2014中考数学河南省洛阳市一模试卷(word版,有答案)
2014河南省中考数学试卷及答案(word版)
2014年河南省普通高中招生考试试卷数学注意事项:.本试卷共 页,三个大题,满分 分,考试时间 分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上. .答卷前请将密封线内的项目填写清楚.一、选择题(每小题 分,共 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内..下列各数中,最小的数是()...﹣.﹣.据统计, 年河南省旅游业总收入达到约亿元.若将 亿用科学记数法表示为 ,则 等于().....如图,直线 , 相交于点 ,射线 平分, ,若 ,则 的度数为().....下列各式计算正确的是()..(﹣ )..().下列说法中,正确的是().打开电视,正在播放河南新闻节目 是必然事件某种彩票中奖概率为 是指买十张一定有一张中奖..神舟飞船反射前需要对零部件进行抽样调查.了解某种节能灯的使用寿命适合抽样调查.( 分)( 河南)将两个长方体如图放置,则所构成的几何体的左视图可能是().....如图, 的对角线 与 相交于点 ,,若 , ,则 的长是().....( 分)如图,在 中, ,, ,点 从点 出发,以的速度沿折线 运动,最终回到点 ,设点的运动时间为 ( ),线段 的长度为 ( ),则能够反映 与 之间函数关系的图象大致是()二、填空题(每小题 分,共 分)题号一二三总分~~分数.....计算:﹣ ﹣ . .不等式组的所有整数解的和为..如图,在 中,按以下步骤作图:分别以 , 为圆心,以大于 的长为半径作弧,两弧相交于 , 两点;作直线 交 于点 ,连接 ,若 , ,则 的度数为 ..已知抛物线 ( )与 轴交于 , 两点,若点 的坐标为(﹣ , ),抛物线的对称轴为直线 ,则线段 的长为..一个不透明的袋子中装有仅颜色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是..如图,在菱形 中, ,,把菱形 绕点 顺时针旋转 得到菱形 ,其中点 的运动路径为弧'cc,则图中阴影部分的面积为 ..如图矩形 中, , ,点为 上一个动点,把 沿 折叠,当点 的对应点落在 的角平分线上时, 的长为.三、解答题(本大题共 小题,满分 分).( 分)先化简,再求值:),12(1222xxxxx+++--其中 ﹣..( 分)如图, 是 的直径,且 ,点 为 的延长线上一点,过点 作 的切线 , ,切点分别为点 , .( )连接 ,若 ,试证明是等腰三角形;( )填空:当 时,四边形是菱形;当 时,四边形是正方形..( 分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:( )课外体育锻炼情况扇形统计图中, 经常参加 所对应的圆心角的度数为 ;( )请补全条形统计图;( )该校共有 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;( )小明认为 全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ,请你判断这种说法是否正确,并说明理由..( 分)在中俄 海上联合﹣ 反潜演习中,我军舰 测得潜艇 的俯角为 ,位于军舰 正上方米的反潜直升机 测得潜艇 的俯角为 ,试根据以上数据求出潜艇 离开海平面的下潜深度.(结果保留整数,参考数据: ,, ,).( 分)如图,在直角梯形 中, , ,点 , 的坐标分别为( , ),( , ),点 为 上一点,且 ,双曲线 ( > )经过点 ,交 于点 .( )求双曲线的解析式;( )求四边形 的面积..( 分)某商店销售 台 型和 台 型电脑的利润为 元,销售 台 型和 台 型电脑的利润为 元.( )求每台 型电脑和 型电脑的销售利润;( )该商店计划一次购进两种型号的电脑共 台,其中 型电脑的进货量不超过 型电脑的 倍,设购进 型电脑 台,这 台电脑的销售总利润为 元.求 关于 的函数关系式;该商店购进 型、 型电脑各多少台,才能使销售总利润最大?( )实际进货时,厂家对 型电脑出厂价下调 ( << )元,且限定商店最多购进 型电脑 台,若商店保持同种电脑的售价不变,请你根据以上信息及( )中条件,设计出使这 台电脑销售总利润最大的进货方案..( 分)( )问题发现如图 , 和 均为等边三角形,点 , ,在同一直线上,连接 .填空:的度数为 ;线段 , 之间的数量关系为.( )拓展探究如图 , 和 均为等腰直角三角形,,点 , , 在同一直线上,为 中 边上的高,连接 ,请判断的度数及线段 , , 之间的数量关系,并说明理由.( )解决问题如图 ,在正方形 中, ,若点 满足,且 ,请直接写出点 到 的距离..( 分)( 河南)如图,抛物线 ﹣与 轴交于点 (﹣ , ), ( , )两点,直线 ﹣ 与 轴交于点 ,与 轴交于点 .点是 轴上方的抛物线上一动点,过点 作 轴于点,交直线 于点 .设点 的横坐标为 .( )求抛物线的解析式;( )若 ,求 的值;( )若点 是点 关于直线 的对称点,是否存在点 ,使点 落在 轴上?若存在,请直接写出相应的点 的坐标;若不存在,请说明理由.年河南省中考数学试卷参考答案与试题解析一、选择题(每小题 分,共 分).( 分)( 河南)下列各数中,最小的数是( ) . . . ﹣ . ﹣考点: 有理数大小比较.分析: 根据正数大于 , 大于负数,可得答案.解答: 解:﹣,故选: . 点评: 本题考查了有理数比较大小,正数大于 , 大于负数是解题关键..( 分)( 河南)据统计, 年河南省旅游业总收入达到约 亿元.若将 亿用科学记数法表示为 ,则 等于( ) . ...考点:科学记数法 表示较大的数.分析: 科学记数法的表示形式为 的形式,其中< , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数. 解答:解: 亿,故选: . 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值..( 分)( 河南)如图,直线 , 相交于点 ,射线 平分 , ,若 ,则 的度数为( ). ...考点: 垂线;对顶角、邻补角.分析: 由射线 平分 , ,得出,由 ,得出﹣ 得出答案.解答: 解: 射线 平分 , ,,, ,﹣ ﹣ . 故选: . 点评: 本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系..( 分)( 河南)下列各式计算正确的是( ).. (﹣ )..( )考点: 完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析: 根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可. 解答: 解: 、 ,故本选项错误;、(﹣ ) ,故本选项正确;、 ,故本选项错误;、( ) ,故本选项错误,故选 .点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力..( 分)( 河南)下列说法中,正确的是(). 打开电视,正在播放河南新闻节目 是必然事件 .某种彩票中奖概率为 是指买十张一定有一张中奖 .神舟飞船反射前需要对零部件进行抽样调查.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解: . 