广东省湛江市第五中学高三数学1月月考卷试题 理(含解析)
2021-2022学年广东省湛江市实验中学高三数学理月考试卷含解析
2021-2022学年广东省湛江市实验中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1.( )A.-B.-C.D.参考答案:D略2. 右图是一个几何体的三视图,则该几何体的体积是A. B.C. D.参考答案:A略3. 如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣参考答案:A【考点】几何概型.【分析】由题意,直接看顶部形状,及正方形内切一个圆,正方形面积为4,圆为π,即可求出“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率.【解答】解:由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.【点评】本题考查概率的计算,考查学生分析解决问题的能力,属于中档题.4.将4个不同颜色的小球,全部放入三个不同的盒子中,则不同的放法有A.81种B. 64种C. 24种D.4种参考答案:答案:A5. 定义在R上的偶函数满足:对任意的,有.则当时,有A 、 B、C. D、参考答案:C略6. 命题“存在,使”的否定是()A.存在,使B.不存在,使C.对于任意,都有D.对于任意,都有参考答案:D略7. 若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3] B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]参考答案:D【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行求解即可.【解答】解:x>2m2﹣3是﹣1<x<4的必要不充分条件,∴(﹣1,4)?(2m2﹣3,+∞),∴2m2﹣3≤﹣1,解得﹣1≤m≤1,故选:D.8. 若f(x)=ln(x2-2ax+1+a)在区间(-∞,1)上递减,则实数a的取值范围为()A. [1,2)B. [1,2]C.[1,+∞)D. [2,+∞)参考答案:B【分析】由外函数对数函数是增函数,可得要使函数在上递减,需内函数二次函数的对称轴大于等于1,且内函数在上的最小值大于0,由此联立不等式组求解.【详解】解:令,其对称轴方程为,外函数对数函数是增函数,要使函数在上递减,则,即:.实数的取值范围是.故选:.【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.9. 将函数的图象向右平移个单位长度,所得图象对应的函数A.由最大值,最大值为 B.对称轴方程是C.是周期函数,周期 D.在区间上单调递增参考答案:【知识点】两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.C5 C4【答案解析】D 解析:化简函数得,所以易求最大值是2,周期是,由,得对称轴方程是由,故选D.【思路点拨】由两角差的正弦公式化简函数,再由图象平移的规律得到,易得最大值是2,周期是π,故A,C均错;由,求出x,即可判断B;再由正弦函数的增区间,即可得到g(x)的增区间,即可判断D.10. 设A1,A2分别为双曲线的左右顶点,若双曲线上存在点M使得两直线斜率,则双曲线C的离心率的取值范围为()A.B.C.D.(0,3)参考答案:B【考点】双曲线的简单性质.【分析】由题意可得A1(﹣a,0),A2(a,0),设M(m,n),代入双曲线的方程,运用直线的斜率公式,化简整理可得b2<2a2,由a,b,c的关系和离心率公式,计算即可得到所求范围.【解答】解:由题意可得A1(﹣a,0),A2(a,0),设M(m,n),可得﹣=1,即有=,由题意,即为?<2,即有<2,即b2<2a2,c2﹣a2<2a2,即c2<3a2,c<a,即有e=<,由e>1,可得1<e<.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 已知α,β为锐角,sinα=,tanβ=2,则sin(+α)=,tan(α+β)=.参考答案:考点:两角和与差的正切函数.专题:三角函数的求值.分析:由已知,利用三角函数的诱导公式以及两角和的正切公式求值.解答:解:因为α,β为锐角,sinα=,tanβ=2,则sin (+α)=cosα==,所以tanα=;tan (α+β)=;故答案为:..点评:本题考查了三角函数的诱导公式以及两角和的正切公式的运用;关键是熟练掌握公式.12. 如图,在△ABC 中,AH⊥BC于BC于H,M为AH的中点,若=λ+μ,则λ+μ=.参考答案:【考点】平面向量的基本定理及其意义.【专题】计算题.【分析】根据=(+)=[+x(﹣)]=[(1+x)﹣x],可得1+x=2λ,2μ=﹣x,由此求出λ+μ的值.【解答】解:∵=(+)=[+x(﹣)]=[(1+x)﹣x]1+x=2λ,2μ=﹣x,∴λ+μ=.故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,求得1+x=2λ,2μ=﹣x,是解题的关键.13. 设是定义在R上的奇函数,当x≤0时,=,则 .参考答案:-3本题考查了函数的奇偶性与函数三要素,属于简单题.法一:是定义在上的奇函数,且时,。
广东省湛江市部分学校2023-2024学年高三上学期1月期末联考试题 数学含解析
高三数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号.座位号填写在答题卡上.2.回答选择题时,选出每小题答案后.用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2680A x x x =-+>,{}30B x x =-<,则A B = ()A.(2,3)B.(,3)-∞ C.(,2)-∞ D.(4,)+∞2.若复数2i1iz =+,则z z -=()A.2 B.2i - C.2- D.2i3.已知向量(3,5)a = ,(1,21)b m m =-+ ,若//a b,则m =()A.8B.8-C.213-D.87-4.已知0.3log 2a =,0.23b =,0.30.2c =,则()A.b c a>> B.b a c >> C.c b a >> D.c a b>>5.抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上的点,O 为坐标原点,若OFM △的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =()A.4B.8C.6D.106.已知函数()cos 44f x x x ππ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,要得到函数2()sin 22cos 1g x x x =-+的图象,只需将()f x 的图象()A.向左平移8π个单位长度 B.向左平移34π个单位长度C.向右平移34π个单位长度D.向右平移38π个单位长度7.已知ABC △是边长为8的正三角形,D 是AC 的中点,沿BD 将BCD △折起使得二面角A BD C --为3π,则三棱锥C ABD -外接球的表面积为()A.52πB.523π C.2083π D.1033π8.在数列{}n a 中,11a =,且1n n a a n +=,当2n ≥时,1231112n n na a a a a λ++++≤+- ,则实数λ的取值范围为()A.(,1]-∞ B.[1,)+∞ C.(0,1] D.(,4]-∞二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全都选对的得5分,部分选对的得2分,有选错的得0分.9.《黄帝内经》中的十二时辰养生法认为:子时(23点到次日凌晨1点)的睡眠对一天至关重要.相关数据表明,入睡时间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群体和晚睡群体的睡眠指数各取10个.如下表:编号12345678910早睡群体睡眠指数65687585858588929295晚睡群体睡眠指数35405555556668748290根据样本数据,下列说法正确的是()A.早睡群体的睡眠指数一定比晚睡群体的睡眠指数高B.早睡群体的睡眠指数的众数为85C.晚睡群体的睡眠指数的第60百分位数为66D.早睡群体的睡眠指数的方差比晚睡群体的睡眠指数的方差小10.下列结论正确的是()A.若0a b <<,则22a ab b >>B.若x ∈R ,则22122x x +++的最小值为2C.若2a b +=,则22a b +的最大值为2D.若(0,2)x ∈,则1122x x+≥-11.已知点(0,5)A ,(5,0)B -,动点P 在圆22:(3)(4)8C x y ++-=上,则()A..直线AB 截圆C B.PAB △的面积的最大值为15C.满足到直线AB 的P 点位置共有3个D.PA PB ⋅的取值范围为22⎡---+⎣12.已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则()A.(1)(3)2f f += B.(2023)(2025)(2024)f f f +=C.(2023)f 是(2022)f 与(2024)f 的等差中项D.20241()2024i f i ==∑三、填空题:本题共4小题,每小题5分,共20分.13.若函数21()2e 2xf x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴,则a =_________.14.某美食套餐中,除必选菜品以外,另有四款凉菜及四款饮品可供选择,其中凉菜可四选二,不可同款,饮品选择两杯,可以同款,则该套餐的供餐方案共有_________种.15.如图,在长方体1111ABCD A B C D -中,8AB =,6AD =,异面直线BD 与1AC所成角的余弦值为10,则1CC =_________.16.法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b +=>>的蒙日圆为22273x y b +=,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{}n a 的前n 项和n S 满足210n n S a +-=.(1)求{}n a 的通项公式;(2)设27log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.(12分)已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量M (单位:g )服从正态分布()2250,N σ,且(248)0.1P M <=.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于248g 的概率;(2)若从公司销售的牛肉干中随机选取K (K 为正整数)包,记质量在248g ~252g 内的包数为X ,且()320D X >,求K 的最小值.19.(12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,a =,sin sin 3a B b A π⎛⎫=+ ⎪⎝⎭.(1)求角A ;(2)作角A 的平分线与BC 交于点D ,且AD =,求b c +.20.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PO ⊥平面ABCD ,垂足为O ,E 为PC 的中点,//OE 平面PAD .(1)证明:PC PD =.(2)若24AD AB ==,OC OD ⊥,PC 与平面ABCD 所成的角为60︒,求平面PBC 与平面PCD 的夹角的余弦值.21.(12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为6,且其焦点到渐近线的距离为1.(1)求C 的方程,(2)若动直线l 与C 恰有1个公共点,且与C 的两条渐近线分别交于P ,Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.22.(12分)已知函数ln ()x af x x+=,[1,)x ∈+∞.(1)讨论()f x 的单调性.(2)是否存在两个正整数1x ,2x ,使得当12x x >时,()12121212x x x x x x x x -=?若存在,求出所有满足条件的1x ,2x 的值;若不存在,请说明理由.高三数学参考答案1.C 因为{4A x x =>或}2x <,{}3B x x =<,所以{}2A B x x =< .2.D因为2i 2i(1i)1i 1i (1i)(1i)z -===+++-,所以1i z =-,故2i z z -=.3.B 因为//a b,所以3(21)5(1)m m +=-,所以8m =-.4.A 因为0.30.3log 2log 10a =<=,0.20331b =>=,0.30.2(0,1)c =∈,所以b c a >>.5.B 因为OFM △的外接圆与抛物线C 的准线相切,所以OFM △的外接圆的圆心到准线的距离等于圆的半径.因为圆的面积为36π,所以圆的半径为6,又因为圆心在OF 的垂直平分线上,||2p OF =,所以624p p +=,8p =.6.D()cos 44f x x x x ππ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,()23()sin 22cos 12244g x x x x x ππ⎛⎫=-+=-=- ⎪⎝⎭,故将()f x 的图象向右平移38π个单位长度可得到()g x 的图象.7.C 在三棱锥C ABD -中,底面ABD 是以AB 为斜边的直角三角形.设底面ABD 外接圆的圆心为O ',则其半径4r =,设三棱锥C ABD -外接球的球心为O ,半径为R ,因为二面角A BD C --为3π,所以点C到底面的距离为C 在底面的射影为AD 的中点E,所以O E '=.设球心O 到底面ABD 的距离为d ,则222r d R +=,且222)O E d R '+=,解得2523R =,所以220843S R ππ==.8.A 因为1n n a a n +=,11a =,所以21a =,且当2n ≥时,11n n a a n -=-,所以111n n n n a a a a +--=,所以111n n na a a +-=-,所以3142531123111n n n a a a a a a a a a a a +-+++=-+-+-++-= 12112n n n n a a a a a a ++--++=+-.因为1231112n n na a a a a λ++++≤+- ,所以1122n n n n a a a a λ+++-≤+-,所以22λ≤,故1λ≤.9.BD 因为早睡群体的睡眠指数不一定比晚睡群体的睡眠指数高,所以A 错误;因为早睡群体的睡眠指数的10个样本数据中85出现次数最多,所以B 正确;因为晚睡群体的睡眠指数的第60百分位数为6668672+=,所以C 错误;由样本数据可知,早睡群体的睡眠指数相对比较稳定,所以方差小,故D 正确.10.AD因为2()0a ab a a b -=->,所以2a ab >,因为2()0ab b b a b -=->,所以2ab b >,所以22a ab b >>,故A 正确;因为221222x x ++≥+的等号成立条件22122x x +=+不成立,所以B 错误;因为222122a b a b ++⎛⎫≥= ⎪⎝⎭,所以222a b +≥,故C 错误;因为11111121(2)2(22)2222222x x x x x x x x x x -⎛⎫⎛⎫+=+-+=++≥+= ⎪ ⎪---⎝⎭⎝⎭,当且仅当112x x=-,即1x =时,等号成立,所以D 正确.11.BCD 对于A ,因为(0,5)A ,(5,0)B -,所以直线AB 的方程为50x y -+=,圆心()3,4C -到直线AB=C的半径r =AB 截圆C所得的弦长为2=,A 错误.对于B,易知||AB =PAB △的面积最大,只需点P 到直线AB 的距离最大,而点P 到直线AB 的距离的最大值为+=,所以PAB △的面积的最大值为12⨯15⨯=,B 正确.对于C ,当点P 在直线AB 上方时,点P 到直线AB的距离的范围是(0,r +,即(,由对称性可知,此时满足到直线AB的P 点位置有2个.当点P 在直线AB 下方时,点P 到直线AB 的距离的范围是(0,r,即,此时满足到直线AB的距离为的P 点位置只有1个.故满足到直线AB 的距的P 点位置共有3个,C 正确.对于D ,由题意知2()()()PA PB PC CA PC CB PC PC CA CB CA CB ⋅=+⋅+=+⋅++⋅.又因为(0,5)A ,(5,0)B -,(3,4)C -,所以(3,1)CA = ,(2,4)CB =-- ,故3(2)1(4)10CA CB ⋅=⨯-+⨯-=-,(1,3)CA CB +=- .设点()00,D x y 满足CA CB CD += ,则()003,4CD x y =+- ,故031,43,x y +=⎧⎨-=-⎩解得002,1x y =-⎧⎨=⎩即(2,1)D -,||CD = 2()PA PB PC PC CA CB CA CB⋅=+⋅++⋅8||||cos ,102,24,PC CD PC CD PC CD PC CD =+⋅⋅〈〉-=-+〈〉=-+〈〉.又因为,[PC CD 〈〉∈-,所以2,[22PC CD -+〈〉∈---+,即PA PB ⋅ 的取值范围为22⎡---+⎣,D 正确.12.ACD因为(2)()(2026)f x f x f ++=,所以(4)(2)(2026)f x f x f +++=,两式相减得(4)()f x f x +=,所以()f x 的周期为4.因为(1)1f x +-是奇函数,所以(1)1(1)1f x f x -+-=-++,所以(1)(1)2f x f x -+++=,即()(2)2f x f x -++=,所以(1)1f =.因为(2)()(2026)(2)f x f x f f ++==,所以(4)0f =,即(0)0f =.因为()(2)2f x f x -++=,所以(0)(2)2f f +=,所以(2)2f =,所以(2)()2f x f x ++=,所以(3)(1)2f f +=,故A 正确.因为()(2)2f x f x -++=,所以(1)(3)2f f -+=,即(3)(3)2f f +=,所以(3)1f =.因为(2023)(2025)(3)(1)2f f f f +=+=,(2024)(0)0f f ==,所以B 错误.因为(2022)(2024)(2)(0)2f f f f +=+=,(2023)(3)1f f ==,所以C 正确.因为20241()506[(1)(2)(3)(4)]50642024i f i f f f f ==+++=⨯=∑,所以D 正确.13.2-()2e x f x x a '=--,由(0)20f a '=--=,得2a =-.14.60由题意可知凉菜选择方案共有24C 6=种,饮品选择方案共有2144C C 10+=种,因此该套餐的供餐方案共有61060⨯=种.15.连接AC ,交DB 于点O ,取1CC 的中点E ,连接OE ,BE .因为1//AC OE ,所以BD 与1AC 所成的角为BOE ∠(或其补角).令EC x =,在BEO △中,由8AB =,6AD =,得5OB =.又OE =,BE =,cos 10BOE ∠=,由余弦定理得222210OE OB BE OE OB +-=⋅,解得x =,所以1CC =.16.12由题意可知点(,)a b 一定在其蒙日圆上,所以22273a b b +=,所以234b a ⎛⎫= ⎪⎝⎭,故椭圆C的离心率为12=.17.解:(1)因为210n n S a +-=,所以当1n =时,113a =,当2n ≥时,11210n n S a --+-=,两式相减得13n n a a -=,所以数列{}n a 是以13为首项,13为公比的等比数列,则1111333n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.(2)因为27log 3n n n b a ==-,所以119119(1)1n n b b n n n n +⎛⎫==- ⎪++⎝⎭,所以1111111119991122334111n n T n n n n ⎛⎫⎛⎫=-+-+-++-=-=⎪ ⎪+++⎝⎭⎝⎭ .18.解:(1)因为(248)0.1P M <=,所以(248)10.10.9P M ≥=-=,则这3包中恰有2包质量不小于248g 的概率为223C 0.90.10.243⨯⨯=.(2)因为(248)0.1P M <=,所以(248252)(0.50.1)20.8P M <<=-⨯=.