高考数学立体几何知识要点知识点总结及解题思路方法
高三立体几何知识点归纳总结
高三立体几何知识点归纳总结高三学生在学习数学时,立体几何是一个非常重要的内容。
掌握立体几何的知识点对于解决与空间有关的问题和应用数学都非常有帮助。
下面将对高三立体几何的知识点进行归纳总结。
1. 点、线、面、体的概念和性质- 点是几何学中最基本的图形,没有长度、面积和体积。
点用字母标记,如A、B、C等。
- 线是由无数个点按一定顺序排列而成,线没有厚度和宽度,只有长度。
线用两个点表示,如AB、CD等。
- 面是由无数个点组成的,有了宽度和长度,可以看得到的实物。
面用大写字母表示,如P、Q、R等。
- 体是由无数个面拼接在一起形成的,有了高度。
体用大括号表示,如{ABCD}、{EFGH}等。
2. 空间中的位置关系- 两条线平行,即两条线在同一个平面中,没有交点。
- 两条线相交,即两条线在同一个平面中,有一个公共点。
- 两个平面平行,即两个平面之间没有交点。
- 两个平面相交,即两个平面之间有一条直线作为交线。
3. 立体图形的表示与性质- 点、线、面、体都可以用二维图形来表示,如平面图和立体图。
- 平面图是在一个平面上画出物体的图形,只能看到一个物体的某一部分。
- 立体图是在一个空间中画出物体的图形,可以看到一个物体的不同部分。
4. 空间直线与平面的关系- 直线在平面上,直线与平面相交于一点。
- 直线与平面垂直,直线垂直于平面,直线上的一点到平面的距离为0。
- 直线与平面平行,直线与平面没有交点。
5. 球体与圆锥、圆台、棱锥、棱台的性质- 球体是由无数个半径相等的点组成,半径是球体最重要的性质。
- 圆锥是一种由顶点和底面圆所围成的几何体。
- 圆台是一种由底面圆、顶面圆和侧面所围成的几何体。
- 棱锥是一种由棱、顶点和底面所围成的几何体。
- 棱台是一种由棱、底面、顶面和侧面所围成的几何体。
6. 空间向量与直线、平面的关系- 空间向量是用来表示直线、平面的工具。
- 线向量是用于表示直线的方向和位置。
- 平面向量是用于表示平面的方向和位置。
高中立体几何基础知识点全集(图文并茂)
立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
立体几何高考知识点及解题方法
立体几何高考知识点及解题方法(一)方法总结1.位置关系:(1).两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直。
(2).直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直。
(3).直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行。
(4).平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外○3证明两个平面的法向量相互垂直。
2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
(1).两条异面直线的距离求法:利用公式|||·|n n AB d=(其中A 、B 分别为两条异面直线上的一点,n 为这两条异面直线的法向量)(2).点到平面的距离求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
○3向量法,利用公式|||·|n n AB d =(其中A 为已知点,B 为这个平面内的任意一点,n 这个平面的法向量)3.求角(1).两条异面直线所成的角求法:○1先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;○2通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是]2,0(π,向量所成的角范围是],0[π,如果求出的是钝角,要注意转化成相应的锐角。
(2).直线和平面所成的角求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为απ-2或2πα-。
高中数学立体几何解题方法与技巧
高中数学立体几何解题方法与技巧高中数学立体几何是数学的一个重要分支,它研究的是空间中的图形、体积、表面积以及它们之间的关系。
学好立体几何,需要掌握一些解题方法与技巧。
下面将介绍一些常用的解题方法与技巧。
一、立体几何的基本概念与性质:在学习立体几何之前,首先需要掌握一些基本概念与性质。
例如:1.空间几何图形的基本要素:点、直线、平面。
2.空间几何体的基本要素:线段、直线、面、多面体等。
3.空间几何体的性质与关系:例如四边形的内角和等于360度,平面与直线的位置关系等。
二、图形的投影与视图:解题时,往往需要在二维平面上进行推导与计算。
因此,需要了解图形的投影与视图的概念与方法。
1.图形的平面投影:例如将三维图形的投影投到一个平面上,可以简化问题的分析与计算。
2.三视图的绘制:根据题目中的给定条件,绘制三个视图,有助于理清问题的关系和结构。
三、平行与相似:平行和相似是解决立体几何问题常用的关键性质。
掌握平行线与平行面的性质,以及相似三角形的性质,对解题有很大帮助。
1.平行线及其性质:例如平行线的万能定理、内线定理、等角对内线等。
2.平行面及其性质:例如平行面的性质、平行面截平行线的性质等。
3.相似三角形及其性质:例如相似三角形的比例定理、角平分线定理、海伦公式等。
四、体积与表面积:在解体积与表面积的问题时,需要掌握各种几何体的计算公式与基本相应的性质。
1.体积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的体积公式与相关性质。
2.表面积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的表面积公式与相关性质。
五、解题的方法与技巧:1.运用三角形的相似性质:当我们遇到复杂的几何体时,可以通过寻找相似三角形来简化问题的分析。
2.运用等高线的思想:当题目中出现高度或等高的条件时,可以利用等高线的思想来求解。
3.利用平行投影和垂直投影:平行投影和垂直投影是解决立体几何问题常用的方法,可以通过不同的投影方式简化问题的分析与计算。
高中数学立体几何核心考点与学习方法
高中数学立体几何核心考点与学习方法高中数学中,立体几何是一个重要的考点。
立体几何不仅仅是考试中的一道题目,更是在生活中应用广泛的数学知识,可以帮助我们更好地理解和把握三维空间。