打开电视,正在播放河南新闻节目 是随机事件,本项错误;.某种彩票中奖概率为 是指买十张可能中奖,也可能不中奖,本项错误;.神舟飞船反射前需要对零部件进行全面调查,本项错误;.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选: .点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件..( 分)( 河南)将两个长方体如图放置,则所构成的几何体的左视图可能是(). . . .考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选: .点本题考查了简单组合体的三视图,注意能看到的棱用评:实线画出..( 分)( 河南)如图, 的对角线 与 相交于点 , ,若 ,,则 的长是(). . . .考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求 的长,进而可求出 的长.解答:解: 的对角线 与 相交于点 ,, ,, , ,,,故选 .点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单..( 分)( 河南)如图,在 中,, , ,点 从点 出发,以 的速度沿折线 运动,最终回到点 ,设点 的运动时间为 ( ),线段 的长度为 ( ),则能够反映 与 之间函数关系的图象大致是()....考点:动点问题的函数图象.分析:这是分段函数: 点 在 边上时, ,它的图象是一次函数图象的一部分;点 在边 上时,利用勾股定理求得 与 的函数关系式,根据关系式选择图象;点 在边 上时,利用线段间的和差关系求得 与 的函数关系式,由关系式选择图象.解答:解: 当点 在 边上,即 时, ,它的图象是一次函数图象的一部分.故 错误;点 在边 上,即 < 时,根据勾股定理得 ,即 ,则其函数图象是 随 的增大而增大,且不是线段.故 、 错误;点 在边 上,即 < 时,﹣ ﹣ ,其函数图象是直线的一部分.综上所述, 选项符合题意.故选: .点评:本题考查了动点问题的函数图象.此题涉及到了函数的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题 分,共 分).( 分)( 河南)计算:﹣ ﹣.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式 ﹣ ,故答案为: .点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算..( 分)( 河南)不等式组的所有整数解的和为﹣ .考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的 的所有整数解相加即可求解.解答:解:,由 得: ﹣ ,由 得: < ,﹣ < ,不等式组的整数解为:﹣ ,﹣ , , .所有整数解的和为﹣ ﹣ ﹣ .故答案为:﹣ .点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..( 分)( 河南)如图,在 中,按以下步骤作图:分别以 , 为圆心,以大于 的长为半径作弧,两弧相交于 , 两点;作直线 交 于点 ,连接 ,若 ,,则 的度数为 .考点: 作图 基本作图;线段垂直平分线的性质.分析: 首先根据题目中的作图方法确定 是线段 的垂直平分线,然后利用垂直平分线的性质解题即可. 解答: 解:由题中作图方法知道 为线段 的垂直平分线, ,,, , ,, ,,故答案为: . 点评: 本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法..( 分)( 河南)已知抛物线( )与 轴交于 , 两点,若点 的坐标为(﹣ , ),抛物线的对称轴为直线 ,则线段 的长为 .考点: 抛物线与 轴的交点.分析: 由抛物线 的对称轴为直线,交 轴于 、 两点,其中 点的坐标为(﹣ ,),根据二次函数的对称性,求得 点的坐标,再求出 的长度. 解答: 解: 对称轴为直线 的抛物线( )与 轴相交于 、 两点,、 两点关于直线 对称, 点 的坐标为(﹣ , ), 点 的坐标为( , ), ﹣(﹣ ) . 故答案为: .点评: 此题考查了抛物线与 轴的交点.此题难度不大,解题的关键是求出 点的坐标..( 分)( 河南)一个不透明的袋子中装有仅颜色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考列表法与树状图法.点: 专题:计算题.分析: 列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率. 解答:解:列表得:红 红白白红 ﹣﹣﹣(红,红) (白,红) (白,红)红 (红,红) ﹣﹣﹣(白,红) (白,红)白 (红,白) (红,白) ﹣﹣﹣(白,白)白(红,白) (红,白) (白,白) ﹣﹣﹣ 所有等可能的情况有 种,其中第一个人摸到红球且第二个人摸到白球的情况有 种, 则.故答案为:.点评: 此题考查了列表法与树状图法,用到的知识点为:概率 所求情况数与总情况数之比..( 分)( 河南)如图,在菱形 中, , ,把菱形 绕点 顺时针旋转 得到菱形 ,其中点 的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接 ,过 作 ,则阴影部分的面积可分为 部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接 ,过 作 ,在菱形 中, , ,把菱形 绕点 顺时针旋转 得到菱形,,,图中阴影部分的面积为 ﹣,故答案为: ﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键..( 分)( 河南)如图矩形 中,, ,点 为 上一个动点,把 沿折叠,当点 的对应点 落在 的角平分线上时,的长为或.考点:翻折变换(折叠问题).分析:连接 ,过 作 ,交 于点 ,于点 ,作 交 于点 ,先利用勾股定理求出 ,再分两种情况利用勾股定理求出 .解答:解:如图,连接 ,过 作 ,交于点 , 于点 ,作 交 于点 ,点 的对应点 落在 的角平分线上,,设 ,则 ,﹣ ﹣ ,又折叠图形可得 ,( ﹣ ) ,解得 或 ,即 或 .在 中,设 ,当 时, ﹣ ,﹣ ﹣ ﹣ ﹣ ﹣ ,( ﹣ ) ,解得 ,即 ,当 时, ﹣ ,﹣ ﹣ ﹣ ﹣ ﹣ ,( ﹣ ) ,解得 ,即 .故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共 小题,满分 分).( 分)( 河南)先化简,再求值:( ),其中 ﹣ .考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式 ,再把 的值代入计算.解答:解:原式,当 ﹣ 时,原式 .点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值..( 分)( 河南)如图, 是 的直径,且 ,点 为 的延长线上一点,过点 作 的切线 , ,切点分别为点 , .( )连接 ,若 ,试证明 是等腰三角形;( )填空:当 时,四边形 是菱形;当 ﹣ 时,四边形 是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:( )利用切线的性质可得 .利用同弧所对的圆周角等于圆心角的一半,求得 ,从而求得.