此二方程组.6.用平方根法解方程组b Ax =321422131116,A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 用追赶法解三对角方程组b Ax =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00001,2100012100012100012100012b A8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵.9.由111211----=n L L L L ,(见(2.18)式),证明:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-111111,321323121n n n n n l l l ll l l L10.证明向量范数有下列等价性质:∞∞∞∞≤≤≤≤≤≤xn x xxn x x x n x x 21212)3()2()1(11.求下列矩阵的()12,,,A A A A ρ∞.()()5131312110212326;.A A ⎛⎫⎛⎫⎪== ⎪ ⎪-⎝⎭⎪⎝⎭12.求()2cond A()()10099129998cos sin ;.sin cos A A θθθθ-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭13.证明:(1)若A 是正交矩阵,即T A A I =, 则()2cond 1A =;(2)若A 是对称正定阵, 1λ是A 的最大特征值, n λ是最小特征值,则()12cond nA λλ=. 习题31. 填空题:(1) 当A 具有严格对角线优势或具有对角优势且 时,线性方程组Ax =b 用Jacobi 迭代法和Gauss -Seidel 迭代法均收敛;(2) 当线性方程组的系数矩阵A 对称正定时, 迭代法收敛.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 小于1; SOR 法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ρ (B ), q 时不收敛, q 接近 时收敛较快, q 接近 时收敛较慢; (5)1112,A ⎛⎫= ⎪⎝⎭J B = ;S B = ; ()J B ρ= ; ()S B ρ= .2.用Jacobi 迭代法和Gauss -Seidel 迭代法求解方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛453210*********x x x ; (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---7161411151118321x x x 各分量第三位稳定即可停止.3.用SOR 法解方程组,取0.9ω=,与取1ω= (即Gauss-Seidel 法)作比较.1233215573132573x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭. 4.下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收敛性(1)⎪⎪⎪⎭⎫ ⎝⎛211231125; (2)⎪⎪⎭⎫ ⎝⎛2321;(3)212121212⎛⎫⎪⎪ ⎪-⎝⎭; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210012*********2; (5)⎪⎪⎪⎪⎪⎭⎫⎝⎛------------101111511111011115 ; (6)112211221122111⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.方程组0,0,2211212122211211≠≠⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛a a b b x x a a a a证明用Jacobi 迭代法收敛的充要条件是:122112112<=a a a a r . 6.设为实数;a a a a a a a A ,111⎪⎪⎪⎭⎫ ⎝⎛=(1)若A 正定,a 的取值范围;(2)若Jacobi 迭代法收敛,a 的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的 特征值,Jacobi 旋转法用于求对称矩阵的 特征值;(2) 古典的Jacobi 法是选择 的一对 元素将其消为零;(3) QR 方法用于求 矩阵的全部特征值,反幂法加上原点平移用于一个近似特征值的 和求出对应的 . 2.用幂法求矩阵.⑴⎪⎪⎪⎭⎫ ⎝⎛111132126, ⑵⎪⎪⎪⎭⎫⎝⎛---20101350144按模最大的特征值和对应的特征向量,精确到小数三位.3.已知: ⎪⎪⎪⎭⎫⎝⎛---=1321291111111A取t =15,作原点平移的幂法,求按模最大特征值.4. ⎪⎪⎪⎭⎫ ⎝⎛=10141101414A用反幂法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.5.