本文将介绍高中数学立体几何的核心考点和学习方法,希望能对学习数学的同学有所帮助。
一、核心考点1. 立体图形的基本概念立体图形是由平面图形组成的,因此要理解立体图形的基本概念,必须要先掌握平面图形的概念。
以此类推,如棱、边、角、面等。
2. 立体图形的投影立体图形的投影是立体几何中非常重要的考点,需要掌握正视投影、侧视投影和俯视投影等概念。
3. 空间位置关系在三维空间中,点、直线、平面之间的关系是立体几何的重要考点。
需要掌握相交、平行、垂直等空间位置关系。
4. 立体图形的计算在立体几何中,计算依然很重要。
例如几何体的表面积、体积等概念需要熟练掌握,并能够应用到题目中。
二、学习方法1. 掌握基本知识要学好立体几何,首先需要掌握基本知识。
例如,对于熟悉平面几何的学生,他们应当能够意识到其实立体几何也是由平面几何所组成的。
掌握立体几何基本概念后,才能够更好地理解和掌握后续知识。
2. 齐头并进在学习立体几何时,平面几何也是需要同时学习的。
因为立体几何的知识点和平面几何关联紧密,如果平面几何不扎实,就会影响到对立体几何的掌握。
3. 多做习题做习题是学习立体几何的重要方法之一。
多做相关习题,能够帮助我们更好地理解基本概念和核心考点,并且能够提高解题能力。
但是,做习题时要注意时间和方法,不要为了做题而做题,一定要有方法和技巧。
4. 小结法则在学习过程中,要经常做出小结,以便能够及时回顾所学的知识,将知识点串连起来,形成更完整的知识模型。
这也能够帮助我们在日后的考试中更好地应对各种题目。
5. 应用到生活中学习立体几何不仅是为了应付考试,更是要应用到生活中。
例如,设计建筑、制作玩具等都需要运用立体几何知识。
将学到的知识与实际生活相结合,能够提高学习立体几何的热情和兴趣。
高中数学 立体几何知识点及解题思路
第一章 空间几何体一、常见几何体的定义能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。
二、常见几何体的面积、体积公式1.圆柱:侧面积rl cl S π2==侧 (其中c 是底面周长,r 是底面半径,l 是圆柱的母线,也是高)表面积)(2222l r r r rl S S S +=⋅+=+=πππ底侧表h r sh V 2π==柱体2.圆锥:侧面积rl cl S π==21侧 (其中c 是底面周长,r 是底面半径,l 是圆锥的母线) 表面积)(2l r r r rl S S S +=+=+=πππ底侧表 h r sh V 23131π==椎体 3.圆台:侧面积l R r l R r S )(2)22(+=+=πππ侧 (其中r 、R 是上下底面半径,l 是圆台的母线) 表面积)()(2222R r Rl rl R r l R r S S S +++=+++=+=ππππ底侧表 h S S S S V )(31''++=台体 (其中'S 、S 是上下底面面积,h 是圆台的高) 4.球:表面积24R S π=表,体积334R V π=球 三、直观图:会用斜二侧画法画出平面图形的直观图。
画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x 轴平行的线段仍然与x 轴平行,长度不变;与y 轴平行的线段仍然与y 轴平行,但是长度减半。
四、三视图1.投影:光线照射物体留在屏幕上的影子。
①中心投影:光由一点向外散射形成的投影。
②平行投影:在平行光线照射下形成的投影。
③正投影:光线正对着投影面时的平行投影。
2.三视图:正视图:光线从前向后的正投影;侧视图:光线从左向右的正投影;俯视图:光线从上向下的正投影。
三视图的性质:侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。
第二章:点、直线、平面之间的位置关系 一、立体几何中的公理与基本关系1.平面公理:公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。
高考数学中立体几何的考点及解题技巧
高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。
本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。
1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。
包括点、线、面的概念及其相关性质。
比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。
2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。
在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。
3. 三视图三视图是三维立体图形的三个面正、左、俯视图。
在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。
特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。
4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。
5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。
在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。
因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。
高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。
建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。
除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。
相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。
高考数学-立体几何知识点与例题讲解-题型、方法技巧
一、知识点
<一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线
平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面
0,
y
0,
x 3z.