( ) 要使四边形 是菱形,则,所以 ,所以, .要使四边形 是正方形,则必须, ,则 ,所以﹣ .解答:解:( )连接 ,是 的切线,,在 中, ﹣﹣ ,,,,是等腰三角形.( ) ,.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键..( 分)( 河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:( )课外体育锻炼情况扇形统计图中, 经常参加 所对应的圆心角的度数为 ;( )请补全条形统计图;( )该校共有 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;( )小明认为 全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:( )用 经常参加 所占的百分比乘以 计算即可得解;( )先求出 经常参加 的人数,然后求出喜欢篮球的人数,再补全统计图即可;( )用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;( )根据喜欢乒乓球的 人都是 经常参加 的学生, 偶尔参加 的学生中也会有喜欢乒乓球的考虑解答.解答:解:( ) ( ﹣ ﹣ );故答案为: ;( ) 经常参加 的人数为:人,喜欢篮球的学生人数为: ﹣ ﹣ ﹣﹣ 人;补全统计图如图所示;( )全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为: 人;( )这个说法不正确.理由如下:小明得到的 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小..( 分)( 河南)在中俄 海上联合﹣反潜演习中,我军舰 测得潜艇 的俯角为,位于军舰 正上方 米的反潜直升机 测得潜艇 的俯角为 ,试根据以上数据求出潜艇 离开海平面的下潜深度.(结果保留整数,参考数据:, ,, )考点:解直角三角形的应用 仰角俯角问题.分析:过点 作 ,交 的延长线于点 ,则即为潜艇 的下潜深度,分别在 三角形 中表示出 和在 三角形 中表示出 ,从而利用二者之间的关系列出方程求解.解答:解:过点 作 ,交 的延长线于点 ,则 即为潜艇 的下潜深度,根据题意得: , ,设 ,则 ,在 三角形 中,,在 三角形 中, ,解得: 米, 潜艇 离开海平面的下潜深度为 米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解..( 分)( 河南)如图,在直角梯形中, , ,点 , 的坐标分别为( , ),( , ),点 为 上一点,且,双曲线 ( > )经过点 ,交 于点 .( )求双曲线的解析式;( )求四边形 的面积.考点:反比例函数综合题.专题:综合题.分析:( )作 轴于 ,作 轴于 ,利用点 , 的坐标得到 , ,,再证明 ,利用相似比可计算出 , ,则 ﹣ ,得到 点坐标为( , ),然后把 点坐标代入 中求出 的值即可得到反比例函数解析式;( )根据反比例函数 的几何意义和 四边形梯形 ﹣ ﹣ 进行计算.解答:解:( )作 轴于 ,作 轴于 ,如图,点 , 的坐标分别为( , ),( , ),, , ,,,,即 ,, ,﹣ ,点坐标为( , ),把 ( , )代入 得 ,反比例函数解析式为 ;( ) 四边形 梯形 ﹣ ﹣( ) ﹣ ﹣.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度..( 分)( 河南)某商店销售 台型和 台 型电脑的利润为 元,销售 台 型和台 型电脑的利润为 元.( )求每台 型电脑和 型电脑的销售利润;( )该商店计划一次购进两种型号的电脑共 台,其中 型电脑的进货量不超过 型电脑的 倍,设购进 型电脑 台,这 台电脑的销售总利润为 元.求 关于 的函数关系式;该商店购进 型、 型电脑各多少台,才能使销售总利润最大?( )实际进货时,厂家对 型电脑出厂价下调 ( << )元,且限定商店最多购进 型电脑 台,若商店保持同种电脑的售价不变,请你根据以上信息及( )中条件,设计出使这 台电脑销售总利润最大的进货方案.考一次函数的应用;二元一次方程组的应用;一元一次点:不等式组的应用.分析:( )设每台 型电脑销售利润为 元,每台 型电脑的销售利润为 元;根据题意列出方程组求解,( ) 据题意得, ﹣ , 利用不等式求出 的范围,又因为 ﹣是减函数,所以 取 , 取最大值,( )据题意得, ( ) ﹣ ( ﹣ ),即 ( ﹣ ) ,分三种情况讨论, 当 < < 时, 随 的增大而减小, 时, ﹣ , , 当 < < 时, ﹣ > , 随 的增大而增大,分别进行求解.解答:解:( )设每台 型电脑销售利润为 元,每台型电脑的销售利润为 元;根据题意得解得答:每台 型电脑销售利润为 元,每台 型电脑的销售利润为 元.( ) 据题意得, (﹣ ),即 ﹣ ,据题意得, ﹣ ,解得 ,﹣ ,随 的增大而减小,为正整数,当 时, 取最大值,则 ﹣ ,即商店购进 台 型电脑和 台 型电脑的销售利润最大.( )据题意得, ( )( ﹣ ),即 ( ﹣ ) ,当 < < 时, 随 的增大而减小,当 时, 取最大值,即商店购进 台 型电脑和 台 型电脑的销售利润最大.时, ﹣ , ,即商店购进 型电脑数量满足 的整数时,均获得最大利润;当 < < 时, ﹣ > , 随 的增大而增大,当 时, 取得最大值.即商店购进 台 型电脑和 台 型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数 值的增大而确定 值的增减情况..( 分)( 河南)( )问题发现如图 , 和 均为等边三角形,点 , ,在同一直线上,连接 .填空:的度数为 ;线段 , 之间的数量关系为 .( )拓展探究如图 , 和 均为等腰直角三角形,,点 , , 在同一直线上,为 中 边上的高,连接 ,请判断的度数及线段 , , 之间的数量关系,并说明理由.( )解决问题如图 ,在正方形 中, ,若点 满足,且 ,请直接写出点 到 的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:( )由条件易证 ,从而得到: , .由点 , , 在同一直线上可求出 ,从而可以求出 的度数.( )仿照( )中的解法可求出 的度数,证出 ;由 为等腰直角三角形及 为 中 边上的高可得 ,从而证到 .( )由 可得:点 在以点 为圆心, 为半径的圆上;由 可得:点 在以 为直径的圆上.显然,点 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于( )中的结论即可解决问题.解答:解:( ) 如图 ,和 均为等边三角形,, ,..在 和 中,..为等边三角形,.点 , , 在同一直线上,..﹣ .故答案为: .,.故答案为: .( ) , .理由:如图 ,和 均为等腰直角三角形,, ,..在 和 中,., .为等腰直角三角形,.点 , , 在同一直线上,..﹣ ., ,.,..( ) ,点 在以点 为圆心, 为半径的圆上.,点 在以 为直径的圆上.点 是这两圆的交点.当点 在如图 所示位置时,连接 、 、 ,作 ,垂足为 ,过点 作 ,交 于点 ,如图 .四边形 是正方形,., ..,.、 、 、 四点共圆,.是等腰直角三角形.又 是等腰直角三角形,点 、 、 共线,,由( )中的结论可得: . ..当点 在如图 所示位置时,连接 、 、 ,作 ,垂足为 ,过点 作 ,交 的延长线于点 ,如图 .