依题意可得~(,0.8)X B K ,所以()0.8(10.8)0.16D X K K =⨯⨯-=,因为()320D X >,所以2000K >,又K 为正整数,所以K 的最小值为2001.19.解:(1)因为sin sin 3a B b A π⎛⎫=+⎪⎝⎭,所以1sin sin sin sin 022B A A A B ⎛⎫+-= ⎪⎝⎭,所以1sin cos sin 022B A A ⎛⎫-= ⎪⎝⎭.因为(0,)B π∈,所以sin 0B ≠,所以1cos sin 22A A =,所以tan A =,因为(0,)A π∈,所以3A π=.(2)解法1:因为AD 为角平分线,所以DAB DAC ABC S S S +=△△△,所以111sin sin sin 222AB AD DAB AC AD DAC AB AC BAC ⋅∠+⋅∠=⋅∠.因为3BAC π∠=,6DAB DAC π∠=∠=,AD =,所以333444AB AC AB AC +=⋅,所以AB AC AB AC +=⋅,即c b cb +=.因为22222cos()33a b c bc b c bc π=+-=+-,a =所以2()3()180b c b c +-+-=,所以6b c +=或3b c +=-(舍去),所以6b c +=.解法2:由点D 分别向AB ,AC 作垂足E ,F ,因为AD 为角平分线,所以322AD DE DF ===,所以32sin BD B =,32sin CD C=,又因为BD CD BC +==,所以332sin 2sin B C+=①由正弦定理得sin sin sin b c aB C A===所以126sin B b =,126sin C c=,代入①式得1b cbc +=,即b c bc +=.如下同解法1参考答案解答过程.20.(1)证明:取CD 的中点F ,连接,,EF PF OF ,因为E 为PC 的中点,所以//EF PD .又EF ⊂/平面PAD ,PD ⊂平面PAD ,所以//EF 平面APD .因为//OE 平面PAD ,OE EF E = ,所以平面//OEF 平面PAD .因为平面ABCD 平面OEF OF =,平面ABCD 平面PAD AD =,所以//OF AD .因为AD CD ⊥,所以OF CD ⊥.由PO ⊥平面ABCD ,可得PO CD ⊥.又PO OF O = ,所以CD ⊥平面POF ,从而PF CD ⊥.因为PF 是CD 的中垂线,所以PC PD =.(2)解:因为PO ⊥平面ABCD ,所以PC 与平面ABCD 所成的角为60PCO ∠=︒,又OC OD ⊥,2AB CD ==,112OF CD ==,OC ==,所以PO ==.作OG BC ⊥,垂足为G ,分别以,,OG OF OP的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,则(1,1,0)D -,(1,3,0)B -,(1,1,0)C,P ,(0,4,0)BC =,(1,1,PC = ,(2,0,0)DC =.设平面PBC 的法向量为()111,,m x y z =,则111140,0,m BC y m PC x y ⎧⋅==⎪⎨⋅=+-=⎪⎩ 令11z =,得m = .设平面PCD 的法向量为()222,,n x y z =,则222220,0,n DC x n PC x y ⎧⋅==⎪⎨⋅=+-=⎪⎩令2y =,得n = .所以1cos ,||||7m n m n m n ⋅〈〉===,即平面PBC 与平面PCD 夹角的余弦值为17.21.(1)解:设右焦点为(,0)F c ,一条渐近线方程为0bx ay -=,1b ==.因为426c e a ==,所以a =,c =.故C 的方程为2216x y -=.(2)证明:当直线l 的斜率不存在时,l的方程为x =,此时||2PQ =,122OPQ S =⨯⨯=△当直线l 的斜率存在时,不妨设:l y kx m =+,且66k ≠±.联立方程组22,1,6y kx m x y =+⎧⎪⎨-=⎪⎩得()2221612660k x mkx m ----=.由()()2222144416660m k k m ∆=+-+=,得2261k m =+.联立方程组,6,6y kx m y x =+⎧⎪⎨=⎪⎩得x =.不妨设l 与66y x =,66y x =-的交点分别为P ,Q,则P x =同理可得Q x =,所以2|||16P Q m PQ x k =-=-.因为坐标原点O 到l的距离d =,所以2216||216OPQ S PQ d k =⋅=-△.因为2261k m =+,所以OPQ S =△故OPQ △.22.解:(1)21ln ()a x f x x --'=,当1a ≥时,()0f x '≤,()f x 在[1,)+∞上单调递减.当1a <时,令()0f x '=,得1e a x -=.)11,e a x -⎡∈⎣,()0f x '>,则()f x 在)11,e a -⎡⎣上单调递增,()1e ,a x -∈+∞,()0f x '<,则()f x 在()1e ,a -+∞上单调递减.(2)由(1)知,令0a =,得ln ()x f x x =在[1,e)上单调递增,在(e,)+∞上单调递减,则11()(e)e 2f x f ≤=<.因为121x x >≥,所以()12211212x x x x x x x x -=,即()12122112ln ln ln x x x x x x x x -=+,即()121212ln ln ln ,x x x x x x -=+,因为1x ,2x 为正整数,所以121x x -≥.当121x x -=时,21121x x x x =,因为21x ≥,12x ≥,所以21121x x x x >,这与21121x x x x =矛盾,不符合题意.当121x x ->时,因为11ln 12x x <,22ln 12x x <,所以()121212ln ln ln 1x x x x x x -=+<,所以12e x x -<,得122x x -=,即1212ln ln ln 2x x x x =+.经检验,当21x =,13x =时,不符合题意,当22x =,14x =时,符合题意,当23x =,15x =时,因为5315352⨯<,所以ln3ln5ln 235+<,当24x ≥时,11ln ln 6ln565x x ≤<,22ln ln 4ln343x x ≤<,所以1212ln ln ln5ln3ln 253x x x x +<+<.。
2022年广东省湛江市廉江第五中学高三数学文月考试题含解析
2022年广东省湛江市廉江第五中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A.B.C.3πD.12π参考答案:C【考点】球的体积和表面积.【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC的外接球的表面积.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R==.球的表面积为:4πR2=4=3π.故选:C.2. 若函数恰有2个零点,则a的取值范围为()A. B.C. D.参考答案:D【分析】将问题转化为与恰有个交点;利用导数和二次函数性质可得到的图象,通过数形结合可确定或时满足题意,进而求得结果.【详解】令,则恰有个零点等价于与恰有个交点当时,,则当时,;当时,上单调递减,在上单调递增当时,在上单调递减,在上单调递增可得图象如下图所示:若与有两个交点,则或又,即当时,恰有个零点本题正确选项:【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将问题转化为平行于轴的直线与曲线的交点个数的问题,利用数形结合的方式找到临界状态,从而得到满足题意的范围.3. 下列等式正确的是A. B. C. D.参考答案:D4. 一个棱锥的三视图如右图所示,则它的体积为()A. B.C.1 D.参考答案:A5. 已知函数(e为自然对数的底数),当x∈时,y=f(x)的图象大致是()A.B.C.D.参考答案:D【考点】3O:函数的图象.【分析】利用函数的奇偶性以及函数的特殊值判断即可.【解答】解:函数=,f(﹣x)=﹣=﹣f(x),函数是奇函数,排除选项A,C,当x=π时,f(π)=>1,排除B,故选:D.6. 设,满足约束条件若目标函数的最大值为2,则实数的值为()A. B.1 C. D.参考答案:A试题分析:试题分析:先作出不等式组的图象如图,因为目标函数的最大值为,所以与可行域交于如图点,联立,得,由在直线上,所以有,选A.考点:二元一次不等式所表示的平面区域.7. 函数的定义域是( )A.{x|x>6} B.{x|﹣3<x<6} C.{x|x>﹣3} D.{x|﹣3≤x<6}参考答案:D【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题.【分析】要使函数有意义,必须使函数的每一部分都有意义,函数定义域是各部分定义域的交集.【解答】解:要使函数有意义,x+3≥0,且6﹣x>0∴|﹣3≤x<6∴函数的定义域为:{x|﹣3≤x<6}故答案选D.【点评】函数定义域是各部分定义域的交集.8. 执行下面的程序框图,如果输入,,则输出的()A.7 B.20 C.22 D.54参考答案:B 9. 已知抛物线C:y2=4x的焦点为F,过点F的直线与抛物线交于A、B两点,若|AB|=6,则线段AB的中点M的横坐标为()A.2 B.4 C.5 D.6参考答案:A【考点】K8:抛物线的简单性质.【分析】先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.【解答】解:∵抛物线y2=4x,∴p=2,设经过点F的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,AB中点横坐标为x0=(x1+x2)=(|AB|﹣p)=2,故选A.10. 则()A.a+b=0 B.a-b=0C.a+b=1 D.a-b=1参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 在ABC中,,,若(O是ABC的外心),则的值为参考答案:12. 设是等腰三角形,,则以为焦点且过点的双曲线的离心率为_____________.参考答案:略13. 在平面直角坐标系中,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为,曲线C 的参数方程,(为参数).则曲线C 上的点到直线l 的距离的最小值为________.参考答案:【分析】把参数方程,设极坐标化为直角坐标方程,求出弦心距,则即为所求,得到答案.【详解】直线的极坐标方程为,即为,化为直角坐标方程,把曲线C 的参数方程(为参数),可得普通方程,表示以(1,2)为圆心,半径为的圆,则圆心到直线的距离为,所以曲线C 上的点到直线的距离的最小值为.14.给出可行域,在可行域内任取一点,则点满足的概率是.参考答案:15. 由9个正数组成的数阵每行中的三个数成等差数列,且,,成等比数列.给出下列结论:①第二列中的必成等比数列;②第一列中的不一定成等比数列;③; ④若9个数之和大于81,则> 9.其中正确的序号有 .(填写所有正确结论的序号).参考答案:①②③ 略16. 如图,已知圆中两条弦与相交于点,是延长线上一点,且,,若与圆相切, 则线段的长为 .参考答案:【知识点】与圆有关的比例线段;圆的切线的性质定理的证明.N1答案解析:∵,∴可设AF=4k ,BF=2k ,BE=k >0.由相交弦定理可得:,∴,解得.∴.∴,根据切割线定理可得:,解得.故答案为。
广东省湛江市2021届高三一模数学试题(解析版)
湛江市2021年普通高考测试(一)数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知()RA B =∅,则下面选项中一定成立的是( )A. AB A = B. AB B =C. A B B ⋃=D. A B R =【答案】B 【解析】【分析】通过取特殊集合,依次分析各选项即可. 【详解】对于A 选项,由AB A =得A B ⊂,不妨设{}{}1,0A x x B x x =>=>,则(){}01RA B x x ⋂=<≤≠∅,故不满足,故A 选项错误;对于B 选项,由AB B =得B A ⊂,显然()R A B =∅,满足,故B 选项正确;对于C 选项,由A B B ⋃=得A B ⊂,由A 选项知其不满足,故C 选项错误; 对于D 选项,由AB R =,不妨设{}{}1,0A x x B x x =≤=>,显然(){}1R A B x x ⋂=>≠∅,故不满足,故D 选项错误.故选:B.2. 中国数学奥林匹克由中国数学会主办,是全国中学生级别最高、规模最大、最具影响力的数学竞赛.某重点高中为参加中国数学奥林匹克做准备,对该校数学集训队进行一次选拔赛,所得分数的茎叶图如图所示,则该集训队考试成绩的众数与中位数分别为( )A. 85,75B. 85,76C. 74,76D. 75,77【答案】B 【解析】【分析】根据成绩出现次数最多的为众数,根据从小到大第七个和第八个数据的平均数为中位数求解即可. 【详解】解:由茎叶图知,出现的数据最多的是85,故众数为85; 由于数据总数为14个,故中位数为第七个和第八个数据的平均数,即:7577762+= 故选:B.3. 已知圆锥的轴截面是边长为8的等边三角形,则该圆锥的侧面积是( ) A. 64π B. 48πC. 32πD. 16π【答案】C 【解析】【分析】由题意可得,圆锥的侧面展开图是扇形,半径为母线8,弧长为圆锥底面周长,进而可得结果. 【详解】由题意可得,圆锥底面直径为,8半径为4,母线长为8,圆锥的侧面展开图是扇形,半径为母线8,弧长为圆锥底面周长248ππ=⨯=l 扇形面积为:1=88322ππ=S 故选:C4. 将函数f (x )=sin x 的图象上所有点的横坐标变为原来的1ω(ω>0),纵坐标不变,得到函数g (x )的图象,若函数g (x )的最小正周期为6π,则( ) A. ω=13B. ω=6C. ω=16D. ω=3【答案】A 【解析】【分析】由伸缩变换求出()g x 的解析式,再由周期公式得出答案. 【详解】由题意可知()sin g x x ω=,由26ππω=,解得13ω=故选:A5. 已知等比数列{a n }的前n 项和为S n ,则“S n +1>S n ”是“{a n }单调递增”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】D 【解析】【分析】由110++>⇒>n n n S S a ,举反例102=>n n a 和12n na =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n n a ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n n a =-,但是1n n S S +<,故不必要; 故选:D6. 已知抛物线C :x 2=-2py (p >0)的焦点为F ,点M 是C 上的一点,M 到直线y =2p 的距离是M 到C 的准线距离的2倍,且|MF |=6,则p =( ) A. 4 B. 6C. 8D. 10【答案】A 【解析】【分析】利用已知条件结合抛物线的定义求解即可.【详解】设()00,M x y ,则0026262p y p y -=⨯⎧⎪⎨-=⎪⎩,解得4p =故选:A7. 已知a =3.20.1,b =log 25,c =log 32,则( ) A. b >a >c B. c >b >aC. b >c >aD. a >b >c【答案】A 【解析】【分析】由指数函数和对数函数得单调性即可得出结果. 【详解】00.10.51=3.2 3.2 3.2212<<<⇒<<a22log 5log 422>=⇒>b3330=log 1<log 2log 3101<=⇒<<c所以b a c >> 故选:A8. 已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆C 于A ,B 两点,若2BA BF ⋅=0,且|BF 2|,|AB |,|AF 2|成等差数列,则C 的离心率为( )A.B.C.D.12【答案】A 【解析】【分析】由向量知识得出290ABF ∠=︒,再由等差数列的性质、勾股定理、椭圆的定义得出2a c =,最后由离心率公式得出答案.【详解】因为2BA BF ⋅,所以290ABF ∠=︒由|BF 2|,|AB |,|AF 2|成等差数列,设22,||,2BF x AB x d AF x d ==+=+ 在2Rt ABF 中,222()(2)x x d x d ++=+,解得3x d = 即223,||4,5BF d AB d AF d ===由椭圆的定义得2ABF 的周长为1212224BF BF AF AF a a a +++=+= 即3454,3d d d a a d ++==在直角三角形12BF F 中,21BF a BF ==,122FF c =,则222(2)a a c +=,故2a c =即2c e a ==故选:A【点睛】关键点睛:解决本题的关键在于利用勾股定理、等差中项的性质、椭圆的定义得出,a c 的齐次方程,进而得出离心率.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若复数3z i =,则( ) A. |z |=2B. |z |=4C. z 的共轭复数z 3iD. 2423z i =-【答案】AC 【解析】【分析】根据复数的知识对选项进行分析,由此确定正确选项.【详解】依题意2z==,故A选项正确,B选项错误.z i=,C选项正确.)22232z i i ==-+=-,D选项错误.故选:AC 10. 已知(1-2x)2021=a o+a1x+a2x2+a3x3+…+a2021x2021.()A. 展开式中所有项的二项式系数和为22021 B. 展开式中所有奇次项系数和为2021312-C. 展开式中所有偶次项系数和为2021312- D. 320211223202112222a a a a+++⋅⋅⋅=-【答案】ABD 【解析】【分析】由二项式系数之和,当1x=-,2021012320213=-+-+-a a a a a①当1x=,202101232021(1)-=+++++a a a a a②,由①+②,①-②;令0x=,则0=1a,令12x=,则2021120220210222=++++a a a a ,即可得结果. 【详解】A .二项式系数之和为0120212021202120212021=2+++C C C,故A正确;B.2021220210122021(12)x a a x a x a x-=++++当1x=-,2021012320213=-+-+-a a a a a①当1x=,202101232021(1)-=+++++a a a a a②①+②,可得当20212021022*********31312()2--=+++⇒+++=a a a a a a,故B正确;C.①-②202120211320211320213+13+12()2=-+++⇒+++=-a a a a a a,故C错误;D.2021220210122021(12)x a a x a x a x-=++++令0x=,则=1a令12x=,则202112022021222=++++aa aa20211222021=-1222+++a a a ,故D 正确 故答案为:ABD11. 已知函数f (x )=x 3-3ln x -1,则( ) A. f (x )的极大值为0 B. 曲线y =f (x )在(1,f (1))处的切线为x 轴 C. f (x )的最小值为0 D. f (x )在定义域内单调【答案】BC 【解析】【分析】直接对f (x )=x 3-3ln x -1,求出导函数,利用列表法可以验证A 、C 、D;对于B:直接求出切线方程进行验证即可.【详解】f (x )=x 3-3ln x -1的定义域为()0+∞,,()()23333=1f x x x x x'=-- 令()()23333=1=0f x x x x x'=--,得1x =, 列表得:所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调;故C 正确,A 、D 错误; 对于B:由f (1)=0及()10f '=,所以y =f (x )在(1,f (1))处的切线方程()001y x -=-,即0y =.故B 正确. 故选:BC【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.12. 在梯形ABCD 中,AB =2AD =2DC =2CB ,将BDC 沿BD 折起,使C 到C '的位置(C 与C '不重合),E ,F 分别为线段AB ,AC '的中点,H 在直线DC '上,那么在翻折的过程中( ) A. DC '与平面ABD 所成角的最大值为6πB. F 在以E 为圆心的一个定圆上C. 