令 z 1得 n ( 3,0,1) 为平面 A1AD 的一个法向量.
由(Ⅰ)知 AB1 ⊥平面 A1BD ,
AB1 为平面 A1BD 的法向量.
cos
n
,
AB1
n AB1 n AB1
3 22
S△ A1BD
d
,
d 3S△BCD 2 .
S△ A1BD
2
点 C 到平面 A1BD 的距离为
2. 2
解法二:(Ⅰ)取 BC 中点 O,连结 AO .
△ABC 为正三角形, AO ⊥ BC .
在正三棱柱 ABC A1B1C1 中,平面 ABC ⊥平面 BCC1B1,
AD ⊥ 平面 BCC1B1 .
取 B1C1 中点 O1 ,以 O为原点, OB , OO1 , OA 的方向为 x,y,z 轴的正方向建立空间直角坐标系,则 B(1,0,0) ,
D(1,1,0) , A1(0,2,3) , A(0,0,3) , B1(1,2,0) ,
AB1 (1,2, 3) , BD (2,1,0) , BA1 (1,2,3) .
AB1 2 2 2
小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的 B
高考数学立体几何知识点梳理
高考数学立体几何知识点梳理关键信息:1、立体几何基本概念与公理点、线、面的位置关系三公理及推论2、直线与平面的位置关系直线与平面平行直线与平面垂直3、平面与平面的位置关系平面与平面平行平面与平面垂直4、空间几何体棱柱棱锥棱台圆柱圆锥圆台球5、空间几何体的表面积与体积表面积公式体积公式6、空间向量在立体几何中的应用空间向量的坐标表示空间向量的数量积利用空间向量证明位置关系利用空间向量求空间角11 立体几何基本概念与公理111 点、线、面的位置关系点是空间中最基本的元素,线是由无数个点组成的,面是由无数条线组成的。
点动成线,线动成面。
直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交。
平面与平面的位置关系有:平行、相交。
112 三公理及推论公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理 2:过不在一条直线上的三点,有且只有一个平面。
公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
推论 1:经过一条直线和这条直线外一点,有且只有一个平面。
推论 2:经过两条相交直线,有且只有一个平面。
推论 3:经过两条平行直线,有且只有一个平面。
21 直线与平面的位置关系211 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行。
212 直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。
判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
性质定理:垂直于同一个平面的两条直线平行。
31 平面与平面的位置关系311 平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
312 平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
高中数学的归纳立体几何的关键概念与立体形求解总结
高中数学的归纳立体几何的关键概念与立体形求解总结立体几何是高中数学中的一篇重要内容,它是几何学的一个分支,主要研究空间中的图形、立体体积和表面积等概念。
在学习立体几何时,我们需要掌握一些关键的概念以及相应的解题方法。
本文将对高中数学的归纳立体几何的关键概念与立体形求解进行总结,帮助读者更好地理解和应用这方面的知识。
第一部分:关键概念1. 点、线、面在立体几何中,点、线、面是最基本的几何元素。
点是没有大小和形状的,线是由无数个点组成的,而面则是由无数条线组成的。
理解点、线、面的概念是进行立体几何推导和证明的基础。
2. 直线与射线直线是由两个点确定的,它没有起点和终点;而射线有一个确定的起点,但没有终点。
直线和射线的性质在解题过程中需要充分运用,如利用两直线的交点求解问题等。
3. 角角是由两个射线共同确定的,常用单位为度。
在立体几何中,常见的角有直角、锐角和钝角。
理解角度的概念对于判断空间中的位置关系以及解题都有重要意义。
4. 多面体多面体是由多个面组成的立体图形,例如立方体、长方体、正方体等。
多面体的表面积和体积是高中立体几何中常见的求解问题。
第二部分:立体形的求解方法1. 立体形的体积求解立体形的体积是指该立体形所占的空间大小。
不同的立体形体积求解方法也不同,例如长方体的体积等于底面积乘以高度,圆柱体的体积等于底面积乘以高度等。
在解体积问题时,可以根据形状特点运用相应的公式进行求解。
2. 立体形的表面积求解立体形的表面积是指该立体形外部所有面的总面积。
在解表面积问题时,需要根据不同的立体形状运用相应的公式进行求解,例如长方体的表面积等于底面积的两倍加上侧面积的两倍,球体的表面积等于4πr²等。