同理可得: ﹣ .﹣ ..综上所述:点 到 的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用( )中的结论解决问题是解决第( )的关键..( 分)( 河南)如图,抛物线 ﹣与 轴交于点 (﹣ , ), ( , )两点,直线 ﹣ 与 轴交于点 ,与 轴交于点 .点是 轴上方的抛物线上一动点,过点 作 轴于点,交直线 于点 .设点 的横坐标为 .( )求抛物线的解析式;( )若 ,求 的值;( )若点 是点 关于直线 的对称点,是否存在点 ,使点 落在 轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:( )利用待定系数法求出抛物线的解析式;( )用含 的代数式分别表示出 、 ,然后列方程求解;( )解题关键是识别出四边形 是菱形,然后根据 的条件,列出方程求解.解答:解:( )将点 、 坐标代入抛物线解析式,得:,解得,抛物线的解析式为: ﹣ .( ) 点 的横坐标为 ,( ,﹣ ), ( ,﹣ ),( , ).﹣ (﹣ )﹣(﹣) ﹣ ,。
2014河南中招数学试题(解析版含详细答案)Word版
2014年河南省中招数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).13(D).3- 答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵11333-<-< ∴最小的数是﹣3,故选A .2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.875510n´,则n 等于 ( )(A) 10 (B) 11 (C).12 (D).13 答案:B解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3875.5亿=3.8755×1011,故选B. 3.如图,直线AB CD 、相交于O ,射线OM 平分,,AOC ON OM 衈若 35AOM ??,则C O N Ð的度数为 ( ) (A) .35° (B). 45° (C) 55° (D). 65° 答案:C解析:根据角的平分线的性质及直角的性质,即可求解. ∠CON=90°-35°=55°, 故选C.4.下列各式计算正确的是 ( )(A )223a a a += (B )326)a a -=( (C )326·a a a = (D )222a b a b =+(+) 答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a 3)2=a 6计算正确,故选B5.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件(B )某种彩票中奖概率为10%是指买十张一定有一张中奖 (C )神州飞船发射前需要对零部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查 答案:D解析:根据统计学知识;(A )“打开电视,正在播放河南新闻节目”是随机事件,(A )错误。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550, 故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。
河南省2014年中考数学试卷及答案(
2014年河南省中招考试数学试卷一、选择题(每小题 分,共 分)下列各数中,最小的数是( )☎✌✆ ☎✆13☎✆13☎✆ 据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ⏹,则⏹等于( )(✌✆ ( ✆ ☎✆ ☎✆如图,直线✌、 相交于 ,射线 平分∠✌☠⊥若∠✌ ,则∠ ☠的度数为( )☎✌✆ ☎✆ ☎✆ ( ✆ 下列各式计算正确的是 ( )(✌)♋ ♋ ♋ ( )( ♋ ✆ ♋☎)♋ ·♋ ♋ ( )(♋+♌) ♋ ♌下列说法中,正确的是 ( )(✌)“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖(♍)神州飞船发射前钻要对冬部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查将两个长方体如图放皿,到所构成的几何体的左视田可能是( )如图,✌的对角线✌与 相交于点 ✌⊥✌若✌ ✌ 则 的长是( )☎✌✆ ☎✆ ☎✆ ( ) 如图,在 ♦ △✌中,∠ ,✌♍❍, ♍❍,点 从✌出发,以 ♍❍♦的速沿折线✌ ✌运动,最终回到✌点。
设点 的运动时间为⌧(♦),线段✌的长度为⍓(♍❍),则能反映⍓与⌧之间函数关系的图像大致是 ( )二、填空题(每小题 分,共 分)计算:3272-- 不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是 在△✌中,按以下步骤作图:①分别以 、 为圆心,以大于12的长为半径作弧,两弧相交于两点 、☠;②作直线☠交✌于点 ,连接 若 ✌,∠ ,则∠✌的度数为 已知抛物线⍓♋⌧ ♌⌧♍☎♋≠ ✆与⌧轴交于✌、 两点.若点✌的坐标为( ✆,抛物线的对称轴为直线⌧.则线段✌的长为 一个不进明的袋子中装有仅颇色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 如图,在菱形✌中 ✌ ∠ ✌ 把菱形✌绕点✌顺时针旋转 得到菱形✌,其中点 的运动能路径为/CC ,则图中阴影部分的面积为 如图,矩形✌中,✌✌点☜为 上一个动点,把△✌☜沿✌☜折叠,当点 的对应点 落在∠✌的角平分线上时, ☜的长为 三、解答题(本大题共 个,满分 分) ☎分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中⌧2 ( 分)如图 是⊙ 的直径,且 ♍❍,点 为 的延长线上一点,过点 作⊙ 的切线 ✌、 ,切点分别为点✌、 ( )连接✌若∠✌= ,试证明△✌是等腰三角形; ( )填空:①当 ♍❍时,四边形✌是菱形;APO DB②当 ♍❍时,四边形✌是正方形.( 分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:☎✆课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; ☎)请补全条形统计图;☎)该校共有 名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;☎)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ×27300”,请你判断这种说法是否正确,并说明理由.( 分)在中俄“海上联合— ”反潜演习中,我军舰✌测得潜艇 的俯角为 .位于军舰✌正上方 米的反潜直升机 侧得潜艇 的俯角为其它篮球羽毛球乒乓球2033275040302010项目人数“经常参加”课外体育锻炼的男生最喜欢的一种项目 条形统计图课外体育锻炼情况 扇形统计图经常参加从不参加 15%偶尔参加45% 试根据以上数据求出潜艇 离开海平面的下潜深度 (结果保留整数。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。
下列各数中,最小的数是( )(A). 0 (B)。
13(C).—13(D)。