若A 的特征值为t n ,,,,21λλλ 是一实数,证明:t i -λ是tI A -的特征值,且特征向量不变.6.已知()321,,Tx =求平面反射阵H 使()00,*,Ty Hx ==,即使x 的1,3两个分量化零.7. ⎪⎪⎪⎭⎫ ⎝⎛=612133231A试用Jacobi 旋转法求作一次旋转,消去最大的非对角元,写出旋转矩阵,求出θ角和结果.8.设 ()()()()⎪⎪⎭⎫⎝⎛=⨯⨯⨯⨯222322333100T T T 已知λ是1T 的特征值,相应的特征向量为()Ta a a 321,,,证明λ也是T 的特征值,相应的特征向量为()Ta a a 0,0,,,321.9. 证明定理4.5.10. 证明(4.21)中的s A 和1+s A 相似.习题51.填空题(1) 用二分法求方程310x x +-=在[0,1]内的根,迭代一次后,根的存在区间为 ,迭代两次后根的存在区间为 ;(2) 设()f x 可微,则求方程()x f x =根的Newton 迭代格式为 ;(3) 2()(5)x x C x ϕ=+-,若要使迭代格式1()k k x x ϕ+=局部收敛到α=C 取值范围为 ;(4) 用迭代格式1()k k k k x x f x λ+=-求解方程32()10f x x x x =---=的根,要使迭代序列{}k x 是二阶收敛,则k λ= ;(5) 迭代格式12213k k kx x x +=+收敛于根α= ,此迭代格式是 阶收敛的.2.证明Newton 迭代格式(5.10)满足12()lim2()k k kf f εαεα+→∞''=-'3. 方程3291860, [0,)x x x x -+-=∈+∞的根全正实根,试用逐次扫描法(h =1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.4.用二分法求下列方程的根,精度0.001ε=.(1) 340 [2,1]x x x -+=∈-- (2) 1020 [0,1]x e x x +-=∈5.用迭代法求3250x x --=的正根,简略判断以下三种迭代格式:(1) 3152k k x x +-=; (2) 1252k k x x +=- ; (3)1k x +=在02x =附近的收敛情况,并选择收敛的方法求此根.精度410ε-=.6. 方程x e x-=(1) 证明它在(0,1)区间有且只有一个实根; (2) 证明 ,,,101==-+k ex kx k ,在(0,1)区间内收敛;(3) 用Newton 迭代法求出此根,精确到5位有效数字. 7.对方程3310x x --=,分别用(1) Newton 法0(2)x =;(2) 割线法01(2, 1.9)x x ==求其根.精度410ε-=.8.用迭代法求下列方程的最小正根(1) 5420x x --=; (2) 2tan 0x x -=; (3) 2sin x x = 9.设有方程 230xx e -=(1) 以1h =,找出根的全部存在区间;(2) 验证在区间[0,1]上Newton 法的区间收敛定理条件不成立; (3) 验证取00.21x =, 用Newton 法不收敛;(4) 用Newton 下山法,取00.21x =求出根的近似值,精度410ε-=.10.分别用Jacobi 法,Gauss —Seidel 法求解非线性方程组22230250x y x y +-=⎧⎨+-=⎩在(1.5,0.7)附近的根,精确到410-.11.分别用Newton 法,简化Newton 法求解非线性方程组s i nc o s 01x y x y +=⎧⎨+=⎩在(0,1)附近的根,精确到410-.习题61.填空题(1) 设53()1f x x x x =+++,则[0,1]f ,[0,1,2]f = ,[0,1,2,3,4,5]f = ;[0,1,2,3,4,5,6]f = .(2) 设01(),(),,()n l x l x l x 是以节点0,1,2,…,n 的Lagrange 插值基函数,则()njj jl x ==∑ ;0()njj jl k ==∑ .(3) 设(0)0,(1)16,(2)46,[0,1]f f f f ====则 ,[0,1,2]f = ,()f x 的二次Newton 插值多项式为 .2.已知函数2)(x ex f -=的数据如下试用二次,三次插值计算=0.35,=0.55的近似函数值,使其精度尽量地高. 3.利用x sin 在3,4,6,0πππ=x 及2π处的值,求5sin π的近似值,并估计误差.4计算积分⎰=xdt ttx f 0sin )(, 当)(x f =0.45时的x 的取值. 5.试用Newton 插值求经过点(-3,-1),(0,2),(3,-2),(6,10)的三次插值多项式.6.求满足)()(),()(1100x f x P x f x P ==及)()(00x f x P '='的次数不超过2次的插值多项式)(x P ,并给出其误差表达式.7.设i x 是互异节点,)(x l j 是Lagrange 插值基函数(n j ,,2,1,0 =),证明(1)1)(0≡∑=nj jx l;(2)k nj jk j x x l x≡∑=0)( (n k ,,2,1,0 =);(3)0)()(0≡-∑=nj j k jx l x x(n k ,,2,1,0 =).8.设有如下数据试计算此表中函数的差分表,并分别利用Newton 向前,向后插值公式求出它的插值多项式. 