3. 立体形的位置关系判断在立体几何中,我们常常需要判断不同立体形的位置关系,包括是否相交、是否平行等。
可以利用投影法、判断距离方法等来进行判断。
第三部分:归纳立体几何的解题技巧1. 理清问题思路解立体几何问题时,首先要弄清楚问题所涉及的立体形,明确需要求解的内容。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
高中数学立体几何的重点知识点整理如何解决立体几何题目
高中数学立体几何的重点知识点整理如何解决立体几何题目立体几何是数学的一个重要分支,其研究的是空间中的图形和物体。
在高中数学中,学生将接触到一些重要的立体几何知识点,并且需要学会如何解决立体几何题目。
本文将对高中数学立体几何的重点知识点进行整理,并介绍如何解决立体几何题目。
一、立体几何的基本概念1. 空间中的点、直线和平面是立体几何的基本概念。
学生需要理解三维空间中点、直线和平面的性质,以及它们之间的相互关系。
2. 学生还需要掌握棱、面和顶点的概念,并能够正确识别出立体图形中的棱、面和顶点。
二、多面体的特征和性质1. 多面体是由多个平面围成的空间图形。
学生需要了解常见的多面体,例如立方体、正四面体、正六面体等,并掌握它们的特征和性质。
2. 对于立体图形,学生还需要学会计算其表面积和体积。
通过求解表面积和体积的问题,可以帮助学生加深对多面体的认识。
三、平行线与平面的交角1. 平行线与平面的交角是数学中的重要概念。
学生需要理解平行线与平面的交角定义,并熟练运用相关的性质解决问题。
2. 根据平行线与平面的交角定义,学生可以判断两个立体图形是否相似,并进行相关计算。
四、截痕与截面1. 截痕是指平面与立体图形的交线。
学生需要理解截痕的特征和性质,并能够根据截痕计算立体图形的体积和表面积。
2. 截面是指平面与立体图形的交面。
学生需要学会根据截面的形状和大小来判断立体图形的性质,并运用相关的性质解决问题。
五、三棱锥和三棱柱的特征和计算1. 三棱锥是由一个底面和三个棱共同围成的空间图形。
学生需要掌握三棱锥的特征和性质,并能够计算三棱锥的表面积和体积。
2. 三棱柱是由两个平面底面和三个棱共同围成的空间图形。
学生需要了解三棱柱的特征和性质,并学会计算三棱柱的表面积和体积。
通过掌握以上的立体几何知识点,学生可以更好地解决立体几何题目。
在解题过程中,可以使用以下方法:1. 理清题意,明确问题的要求。
2. 根据题目给出的条件,运用相应的知识点进行分析。
2024年高考数学立体几何知识点总结
2024年高考数学立体几何知识点总结____年高考数学立体几何知识点总结(____字)一、立体几何的基本概念1. 立体几何的研究对象:立体物体。
2. 立体物体的特征:具有长度、宽度和高度三个方向的物体。
3. 立体几何的基本概念:点、线、面。
- 点:没有任何维度,没有长度、宽度和高度。
在立体几何中用大写字母表示,如A、B、C。
- 线:由一串无限多个点组成,具有长度但没有宽度和高度。
用小写字母表示,如a、b、c。
- 面:由无限多条线组成,具有长度和宽度但没有高度。
用大写字母表示,如A、B、C。
- 空间:由无限多个面组成,具有长度、宽度和高度。
用字母S表示。
二、立体几何的基本性质1. 垂直关系:- 垂直平面:两个平面的法线互相垂直。
- 垂直线:两个线互相垂直。
2. 平行关系:- 平行线:在同一个平面上没有交点的两条线。
- 平行平面:在空间中没有交线的两个平面。
3. 点、线、面的关系:- 点在线上:一个点在一条线上。
- 线在平面上:一条线在一个平面上。
- 点在平面上:一个点在一个平面上。
- 线垂直于平面:一条线与一个平面垂直。
4. 空间几何图形的投影:- 平面的投影:一个空间几何图形在一个平面上的投影。
- 线的投影:一条线在一个平面上的投影是线段。
- 点的投影:一个点在一个平面上的投影是一个点。
- 面的投影:一个面在一个平面上的投影是一个面。
三、平行于坐标轴的立体图形1. 长方体的概念和性质:- 长方体的定义:由6个矩形面围成的立体几何图形。
- 长方体的性质:相对的面是平行的,相对的边是相等的。
2. 正方体的概念和性质:- 正方体的定义:所有边长相等的长方体。
- 正方体的性质:正方体的六个面是相等的正方形。
3. 正方柱、正交柱的概念和性质:- 正方柱:底面是正方形的柱体。
- 正交柱:底面和轴垂直的柱体。
- 正方柱和正交柱的性质:底面的对边平行且相等。
四、平行四边形的性质1. 平行四边形的定义:两对对边平行的四边形。
高三的立体几何知识点总结
高三的立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和体积。
在高三的学习中,立体几何是一个重要的知识点,它涉及到各种图形的性质和计算方法。
下面将对高中三年级立体几何的知识点进行总结和归纳。
一、平面与直线的位置关系1. 平面与平面的位置关系- 平面相交:两个平面相交于一条直线。
- 平面平行:两个平面没有交点,永远平行。