若BH 丄平面ADC ',则'3DH C H =D. 当AD 丄平面BDC '时,四面体C '-ABD 的体积取得最大值 【答案】ACD 【解析】【分析】根据线面角的知识确定A 选项的正确性;根据圆锥的几何性质判断B 选项的正确性;求得''2DC C H =,由此确定C 选项的正确性;结合锥体体积求法,确定D 选项的正确性.【详解】如图,在梯形ABCD 中,因为//,222AB CD AB AD DC CB ===,E 是AB 的中点, 所以//,CD BE CD BE =,所以四边形BCDE 是菱形,所以BC DE =, 由于AD DE AE ==,所以三角形ADE 是等边三角形, 所以12DE AB =,故AD BD ⊥,6BDC DBC π∠=∠=. 在将BDC 沿BD 翻折至'BDC 的过程中,,BDC DBC ∠∠的大小保持不变,由线面角的定义可知,'DC 与平面ABD 所成角的最大值为6π,故A 正确. 因为DBC ∠大小不变,所以在翻折的过程中,'C 的轨迹在以BD 为轴的一个圆锥的底面圆周上,而EF 是'ABC 的中位线,所以点F 的轨迹在一个圆锥的底面圆周上,但此圆的圆心不是点E ,故B 不正确.当BH ⊥平面'ADC 时,BH DH ⊥.因为'3HC B π∠=,所以'''2DC BC C H ==,所以'3DH C H =,故C 正确.在翻折的过程中,'BC D 的面积不变,所以当AD ⊥平面'BDC 时,四面体'C ABD -的体积取得最大值,故D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 一条与直线x -2y +3=0平行且距离大于5的直线方程为_______________.【答案】290x y -+=(答案不唯一) 【解析】【分析】由平行关系设出直线方程,再由距离公式求出b 的范围,进而得出其方程. 【详解】设该直线方程为20x y b -+=由距离公式可知55>,解得2b <-或8b >则该直线可为290x y -+=故答案为:290x y -+=(答案不唯一)14. 若向量,a b 满足()4,22,8a b a b a ==+⋅=,则,a b 的夹角为____,a b += _____.【答案】 (1). 34π(2). 22【解析】【分析】利用向量运算求得cos ,a b ,由此求得,a b ;利用()2a b a b +=+来求得结果.【详解】依题意()8a b a +⋅=,22cos ,8a a b a a b a b +⋅=+⋅⋅=,解得2cos ,2a b =-,所以3,4a b π=. ()2222222cos ,22a b a b a a b b a a b a b b +=+=+⋅+=+⋅⋅+=.故答案为:34π;2215. 若某商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x2 4 5 6 8 y2040607080根据上表,利用最小二乘法求得y 关于x 的回归直线方程为y =b x +1.5,据此预测,当投人10万元时,销售额的估计值为________万元. 【答案】106.5 【解析】【分析】先求出,x y 得到10.5b =,即得解. 【详解】由题得1(24568)5,5x =++++= 1(2040607080)545y =++++=,所以54=5b +1.5,所以10.5b =, 所以y =10.5x +1.5,当10x =时,10.510 1.5106.5y =⨯+=. 故答案为:106.5【点睛】结论点睛:回归方程经过样本中心点(,)x y ,注意灵活运用这个性质解题.16. 已知y =f (x )的图象关于坐标原点对称,且对任意的x ∈R ,f (x +2)=f (-x )恒成立,当10x -≤<时,f (x )=2x ,则f (2021)=_____________. 【答案】12- 【解析】【分析】由已知条件推出函数()f x 的周期,利用函数的周期和奇偶性求值即可. 【详解】y =f (x )的图象关于坐标原点对称,则()()f x f x =--又()()2f x f x +=-,可得()()()22f x f x f x +=-=-,即()f x 的周期为4()()()()1202145051112f f f f =⨯+==--=-故答案为:12-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .【答案】(1)cos 4ADB ∠=;(2)CD =【解析】【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD .【详解】(1)ABD △中,sin sin AB BD ADB BAD =∠∠,即2sin 2ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos 4ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅222424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =18. 已知数列{a n }满足1223n n n a a a ++=-,a 2-a 1=1. (1)证明:数列{}1n n a a +-是等比数列; (2)若a 1=12,求数列{a n }的通项公式. 【答案】(1)证明见解析;(2)1122n n a -=-. 【解析】【分析】(1)利用()2112n n n n a a a a +++-=-证得结论成立. (2)利用累加法求得{}n a 的通项公式.【详解】(1)依题意1223n n n a a a ++=-,所以()2112n n n n a a a a +++-=-,故数列{}1n n a a +-是首项为211a a -=,公比为2的等比数列,所以112n n n a a -+-=. (2)由(1)得112n n n a a -+-=,所以()2122n n n a a n ---=≥,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+23012222n n --=++++11121121222n n ---=+=--. 即1122n n a -=-. 19. 如图,平面ABCD ⊥平面ABE ,AD //BC ,BC ⊥AB ,AB =BC =2AE =2,F 为CE 上一点,且BF ⊥平面ACE .(1)证明:AE ⊥平面BCE ;(2)若平面ABE 与平面CDE 所成锐二面角为60°,求AD . 【答案】(1)见解析;(2)15【解析】【分析】(1)由平面ABCD ⊥平面ABE 证明BC ⊥面ABE ,得到BC ⊥AE ,由BF ⊥平面ACE ,得到BF ⊥AE ,从而证明AE ⊥平面BCE .(2)过A 作Ax 垂直AB ,以Ax 为x 轴正方向,以AB 为y 轴正方向,以AD 为z 轴正方向,建立直角坐标系,用向量法计算可得.【详解】(1)∵平面ABCD ⊥平面ABE ,AB 为平面ABCD 和平面ABE 的交线,BC ⊥AB , ∴BC ⊥面ABE ,∴BC ⊥AE. 又BF ⊥平面ACE ,∴BF ⊥AE . 又BCBF B =,∴AE ⊥平面BCE .(2)如图示,过A 作Ax 垂直AB ,以Ax 为x 轴正方向,以AB 为y 轴正方向,以AD 为z 轴正方向,建立空间直角坐标系,则()()()()10,0,0,0,2,0,,0,0,2,2,0,0,,22A B E C D m ⎛⎫⎪ ⎪⎝⎭∴()33,,2,0,2,222CE CD m ⎛⎫=-=-- ⎪ ⎪⎝⎭设(),,m x y z=为平面CDE 的一个法向量,则·0·0m CE m CD ⎧=⎨=⎩,即()32020220x y z x y m z ⎧++=⎪⎨⎪⨯-+-=⎩, 不妨取z =2,则3,2,23m m m ⎛⎫=+- ⎪ ⎪⎭显然平面ABE 的一个法向量()0,0,2n BC ==∴cos ,cos60m n m n m n===⨯⎛,解得:m =3. 故AD 长为3. 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.20. 某校针对高一学生安排社团活动,周一至周五每天安排一项活动,活动安排表如下: 要求每位学生选择其中的三项,学生甲决定选择篮球,不选择书法;乙和丙无特殊情况,任选三项. (1)求甲选排球且乙未选排球的概率;(2)用X 表示甲、乙、丙三人选择排球的人数之和,求X 的分布列和数学期望. 【答案】(1)415;(2)分布列见解析,2815【解析】【分析】(1)设事件,分别求出甲、乙同学选排球的概率,由相互独立事件同时发生的概率,即可得出结果.(2)求出丙同学选排球的概率,X 的可能取值为0,1,2,3,分别求出概率,进而可得结果. 【详解】(1)设A 表示事件“甲同学选排球” B 表示事件“乙同学选排球”则1224233523(),()35C C P A P B C C ====因为事件A ,B 相互独立,所以甲同学选排球且乙同学未选排球的概率为:234()()()(1)3515==⨯-=P AB P A P B(2)设C 表示事件“丙同学选排球”,则24353()5C P C C ==X 的可能取值为0,1,2,3则2334(0)(1)(1)(1)35575==-⨯-⨯-=p X ;2332332334(1)(1)(1)+(1)(1)+(1)(1)35535535515==⨯-⨯--⨯⨯--⨯-⨯=p X23323323311(2)(1)+(1)+(1)35535535525==⨯⨯--⨯⨯⨯-⨯=p X 2336(3)35525==⨯⨯=p X X 的分布列为数学期望为()01237525252515=⨯+⨯+⨯+⨯=E X 21. 已知双曲线C : 2222x y a b-=1(a ,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),其中c >0, M (c ,3)在C 上,且C 的离心率为2. (1)求C 的标准方程;(2)若O 为坐标原点,∠F 1MF 2的角平分线l 与曲线D : 2222x y c b+=1的交点为P ,Q ,试判断OP 与OQ是否垂直,并说明理由.【答案】(1)2213y x -=;(2)OP 与OQ 不垂直,答案见解析.【解析】【分析】(1)利用点在曲线上和离心率,解出,,a b c,进而得出双曲线方程;(2)利用角平分线定理求出N点坐标,联立直线MN与曲线D的方程,由根与系数的关系,结合平面向量的数量积得出结论.【详解】(1)由题意得222912cabca⎧-=⎪⎪⎨⎪=⎪⎩,即2941b-=,解得3b=,又222c a b=+,可得1,2a c==,故双曲线C的标准方程为2213yx-=;(2)设角平分线与x轴交于点N,根据角平分线性质可得1122F N MFNF MF=,()2,3M,1122515,3,,,032F NF M F M NF N⎛⎫∴===∴ ⎪⎝⎭,1:2212MN y x x⎛⎫=-=-⎪⎝⎭设()()1122,,,P x y Q x y,联立方程2221143y xx y=-⎧⎪⎨+=⎪⎩,可得2191680x x--=12121619819x xx x⎧+=⎪⎪∴⎨⎪=-⎪⎩,()()()121212122121421y y x x x x x x=--=-++()1212121281652152101919OP OQ x x y y x x x x⎛⎫∴⋅=+=-++=⨯--⨯+≠⎪⎝⎭即OP与OQ不垂直.【点睛】关键点点睛:本题考查双曲线的标准方程,考查直线与椭圆的位置关系,考查平面向量的数量积,解决本题的关键点是利用角平分线定理求出∠F1MF2的角平分线与x轴交点N,利用直线与曲线方程联立写出根与系数的关系,借助于平面向量的数量积得出结论,考查学生逻辑思维能力和计算能力,属于中档题.22. 已知函数f (x )=e x ,g (x )=2ax +1.(1)若f (x )≥g (x )恒成立,求a 的取值集合;(2)若a >0,且方程f (x )-g (x )=0有两个不同的根x 1,x 2,证明:122x x +<ln 2a . 【答案】(1)12⎫⎧⎨⎬⎩⎭;(2)见解析 【解析】【分析】(1)构造函数()()()21xu x f x g x e ax =-=--,求导,分类讨论得函数最值即可求解;(2)由题意得12122121x x e ax e ax ⎧=+⎨=+⎩,21212x x e e a x x -=-,等价证明()21212211x x x x x x e e --⎡⎤-<-⎣⎦,令2102x x t -=>,构造函数()212t t g t e te =--求导证明即可【详解】(1)令()()()21xu x f x g x e ax =-=--,()'2xu x e a =-当0,a ≤ ()'0u x >恒成立,()u x 在R 上单调递增,()00u =,当0x < ()0u x <不合题意,故舍去当0,a > ()'0u x =则()ln 2x a =,故当()ln 2,x a < ()'0u x <,()u x 单调递减;当()ln 2,x a >()'0u x >;()u x 单调递增,故()()()()max ln 222ln 210u x u a a a a ==--≥令()()'ln 1,ln 0,1h x x x x h x x x =--∴=-==,故()h x 在()0,1 递增,在()1,+∞递减,故()()10,h x h ≤=即()ln 10,h x x x x =--≤即()22ln 21a a a --0≤,故21a =即12a =故a 的取值集合为12⎫⎧⎨⎬⎩⎭(2)方程f (x )-g (x )=0有两个不同的根x 1,x 2不妨令x 1<x 2,1212121221221x x x x e ax e e a x x e ax ⎧=+-∴∴=⎨-=+⎩ , 若证122x x+<ln 2a .即证()()1212212121212222121211x x x x x x x x x x x x e e ex x e e e x x e e x x ++---⎡⎤<⇔-<-⇔-<-⎣⎦- 令2102x x t-=>,即证212t t e te ->,令()()()2'12,21ttttg t e te g t e e t =--=--因为1t e t >+,故()'0g t >,故()g t 单调递增,()()00g t g >=得证【点睛】本题关键是利用12122121xxe axe ax⎧=+⎨=+⎩,21212x xe eax x-=-,等价证明()21212211x xx xx x e e--⎡⎤-<-⎣⎦,构造函数证明。
广东省湛江市数学高三上学期理数第一次月考试卷
广东省湛江市数学高三上学期理数第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2016·浙江文) 已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=()A . {1}B . {3,5}C . {1,2,4,6}D . {1,2,3,4,5}2. (2分)(2020·茂名模拟) 为虚数单位,复数在复平面内对应的点所在象限为()A . 第二象限B . 第一象限C . 第四象限D . 第三象限3. (2分) (2018高一下·庄河期末) 在中,分别为三个内角所对的边,设向量,,若,则角的大小为()A .B .C .D .4. (2分) (2018高一上·营口期中) 设 , 则“ ”是“ ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)(2019·浙江) 函数f(x)=loga(4-x)(a>0,且a≠1)的定义域是()A . (0,4)B . (4,+∞)C . (-∞,4)D . (-∞,4)∪(4,+∞)6. (2分)为了得到函数的图象,可以把函数的图象上所有的点()A . 向右平行移动2个单位长度B . 向右平行移动1个单位长度C . 向左平行移动2个单位长度D . 向左平行移动1个单位长度7. (2分) (2016高一下·长春期中) 在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A . ﹣B .C . 1D .8. (2分)设,则函数的零点位于区间()B .C .D .9. (2分)函数的零点的个数为()A . 0B . 1C . 2D . 310. (2分) (2019高三上·洛阳期中) 已知单位向量、满足,则、夹角为()A .B .C .D .11. (2分)对于函数,如果存在区间,同时满足下列条件:①在内是单调的;②当定义域是时,的值域也是,则称是该函数的“和谐区间”.若函数存在“和谐区间”,则的取值范围是()A .B .C .12. (2分)函数的单调递增区间是()A .B . (0,3)C . (1,4)D .二、填空题 (共4题;共4分)13. (1分)(2020·海南模拟) 曲线在点处的切线方程为________.14. (1分)(2019·揭阳模拟) 已知平面向量,且∥ ,则实数m的值为________.15. (1分) (2017高一上·江苏月考) 已知是定义在上的增函数,且,则的取值范围为________.16. (1分) (2017高一上·江苏月考) 将函数向右平移个单位后,所得函数解析式为________.三、解答题 (共6题;共40分)17. (5分) (2019高一下·上海月考) 已知(1)求的值;(2)若,且角终边经过点,求的值18. (10分)(2020·华安模拟) 已知的内角、、所对的边分别为,,,且.(1)若,角,求角的值;(2)若,,求,的值.19. (5分) (2016高二上·赣州开学考) 在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足= , =3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.20. (5分) (2017高三上·辽宁期中) 已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.21. (10分) (2017高二下·芮城期末) 已知函数在处有极值 .(1)求,的值;(2)判断函数的单调性并求出单调区间.22. (5分)已知函数f(x)=x2+2x,g(x)+f(﹣x)=0.(1)求函数g(x)的解析式;(2)解不等式g(x)≥f(x)﹣|x﹣1|;(3)若h(x)=g(x)﹣λf(x)+1在[﹣l,1]上单调递增,求实数λ的范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分) 17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、。
2021-2022学年广东省湛江市第五中学高三数学文上学期期末试卷含解析
2021-2022学年广东省湛江市第五中学高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 抛物线y2=8x的焦点到双曲线x2﹣=1的一条渐近线的距离为()A. 1 B.2 C.D.参考答案:C略2. 已知一个球的表面积为16π,则这个球的体积为()A πB πC πD π参考答案:B略3. 已知,定义运算设则当时,是的值域为A. B. C. D.参考答案:A略4. 若将函数表示为,其中为实数,则().A. 15B.5C. 10D.20参考答案:C略5. 直线y=a与函数f(x)=x3-3x的图像有相异的三个公共点,则a的取值范围是________.参考答案:略6. 过双曲线(a>0,b>0)的左焦点F,作圆x2+y2=的一条切线,切点为E,延长FE 与双曲线的右支交于点P,若E是线段FP的中点,则该双曲线的离心率为()A.B.C.D.参考答案:A【考点】双曲线的简单性质.【分析】通过双曲线的特点知原点O为两焦点的中点,利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF,通过勾股定理得到a,c的关系,进而求出双曲线的离心率.【解答】解:如图,记右焦点为F′,则O为FF′的中点,∵E为PF的中点,∴OE为△FF′P的中位线,∴PF′=2OE=a,∵E为切点,∴OE⊥PF,∴PF′⊥PF,∵点P在双曲线上,∴PF﹣PF′=2a,∴PF=PF′+2a=3a,在Rt△PFF′中,有:PF2+PF′2=FF′2,∴9a2+a2=4c2,即10a2=4c2,∴离心率e===,故选:A.【点评】本题主要考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a,b,c的关系,注意解题方法的积累,属于中档题.7. 已知为虚数单位,复数,则复数的虚部是A.B.C.D.参考答案:B略8. (00全国卷文)已知,那么下列命题成立的是(A)若、是第一象限角,则(B)若、是第二象限角,则(C)若、是第三象限角,则(D)若、是第四象限角,则参考答案:答案:D9. 对于非空集合、,定义运算:,已知,,其中、、、满足,,则A. B. C.D.参考答案:B10. 执行如图所示的程序框图,若输出k的值为16,则判断框内可填入的条件是()A.B.C.D.参考答案:D【考点】程序框图.【分析】程序运行的S=1××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=1××…×,∵输出的k=16,∴S=1××…×=,∴判断框的条件是S<.故选D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 若,则=。