9.试构造一个三次Hermite 插值多项式使其满足5.0)1( ,2)1( ,5.0)0( ,1)0(='=='=f f f f10.已知函数)(x f 的数据表分别用x =0.75的近似值. 11.对函数()sin f x x =进行分段线性插值,要求误差不超过5105.0-⨯,问步长h 应如何选取.12用三转角插值法求满足下述条件的三次样条插值函数(1) 0000.1)25.0(='S ,6868.0)53.0(='S (2) 2)25.0(-=''S , 6479.0)53.0(=''S 13. 证明定理6.6.习题81.填空题(1) 1n +个点的插值型数值积分公式()()nbj j aj f x dx A f x =≈∑⎰的代数精度至少是 ,最高不超过 .(2) 梯形公式有 次代数精度,Simpson 公式有 次代数精度. (3) 求积公式20()[(0)()][(0)()]2hhf x d xf f h h f f h α''≈++-⎰中的参数α=时,才能保证该求积公式的代数精度达到最高,最高代数精度为 .2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度. (1) )2()()0()(21020h f A h f A f A dx x f h++≈⎰ (2))](3)(2)1([)(2111x f x f f A dx x f ++-≈⎰-(3)1123111()(1)33f x dx A f A f A f -⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭⎰ (4) )1()0()()(321111f A f A x f A dx x f ++≈⎰- (5))()()(212x f x f dx x f +≈⎰3.分别利用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分 (1) ⎰+1024dx x x(n =8)(2) ⎰10dx x (n =10)(3) ⎰-12dx ex (n =10)(4) (n =6)(5)⎰20sin πdx xx(n =8) 4.用Romberg 公式计算积分(1) ⎰-1022dx e x π (精度要求510-=ε) (2) ⎰+404cos 1dx x (精度要求510ε-=)5.分别取节点数为2,3,4利用Gauss -Legendre 求积公式计算积分 (1) ⎰-+44211dx x , (2) ⎰-10dx e x , (3) 311dx x ⎰ 6.利用Gauss 型求积公式,分别取节点数2,3,4计算积分 (1) ⎰+∞-0dx x e x , (2) ⎰+∞∞--+dx x e x212 7.用节点数为4的Gauss -Laguerre 求积公式和Gauss -Hermite 求积公式计算积分 ⎰+∞-=02dx e I x 的近似值,并与准确值2π=I 作比较.8.分别用两点公式与三点公式求2)1(1)(x x f +=在x =1.0,x =1.2的导数值,并估计误差,其中)(x f 的数据由下表给出9.已知)(x f x e -=的数据如下取=0.1,=0.2,分别用二点、三点公式计算=2.7处的一阶和二阶导数值.习题91.填空题(1) 解初值问题的Euler 法是 阶方法,梯形方法是 阶方法,标准R -K 方法是 阶方法.(2) 解初值问题()20(),(0)1y x x y y '=-=时,为保证计算的稳定性,若用经典的四阶R -K 方法,步长0h << .采用Euler 方法,步长h 的取值范围为 ,若采用Euler 梯形方法,步长h 的取值范围为 若采用Adams 外推法,步长h 的范围为 ,若采用Adams 内插法,步长h 的取值范围为 .(3) 求解初值问题Euler 方法的局部截断误差为 Euler 梯形方法的局部截断误差为 , Adams 外推法的局部截断误差为 Adams 内插法的局部截断误差为 .2.对初值问题⎪⎩⎪⎨⎧=≤≤-+='0)0(1021122y x y x y试用Euler 法取步长h =0.1和h =0.2计算其近似解,并与准确解21x y x=+进行比较. 3.利用Euler 预测-校正法和四阶经典R -K 方法,取步长h =0.1,求解方程⎪⎩⎪⎨⎧=≤≤+='1)0(10y x y x y 并与准确解x e x x y 21)(+--=进行比较.4.用待定系数法推导二步法公式)85(12111-++-++=i i i i i f f f h y y 并证明它是三阶公式,求出它的局部截断误差.5.用Adams 预测-校正法求解⎪⎩⎪⎨⎧=≤≤-='1)0(102y x y y 并与准确解1()1y x x=+进行比较. 6.用Euler 中点公式计算0 2.5(0)1y yx y '⎧=-≤≤⎨=⎩取步长h =0.25,与准确解x e y -=比较,并说明中点公式是不稳定的.7.写出用经典的R -K 方法及Adams 预测-校正法解初值问题⎪⎩⎪⎨⎧==+='+-='0)0(,1)0(782z y yz x z z y y的计算公式.8.写出用Euler 方法及Euler 预测-校正法解二阶常微分方程初值问题⎩⎨⎧='==+''0)0(,1)0(0sin y y y y的计算公式.9.证明用单步法1,(,)22i i i i i i h h y y hf x y f x y +⎛⎫=+++ ⎪⎝⎭解方程ax y 2-='的初值问题,可以给出准确解.。