2. 直线与直线的位置关系- 直线相交:两个直线相交于一点。
- 直线平行:两个直线没有交点,永远平行。
二、立体几何的基本图形1. 三棱柱- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高2. 三棱锥- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高 ÷ 33. 正四面体- 表面积 = 底面积 + 侧面积 - 体积 = 底面积 ×高 ÷ 34. 正方体- 表面积 = 6 ×边长²- 体积 = 边长³5. 正六面体- 表面积 = 6 ×边长²- 体积 = 边长³6. 球- 表面积= 4πr²- 体积= (4/3)πr³三、立体几何的性质和判定方法1. 平行四边形的性质- 对角线互相平分- 对边平行2. 立体图形的重心- 三角形:重心位于中线上,离顶点为中线长的2/3处。
- 四边形:重心位于对角线交点处,各对角线分比为1:1。
3. 球的切线和切平面- 切线:与球面相切的直线。
4. 圆锥的切线和切圆- 切线:与圆锥侧面相切的直线。
- 切圆:与圆锥底面相切的圆。
五、立体几何计算题1. 高中立体几何计算题的解题步骤- 理清题意,根据已知条件找到关键信息。
- 利用几何性质和定理,进行推导和计算。
- 最后计算出结果,并写明答案及解题过程。
2. 空间几何体的计算题- 根据图形的性质和给定条件,计算其面积和体积。
六、解题技巧1. 利用平面几何的知识- 平行线的性质可以应用到立体几何中,例如利用平行线的对应角相等性质求解立体几何题目。
高考数学冲刺复习立体几何考点攻略
高考数学冲刺复习立体几何考点攻略高考数学中,立体几何一直是重要的考点之一,也是许多同学感到棘手的部分。
在冲刺复习阶段,掌握立体几何的核心考点和解题方法,对于提高成绩至关重要。
接下来,就让我们一起深入探讨立体几何的考点攻略。
一、空间几何体的结构特征首先,要清晰地理解常见空间几何体的结构特征,如棱柱、棱锥、棱台、圆柱、圆锥、圆台和球。
了解它们的定义、性质以及图形特点。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,截面与底面之间的部分。
圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所形成的曲面所围成的几何体。
圆台:用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体。
对于这些几何体,要能够通过直观图和三视图准确判断其结构特征,并且能够计算它们的表面积和体积。
二、空间点、线、面的位置关系这是立体几何的基础,包括线线、线面、面面的位置关系。
线线位置关系:平行、相交、异面。
线面位置关系:线在面内、线面平行、线面相交。
面面位置关系:平行、相交。
要熟练掌握这些位置关系的判定定理和性质定理,例如线面平行的判定定理、面面垂直的性质定理等。
同时,要能够运用这些定理进行推理和证明。
三、直线与平面平行、垂直的判定与性质直线与平面平行的判定方法:(1)利用定义:直线与平面没有公共点。
(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(3)平面与平面平行的性质:如果两个平面平行,那么一个平面内的任意一条直线都平行于另一个平面。
直线与平面平行的性质:(1)一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
高考数学立体几何知识点总结精选全文完整版
可编辑修改精选全文完整版高考数学立体几何知识点总结(1)棱柱:定义:有两个面互相平行,别的各面都是四边形,且每相邻两个四边形的大众边都互相平行,由这些面所围成的几多体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几多特性:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,别的各面都是有一个大众极点的三角形,由这些面所围成的几多体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几多特性:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比即是极点到截面隔断与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几多特性:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,别的三边旋转所成的曲面所围成的几多体几多特性:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几多体几多特性:①底面是一个圆;②母线交于圆锥的极点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几多特性:①上下底面是两个圆;②侧面母线交于原圆锥的极点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几多体几多特性:①球的截面是圆;②球面上恣意一点到球心的隔断即是半径。