-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<—13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。
5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C)。
12 (D)。
13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875。
5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450 (C) 。
550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900—350=550,故选C。
4。
下列各式计算正确的是()(A)a +2a =3a2(B)(—a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是( )(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目"是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误. (C)神州飞船发射前需要对零部件进行抽样检查要全面检查。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题 分,共 分)下列各数中,最小的数是()1313答案:解析:根据有理数的大小比较法则(正数都大于 ,负数都小于 ,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解: ﹣ < 13< <13,最小的数是﹣ ,故选 .据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ,则 等于()( (答案:解析:科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. 亿 × ,故选 如图,直线 、 相交于 ,射线 平分∠ ⊥若∠ ,则∠ 的度数为()(答案:解析:根据角的平分线的性质及直角的性质,即可求解.∠ 故选下列各式计算正确的是()( ) ( )() · ( )( + )答案:解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;( 计算正确,故选下列说法中,正确的是()( )“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖( )神州飞船发射前需要对零部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查答案:解析:根据统计学知识;( )“打开电视,正在播放河南新闻节目”是随机事件,( )错误。
( )某种彩票中奖概率为 %是指买十张一定有一张中奖是随机事件,( )错误。
( )神州飞船发射前需要对零部件进行抽样检查要全面检查。
( )了解某种节能灯的使用寿命适合抽样调查,( )正确。
故选将两个长方体如图放置,到所构成的几何体的左视图可能是()答案:解析:根据三视图可知, 正确。
如图, 的对角线 与 相交于点 ⊥ 若 则的长是()( ) 答案:解析:根据平行四边形的性质勾股定理可得, △ 1212×∴ 又 × 故 正确。
如图,在 △ 中,∠ , , ,点 从 出发,以 的速沿折线 运动,最终回到 点。
2014年河南省中考数学试卷含答案(word版)
2014年河南省中考数学试卷(word版)一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣32.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=.10.(3分)不等式组的所有整数解的和为.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣3解:﹣3,故选:D.2.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.3.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.5.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.8.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=1.解:原式=3﹣2=1,故答案为:1.10.(3分)不等式组的所有整数解的和为﹣2.解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△O C′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.解:原式=÷=÷=•=,当x=﹣1时,原式==.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBP是正方形.解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①DP=1,理由如下:∵四边形AOBD是菱形,∴OA=AD=OD,∴∠AOP=60°,∴OP=2OA,DP=OD.∴DP=1,②DP=,理由如下:∵四边形AOBP是正方形,∴∠AOP=45°,∵OA=PA=1,OP=,∴DP=OP﹣1∴DP=.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD===,在Rt△BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x=≈≈308米,∴潜艇C离开海平面的下潜深度为308米.20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;=S梯形OABC﹣S△OCE﹣S△OAD(2)S四边形ODBE=×(2+5)×6﹣×|8|﹣×5×2=12.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)第31页(共31页)。
2014河南中招数学试题解析版含详细答案Word版精要
Pzb2014 年河南省中招数学试卷及答案分析一、选择题(每题 3 分,共 24 分)1.以下各数中,最小的数是()1 (C).1(A). 0(B).(D). - 333答案: D分析:依占有理数的大小比较法例(正数都大于 0,负数都小于 0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵-3<-1<13 3∴最小的数是﹣ 3,应选 A .2. 据统计, 2013 年河南省旅行业总收入达到3875.5 亿元 . 若将 3875.5 亿用科学计数法表示为n ()3.8755 ′ 10,则 n 等于(A)10 (B) 11(C).12(D).13答案: B分析:科学记数法的表示形式为a ×10n的形式,此中 1≤|a < 10,n 为整数,表示时重点要正确确立a 的值以及 n 的值. 3875.5 亿=3.8755×1011,应选 B.3.如图,直线 AB 、 CD 订交于 O ,射线 OM 均分 衈AOC, ON OM ,若? AOM35?,则 DCON 的度数为()C(A) .35 °(B). 45 °(C) 55°(D). 65°MN答案: C分析:依据角的均分线的性质及直角的性质,即可求解. AOB ∠ CON=90 ° - 35° =55° , 应选 C.4.以下各式计算正确的选项是()D( A ) a + 2a = 3a 2( B )3) 2= a 6(- a32= a 622+ b 2(C ) a ·a (D )( a + b ) = a答案: B分析:依据同底数幂的乘法;幂的乘方;完好平方公式;同类项加法即可求得;( -a 3)2=a 6 计算正确,故选 B5.以下说法中,正确的选项是( )( A ) “翻开电视,正在播放河南新闻节目”是必定事件( B )某种彩票中奖概率为 10%是指买十张必定有一张中奖 ( C )神州飞船发射前需要对零零件进行抽样检查( D )认识某种节能灯的使用寿命合适抽样检查 答案: D分析:依据统计学知识;( A ) “翻开电视,正在播放河南新闻节目”是随机事件,( A )错误。