第六章习题答案数值分析
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22b bb baaa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-Q 在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
数值分析习题(含答案)
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析第6章习题
数值分析第六章整合版(黑组) 一、填空题1、已知()01P x =,()1P x x=,()()22312x P x -=,根据勒让德多项式的递推关系,则求()3P x =(3532x x - )解:勒让德多项式的递推关系为()()()()()11121n n n n P x n xP x nP x +-+=+-,n=1,2…….将()1P x x =,()()22312x Px -=代入上式即可求出()3P x =3532x x- 2、若)(x P 是],[)(b a C x f ∈的最佳3次逼近多项式,则)(x P 在],[b a 上存在5 个交替为正、负偏差点。
(考点:切比雪夫定理)3、切比雪夫正交多项式可表示为(x)cos(narcosx)n T =,(x)n T 是最高次幂系数为12n -的n 次多项式。
(考点:切比雪夫多项式性质)4、最佳一致问题同时存在正偏差点和负偏差点 (考点:最佳一致逼近定理3) 二、选择题1、求函数3)1()(+=x x f 在区间[0,1],],[,21b a x x ∈上的一次最佳一致逼近多项式(D )A x +4358.0B x 34358.0+C x 54358.0+D x 74358.0+2、设的2-其中 为定义在[a,b]上的(A )A 权函数B 反函数C 幂函数D 函数3、xe =)(xf ,-1≤x ≤1,且设=p(x)x a a 1+,求a a 1,0使得)(x p 为)(x f 于[]1,0上的最佳平方逼近多项式(A ) A:()1021--=e e a ,311e a -= B:()e a e a e 111031,2---==)(x ρ],[)(b a C x f ∈()f xC:()2,311110e a e a e --=-= D:()2,211110e a e a e --=-=解: {}()()()()ee e e dx xf e dx f xx1112111111-22211-11-,10,02,,,32dx ,0xdx 22dx x 1span x ----==-======⎪⎭⎫ ⎝⎛===⎰⎰⎰⎰⎰ϕϕϕϕϕϕϕϕϕ,,,,,,设方程组为:⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎣⎡--e e a a e 1110232002 解得:()3,211110e a e a e --=-=三、计算题1.计算下列函数)(x f 关于[]1,0C 的21,,ff f ∞(1)3(x)(x 1)f =-;(2).21)(-=x x f 解:(1)301()max (1)1x f x x ∞≤≤=-=,13101()(1)4f x x dx =-=⎰,1221320()(1)f x x dx ⎡⎤⎡⎤=-=⎣⎦⎢⎥⎣⎦⎰ (2)2121max )(10=-=≤≤∞x x f x ,112110012111111()222884f x x dx xdx x dx =-=-+-=+=⎰⎰⎰,1212201()()2f x x dx ⎡⎤=-=⎢⎥⎣⎦⎰。
数值分析课后部分习题答案
证明 由差商的定义 (a) 如果 F ( x ) = cf ( x ) ,则
F [ x0 , x1 ,⋯ , xn ] =
=
F [ x1 , x2 ,⋯ , xn ]-F [ x0 , x1 ,⋯ , xn− 1 ] x n − x0
cf [ x1 , x2 , ⋯ , xn ]-cf [ x0 , x1 ,⋯ , xn −1 ] x n − x0 f [ x1 , x2 , ⋯ , xn ]-f [ x0 , x1 ,⋯ , xn−1 ] = cf [ x0 , x1 , ⋯ , xn ] . x n − x0
1 1 1 1 |e( x*)| ≤ × 10m − n = × 10−2 , |e( y*)| ≤ × 10m − n = × 10 −2 , 2 2 2 2 1 1 |e( z*)| ≤ × 10 m − n = × 10 −2 , 2 2 | e( y * z*) |≈| z * e ( y*) + y * e ( z *) |≤ z * | e ( y *) | + y * | e (z *) |
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 , 2 2
1 1 ≤ 2.35 × × 10−2 + 1.84 × × 10−2 = 2.095 × 10−2 , 2 2 1 | e( x * + y * z*) |≈| e( x*) + e( y * z*) |≤ × 10 −2 + 2.095 × 10−2 2 1 = 0.2595 × 10−1 ≤ × 10−1 , 2