2024年高考数学立体几何知识点总结
2024年高考数学立体几何知识点总结(____字)一、空间几何体的基本概念和性质1. 点、线、面的定义和性质2. 各类多面体的定义和性质,如正多面体、柱面、棱锥等3. 空间角的定义和性质,包括平面角、空间角的比较大小等4. 体积和表面积的计算,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等的计算公式二、立体几何的投影问题1. 平行投影和中心投影的性质和应用2. 空间几何体在平行投影和中心投影下的变换关系和性质三、立体几何的位置关系和判定方法1. 点与平面的位置关系判定,如点在平面上、点在平面外等2. 点与直线的位置关系判定,如点在线上、点在线段上等3. 直线与平面的位置关系判定,如直线在平面上、直线与平面相交等4. 空间几何体的位置关系判定,如两个平面的相交、两个直线的关系等四、等腰三角形与正弦定理、余弦定理的应用1. 等腰三角形的性质和判定方法2. 正弦定理和余弦定理的概念和应用,如求解三角形的边长、角度等五、平面与空间直线的交点、平面与空间直线的位置关系1. 平面与空间直线的交点的判定和求解方法2. 平面与空间直线的位置关系的判定方法,如平面与直线相交、平面与直线平行、平面与直线垂直等六、球与平面的交线和球与直线的位置关系1. 球与平面的交线的判定和性质,如球与平面相切、相离等2. 球与直线的位置关系的判定和性质,如球与直线相切、相离、相交等七、向量的应用1. 向量的定义和基本性质2. 向量的共线与共面的判定方法3. 向量的投影和数量积的应用,如求解多边形的面积、平行四边形的面积等八、平面直角坐标系和空间直角坐标系的应用1. 平面直角坐标系的建立和使用方法2. 空间直角坐标系的建立和使用方法3. 平面直角坐标系和空间直角坐标系的转化九、解析几何与立体几何的综合应用1. 点、线、面方程的求解和应用2. 几何图形的平移、旋转和对称变换的解析几何表示方法3. 空间几何体的投影和旋转的解析几何表示方法以上就是2024年高考数学立体几何的知识点总结。
2024年高考数学立体几何知识点总结
2024年高考数学立体几何知识点总结高考数学中的立体几何,是考查考生对空间图形的认识和理解,以及解决问题的能力。
以下是2024年高考数学立体几何的主要知识点总结:一、立体几何的基本概念1. 空间直角坐标系:了解三维空间的坐标系,掌握在空间直角坐标系下求两点之间距离和判定点与多面体关系的方法。
2. 几何体的分类与特征:了解各种几何体的定义、特征和性质,包括点、直线、平面、多面体等,熟悉各种几何体的命名和常见几何体的特征。
二、多面体与球的性质1. 正多面体:熟悉正多面体的定义、性质和相关定理,如正四面体、正六面体、正八面体等的性质,掌握计算正多面体的体积和表面积的方法。
2. 欧拉定理:了解欧拉定理的内容和证明思路,应用欧拉定理求解相应问题。
3. 球的性质:了解球的定义、性质和相关定理,如球面上的点和圆应用球的性质进行计算。
三、立体空间的位置关系1. 空间几何体的位置关系:了解空间几何体之间的位置关系,包括平行与垂直关系、相交与平面关系、点在立体内部与外部的关系等。
2. 空间向量的应用:熟悉空间向量的概念、性质和运算,掌握使用空间向量判断几何体的位置关系的方法。
四、立体几何中的投影1. 投影的概念与性质:了解投影的基本概念和性质,包括平行投影和斜投影的性质,熟悉使用投影解决几何问题的方法。
2. 截痕法与截面应用:掌握截痕法求解几何问题的基本思路和方法,熟练运用截痕法和截面方法解决立体几何问题。
五、向量运算在立体几何中的应用1. 向量投影的应用:了解向量投影的概念和性质,应用向量投影解决立体几何中的相关问题。
2. 向量混合积和向量积的应用:掌握向量混合积和向量积的定义和性质,应用向量混合积和向量积求解相关问题。
六、空间坐标系中的方向余弦与方向角1. 方向余弦的概念与性质:了解方向余弦的概念和性质,掌握方向余弦在立体几何中的应用方法。
2. 方向角的概念与计算:了解方向角的定义和计算方法,熟练求解立体几何中与方向角相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学立体几何知识要点知识点总结及解题思路方法
一、知识提纲
(一)空间的直线与平面
⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.
⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.
⑴公理四(平行线的传递性).等角定理.
⑵异面直线的判定:判定定理、反证法.
⑶异面直线所成的角:定义(求法)、范围.
⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.