广东省湛江市第五中学高三数学理测试题含解析
广东省湛江市第五中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 取棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为;⑤体积为。
以上结论正确的是()A.①②⑤B.①②③C.②④⑤D.②③④⑤参考答案:A2. 集合,则集合P∩Q的交点个数是()A.0 个B.1个C.2个D.3个参考答案:B3. 已知等差数列{a n}的前n项和为S n,,,则等于()A. B. 1 C. 2 D. 3参考答案:B【分析】根据数列的通项公式可求得的值,再代入前项和公式,即可得答案;【详解】,故选:B.【点睛】本题考查等差数列的通项公式和前项和公式,考查运算求解能力,属于基础题.4. 已知,若是的最小值,则的取值范围为A.[-1,2] B.[-1,0] C.[1,2] D.[0,2]参考答案:D略5.参考答案:C6. 已知S n是非零数列{a n}的前n项和,且S n=2a n-1,则S2011等于A.1-22010 B.22011-1 C.22010-1 D.1-22011参考答案:B当n=1时,S1=2a1-1,得S1=a1=1;当n≥2时,a n=S n-S n-1,代入S n=2a n-1,得S n =2S n-1+1,即S n+1=2(S n-1+1),∴S n+1=(S1+1)·2n-1=2n,∴S2011=22011-1.7. 将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标缩短到原来的(纵坐标不变),所得图像的函数解析式是().A.B.C.D参考答案:C解:.故选.8. 已知变量x,y之间具有线性相关关系,其回归方程为,若,,则b 的值为( )A.1 B.3 C.-3 D.-1参考答案:B略9. 设集合A={0,1,2,4},B=,则=A.{1,2,3,4}B. {2,3,4}C. {2,4}D. {}参考答案:C,故选C.10. 设集合,B={x|1<x<5,x∈R},若A B=,则实数a的取值范围是A. {a|0≤a≤6}B. {a|a≤2,或a≥4}C. {a|a≤0,或a≥6}D. {a|2≤a≤4}参考答案:C,因为,所以有或,即或,选C.二、填空题:本大题共7小题,每小题4分,共28分11. 已知全集U=R,集合A={x|x≤-2,x R},B={x|x<1,x R},则(?U A)∩B =▲.参考答案:12. 设变量满足约束条件,则的最大值是参考答案:513. 函数有如下命题:(1)函数图像关于轴对称(2)当时,是增函数,时,是减函数(3)函数的最小值是(4)当或时,是增函数,其中正确命题的序号。
广东省湛江市东里中学高三数学理月考试题含解析
广东省湛江市东里中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图像如下图,则( )A.B.C. D.参考答案:D2. “”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:D略3. 已知整数数列共5项,其中,且对任意都有,则符合条件的数列个数为()A.24 B.36 C.48 D.52参考答案:4. 函数的大致图象为参考答案:C5. 设,则等于 ( )A. B. C.D.参考答案:B,所以,选B.6. “成立”是“成立”的A.既不充分也不必要条件B.充分不必要条件C.充分必要条件D.必要不充分条件参考答案:D略7. 已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计的值约为()A.B.C.D.参考答案:B【考点】CE:模拟方法估计概率.【分析】根据几何概型的概率计算公式得出阴影部分的面积,再根据定积分的几何意义得出答案.【解答】解:矩形部分的面积为S矩形=2×3=6,由题意可知: ==,∴S阴影==.∴=S阴影=.故选B.8. 设函数f(x)=log a(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b等于()A.6 B.5 C.4 D.3参考答案:C【考点】反函数.【分析】本题考查了互为反函数的函数图象之间的关系、指数式和对数式的互化等函数知识;根据反函数的图象过点(2,8),则原函数的图象过(8,2)点,再由函数f(x)=log a(x+b)(a >0,a≠1)的图象过点(2,1),构建方程即可求得a,b的值.【解答】解:函数f(x)=log a(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则,∴,a=3或a=﹣2(舍),b=1,∴a+b=4,故选C.9. 函数的图象是()参考答案:C10. 已知点M(x,y)是平面区域内的动点,则的最大值是(A)10 (B) (C) (D)13参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 函数y=sin(πx+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,记∠APB=θ,则sin2θ的值是.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由题意,|AB|=2,P是图象的最高点,故P是纵坐标为1,设∠BAP=α,∠PBA=β,那么:θ=π﹣(α+β),过P作AB的垂线.即可求sinα,sinβ,cosα,cosβ,从而求sin2θ的值.【解答】解:由题意,函数y=sin(πx+φ),T=,∴|AB|=2,P是图象的最高点,故P是纵坐标为1,设∠BAP=α,∠PBA=β,那么:θ=π﹣(α+β),过P作AB的垂线交于C,|AC|=,|AP|=,|PC|=1,那么:sinα=,cosα=,|BC|=,|PB|=,那么:sinβ=,cosβ=,则:sin2θ=2sinθcosθ=﹣2sin(α+β)cos(α+β)=﹣2(sinαcosβ+cosαsinβ)(cosαcosβ﹣sinαsinβ)=,故答案为:.【点评】本题考查了三角函数图象及性质的运用和计算能力,属于中档题.12.下列五个命题:①分别和两条异面直线都相交的两条直线一定是异面直线②函数是奇函数③直线是函数的图象的一条对称轴④若,则的最大值为⑤函数的最小正周期为其中不正确的命题的序号是______________(把你认为不正确的命题序号全填上)参考答案:答案:①④⑤13. 在平面边形ABCD中,,则AD的最小值为_____.参考答案:分析:作出图形,以为变量,在和中,分别利用余弦定理和正弦定理将表示为关于的函数,再利用三角恒等变换和三角函数的最值进行求解.详解:设,在中,由正弦定理,得,即,即,由余弦定理,得;在中,由余弦定理,得,,其中, 则,即的最小值为.点睛:(1)解决本题的关键是合理选择为自变量,再在和中,利用正弦定理、余弦定理进行求解;(2)利用三角恒等变换和三角函数的性质求最值时,往往用到如下辅助角公式:,其中.14. 已知实数x ,y 满足条件则z=x 2+(y+1)2的最小值为.参考答案:5【考点】7C :简单线性规划.【分析】先根据条件画出可行域,z=x 2+(y+1)2,再利用几何意义求最值,只需求出可行域内的点到点B (0,﹣1)距离的最值,从而得到z 最值即可.【解答】解:先根据实数x ,y 满足条件画出可行域,z=x 2+(y+1)2,表示可行域内点B 到A (0,﹣1)距离的平方,当z 是点A 到直线2x+y ﹣4=0的距离的平方时,z 最小,最小值为d 2==5,给答案为:5.15. 已知定义在R 上的增函数满足,若实数a ,b 满足不等式,则的最小值是______.参考答案:8 【分析】由知,可将不等式变为,利用函数单调性可得,根据线性规划的知识,知的几何意义为原点与可行域中的点的距离的平方,从而可知所求最小值为到直线的距离的平方,利用点到直线距离公式求得结果.【详解】由得:等价于为上的增函数,即则可知可行域如下图所示:则的几何意义为原点与可行域中的点的距离的平方可知到直线的距离的平方为所求的最小值本题正确结果:8【点睛】本题考查函数单调性的应用、线性规划中的平方和型的最值的求解,关键是能够利用平方和的几何意义,将问题转化为两点间距离的最值的求解问题.16. 已知为虚数单位,复数的虚部是参考答案:217. 已知数列{a n }中,,是数列{a n }的前n 项和,且对任意的,都有,则=_____参考答案:【分析】令,,,可知;假设,,利用可求得,得到和;根据可求得,进而得到.【详解】若,,,则令,则,经验证,时,满足综上所述:本题正确结果:【点睛】本题考查利用数列前项和求解数列通项的问题,关键是能够通过赋值的方式得到.三、 解答题:本大题共5小题,共72分。
广东省湛江市第五中学2015届高三1月月考卷理科数学考试试题(无答案)
湛江市第五中学高三1月月考卷理科数学一、选择题(本大题共8小题,每小题5分,满分40分.1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i + 2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4,4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 7 6. 已知平面α、β和直线m ,给出条件:①//m α;②m α⊥;③m α⊂;④αβ⊥两个同时成立能推导出//m β的是( )A .①④B .①⑤C .②⑤D .③⑤7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为 ( ).A 7 .B 9 .C 10 .D 158. 设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有( ) A .2个 B .4个 C .6个 D .8个二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9. 若二项式()*1(n n N x+∈的展开式中的第5项是常数项, 则n =___________.10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.11.若等差数列{}n a 和等比数列{}n b 满足11221,2,a b a b ====则55a b = .12.按右面的程序框图运行后,输出的S 应为__________. 13.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ===︒,则ABC ∆的面积等于________.14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参第17题图数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________. (第15题图)三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知函数()sin(),(0,0,(0,))2f x A x A πωϕωϕ=+>>∈.的部分图象如图所示,其中点P 是图象的一个最高点。
广东省湛江市2023届高三一模数学含答案
湛江市2023年普通高考测试(一)数学2023.3本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡指定位置上,将条形码横贴在答题卡右上角“贴条形码区”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的清洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,若1i i1i b+=-,则实数b=()A.1B.1-C.2D.2-2.已知R为实数集,集合211A xx⎧⎫=<⎨⎬-⎩⎭,1242xB x⎧⎫=<<⎨⎬⎩⎭,则图中阴影部分表示的集合为()A.{}13x x-<≤ B.{}23x x<≤C.{}12x x≤< D.{}12x x-<<3.小明在设置银行卡的数字密码时,计划将自己出生日期的后6个数字0,5,0,9,1,9进行某种排列得到密码.如果排列时要求两个9相邻,两个0也相邻,则小明可以设置多少个不同的密码()A.16B.24C.166D.1804.在平行四边形ABCD中,E为边BC的中点,记AC a=,DB b=,则AE=()A.1124a b - B.2133a b + C.12a b+ D.3144a b+ 5.元宵节是春节之后的第一个重要节日,元宵节又称灯节,很多地区家家户户都挂花灯.下图是小明为自家设计的一个花灯,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为40cm 和20cm ,正六棱台与正六棱柱的高分别为10cm 和60cm ,则该花灯的体积为()A.3B.3C.3D.36.已知F 为抛物线2:8C x y =的焦点,过F 的直线l 与抛物线C 交于A ,B 两点,与圆()2224x y +-=交于D ,E 两点,A ,D 在y 轴的同侧,则AD BE ⋅=()A.1B.4C.8D.167.已知0.199,log 10,lg1111a b c ⎛⎫=== ⎪⎝⎭,则()A.b c a>> B.c b a>> C.b a c>> D.c a b>>8.已知函数()f x 及其导函数()f x '的定义域均为R ,且()1f x -为奇函数,()()22f x f x ''-+=,()12f '-=,则()25121i f i ='-=∑()A.13B.16C.25D.51二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y b x a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y b x a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A. 12aa > B.12bb > C.12r r < D.2212R R >10.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有()A.1//A B 平面1AEC B.EF 与1BC 所成的角为30°C.EF ⊥平面1B ACD.平面1AEC 截正方体1111ABCD A C D -的截面面积为11.已知0ω>,函数()πcos 3f x x ω⎛⎫=+⎪⎝⎭,下列选项正确的有()A.若()f x 的最小正周期2T =,则πω=B.当2ω=时,函数()f x 的图象向右平移π3个单位长度后得到()cos 2g x x =的图象C.若()f x 在区间2π,π3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是51,3⎡⎤⎢⎥⎣⎦D.若()f x 在区间()0,π上只有一个零点,则ω的取值范围是17,66⎛⎤⎥⎝⎦12.已知12,F F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,点()11,A x y 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点()2,0B x ,则下列结论正确的有()A.20x a<<B.12F AB F AB ∠=∠C.12x x ab=D.若cos F AF ∠=1213,且123F B BF = ,则双曲线C 的离心率2e =三、填空题:本题共4小题,每小题5分,共20分.13.已知n S 为等差数列{}n a 的前n 项和,若31510,0a S ==,则16S =______.14.cos 70cos 20cos 65︒-︒=︒______.15.若函数()2e xf x ax a =--存在两个极值点12,x x ,且212x x =,则=a ______.16.已知函数()21f x x =+,记()()()()()2221143f x f f x x x ==++=+为函数()f x 的2次迭代函数,()()()()()()3421387f x f f f x x x ==++=+为函数()f x 的3次迭代函数,…,依次类推,()()()()()()n n f x f f f f x =⋅⋅⋅⋅⋅⋅个为函数()f x 的n 次迭代函数,则()()n f x =______;()()10032f 除以17的余数是______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知π2cos 3b C a ⎛⎫=- ⎪⎝⎭.(1)求A ;(2)若△ABC 的面积为332,2b =,求a .18.已知n S ,为数列{}n a 的前n 项和,242=-+n n S a n .(1)证明:数列{}4n a +为等比数列;(2)设数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,证明:16nT <.19.如图,在四棱锥P ABCD -中,PAB 是边长为2的等边三角形,底面ABCD为平行四边形,且AD =PB BC ⊥,=45ADC ∠︒.(1)证明:点P 在平面ABCD 的正投影在直线AD 上;(2)求平面PBC 与平面PDC 夹角的余弦值.20.某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:cm ),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数x 和方差2s .(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布()2,N μσ,用直方图的平均数估计值x 作为μ的估计值 μ,用直方图的标准差估计值s 作为σ估计值 σ.(i )为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了()3,3μσμσ-+之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:0.81.20.951.011.231.12 1.330.97 1.210.83利用 μ和 σ判断该生产周期是否需停止生产并检查设备.(ii )若设备状态正常,记X 表示一个生产周期内抽取的10个零件关键指标在()3,3μσμσ-+之外的零件个数,求()1P X ≥及X 的数学期望.参考公式:直方图的方差()221nii i s x x p ==-∑,其中i x 为各区间的中点,i p 为各组的频率.参考数据:若随机变量X 服从正态分布()2,N μσ,则()330.9973P X μσμσ-≤≤+≈0.105≈,0.110≈,90.99730.9760≈,100.99730.9733≈.21.已知12,F F 分别为椭圆()2222:10x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.22.已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.湛江市2023年普通高考测试(一)数学2023.3本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡指定位置上,将条形码横贴在答题卡右上角“贴条形码区”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的清洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.【9题答案】【答案】AC 【10题答案】【答案】ABD 【11题答案】【答案】ACD 【12题答案】【答案】AB三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】16-【14题答案】【答案】【15题答案】【答案】1ln 2【16题答案】【答案】①.()211nx +-.0四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)π6A =(2)a =【18题答案】【答案】(1)证明见解析(2)证明见解析【19题答案】【答案】(1)证明见解析(2)32.【20题答案】【答案】(1)10.011;(2)(i)需停止生产并检查设备;(ii)()10.0267P X≥≈,0.027【21题答案】【答案】(1)221 43x y+=(2)288 49.【22题答案】【答案】(1)证明见解析(2)(],2-∞。