东南大学出版社孙志忠版《数值分析》习题答案
1 2
1 * x5 − x5 = 23.496 − 23.494 = 0.002 < × 10 − 2 2
x5 具有 4 位有效数字, x5 → 23.50 (不能写为 23.49) x6 = 96.1 × 10 5 = 0.961 × 10 7
e( A1 ) 10 −2 =1 er ( A1 ) = ≤ 0.01 A1
不能肯定所得结果具有一位有效数字。
2 ) A* = 0.01 ( 2.01 + 2.00 ) ,
A2 = 0.01 (1.42 + 1.41) = 0.01 2.83 = 0.00353356 Λ
e( A2 ) = e(0.01
(2)23.46―12.753; (4)1.473 / 0.064 。
问经过上述运算后,准确结果所在的最小区间分别是什么? 解:(1) x1 =0.1062, x2 =0.947, x1 + x2 =1.0532
e( x1 ) ≤
1 1 × 10 − 4 , e( x2 ) ≤ × 10 − 3 2 2 1 1 × 10 − 4 + × 10 − 3 2 2
习题 1
1. 以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数。
(1) x1 =451.023, (2) x 2 =-0.045 113, (3) x3 =23.421 3, (4) x 4 = , (5) x5 =23.496, (6) x6 =96×10 5 , (7) x7 =0.000 96, (8) x8 =-8 700, 解:(1) x1 = 451.023
e( A2 ) 0.12486 × 10 −4 = 0.3533547 × 10 − 2 er ( A2 ) = ≤ 0.00353356 A2
第六章习题答案-数值分析
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22bb b ba aa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯ 可解得:212.85n ≥即至少剖分213等分。
数值分析习题解答
6.(1)设(1,0,5,2)Tx =-,试求12,,x x x∞(2)设40004402A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试求12,,,F A A A A ∞ 解12128,5;6,8,FxxxA AAA∞∞=======;4.设05813622,10612422A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, (1)试对A 进行PLU 分解:PA LU =; (2)根据PLU 分解求解Ax b =。
解 (1)162201011,102,00100.517100L U P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)(1,1,1)Tx =8.分别用Householder 变换法和MGS 法对A 进行QR 分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=542112111A解 (1) Householder 法对A 进行QR 分解[]()()()123123,,,1,2,2,1,1,4,1,1,5T T TααααααA ===--=-令()11,2,2Tαα==,调用算法2.1有[]13,,42212Tu ρβ=-==,所以 []1122333100412210102422123330012212333T uu β---⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥H =I -=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦, 故1333003033--⎡⎤⎢⎥H A =-⎢⎥⎢⎥-⎣⎦再令()0,3Tα'=-,调用算法2.1得20110H ⎡⎤'=⎢⎥⎣⎦,则 2100001010⎡⎤⎢⎥H =⎢⎥⎢⎥⎣⎦,21333033003--⎡⎤⎢⎥H H A =-⎢⎥⎢⎥-⎣⎦故121223331212,0333221003T TQ R -----⎡⎤⎡⎤⎢⎥⎢⎥=H H =--=-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦. 10.设131112000,110001A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求Ax b =的最小二乘问题的全部解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题六 (第1、3、5、6、7、9、10题) 1.求解初值问题y x y +=' )10(≤≤x 1)0(=y取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解xe x y 21+-=相比较。