(完整word版)2014年河南省中招考试数学试卷及答案
2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图,Y ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC CB BA运动,最终回到A点。
设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为¼/CC,则图中阴影部分的面积为 . 15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-1 17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.其它篮球羽毛球乒乓球2033275040302010项目人数“经常参加”课外体育锻炼的男生最喜欢的一种项目 条形统计图课外体育锻炼情况 扇形统计图经常参加从不参加 15%偶尔参加45%A PO D B19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。
下列各数中,最小的数是()(A)。
0 (B)。
13(C)。
-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。
5亿元。
若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D)。
13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3。
如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )(A)。
350(B)。
450(C) .550(D)。
650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900—350=550,故选C。
4。
下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(—a3)2=a6计算正确,故选B5。
下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目"是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误.(C)神州飞船发射前需要对零部件进行抽样检查要全面检查.(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。
河南省2014年中考数学试卷和答案(Word版)
2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).-13(D).-3 2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).133.如图,直线AB 、CD 相交于O ,射线OM 平分∠AOC,O N ⊥OM,若∠AOM =350,则∠CON 的度数为 ( )(A) .350 (B). 450 (C) .550 (D). 6504.下列各式计算正确的是 ( ) (A )a +2a =3a 2 (B )(-a 3)2=a 6 (C )a 3·a 2=a 6 (D )(a +b )2=a 2 + b 25.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件 (B )某种彩票中奖概率为10%是指买十张一定有一张中奖 (c )神州飞船发射前钻要对冬部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是( )7.如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分)9.2-= .10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC ,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-1 17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题: (1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。
河南省洛阳市2014年中考一模数学试卷及答案
河南省洛阳市2014年中考一模数学试卷一、选择题(每题3分,共24分)1.在实数0,﹣π,,﹣4中,最小的数是().....4.用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()....5.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班)6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()7.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()8.如图,梯形ABCD中,AD∥BC,BF⊥AD,CE⊥AD,且AF=EF=ED=5,BF=12,动点G从点A出发,沿折线AB﹣BC﹣CD以每秒1个单位长的速度运动到点D停止.设运动时间为t秒,△EFG的面积为y,则y关于t的函数图象大致是()....二、填空题(每题3分,共21分)9.(3分)(﹣)﹣1+(1﹣)0= _________.10.去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为_________元.11.已知a=3,b﹣a=1,则a2﹣ab= _________.12.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是_________.13.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为_________.14.如图,矩形ABCD中,E是AD的中点,将△ABE折叠后得到△GBE,延长BG交CD 于点F,若CF=1,FD=2,则BC的长为_________.15.(3分)(2014•洛阳一模)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是_________.三、解答题(本大题共8个小题,满分75分)16.