广东省湛江高三数学第一次月考试题(理)
广东省湛江高三第一次月考(理科)数学试题(考试时间:120分钟 满分:150分 )一、选择题(本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一个答案是正确的)( )1、设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= A .1 B .1- C .2 D .2- ( )2、下列函数中,在其定义域内既是奇函数又是减函数的是A.R x x y ∈-=,3B.R x x y ∈=,sinC.R x x y ∈=,D.R x x y ∈=,)21(( )3、设2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+=A .1318B .1322C .322D .16( )4、若等差数列{}n a 的前5项和525S =,且23a =,则7a =A .12B .13C .14D .15( )5、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中真命题是:①若,,m m αβ⊥⊥则//αβ;②若,,αγβα⊥⊥则//γβ;③若,,//,m n m n αβ⊂⊂则//αβ;④若m 、n 是异面直线,,//,,//,m m n n αββα⊂⊂则//αβ A .①和② B .①和③ C .③和④ D .①和④( )6、如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为A .96B .84C .60D .48 ( )7、函数11ln )(--=x x x f 的零点的个数是 A .3个 B .2个 C .1个 D .0个( )8、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是A 、B 、C 、D 、二、填空题(共7小题,计30分。
广东省湛江市第五中学届高三数学1月月考试题 理(无答案)
理科数学一、选择题(本大题共8小题,每小题5分,满分40分.1. 已知a b R∈,,i是虚数单位,若a i-与2bi+互为共轭复数,则()2a bi+=()A.54i- B.54i+ C.34i- D.34i+2.设集合{}12A x R x=∈-<,{}2,xB y R y x R=∈=∈,则A B=()A.∅ B.[)0 3, C.()0 3, D.()1 3-,3. 函数()2ln=-f x xx的零点所在的区间为()A.()0 1, B.()1 2, C.()2 3, D.()3 4,4. 已知m(),2a=-,n()1,1a=-,则“a=2”是“m//n”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件5.一个多面体的三视图如右图所示,则该多面体的体积为()A.233B.223C.6 D.76. 已知平面α、β和直线m,给出条件:①//mα;②mα⊥;③mα⊂;④αβ⊥;⑤//αβ.由这五个条件中的两个同时成立能推导出//mβ的是( )A.①④ B.①⑤ C.②⑤ D.③⑤7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为().A7.B9.C10.D158. 设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A.2个 B.4个 C.6个 D.8个二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.若二项式()*1(n n Nx+∈的展开式中的第5项是常数项,则n=___________.10.若曲线lny kx x=+在点()1,k处的切线平行于x轴,则k=______.11.若等差数列{}n a和等比数列{}n b满足11221,2,a b a b====则55a b = .12.按右面的程序框图运行后,输出的S 应为__________. 13.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ===︒,则ABC ∆的面积等于________.14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________. (第15题图)三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)已知函数()sin(),(0,0,(0,))2f x A x A πωϕωϕ=+>>∈.的部分图象如图所示,其中点P 是图象的一个最高点。
广东省湛江高三数学上学期第一次月考试题 理 新人教A版
高三上学期第一次月考理数一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域是 ( )A. B.C.D.2.已知,函数与函数的图像可能是( )3. 下列函数既是奇函数,又在区间[-1,1]上单调递减....的是( )A .B .C .D .4.在复平面内,复数21+i2009 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.能够使圆恰有两个点到直线距离等于1的c 的一个值为( )A .B .C .2D .36.如图1所示,是关于闰年的流程,则以下年份是 闰年的为 A .1998年 B .1996年 C .2010年 D .2100年7.在△ABC中,a、b、c分别为角A、B、C的对边,,则三角形ABC的形状为()A.正三角形B.等腰三角形或直角三角形C.等腰直角三角形D.直角三角形8.设f(x)=∣x-1∣,f,函数g(x)是这样定义的:当f时,g(x)= f(x),当f(x)<f时,g(x)= f,若方程g(x)=a有四个不同的实数解,则实数a的取值范围是( )A.0<a<4 B.3<a<4 C.0<a<3 D.a<4二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.请将答案填在答题卷恰当的位置.(一)必做题(9~13题)9.= ;10.已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸(单位:㎝),可得这个几何体的表面积是 cm2.11.如果f '(x)是二次函数,且f '(x)的图像开口向上,顶点坐标为(1, -),那么曲线y=f(x)上任一点的切线的倾斜角的取值范围是12.若不等式成立的充分不必要条件是,则实数的取值范围是 .13. 若抛物线在点处的切线与双曲线的一条渐近线垂直,则双曲线的离心率等于(二)选做题(14~15题,考生只能从中选做一题)14.⊙和⊙的极坐标方程分别为,经过⊙、⊙交点的直线的直角坐标方程为_________________.15.(几何证明选讲选做题)如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,已知∠BPA=,PA=,PC=1,则圆O的半径等于.三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数。
广东省湛江市(新版)2024高考数学部编版质量检测(培优卷)完整试卷
广东省湛江市(新版)2024高考数学部编版质量检测(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,其中是虚数单位,则()A.B.C.D.第(2)题在数列中给定,且函数的导函数有唯一零点,函数且,则()A.B.C.D.第(3)题已知函数的最小正周期,将函数的图像向右平移个单位长度,所得图像关于原点对称,则下列关于函数的说法错误的是()A .函数的图像关于直线对称B.函数在上单调递减C .函数在上有两个极值点D.方程在上有3个解第(4)题法国著名的数学家棣莫弗提出了公式:.据此公式,复数的虚部为().A.B.C.D.16第(5)题如图是某所大学数学爱好者协会的会标,其内部是一个边长为的正五边形,外面一圈是五个全等的四边形.其中.则四边形的周长为()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题已知O为坐标原点,双曲线C:的左,右焦点分别为,,过C的右焦点且倾斜角为的直线交C右支于A,B两点,AB中点为W,,△的周长等于12,则()A.a=3B.双曲线C的渐近线方程为C.D.第(8)题已知集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的图象与直线有三个交点,记三个交点的横坐标分别为,且,则下列说法正确的是()A.存在实数,使得B.C.D.为定值第(2)题已知函数,,则以下结论中正确的是()A.函数的图象关于原点对称B.对任意非零实数,恒有成立C.函数所有零点从小到大依次排列构成一个等差数列D.对任意正常数,存在常数,使函数在上单调递减第(3)题已知函数,若不等式对任意的恒成立,则实数a的取值可能是()A.B.C.1D.2三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题函数在点处的切线与两坐标轴围成的三角形面积是_____.第(2)题已知函数和的表达式分别为,,若对任意,若存在,使得,则实数的取值范围是__________.第(3)题如图所示,平面四边形的对角线交点位于四边形的内部,,,,,当变化时,对角线的最大值为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了让健身馆会员参与的健身促销活动.(1)为了解会员对促销活动的兴趣程度,现从某周六参加该健身馆健身活动的会员中随机采访男性会员和女性会员各人,他们对于此次健身馆健身促销活动感兴趣的程度如下表所示:感兴趣无所谓合计男性女性合计根据以上数据能否有的把握认为“对健身促销活动感兴趣”与“性别”有关?(参考公式,其中)(2)在感兴趣的会员中随机抽取人对此次健身促销活动的满意度进行调查,以茎叶图记录了他们对此次健身促销活动满意度的分数(满分分),如图所示,若将此茎叶图中满意度分为“很满意”(分数不低于分)、“满意”(分数不低于平均分且低于分)、“基本满意”(分数低于平均分)三个级别.先从“满意”和“很满意”的会员中随机抽取两人参加回访馈赠活动,求这两人中至少有一人是“很满意”会员的概率.第(2)题已知函数.(1)求的最小值;(2)若,不等式恒成立,求a的取值范围.第(3)题哈六中举行数学竞赛,竞赛分为初赛和决赛两阶段进行.初赛采用“两轮制”方式进行,要求每个学年派出两名同学,且每名同学都要参加两轮比赛,两轮比赛都通过的同学才具备参与决赛的资格.高三学年派出甲和乙参赛.在初赛中,若甲通过第一轮与第二轮比赛的概率分别是,,乙通过第一轮与第二轮比赛的概率分别是,,且每名同学所有轮次比赛的结果互不影响. (1)若高三学年获得决赛资格的同学个数为,求的分布列和数学期望.(2)已知甲和乙都获得了决赛资格.决赛的规则如下:将问题放入两个纸箱中,箱中有3道选择题和2道填空题,箱中有3道选择题和3道填空题.决赛中要求每位参赛同学在两个纸箱中随机抽取两题作答.甲先从箱中依次抽取2道题目,答题结束后将题目一起放入箱中,然后乙再抽取题目.已知乙从箱中抽取的第一题是选择题,求甲从箱中抽出的是2道选择题的概率.第(4)题已知函数.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥x3+1,求a的取值范围.第(5)题已知椭圆的左、右焦点分别为,焦距为2,左顶点为,点是椭圆上一点.(1)求椭圆的方程;(2)若直线过椭圆的右焦点且与椭圆交于两点,直线与直线分别交于点.①求证:两点的纵坐标之积为定值;②求面积的最小值.。
广东省湛江市廉江第五中学高一数学理联考试卷含解析
广东省湛江市廉江第五中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 我国古代数学著作《九章算术》中有这样一个题目:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”.其大意是“今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减其一半,莞的生长逐日增加一倍.问几日蒲、莞长度相等?”若本题改为求当蒲、莞长度相等时,莞的长度为()A. 4尺B. 5尺C. 6尺D. 7尺参考答案:B【分析】先分别记蒲每日长的长度构成的数列记为,莞每日长的长度构成的数列记为,由题意得到其首项与公比,再设日后它们的长度和相等,由题意,列出方程,求解,即可得出结果.【详解】设蒲每日长的长度构成的数列记为,则,公比;莞每日长的长度构成的数列记为,则,公比,设日后它们的长度和相等,则有,即,令,得,所以或(舍去),所以莞的长度为.故选B【点睛】本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型.2. 在三棱锥P-ABC中,,,,平面ABC⊥平面PAC,则三棱锥P-ABC外接球的表面积为()A. 4πB. 5πC. 8πD. 10π参考答案:D【分析】结合题意,结合直线与平面垂直的判定和性质,得到两个直角三角形,取斜边的一半,即为外接球的半径,结合球表面积计算公式,计算,即可。
【详解】过P点作,结合平面ABC平面PAC可知,,故,结合可知,,所以,结合所以,所以,故该外接球的半径等于,所以球的表面积为,故选D。
【点睛】考查了平面与平面垂直的性质,考查了直线与平面垂直的判定和性质,难度偏难。
3. 用秦九韶算法求多项式, 当时的值的过程中,做的乘法和加法次数分别为( )A.4,5 B.5,4 C.5,5 D.6,5参考答案:C4. 已知两条相交直线,∥平面?,则与?的位置关系是A.平面? B.⊥平面C.∥平面? D.与平面相交,或∥平面参考答案:D略5. 函数的单调递减区间是()A.B.C.D.参考答案:D6. 已知函数f(x) (x∈R,f(x)≠0)是偶函数,则函数h(x)=,(x∈R)A. 非奇函数,又非偶函数B.是奇函数,又是偶函数C.是偶函数D. 是奇函数参考答案:D略7. 设,则等于( )参考答案:C8. 函数是()A.周期为的奇函数 B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数参考答案:D9. 设,则的大小关系是A.B.C. D.参考答案:A略10. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是 ( )参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则的值为参考答案:512. 设向量满足,=(2,1),且与的方向相反,则的坐标为________.参考答案:略13. 若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是________.参考答案:(-∞,40]∪[64,+∞)14. 设实数x,y满足:,则_________.参考答案:115. 已知全集U={0,1,2,3}且={2},则集合A的真子集共有________个。
广东省湛江市麻章中学高三数学理月考试卷含解析
广东省湛江市麻章中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知复数z满足(1+2i)z=4+3i,则z=( )A.2+i B.2﹣i C.1+2i D.1﹣2i参考答案:B考点:复数代数形式的乘除运算.专题:计算题.分析:复数方程两边同乗1﹣2i,化简即可.解答:解:∵(1+2i)z=4+3i,∴(1﹣2i)(1+2i)z=(4+3i)(1﹣2i)5z=10﹣5i,z=2﹣i,故选B.点评:本题考查复数代数形式的乘除运算,是基础题.2. 设函数则= ()A.4 B.5 C.6 D.8参考答案:B3. 已知向量=(﹣3,4),=(1,m),若?(﹣)=0,则m=( )A.B.﹣C.7 D.﹣7参考答案:C考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:由向量模的公式和向量的数量积的坐标表示,结合向量的平方即为模的平方,可得m的方程,解出即可.解答:解:向量=(﹣3,4),=(1,m),则||==5,=﹣3+4m,若?(﹣)=0,则﹣=0,即为25﹣(﹣3+4m)=0,解得m=7.故选C.点评:本题考查向量的数量积的坐标表示和性质,运用数量积的坐标运算和向量的平方即为模的平方是解题的关键.4. 如图,在等腰梯形ABCD中,AB=8,BC=4,CD=4,点P在线段AD上运动,则|+|的取值范围是()A.[6,4+4] B.[4,8] C.[4,8] D.[6,12]参考答案:C【考点】平面向量数量积的运算.【分析】可过D作AB的垂线,且垂足为E,这样可分别以EB,ED为x轴,y轴,建立平面直角坐标系,根据条件即可求出A,B,D的坐标,从而可以得出直线AD的方程为,从而可设,且﹣2≤x≤0,从而可以求出向量的坐标,从而得出,而配方即可求出函数y=16(x2+2x+4)在[﹣2,0]上的值域,即得出的取值范围,从而得出的取值范围.【解答】解:如图,过D作AB的垂线,垂足为E,分别以EB,ED为x,y轴,建立平面直角坐标系;根据条件可得,AE=2,EB=6,DE=;∴;∴直线AD方程为:;∴设,(﹣2≤x≤0);∴,;∴;∴=16(x2+2x+4)=16(x+1)2+48;∵﹣2≤x≤0;∴48≤16(x+1)2+48≤64;即;∴;∴的范围为.故选:C.5. 若,满足约束条件,则的最小值是A.-3B.0C.D.3参考答案:C略6. 若双曲线的一个焦点到两条准线的距离之比为,则双曲线的离心率是A.3 B.5 C.D.参考答案:C7. 等差数列{}前n项和为,满足,则下列结论中正确的是()A、是中的最大值B、是中的最小值C、=0D、=0参考答案:D略8. 在用数学归纳法证明的过程中:假设当时,不等式成立,则需证当n=k+1时,也成立.若.,则g(k) =(A) (B)(C)(D)参考答案:B9. 等比数列中,公比,记(即表示数列的前n项之积),中值最大的是A .B.C.D.参考答案:D10. 一个几何体的三视图如图所示,若这个几何体的体积为,则h的值为().A. B. C. D.参考答案:C【分析】首先由三视图还原得到一个四棱锥,进而利用锥体的体积公式,列出方程,即可求解.【详解】根据给定的几何体的三视图,可得底面边长分别为和的长方形,高为的一个四棱锥体,如图所示:又由该四棱锥的体积为,解得.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,给出下列四个说法:①若,则;②的最小正周期是;③在区间上是增函数;④的图象关于直线对称.其中正确说法的序号是______.参考答案:③④函数,若,即,所以,即,所以或,所以①错误;所以周期,所以②错误;当时,,函数递增,所以③正确;当时,为最小值,所以④正确,所以正确的有2个,选B.12. 已知,则的最小值是 .参考答案:4由,得,即,所以,由,当且仅当,即,取等号,所以最小值为4.13. 若集合则.参考答案:14. 设等差数列{a n}的前n项和为S n,若a1=﹣3,a k+1=,S k=﹣12,则正整数k= .参考答案:13【考点】等差数列的性质.【分析】由已知条件,利用等差数列的前n项和公式得到S k+1=(﹣3+)=﹣12+,由此能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,a1=﹣3,a k+1=,S k=﹣12,∴S k+1=(﹣3+)=﹣12+,解得k=13.故答案为:13.15. 已知,则____________.参考答案:略16. 已知,sin()=- sin则cos=________.参考答案:因为,所以,所以,即.又,所以,即.又.17. 下列几个命题:①方程x2+(a﹣3)x+a=0有一个正实根,一个负实根,则a<0;②函数y=+是偶函数,但不是奇函数;③设函数y=f(x)定义域为R,则函数y=f(1﹣x)与y=f(x﹣1)的图象关于y轴对称;④一条曲线y=|3﹣x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.其中正确的是( )A.(1)(2)B.(1)(4)C.(3)(4)D.(2)(4)参考答案:B【考点】命题的真假判断与应用.【专题】阅读型;数形结合;分析法;简易逻辑.【分析】①根据一元二次方程有异号根的判定方法可知①正确;②求出函数的定义域,根据定义域确定函数的解析式y=0,故②错误;③举例说明知③错误;④画出函数的图象,根据图象可知④正确.【解答】解:①令f(x)=x2+(a﹣3)x+a,要使x2+(a﹣3)x+a=0有一个正实根,一个负实根,只需f(0)<0,即a<0即可,故①正确;②函数的定义域为{﹣1,1},∴y=0既是奇函数又是偶函数,故②错误;③举例:若y=x(x∈R),则f(x﹣1)=x﹣1与f(1﹣x)=1﹣x关于y轴不对称,故③错误;④根据函数y=|3﹣x2|的图象可知,故④正确.∴正确的是:①④.故选:B.【点评】本题考查了函数图象的对称变化和一元二次方程根的问题,以及函数奇偶性的判定方法等基础知识,考查学生灵活应用知识分析解决问题的能力,是基础题.三、解答题:本大题共5小题,共72分。