解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.459924 2) 用改进的Euler 公式进行计算,具体形式如下: 10=y)()(1i i i D i y x h y y ++=+ )()(11)(1D i i i C i y x h y y +++++= )(21)(1)(11c i D i i y y y ++++= 4,3,2,1,0=i计算结果列表如下i i x i y )(1D i y + )(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.0311473. 对初值问题1)0(=-='y y y)0(>x ,证明用梯形公式所求得的近似值为ii hh y ih y )22()(+-=≈ ),2,1,0( =i并证明当0→h 时,它收敛于准确解ix e y -=,其中ih x i =为固定点。
解:1) 对以上初值问题用梯形公式得 )]()[(211++-+-+=i i i i y y h y y , ,2,1,0=i10=y其中ih x i = 由上式递推得 ii hh y )22(+-= , ,2,1,0=i2) 22)2(2)21()21(2121i i x h xh ii h h h h y ∙--+-=⎪⎪⎪⎪⎭⎫ ⎝⎛+-= iii ii x x x x h h x h n i h eeeh h y --→--∞→→==⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=22220)2(2)21(lim )21(lim lim5.证明)4(63211k k k h y y i i +++=+),(1i i y x f k = 2(2h x f k i +=,)211hk y i +h x f k i +=(3,)221hk hk y i +- 是1个3阶公式。
证明 )4(63211k k k h y y i i +++=+),(1i i y x f k = 2(2h x f k i += ,)21k h y i +h x f k i +=(3 ,)221hk hk y i +- 是一个3阶公式解局部截断误差为)4(6)()(32111K K K h x y x y R i i i ++--=++))(,(1i i x y x f K = 2(2h x f K i += ,)2)(1K h x y i +h x f K i +=(3 ,)2)(21hK hK x y i +- 由微分方程有))(,()(x y x f x y =' yx y x f x y xx y x f x y ∂∂'+∂∂=''))(,()())(,()(⎢⎣⎡∂∂∂'+'∂∂∂+∂∂='''y x x y x f x y x y yx x y x f xx y x f x y ))(,()()())(,())(,()(2222y x y x f x y x y yx y x f ∂∂''+⎥⎦⎤'∂∂+))(,()()())(,(22yx x y x f x y xx y x f ∂∂∂'+∂∂=))(,()(2))(,(222yx y x f x y yx y x f x y ∂∂''+∂∂'+))(,()())(,()(222)(1i x y K '=2(2h x f K i += ,)(2)(i i x y h x y '+yx y x f x y h xx y x f h x y x f i i i i i i i ∂∂'+∂∂+=))(,()(2))(,(2))(,(y x x y x f x y hh xx y x f h i i i i i ∂∂∂'⋅⋅+∂∂⎢⎣⎡+))(,()(222))(,()2(212222 )())(,()(23222h O y x y x f x y hi i i +⎥⎦⎤∂∂'+ )())(,()()(8)(2)(32h O y x y x f x y x y h x y hx y i i i i i i +⎥⎦⎤⎢⎣⎡∂∂''-'''+''+'= (h x f K i +=3,))()()()(32h O x y h x y h x y i i i +''+'+⎥⎦⎤⎢⎣⎡∂∂''+'+∂∂+=y x y x f x y h x y h x x y x f h x y x f i i i i i i i i )(,())()(())(,())(,(2y x x y x f x y h h xx y x f h i i i i i ∂∂∂'⋅⋅+⎢⎣⎡∂∂+))(,()(2))(,(21222 )())(,()(32222h O y x y x f x y h i i i +⎥⎦⎤∂∂'+ )())(,()()(21)()(32h O y x y x f x y x y h x y h x y i i i i i i +⎥⎦⎤⎢⎣⎡∂∂''+'''+''+'= )()(6)(2)(4321h O x y hx y hx y h R i i i i +'''+''+'=+⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂''-'''+''+'+'-y x y x f x y x y h x y h x y x y h i i i i i i i ))(,()()(2)(2)(4)(62⎥⎦⎤+⎪⎪⎭⎫ ⎝⎛∂∂''-'''+''+'+)())(,()()(2)()(32h O y x y x f x y x y h x y h x y i i i i i i)(4h O =∴所给公式是一个3阶公式6.导出中点公式(或称Euler 两步公式) ),(211i i i i y x hf y y +=-+并给出局部截断误差。