(8分)化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)2=0.17.当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A、基本不用;B、平均一天使用1~2小时;C、平均一天使用2~4小时;D、平均一天使用4~6小时;E、平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图(图1、2),请根据相关信息,解答下列问题:(1)将上面的条形统计图补充完整;(2)若一天中手机使用时间超过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”;(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率.18.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.19.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)20.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.21.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动:探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF 与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并证明你的结论;探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的长度.23.(11分)综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案18.(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =AE . ∵△ACD 是等边三角形, ∴AD=CD .则DE 垂直平分AC,∴∠ACB=90°. ∴DE ∥CB . ………………4分 (2)解:结论:当AC=AB 21时,四边形DCBE 是平行四边形 ………………5分证明:∵AC=AB 21,∠ACB=90° ∴∠B=30°.∵∠DCB=∠DCA+∠ACB=150°∠B+∠DCB=180°∴DC ∥BE 又∵DE ∥BC ∴四边形DCBE 是平行四边形. ………………9分19. 解:(1)如图,过点P 作PD ⊥AB 于点D ,设PD=x ,由题意可知 ,00, ∴在Rt △BDP 中,BD=PD= x.在Rt △PDA 中,.∵AB=2,∴x 2=. 解得()x 1km.∴点P 到海岸线l 1)km. ………………4分 (2)如图,过点B 作BF ⊥CA 于点F , 在Rt △ABF 中,01BF AB sin30212=⋅=⨯=,……7分F在Rt△ABC中,∠C=1800-∠BAC-∠ABC =450,∴在Rt△BFC中,)BC1km.∴点C与点B. ………………9分22. 解:(1)如图………………2分GD(2)结论:AB=AF+CF . ………………3分证明:分别延长AE 、DF 交于点M .可证明△ABE ≌△MCE ,那么AB=CM ,因∠BAE=∠EAF ,∠BAE=∠M (AB ∥CD ),那么△AMF 就是个等腰三角形, AF=MF ,因此AB=MC=MF+FC=AF+FC ; ………………6分 (3)分别延长DE 、CF 交于点G .延长DE 、CF 交于点G ,则△ABE ∽△GCE ,可根据线段的比例关系和AB 的值得到CG=10, FG=9,同(2)可得出△DFG 是等腰三角形,那么DF=GF=9. ………………10分 23. 解:(1)当y=0时,213x x 4042--=,解得,12x 2x 8=-=,,∵点B 在点A 的右侧,∴点A ,B 的坐标分别为:(-2,0),(8,0).当x=0时,y 4=-,∴点C 的坐标为(0,-4). ………………3分 (2)由菱形的对称性可知,点D 的坐标为(0,4).设直线BD 的解析式为y kx b =+,则b 48k b 0=⎧⎨+=⎩,解得, 1k 2b 4⎧=-⎪⎨⎪=⎩.∴直线BD 的解析式为1y x 42=-+.∵l ⊥x 轴,∴点M ,Q 的坐标分别是(m ,1m 42-+),(m ,213m m 442--) 如图,当MQ=DC 时,四边形CQMD 是平行四边形.∴()2113m 4m m 444242⎛⎫⎛⎫-+---=-- ⎪ ⎪⎝⎭⎝⎭,化简得:2m 4m 0-=.解得,m 1=0(舍去),m 2=4.当m=4时,四边形CQMD 是平行四边形,此时,四边形CQBM 也是平行四边形. ………………6分 理由如下:∵m=4, ∴点P 是OB 中点. ∵l ⊥x 轴, ∴l ∥y 轴. ∴△BPM ∽△BOD. ∴21==BD BM BO BP . ∴BM=DM. ∵四边形CQMD 是平行四边形,∴DM CQ.∴BM CQ. ∴四边形CQBM 为平行四边形. ………………9分 (3)抛物线上存在两个这样的点Q ,分别是Q 1(-2,0),Q 2(6,-4).………11分 可分DQ ⊥BD ,BQ ⊥BD 两种情况讨论可求点Q 的坐标:由B (8,0),D (0,4),Q (m ,213m m 442--)应用勾股定理求出三边长,再由勾股定理分DQ ⊥BD ,BQ ⊥BD 两种情况列式求出m 即可.。
2014年河南中考模拟数学试题一
2014年河南中考数学模拟试题(1)注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为)44,2(2ab ac a b --. 一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1. 2-的值等于()A .2B .-2C .2±D .22.下列运算正确的是( )A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 323211=⎪⎭⎫ ⎝⎛÷- 3.下列图形是正方体的表面展开图的是( ) 4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( )A .4,15B .3,15C .4,16D .3,165.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A = ∠.则D ∠等于( )A .20 B .30 C .40 D .506.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为DCBAAB C D2AF AB ⊥,若 2.746AD AF AB ===,,,则CE 的长为( ) A . B. 2.3 C. 2.5 D. 1二、填空题 (每小题3分,共21分)9. 分解因式:2221b ab a -+-= 。
10. 去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 元. .11. 如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于 12. 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm .13. 已知ba ba b a ab b a -+>>=+则且,0622的值为 。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1。