广东省湛江五中高三数学上学期1月月考试卷 理(含解析)
广东省湛江五中2015届高三上学期1月月考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)设集合A={x∈R||x﹣1|<2},B={y∈R|y=2x,x∈R},则A∩B=()A.∅B.[0,3)C.(0,3)D.(﹣1,3)3.(5分)函数f(x)=lnx﹣的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.(5分)已知=(a,﹣2),=(1,1﹣a),则“a=2”是“∥”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.(5分)一多面体的三视图如图所示,则该多面体的体积是()A.B.C.6 D.76.(5分)已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.由这五个条件中的两个同时成立能推导出m∥β的是()A.①④B.①⑤C.②⑤D.③⑤7.(5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9 C.10 D.158.(5分)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A.2个B.4个C.6个D.8个二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.(5分)若二项式(+2)n(n∈N*)的展开式中的第5项是常数项,则n=.10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=.11.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=1,a2=b2=2.则a5b5=.12.(5分)按如图的程序框图运行后,输出的S应为.13.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,且c=,B=120°,则△ABC的面积等于.14.(5分)已知在直角坐标系中曲线C1的参数方程为(t为参数且t≠0),在以原点O为极点,以x轴正半轴为极轴建立的极坐标系中曲线C2的极坐标方程为θ=(ρ∈R),则曲线C1与C2交点的直角坐标为.15.如图,PT切圆O于点T,PA交圆O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=.三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤.16.(12分)已知函数.的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知且,求.17.(12分)某班50位学生期2015届中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(14分)正三棱柱ABC﹣A1B1C1的所有棱长都为4,D为的CC1中点.(1)求证:AB1⊥平面A1BD;(2)求二面角A﹣A1D﹣B的余弦值.19.(14分)已知数列{a n}满足a1=,a n=2﹣(n≥2),S n是数列{b n}的前n项和,且有=1+b n.(1)证明:数列{}为等差数列;(2)求数列{b n}的通项公式;(3)设c n=,记数列{c n}的前n项和T n,求证:T n<1.20.(14分)已知双曲线C:﹣=1(a>0,b>0),F1、F2分别是它的左、右焦点,A(﹣1,0)是其左顶点,且双曲线的离心率为e=2.设过右焦点F2的直线l与双曲线C的右支交于P、Q两点,其中点P位于第一象限内.(1)求双曲线的方程;(2)若直线AP、AQ分别与直线x=交于M、N两点,求证:MF2⊥NF2;(3)是否存在常数λ,使得∠PF2A=λ∠PAF2恒成立?若存在,求出λ的值,若不存在,请说明理由.21.(14分)已知函数f(x)=x2﹣alnx﹣x(a≠0).(1)求函数f(x)的单调区间;(2)若a>0,设A(x1,y1),B(x2,y2)是函数f(x)图象上的任意两点(x1<x2),记直线AB的斜率为k,求证:f′()>k.广东省湛江五中2015届高三上学期1月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.解答:解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合A={x∈R||x﹣1|<2},B={y∈R|y=2x,x∈R},则A∩B=()A.∅B.[0,3)C.(0,3)D.(﹣1,3)考点:交集及其运算.专题:集合.分析:求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.解答:解:由A中不等式变形得:﹣2<x﹣1<2,即﹣1<x<3,∴A=(﹣1,3),由B中y=2x>0,得到B=(0,+∞),则A∩B=(0,3),故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)函数f(x)=lnx﹣的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:紧扣函数零点的判定定理即可.解答:解:函数f(x)=lnx﹣在(0,+∞)上连续,且f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3﹣>0.故选C.点评:本题考查了函数零点的判定定理,属于基础题.4.(5分)已知=(a,﹣2),=(1,1﹣a),则“a=2”是“∥”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据向量平行的等价条件,以及充分条件和必要条件的定义即可得到结论.解答:解:若∥,则a(1﹣a)+2=0,即a2﹣a﹣2=0,解得a=2或a=﹣1,则“a=2”是“∥”的充分不必要条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据向量共线的坐标公式是解决本题的关键.5.(5分)一多面体的三视图如图所示,则该多面体的体积是()A.B.C.6 D.7考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,结合三视图的数据,求出几何体的体积.解答:解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体﹣2V棱锥侧==.故选:B.点评:本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状.6.(5分)已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.由这五个条件中的两个同时成立能推导出m∥β的是()A.①④B.①⑤C.②⑤D.③⑤考点:平面与平面垂直的性质;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:根据面面平行的性质,可得结论.解答:解:根据面面平行的性质,可得m⊂α,α∥β时,m∥β.故选:D.点评:本题考查平面与平面垂直的性质,比较基础.7.(5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9 C.10 D.15考点:系统抽样方法.专题:概率与统计.分析:由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数.解答:解:960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由451≤30n﹣21≤750 解得15.7≤n≤25.7.再由n为正整数可得16≤n≤25,且 n∈z,故做问卷B的人数为10,故选:C.点评:本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题.8.(5分)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A.2个B.4个C.6个D.8个考点:元素与集合关系的判断.专题:集合.分析:根据题意,要使S的三个元素构成的集合中不含好元素,只要这三个元素相连即可,所以找出相连的三个数构成的集合即可.解答:解:根据好元素的定义,由S的3个元素构成的集合中,不含好元素的集合为:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}.故选C.点评:考查对好元素概念的理解,以及子集的概念,元素与集合的关系.二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.(5分)若二项式(+2)n(n∈N*)的展开式中的第5项是常数项,则n=6.考点:二项式系数的性质.专题:二项式定理.分析:先求出二项式展开式的通项公式,再根据r=4时,x的幂指数等于0,求得n的值.解答:解:二项式(+2)n(n∈N*)的展开式的通项公式为 T r+1=•2r•,由于第5项是常数项,可得﹣n=0,∴n=6,故答案为:6.点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.解答:解:由题意得,y′=k+,∵在点(1,k)处的切线平行于x轴,∴k+1=0,得k=﹣1,故答案为:﹣1.点评:本题考查了函数导数的几何意义应用,难度不大.11.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=1,a2=b2=2.则a5b5=80.考点:等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:由已知结合等差数列和等比数列的通项公式求得等差数列的公差和等比数列的公比,然后求得a5,b5,则答案可求.解答:解:由等差数列{a n}满足a1=1,a2=2,得d=1,∴a5=5,等比数列{b n}满足b1=1,b2=2,得q=2,∴b5=24=16,∴a5b5=80.故答案为:80.点评:本题考查了等差数列和等比数列的通项公式,是基础的计算题.12.(5分)按如图的程序框图运行后,输出的S应为40.考点:程序框图.专题:算法和程序框图.分析:根据框图的流程依次计算程序运行的结果,直到满足条件i>5,计算输出S的值.解答:解:由程序框图知:第一次运行i=1,T=3×1﹣1=2,S=0+2=2,i=2,不满足条件i >5,循环,第二次运行i=2,T=3×2﹣1=5,S=5+2=7,i=3,不满足条件i>5,循环,第三次运行i=3,T=3×3﹣1=8,S=7+8=15,i=4,不满足条件i>5,循环,第四次运行i=4,T=3×4﹣1=11,S=15+11=26,i=5,不满足条件i>5,循环,第五次运行i=5,T=3×5﹣1=14,S=26+14=40,i=6,满足条件i>5,程序终止,输出S=40.故答案是:40点评:本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.比较基础.13.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,且c=,B=120°,则△ABC的面积等于.考点:正弦定理.专题:计算题;解三角形.分析:先根据余弦定理建立关于a的等式,解出a=.再根据三角形的面积公式加以计算,可得△ABC的面积.解答:解:根据余弦定理,可得b2=a2+c2﹣2accosB,即6=a2+2﹣2×a××(﹣),解之得a=.因此△ABC的面积S===.故答案为:点评:本题给出三角形的两条边和其中一条边的对角,求它的面积.着重考查了利用正余弦定理解三角形、三角形的面积求法等知识,属于中档题.14.(5分)已知在直角坐标系中曲线C1的参数方程为(t为参数且t≠0),在以原点O为极点,以x轴正半轴为极轴建立的极坐标系中曲线C2的极坐标方程为θ=(ρ∈R),则曲线C1与C2交点的直角坐标为(2,2).考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:由曲线C1的参数方程(t为参数且t≠0),消去参数t可得x2=y+2.由曲线C2的极坐标方程为θ=(ρ∈R),可得y=x.联立解得即可.解答:解:由曲线C1的参数方程(t为参数且t≠0),可得x2=+2=y+2(y>0).由曲线C2的极坐标方程为θ=(ρ∈R),可得y=x.联立,解得x=y=2.∴曲线C1与C2交点的直角坐标为(2,2).故答案为:(2,2).点评:本题考查了把参数方程与极坐标方程化为直角坐标方程,属于基础题.15.如图,PT切圆O于点T,PA交圆O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=15.考点:与圆有关的比例线段.专题:计算题;压轴题.分析:首先根据题中圆的相交弦定理得DT,再依据直角三角形的勾股定理用PB表示出PT,最后结合切割线定理求得一个关于PB线段的方程式,解此方程即可.解答:解:如图,由相交弦定理可知,2•DT=3•6⇒DT=9.在直角三角形PTD中,由切割线定理可知PT2=PB•PA⇒(6+x)2﹣92=x(x+9)⇒x=15.故填:15.点评:此题综合运用了切割线定理、圆的相交弦定理以及与圆有关的直角三角形,属于基础题.三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤.16.(12分)已知函数.的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知且,求.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值.专题:计算题;三角函数的图像与性质.分析:(1)依题意知,A=2,由图得T=π.从而可得ω=2;又2×+φ=2kπ+,k∈Z,φ∈(0,),可求得φ,于是可得函数f(x)的解析式;(2)易求cosα=﹣,利用两角和的正弦即可求得f()=2sin(α+)的值.解答:解:(1)由函数最大值为2,得A=2.由图可得周期T=4[﹣(﹣)]=π,∴ω==2.又2×+φ=2kπ+,k∈Z,∴φ=2kπ+,k∈Z,又φ∈(0,),∴φ=,∴f(x)=2sin(2x+);(2)∵α∈(,π),且sinα=,∴cosα=﹣=﹣,∴f()=2sin(2•+)=2(sinαcos+cosαsin)=2[×+(﹣)×]=.点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查三角函数的化简求值,属于中档题.17.(12分)某班50位学生期2015届中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.专题:概率与统计.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(14分)正三棱柱ABC﹣A1B1C1的所有棱长都为4,D为的CC1中点.(1)求证:AB1⊥平面A1BD;(2)求二面角A﹣A1D﹣B的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(1)通过建立如图所示的空间直角坐标系,利用数量积⇔,即可证明AB1⊥平面A1BD;(2)利用两个平面的法向量的夹角即可得到二面角.解答:(1)证明:取BC中点O,连接AO,∵△ABC为正三角形,∴AO⊥BC,∵在正三棱柱ABC﹣A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,取B1C1中点为O1,以O为原点,,,的方向为x,y,z轴的正方向,建立空间直角坐标系,则.∴,,.∵,.∴,,∴AB1⊥面A1BD.(2)设平面A1AD的法向量为,.,∴,∴,⇒,令z=1,得为平面A1AD的一个法向量,由(1)知AB1⊥面A1BD,∴为平面A1AD的法向量,,由图可以看出:二面角A﹣A1D﹣B是锐角.∴二面角A﹣A1D﹣B的余弦值为.点评:熟练掌握:通过建立如图所示的空间直角坐标系的方法,利用数量积与垂直的关系证明线面垂直;利用两个平面的法向量的夹角得到二面角.19.(14分)已知数列{a n}满足a1=,a n=2﹣(n≥2),S n是数列{b n}的前n项和,且有=1+b n.(1)证明:数列{}为等差数列;(2)求数列{b n}的通项公式;(3)设c n=,记数列{c n}的前n项和T n,求证:T n<1.考点:数列与不等式的综合.专题:计算题;证明题;等差数列与等比数列;不等式.分析:(1)化简a n=2﹣,化出的形式,(2)由a n=s n﹣s n﹣1化简,得到递推公式,再推通项公式;(3)利用裂项求和法求和证明不等式成立.解答:解:(1)证明:∵,∴,∴,即:∴.∴数列是以为首项,1为公差的等差数列.(2)当n≥2时,,,即:;∴,当n=1时,b1=S1=2,∴.(3)证明:由(1)知:∴,∴,∴.点评:本题全面考查了数列的相关知识,有等差数列的证明,也用到了通项与前n项之间的普遍关系,同时考查了裂项求和的方法,属于难题.20.(14分)已知双曲线C:﹣=1(a>0,b>0),F1、F2分别是它的左、右焦点,A(﹣1,0)是其左顶点,且双曲线的离心率为e=2.设过右焦点F2的直线l与双曲线C的右支交于P、Q两点,其中点P位于第一象限内.(1)求双曲线的方程;(2)若直线AP、AQ分别与直线x=交于M、N两点,求证:MF2⊥NF2;(3)是否存在常数λ,使得∠PF2A=λ∠PAF2恒成立?若存在,求出λ的值,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由题可知:a=1.由于,可得c=2.再利用b2=c2﹣a2即可.(2)设直线l的方程为:x=ty+2,另设:P(x1,y1)、Q(x2,y2).联立,可得根与系数的关系.又直线AP的方程为,解得M.同理解得N.只要证明=0即可.(3)当直线l的方程为x=2时,解得P(2,3).易知此时△AF2P为等腰直角三角形,可得:λ=2.当∠AF2P=2∠PAF2对直线l存在斜率的情形也成立.利用正切的倍角公式、斜率计算公式、双曲线的方程、正切函数的单调性即可证明.解答:(1)解:由题可知:a=1.∵,∴c=2.∴b2=c2﹣a2=3,∴双曲线C的方程为:.(2)证明:设直线l的方程为:x=ty+2,另设:P(x1,y1),Q(x2,y2).联立,化为(3t2﹣1)y2+12ty+9=0.∴.又直线AP的方程为,代入x=,解得M.同理,直线AQ的方程为,代入x=,解得N.∴=.∴=+==+=.∴MF2⊥NF2.(3)解:当直线l的方程为x=2时,解得P(2,3).易知此时△AF2P为等腰直角三角形,其中,也即:λ=2.下证:∠AF2P=2∠PAF2对直线l存在斜率的情形也成立.tan2∠PAF2====.∵=1,∴.∴,∴,∴结合正切函数在上的图象可知,∠AF2P=2∠PAF2.点评:本题综合考查了双曲线的标准方程及其性质、向量垂直与数量积的关系、正切的倍角公式、斜率计算公式、双曲线的方程、正切函数的单调性等基础知识与基本技能方法,考查了推理能力与计算能力,属于难题.21.(14分)已知函数f(x)=x2﹣alnx﹣x(a≠0).(1)求函数f(x)的单调区间;(2)若a>0,设A(x1,y1),B(x2,y2)是函数f(x)图象上的任意两点(x1<x2),记直线AB的斜率为k,求证:f′()>k.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先求导,再根据a的值进行分类讨论,得到函数的单调区间.(2)先求导,根据题意,由直线的斜率公式可得k的值,利用分析法证明f′()>k.转化为只需要证明,再构造函数g(t),判断函数在(0,1)上单调性,问题得以证明解答:解:(1)(i)当时,2x2﹣x﹣a≥0 恒成立,即f'(x)≥0恒成立,故函数f(x)的单增区间为(0,+∞),无单减区间.(ii)当时,f′(x)>0⇒2x2﹣x﹣a>0,解得:∵x>0,∴函数f(x)的单增区间为,,单减区间为.(iii)当a>0时,由f′(x)>0解得:.∵x>0,而此时<0,∴函数f(x)的单增区间为,单减区间为.综上所述:(i)当a≤﹣时,f(x)的单增区间为(0,+∞),无单减区间.(ii)当时,f(x)的单增区间为,,单减区间为.(iii)当a>0时,f(x)的单增区间为,单减区间为.(2)证明:∵∴由题意得,则:=注意到,故欲证,只须证明:.因为a>0,故即证:令,则:故g(t)在(0,1)上单调递增.即:,即:所以:.点评:本题考查导数的应用,涉及斜率,最大值、最小值的求法,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数,属于难题.。