⒋直线和平面垂直
⑴直线和平面垂直:定义、判定定理.
⑵三垂线定理及逆定理.
5.平面和平面平行
两个平面的位置关系、两个平面平行的判定与性质.
6.平面和平面垂直
互相垂直的平面及其判定定理、性质定理.
(二)直线与平面的平行和垂直的证明思路(见附图)
(三)夹角与距离
7.直线和平面所成的角与二面角
⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜
线和平
面所成的角、直线和平面所成的角.
⑵二面角:①定义、范围、二面角的平面角、直二面角.
②互相垂直的平面及其判定定理、性质定理.
8.距离
⑴点到平面的距离.
⑵直线到与它平行平面的距离.
⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.
⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球
9.棱柱与棱锥
⑴多面体.
⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.
⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、
正方体;平行六面体的性质、长方体的性质.
⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.
⑸直棱柱和正棱锥的直观图的画法.
10.多面体欧拉定理的发现
⑴简单多面体的欧拉公式.
⑵正多面体.
11.球
⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离. ⑵球的体积公式和表面积公式.
二、常用结论、方法和公式
1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;
2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;c o s c o s c o s 21θθθ=
3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,
BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;
4.异面直线所成角的求法:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
5.直线与平面所成的角
斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;
6.二面角的求法
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在B C A D A 1
α
两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
(4)射影法:利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此法不必在图形中画出平面角;
特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
7.空间距离的求法
(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;
(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;
(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;
8.正棱锥的各侧面与底面所成的角相等,记为θ,则S 侧cos θ=S 底;
9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为,,,γβα因此有cos 2α+cos 2β+cos 2γ=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,,γβα则有cos 2α+cos 2β+cos 2γ=2;
10.正方体和长方体的外接球的直径等与其体对角线长;
11.欧拉公式:如果简单多面体的顶点数为V,面数为F,棱数为E.那么V+F -E=2;并且棱数E =各顶点连着的棱数和的一半=各面边数和的一半;
12.柱体的体积公式:柱体(棱柱、圆柱)的体积公式是V 柱体=Sh.其中S 是柱体的底面积,h 是柱体的高.
13.直棱柱的侧面积和全面积
S 直棱柱侧= c (c 表示底面周长, 表示侧棱长) S 棱柱全=S 底+S 侧
14.棱锥的体积:V 棱锥=Sh 3
1,其中S 是棱锥的底面积,h 是棱锥的高。
15.球的体积公式V=334R π,表面积公式24R S π=;掌握球面上两点A 、B 间的距离求法:(1)计算线段AB 的长,(2)计算球心角∠AOB 的弧度数;(3)用弧长公式计算劣弧AB 的长;。