解: o 1 法1 将后退Eluer 公式 ),(1i i i i y x hf y y +=- 和Eluer 公式),(1i i i i y x hf y y +=+ 相加得到),(211i i i i y x hf y y +=-+o2 法2得)(612)()()(211i i i i y h hx y x y x y ξ'''--='-+,),(11+-∈i i i x x ξ 代入等式 ))(,()(i i i x y x f x y =' 得到)(61))(,(2)()(211i i i i i y h x y x f hx y x y ξ'''+=--+ 变形得到 )(31))(,(2)()(311i i i i i y h x y x hf x y x y ξ'''++=-+忽略小量项)(313i y h ξ''',并用i y 代替)(i x y ,得到中点公式),(211i i i i y x hf y y +=-+ o3 局部截断误差))(,(2)()(111i i i i i x y x hf x y x y R --=-++ θ+'''+'=i i x f h x y h (61)(23)(2)i x y h h '-θ+'''=i x f h (613)h7.证明解),(y x f y ='的公式: )],(3),(),(4[4)(21111111--++-++-++=i i i i i i i i i y x f y x f y x f h y y y是二阶的,并求出其局部截断误差。
解:))(,(4[4)]()([21)(11111++-++-+-=i i i i i i x y x f h x y x y x y R))](,(3))(,(11--+-i i i i x y x f x y x f )(43)(4)()(21)(21)(1111-+-+'-'+'---=i i i i i i x y h x y h x y h x y x y x y)(21)()(6)(2)()(432i i i i i x y h O x y hx y hx y h x y -+'''+''+'+=)]()(6)(2)()([21432h O x y hx y hx y h x y i i i i +'''-''+'--)(4)]()(21)()([32i i i i x y h h O x y h x y h x y h '++'''+''+'-)]()(2)()([4332h O x y hx y h x y h i i i +'''+''-'-)()(6543h O x y h i +'''-=9.直接推导出2步Adams 显式公式 )],(),(3[2111--+-+=i i i i i i y x f y x f h y y和局部截断误差 )(125)3(31i i yh R ξ=+, ),(11+-∈i i i x x ξ解: dx x y x f x y x y i ix xi i ⎰++=+1))(,()()(1以i x 和1-i x 为节点作))(,(x y x f 的一次插值多项式 111111))(,())(,()(-------+--=i i i i i i i i i i x x x x x y x f x x x x x y x f x L则有dx x L x y x y i ix x i i ⎰++≈+1)()()(11dxx x hx y x f x y i ix x i i i i ⎰+--⋅+=1)(1))(,()(1dx x x h x y x f i ix x i i i ⎰+-⋅+--1)(1)(,(11))(,(21))(,(23)(11---+=i i i i i x y x hf x y x hf x y于是我们得到如下二步Adams 显式格式 ),(21),(23111--+-+=i i i i i i y x hf y x hf y y)],(),(3[211---+=i i i i i y x f y x f h y局部截断误差))](,())(,(3[2)()(1111--++---=i i i i i i i x y x f x y x f h x y x y R)]()(3[2)()(11-+'-'--=i i i i x y x y h x y x y)()(6)(2)()(432h O x y hx y hx y h x y i i i i +'''+''+'+=[])()(2)()(2)(23)(32h O x y hx y h x y h x y h x y i i i i i +'''+''-'+'--)()(12543h O x y h i +'''=10.导出具有下列形式的3阶方法:+++=--+221101i i i i y a y a y a y)],(),(),([2221110----++i i i i i i y x f b y x f b y x f b h的系数所满足的方程组。