广东省湛江市南调中学高三数学理月考试题含解析
广东省湛江市南调中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若点P(3,m)在以点F为焦点的抛物线 (t为参数)上,则|PF|等于( )A.2B.3C.4D.5参考答案:C2. 记曲线y=与x轴所围成的区域为D,若曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣参考答案:B【考点】直线与圆相交的性质.【分析】求出区域D表示(1,0)为圆心,1为半径的上半圆,利用曲线y=ax(x﹣2)(a<0)把D 的面积均分为两等份,可得=,即可得到结论.【解答】解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.3. 如右图所示,是圆上的三点,的延长线与线段交于圆内一点,若,则( )A.B.C.D.参考答案:C4. 设函数的图象过点(,–3),则a的值A.2 B.–2 C.– D.参考答案:A略5. 已知函数,,若至少存在一个,使成立,则实数a的范围为( )A.[,+∞) B.(0,+∞) C.[0,+∞) D.(,+∞) 参考答案:B6. 设集合A={﹣1,0,1},B={x|lgx≤0},则A∩B=()A.{﹣1,0,1} B.{1} C.{﹣1} D.{﹣1,1}参考答案:B【考点】对数函数的单调性与特殊点.【分析】解对数不等式求得B,再利用两个集合的交集的定义求出A∩B.【解答】解:集合A={﹣1,0,1},B={x|lgx≤0}={x|0<x≤1},则A∩B={1},故选:B.【点评】本题主要考查对数不等式的解法,两个集合的交集的定义与求法,属于基础题.7. 函数的图象大致为()A BC D参考答案:D由函数得:知函数是偶函数,其图象关于愿点对称,故排除A;当x从大于零变到零的过程中,函数值y,故排除B;当x时,,排除C;故选D.8. 已知集合A={x||x|≤2,x∈Z},,则A∩?R B=()A.(﹣1,2] B.[﹣1,2] C.{﹣1,0,1,2} D.{0,1,2}参考答案:C【考点】交、并、补集的混合运算.【分析】先求出集合B,再求出C R B,由此利用交集定义能求出A∩?R B.【解答】解:∵集合A={x||x|≤2,x∈z}={﹣2,﹣1,0,1,2},={x|x<﹣1},∴C R B={x|x≥﹣1},∴A∩?R B={﹣1,0,1,2}.故选:C.9. 阅读右图所示的程序框图,运行相应的程序,输出的结果是().A. B.13 C.33 D.123参考答案:B10. 已知,满足不等式组,则的最大值与最小值的比值为()A、 B、2 C、 D、参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知双曲线的离心率为,则实数m的值为▲.参考答案:4 略12. 如图,该程序运行后输出结果为_________.参考答案:16 略13. 已知复数,,且是实数,则实数= .参考答案:14. 设等轴双曲线的两条渐近线与直线围成的三角形区域(包含边界)为,为内的一个动点,则目标函数的最大值为.参考答案:15. 过抛物线的焦点F 的直线l 交抛物线于A,B,两点,交准线于点C若,则直线AB 的斜率为________________参考答案:16. 某几何体的三视图如图所示,则该几何体的体积为 ,表面积为 .参考答案:;38+π.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由了部分组成,上面是一个半球,下面是一个长方体. 【解答】解:由三视图可知:该几何体是由了部分组成,上面是一个半球,下面是一个长方体.∴该几何体的体积=+4×3×1=;其表面积=2×(3×1+3×4+1×4)﹣π×12+=38+π.故答案为:;38+π.17. (5分)(2015?澄海区校级二模)已知数列{a n},a n=2n,则++…+= .参考答案:1﹣【考点】:等比数列的前n 项和.【专题】:计算题.【分析】:由数列的通项公式a n=2n,得到数列{}是首项为,公比为的等比数列,列举出所示式子的各项,利用等比数列的前n 项和公式化简,即可得到结果.解:由题意得:数列{a n }为首项是2,公比为2的等比数列,由a n=2n,得到数列{a n}各项为:2,22,…,2n,∴++…+=++…+,∴数列{}是首项为,公比为的等比数列,则++…+=++…+==1﹣.故答案为:1﹣【点评】:此题考查了等差数列的前n项和公式,其中确定出数列{}是首项为,公比为的等比数列是解本题的关键.三、解答题:本大题共5小题,共72分。
广东省湛江市2023-2024学年高一上学期期末考试 数学(含答案)
湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(答案在最后)(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C .(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.63.sin 300cos 0︒︒的值为()A .B.12C.12-D.24.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π65.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,46.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A .4B.3C.2D.17.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B∈∩ B.13A B∈ C. A B⋃ D.A B B= 10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg1xxf x -=+的定义域为______________.14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.15.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则23251lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.16.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫-⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.22.已知函数()42x xf x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C.(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠【答案】A 【解析】【分析】根据全称命题否定为特称命题即可.【详解】根据将全称命题否定为特称命题即可.可得“(),0x ∞∀∈-,有20x x -=”的否定为“(),0x ∞∃∈-,使20x x -≠”,故选:A .2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.6【答案】B 【解析】【分析】利用集合运算求解阴影部分即可.【详解】易知{}1,2,3,4,5,6,7,8,9B =,故图中阴影部分表示的集合为{}2,4,8,9,共4个元素,故选:B .3.sin 300cos 0︒︒的值为()A.0B.12C.12-D.【答案】D 【解析】【分析】利用诱导公式和特殊角的三角函数值求出答案.【详解】()()sin 300cos 0sin 300360sin 60sin 602︒︒=︒-︒=-︒=-︒=-.故选:D .4.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π6【答案】D 【解析】【分析】根据题意,利用()01f =,得到1sin 2ϕ=,结合题意,即可求解.【详解】由函数()f x 的图象知,()02sin 1f ϕ==,则1sin 2ϕ=,因为0ω>,且0x =处在函数()f x 的递减区间,所以5π2π,Z 6k k ϕ=+∈,又因为0πϕ<<,所以5π6ϕ=.故选:D .5.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】C 【解析】【分析】根据零点存在性定理即可求解.【详解】由于3ln ,==-y x y x均为定义域(0,+∞)内的单调递增函数,所以函数()f x 在()0,∞+上单调递增,()f x 至多只有一个零点,且()32ln 202f =-<,()3ln 310f =->,故()()230f f ⋅<,所以该函数的零点所在的区间是()2,3.故选:C .6.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A.4B.3C.2D.1【答案】B 【解析】【分析】根据题意可得40-00密位的圆心角的弧度为4π3,进而根据扇形的弧长公式即可求解.【详解】40-00密位的圆心角的弧度为2π4π400060003⨯=,设该扇形的半径为r ,由4π4π3r ⨯=,解得3r =,故选:B .7.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由特值法,函数的对称性对选项一一判断即可得出答案.【详解】因为()0222e e 0440(02)4f -=-=-<-,故C 错误;又因为()()4222222e e e4444(42)(2)(2)x x x f x f x x x x -+--+--+=-=-==-+--+-,故函数()f x 的图象关于2x =对称,故B 错误;当x 趋近2时,2e x -趋近1,2(2)x -趋近0,所以()22e 4(2)xf x x -=--趋近正无穷,故D 错误.故选:A .8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83【答案】A 【解析】【分析】根据题意,转化为2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,结合函数的奇偶性和单调性,求得()min 83f x =-,即可求解.【详解】由a b ad bc c d=-,可得()4401mx m x mx m x-=--≤,因为存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤,即2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,由()()f x f x -=-,可得()f x 是奇函数,且()00f =,当102x <≤时,()41f x x x=-,所以()f x 在10,2⎛⎤⎥⎝⎦上单调递减,所以()803f x -≤<,同理可得,当102x -≤<时,()803f x <≤,故()min 83f x =-,即83m ≥-,所以实数m 的最小值为83-.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B ∈∩B.13A B∈ C. A B⋃ D.A B B= 【答案】BC 【解析】【分析】依题意列举A 、B 中的元素,观察可得答案【详解】依题意,{},3,1,5,9,13,17,21,A =- ,{},3,1,1,3,5,7,9,11,13,15,17,19,21,B =-- ,观察可知A ,D 错误,B ,C 正确,故选:BC .10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<【答案】AB 【解析】【分析】根据不等式的性质判断A 、B 、D ,利用赋值法判断C.【详解】因为0c b a <<<,所以ac bc <,且b a <,故ac b bc a +<+,故A 正确;因为0b a <<,所以33a b >,故3232a c b c +>+,故B 正确;取4a =,1b =,12c =-,则7a cb c +=+,4a b =,故C 错误;因为0c <<,则>,故D 错误,故选:AB .11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+ C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩【答案】BC 【解析】【分析】A 选项,由对勾函数性质得到A 错误;B 选项,根据对数函数性质直接得到B 正确;C 选项,配方后得到函数的单调性;D 选项,求出()()2.12f f <,故D 错误.【详解】A 选项,由对勾函数性质可知()4f x x x=+在()1,2上单调递减,在()2,∞+上单调递增,故A 错误;B 选项,()ln 2f x x =+在()0,∞+上单调递增,故B 正确;C 选项,()()222514f x x x x =-+=-+在()1,∞+上单调递增,故C 正确;D 选项,因为()25f =,()()22log 5log 552f f ===,故D 错误.故选:BC .12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7【答案】AB 【解析】【分析】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,结合5π012f ⎛⎫= ⎪⎝⎭可知5π12是函数()f x 的零点,进而得到=2+1n ω,Z n ∈,由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,可得6ω≤,进而1,3,5ω=,分类讨论验证单调性即可判断.【详解】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,又5π012f ⎛⎫= ⎪⎝⎭,即5π12是函数()f x 的零点,则()()5ππ112π2121121244n T n ω+=+⋅=+⋅⋅,Z n ∈,即=2+1n ω,Z n ∈.由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,则12π2πππ29186ω⋅≥-=,即6ω≤,所以1,3,5ω=.当1ω=时,由5ππ12k ϕ+=,Z k ∈,得5ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以5π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,5π13π7π,123636x ⎛⎫-∈-- ⎪⎝⎭,所以()5πsin 12f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故1ω=符合题意;当3ω=时,由5π3π12k ϕ⨯+=,Z k ∈,得5ππ4k ϕ=-+,Z k ∈,又π2ϕ<,所以π4ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,ππ5π3,41212x ⎛⎫-∈- ⎪⎝⎭,所以()πsin 34f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故3ω=符合题意;当5ω=时,由5π5π12k ϕ⨯+=,Z k ∈,得25ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,π7π37π5,123636x ⎛⎫-∈ ⎪⎝⎭,所以()πsin 512f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上不单调,故5ω=不符合题意.综上所述,1ω=或3.故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg 1x xf x -=+的定义域为______________.【答案】{}12x x -<<【解析】【分析】根据对数真数必须大于零可得不等式,求解得到定义域【详解】依题意,201x x->+,得()()202101x x x x -<⇔-+<+,则12x -<<,故所求定义域为{}12x x -<<.故答案为:{}12x x -<<14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.【答案】0【解析】【分析】根据三角函数的对称性可得12πx x +=,即可代入求解.【详解】因为120πx x ≤<≤,由12sin sin x x =,得12πx x +=,所以12cos02x x +=.故答案为:015.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则2325421lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.【答案】1【解析】【分析】通过已知条件确定取整函数[]y x =的取值法则,即[]=x a ,1a x a ≤<+;利用对数运算法则计算2325421lg lg8lg 7log 10-++,进而确定23251lg lg8lg 7log 10⎡⎤-++⎢⎥⎣⎦的值.【详解】232511lg lg8lg lg lg 252lg 57lg 10742⎛-+=⨯+=+ ⨯⎝,因为()lg 0y x x =>为增函数,所以0lg1lg 5lg101=<<=,112lg 522<+<,故23251lg lg8lg 17log 10⎡⎤-+=⎢⎥⎣⎦.故答案为:116.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.【答案】(]18,2--【解析】【分析】画出分段函数图像,数形结合,找到三根的关系,利用图像交点求出最后结果.【详解】作出函数()f x 的图象,知4a b +=-,()1922f c ≤<,故()()182a b f c -<+≤-,即()()a b f c +的取值范围是(]18,2--.故答案为:(]18,2--四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.【答案】(1)13-;(2)7210【解析】【分析】(1)首先根据正切定义求出tan 2α=-,再利用两角和的正切公式计算即可;(2)根据同角三角函数关系求出π4cos 45α⎛⎫-= ⎪⎝⎭,再利用两角和的正弦公式计算即可.【详解】(1)因为α的终边经过点()2,4P -,所以4tan 22α==--,所以()πtan 1211tan 41tan 123ααα+-+⎛⎫+===- ⎪---⎝⎭.(2)因为π0,2α⎛⎫∈ ⎪⎝⎭,则πππ,444α⎛⎫-∈- ⎪⎝⎭,且π3sin 045α⎛⎫-=> ⎪⎝⎭,所以π4cos 45α⎛⎫-= ⎪⎝⎭,所以sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦34525210=⨯+⨯=.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.【答案】(1)()8f =(2)23,32⎛⎤ ⎥⎝⎦【解析】【分析】(1)代入点到函数中即可求解解析式,进而可求解值,(2)根据函数的单调性,即可求解.【小问1详解】依题意,255m=,解得12m =,故()12f x x =(0x ≥),则()1288f ==.【小问2详解】易知()12f x x =在[)0,∞+上是增函数,依题意,10320132a a a a +≥⎧⎪-≥⎨⎪+>-⎩,解得2332a <≤,故实数a 的取值范围为23,32⎛⎤ ⎥⎝⎦.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1){}30,2A B x x x -=-≤≤=或,B A -=∅.(2)[]2,1-【解析】【分析】(1)用集合的新定义求解即可;(2)由“x A ∈”是“x B ∈”的必要条件得到B A ⊆,再利用范围求出即可.【小问1详解】()(){}{}23032A x x x x x =-+≤=-≤≤,当1a =时,{}02B x x =<<,所以{}30,2A B x x x -=-≤≤=或,B A -=∅.【小问2详解】因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,故1312a a -≥-⎧⎨+≤⎩,解得21a -≤≤,即实数a 的取值范围是[]2,1-.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫- ⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.【答案】(1)()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩(2)54【解析】【分析】(1)根据年利润公式列分段函数解析式即可;(2)结合基本不等式和一元二次函数性质分别求分段函数的最值,比较即可得最大值.【小问1详解】由题意,当046x <<时,()f x =400400100109044x x x x ⎛⎫---=-- ⎪++⎝⎭;当46x ≥时,()f x =921082x x --=-;所以()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩;【小问2详解】当046x <<时,()f x ()40040090944945444x x x x ⎡⎤=--=-++≤-⎢⎥++⎣⎦,当且仅当40044x x =++即16x =时等号成立;当46x ≥时,()f x 82824636x =-≤-=;因为5436>,所以当16x =时,年利润()f x 有最大值为54万元.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.【答案】(1)7π,Z 8x k k π=+∈时,()fx 取得最小值12.(2)π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)化简得到()π1sin 2242f x x ⎛⎫=-+ ⎪⎝⎭,根据正弦型函数的性质,即可求解;(2)化简得到()5π1sin 22122g x x ⎛⎫=++ ⎪⎝⎭,结合题意,利用正弦型函数的性质,即可求解.【小问1详解】因为()211cos 2π1sin cos sin sin 2sin 222242x f x x x x x x -⎛⎫=+=+=-+ ⎪⎝⎭,所以当π3π22π,Z 42x k k -=+∈,即7ππ,Z 8x k k =+∈时,()f x 取得最小值12.【小问2详解】由函数()ππ15π1sin 2sin 2323422122g x f x x x π⎡⎤⎛⎫⎛⎫⎛⎫=+=+-+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由π5ππ222π,Z 2122k x k k π-≤+≤+∈,可得11ππππ,Z 2424k x k k -≤≤+∈,又[]0,πx ∈,取0k =时,可得π024x ≤≤;取1k =时,可得13ππ24x ≤≤;所以()g x 在[]0,π上的单调递增区间为π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.22.已知函数()42x x f x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.【答案】(1)()f x 最小值为1-;()f x 最大值8(2)6a =【解析】【分析】(1)换元后结合二次函数单调性得到最值;(2)令22x x m -=+,求出2m ≥,转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,分22a ≤和22a >两种情况,结合函数单调性,得到方程,求出实数a 的值.【小问1详解】当2a =时,()()2422222x x x x f x ==-⨯-⨯,令2x t =,因为[]1,2x ∈-,所以1,42t ⎡⎤∈⎢⎥⎣⎦.所以()22211y t t t =-=--,1,42t ⎡⎤∈⎢⎥⎣⎦.故当1t =时,min 1y =-;当4t =时,max 8y =,即当0x =时,()f x 取得最小值1-;当2x =时,()f x 取得最大值8.【小问2详解】()()()2424222222x x x x x x x x g a a x a ----=-⋅+-⋅=+-⋅+-,令22x x m -=+,则2m =≥,当且仅当22-=x x ,即0x =时,等号成立,于是问题等价转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,二次函数()h m 的对称轴方程为2a m =,当22a ≤,即4a ≤时,()h m 在区间[)2,+∞上单调递增,此时存在最小值()222h a =-,令2211a -=-,解得132a =,不符合题意,舍去;当22a >,即4a >,()h m 在区间2,2a ⎡⎫⎪⎢⎣⎭上单调递减,在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以存在最小值222222424a a a a h ⎛⎫=--=-- ⎪⎝⎭,令22114a --=-,解得6a =(负值舍去).综上得,6a =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年广东省湛江五中高三(上)1月月考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=() A. 5﹣4i B. 5+4i C. 3﹣4i D. 3+4i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解析】:解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.【点评】:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合A={x∈R||x﹣1|<2},B={y∈R|y=2x,x∈R},则A∩B=() A.∅B.的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A. 7 B. 9 C. 10 D. 15【考点】:系统抽样方法.【专题】:概率与统计.【分析】:由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数.【解析】:解:960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由451≤30n﹣21≤750 解得15.7≤n≤25.7.再由n为正整数可得16≤n≤25,且 n∈z,故做问卷B的人数为10,故选:C.【点评】:本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题.8.(5分)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A. 2个 B. 4个 C. 6个 D. 8个【考点】:元素与集合关系的判断.【专题】:集合.【分析】:根据题意,要使S的三个元素构成的集合中不含好元素,只要这三个元素相连即可,所以找出相连的三个数构成的集合即可.【解析】:解:根据好元素的定义,由S的3个元素构成的集合中,不含好元素的集合为:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}.故选C.【点评】:考查对好元素概念的理解,以及子集的概念,元素与集合的关系.二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.(5分)若二项式(+2)n(n∈N*)的展开式中的第5项是常数项,则n= 6 .【考点】:二项式系数的性质.【专题】:二项式定理.【分析】:先求出二项式展开式的通项公式,再根据r=4时,x的幂指数等于0,求得n的值.【解析】:解:二项式(+2)n(n∈N*)的展开式的通项公式为 T r+1=•2r•,由于第5项是常数项,可得﹣n=0,∴n=6,故答案为:6.【点评】:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= ﹣1 .【考点】:利用导数研究曲线上某点切线方程.【专题】:导数的概念及应用.【分析】:先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.【解析】:解:由题意得,y′=k+,∵在点(1,k)处的切线平行于x轴,∴k+1=0,得k=﹣1,故答案为:﹣1.【点评】:本题考查了函数导数的几何意义应用,难度不大.11.(5分)(2014秋•赤坎区校级月考)若等差数列{a n}和等比数列{b n}满足a1=b1=1,a2=b2=2.则a5b5= 80 .【考点】:等差数列的通项公式;等比数列的通项公式.【专题】:等差数列与等比数列.【分析】:由已知结合等差数列和等比数列的通项公式求得等差数列的公差和等比数列的公比,然后求得a5,b5,则答案可求.【解析】:解:由等差数列{a n}满足a1=1,a2=2,得d=1,∴a5=5,等比数列{b n}满足b1=1,b2=2,得q=2,∴b5=24=16,∴a5b5=80.故答案为:80.【点评】:本题考查了等差数列和等比数列的通项公式,是基础的计算题.12.(5分)按如图的程序框图运行后,输出的S应为40 .【考点】:程序框图.【专题】:算法和程序框图.【分析】:根据框图的流程依次计算程序运行的结果,直到满足条件i>5,计算输出S的值.【解析】:解:由程序框图知:第一次运行i=1,T=3×1﹣1=2,S=0+2=2,i=2,不满足条件i>5,循环,第二次运行i=2,T=3×2﹣1=5,S=5+2=7,i=3,不满足条件i>5,循环,第三次运行i=3,T=3×3﹣1=8,S=7+8=15,i=4,不满足条件i>5,循环,第四次运行i=4,T=3×4﹣1=11,S=15+11=26,i=5,不满足条件i>5,循环,第五次运行i=5,T=3×5﹣1=14,S=26+14=40,i=6,满足条件i>5,程序终止,输出S=40.故答案是:40【点评】:本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.比较基础.13.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,且c=,B=120°,则△ABC的面积等于.【考点】:正弦定理.【专题】:计算题;解三角形.【分析】:先根据余弦定理建立关于a的等式,解出a=.再根据三角形的面积公式加以计算,可得△ABC的面积.【解析】:解:根据余弦定理,可得b2=a2+c2﹣2accosB,即6=a2+2﹣2×a××(﹣),解之得a=.因此△ABC的面积S===.故答案为:【点评】:本题给出三角形的两条边和其中一条边的对角,求它的面积.着重考查了利用正余弦定理解三角形、三角形的面积求法等知识,属于中档题.14.(5分)已知在直角坐标系中曲线C1的参数方程为(t为参数且t≠0),在以原点O为极点,以x轴正半轴为极轴建立的极坐标系中曲线C2的极坐标方程为θ=(ρ∈R),则曲线C1与C2交点的直角坐标为(2,2).【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:由曲线C1的参数方程(t为参数且t≠0),消去参数t可得x2=y+2.由曲线C2的极坐标方程为θ=(ρ∈R),可得y=x.联立解得即可.【解析】:解:由曲线C1的参数方程(t为参数且t≠0),可得x2=+2=y+2(y>0).由曲线C2的极坐标方程为θ=(ρ∈R),可得y=x.联立,解得x=y=2.∴曲线C1与C2交点的直角坐标为(2,2).故答案为:(2,2).【点评】:本题考查了把参数方程与极坐标方程化为直角坐标方程,属于基础题.15.如图,PT切圆O于点T,PA交圆O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB= 15 .【考点】:与圆有关的比例线段.【专题】:计算题;压轴题.【分析】:首先根据题中圆的相交弦定理得DT,再依据直角三角形的勾股定理用PB表示出PT,最后结合切割线定理求得一个关于PB线段的方程式,解此方程即可.【解析】:解:如图,由相交弦定理可知,2•DT=3•6⇒DT=9.在直角三角形PTD中,由切割线定理可知PT2=PB•PA⇒(6+x)2﹣92=x(x+9)⇒x=15.故填:15.【点评】:此题综合运用了切割线定理、圆的相交弦定理以及与圆有关的直角三角形,属于基础题.三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤.(12分)已知函数.16.的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知且,求.【考点】:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值.【专题】:计算题;三角函数的图像与性质.【分析】:(1)依题意知,A=2,由图得T=π.从而可得ω=2;又2×+φ=2kπ+,k∈Z,φ∈(0,),可求得φ,于是可得函数f(x)的解析式;(2)易求cosα=﹣,利用两角和的正弦即可求得f()=2sin(α+)的值.【解析】:解:(1)由函数最大值为2,得A=2.由图可得周期T=4=π,∴ω==2.又2×+φ=2kπ+,k∈Z,∴φ=2kπ+,k∈Z,又φ∈(0,),∴φ=,∴f(x)=2sin(2x+);(2)∵α∈(,π),且sinα=,∴cosα=﹣=﹣,∴f()=2sin(2•+)=2(sinαcos+cosαsin)=2=.【点评】:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查三角函数的化简求值,属于中档题.17.(12分)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:.(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.【考点】:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.【专题】:概率与统计.【分析】:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.【解析】:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2∴【点评】:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(14分)正三棱柱ABC﹣A1B1C1的所有棱长都为4,D为的CC1中点.(1)求证:AB1⊥平面A1BD;(2)求二面角A﹣A1D﹣B的余弦值.【考点】:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.【专题】:空间位置关系与距离;空间角.【分析】:(1)通过建立如图所示的空间直角坐标系,利用数量积⇔,即可证明AB1⊥平面A1BD;(2)利用两个平面的法向量的夹角即可得到二面角.【解析】:(1)证明:取BC中点O,连接AO,∵△ABC为正三角形,∴AO⊥BC,∵在正三棱柱ABC﹣A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,取B1C1中点为O1,以O为原点,,,的方向为x,y,z轴的正方向,建立空间直角坐标系,则.∴,,.∵,.∴,,∴AB1⊥面A1BD.(2)设平面A1AD的法向量为,.,∴,∴,⇒,令z=1,得为平面A1AD的一个法向量,由(1)知AB1⊥面A1BD,∴为平面A1AD的法向量,,由图可以看出:二面角A﹣A1D﹣B是锐角.∴二面角A﹣A1D﹣B的余弦值为.【点评】:熟练掌握:通过建立如图所示的空间直角坐标系的方法,利用数量积与垂直的关系证明线面垂直;利用两个平面的法向量的夹角得到二面角.19.(14分)已知数列{a n}满足a1=,a n=2﹣(n≥2),S n是数列{b n}的前n项和,且有=1+b n.(1)证明:数列{}为等差数列;(2)求数列{b n}的通项公式;(3)设c n=,记数列{c n}的前n项和T n,求证:T n<1.【考点】:数列与不等式的综合.【专题】:计算题;证明题;等差数列与等比数列;不等式.【分析】:(1)化简a n=2﹣,化出的形式,(2)由a n=s n﹣s n﹣1化简,得到递推公式,再推通项公式;(3)利用裂项求和法求和证明不等式成立.【解析】:解:(1)证明:∵,∴,∴,即:∴.∴数列是以为首项,1为公差的等差数列.(2)当n≥2时,,,即:;∴,当n=1时,b1=S1=2,∴.(3)证明:由(1)知:∴,∴,∴.【点评】:本题全面考查了数列的相关知识,有等差数列的证明,也用到了通项与前n项之间的普遍关系,同时考查了裂项求和的方法,属于难题.20.(14分)已知双曲线C:﹣=1(a>0,b>0),F1、F2分别是它的左、右焦点,A(﹣1,0)是其左顶点,且双曲线的离心率为e=2.设过右焦点F2的直线l与双曲线C的右支交于P、Q两点,其中点P位于第一象限内.(1)求双曲线的方程;(2)若直线AP、AQ分别与直线x=交于M、N两点,求证:MF2⊥NF2;(3)是否存在常数λ,使得∠PF2A=λ∠PAF2恒成立?若存在,求出λ的值,若不存在,请说明理由.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与范围问题.【分析】:(1)由题可知:a=1.由于,可得c=2.再利用b2=c2﹣a2即可.(2)设直线l的方程为:x=ty+2,另设:P(x1,y1)、Q(x2,y2).联立,可得根与系数的关系.又直线AP的方程为,解得M.同理解得N.只要证明=0即可.(3)当直线l的方程为x=2时,解得P(2,3).易知此时△AF2P为等腰直角三角形,可得:λ=2.当∠AF2P=2∠PAF2对直线l存在斜率的情形也成立.利用正切的倍角公式、斜率计算公式、双曲线的方程、正切函数的单调性即可证明.【解析】:(1)解:由题可知:a=1.∵,∴c=2.∴b2=c2﹣a2=3,∴双曲线C的方程为:.(2)证明:设直线l的方程为:x=ty+2,另设:P(x1,y1),Q(x2,y2).联立,化为(3t2﹣1)y2+12ty+9=0.∴.又直线AP的方程为,代入x=,解得M.同理,直线AQ的方程为,代入x=,解得N.∴=.∴=+==+=.∴MF2⊥NF2.(3)解:当直线l的方程为x=2时,解得P(2,3).易知此时△AF2P为等腰直角三角形,其中,也即:λ=2.下证:∠AF2P=2∠PAF2对直线l存在斜率的情形也成立.tan2∠PAF2====.∵=1,∴.∴,∴,∴结合正切函数在上的图象可知,∠AF2P=2∠PAF2.【点评】:本题综合考查了双曲线的标准方程及其性质、向量垂直与数量积的关系、正切的倍角公式、斜率计算公式、双曲线的方程、正切函数的单调性等基础知识与基本技能方法,考查了推理能力与计算能力,属于难题.21.(14分)已知函数f(x)=x2﹣alnx﹣x(a≠0).(1)求函数f(x)的单调区间;(2)若a>0,设A(x1,y1),B(x2,y2)是函数f(x)图象上的任意两点(x1<x2),记直线AB的斜率为k,求证:f′()>k.【考点】:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】:导数的综合应用.【分析】:(1)先求导,再根据a的值进行分类讨论,得到函数的单调区间.(2)先求导,根据题意,由直线的斜率公式可得k的值,利用分析法证明f′()>k.转化为只需要证明,再构造函数g(t),判断函数在(0,1)上单调性,问题得以证明【解析】:解:(1)(i)当时,2x2﹣x﹣a≥0 恒成立,即f'(x)≥0恒成立,故函数f(x)的单增区间为(0,+∞),无单减区间.(ii)当时,f′(x)>0⇒2x2﹣x﹣a>0,解得:∵x>0,∴函数f(x)的单增区间为,,单减区间为.(iii)当a>0时,由f′(x)>0解得:.∵x>0,而此时<0,∴函数f(x)的单增区间为,单减区间为.综上所述:(i)当a≤﹣时,f(x)的单增区间为(0,+∞),无单减区间.(ii)当时,f(x)的单增区间为,,单减区间为.(iii)当a>0时,f(x)的单增区间为,单减区间为.(2)证明:∵∴由题意得,则:=注意到,故欲证,只须证明:.因为a>0,故即证:令,则:故g(t)在(0,1)上单调递增.即:,即:所以:.【点评】:本题考查导数的应用,涉及斜率,最大值、最小值的求法,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数,属于难题.。