下列各数中,最小的数是( )(A)。
0 (B)。
13(C)。
—13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<—13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875。
5亿元。
若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C)。
12 (D)。
13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875。
5亿=3。
8755×1011,故选B。
3。
如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )(A) .350 (B)。
450 (C) .550(D)。
650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4。
下列各式计算正确的是()(A)a +2a =3a2(B)(—a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(—a3)2=a6计算正确,故选B5.下列说法中,正确的是 ( )(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误.(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。
2014年河南省洛阳市中招模拟考试数学试题(二)
洛阳市2014年中招模拟考试(二)数 学 试 卷注意事项:1.本试卷共6页,满分120分,考试时间100分钟.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.如果a 的倒数是﹣1,那么a 2049等于( )A .1B .﹣1C .2049D .﹣20492.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是( )3.下列计算中,正确的是( )A . 326a a a ⋅= B .0(π 3.14)1-= C .1122-⎛⎫=- ⎪⎝⎭D 3=±4A .164和163B .105和163C .105和164D .163和164 5.解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解6.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次7.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ) A .221216y x x =--+ B . 221216y x x =-+- C .221220y x x =-+-D . 221219y x x =-+-8. 如图,AB 是半圆O 的直径,半径OC⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC∥OD;②OE CE =;③△ODE∽△ADO;④CO CE CD ⋅=2.其中正确结论的序号是( )A .①②④ B. ①④ C. ①③④ D. ②③④二、填空题(每小题3分,共21分)9.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有 个.则∠1+∠2 = .13.如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为 .14. 如图,在平面直角坐标系中,矩形OEFG 的顶点F 的坐标为(4,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP ,OM 与GF 相交于点A .若经过点A 的反比例函数ky (x 0)x=>的图象交EF 于点B ,则点B 的坐标为 .ABDCOE15. 如图,在边长为10的菱形ABCD 中,对角线BD =16.点E 是AB 的中点,P 、Q 是BD 上的动点,且始终保持PQ =2.则四边形AEPQ 周长的最小值为_________.(结果保留根号)三、解答题(共8个题,75分)16.(8分)先化简,再求值:(x+y )(x ﹣y )﹣(4x 3y ﹣8xy 3)÷2xy,其中x=﹣1,y=33.17.(9分)洛阳市实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了 名同学,其中C 类女生有 名,D 类男生有 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)已知:如图,D 是△ABC 的边AB 上一点,CN∥AB,DN 交AC 于点M ,MA=MC .①求证:CD=AN ;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.19.小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=35,sinA′=12.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)20.(9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?21. (10分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)点P在直线MN上,且以点P,O,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.22.(10分)如图1,等腰直角△ABC 中,AB=AC ,∠BAC=90°,将一块三角板中含45°角的顶点放在A 上,从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E .(1)操作发现:在线段BC 上取一点M ,连接AM ,若AD 平分∠BAM,则∠MAE 与∠EAC 的数量关系是 .(2)猜想论证:当0°<α≤45°时,线段BD 、CE 、DE 之间存在如下等量关系:BD 2+CE 2=DE 2.小颖和小亮想出了两种不同的方法进行解决:小颖的想法:将△ABD 沿AD 所在的直线对折得到△ADF,连接EF (如图2); 小亮的想法:将△ABD 绕点A 顺时针旋转90°得到△ACG,连接EG (如图3); 请你从中任选一种方法进行证明;(3)拓展探究:继续旋转三角板,当135°<α<180°时(如图4),试探究线段BD 、CE 、DE 之间的关系,请直接写出结论.23.(11分)如图1,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点. (1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图2,若点N 在抛物线上,且∠NBO =∠ABO ,求点N 的坐标;(4)在(2)与(3)的条件下,请直接写出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).BC 图1 图2图3 图4 图1。
洛阳市2014年中招模拟考试(一)数学试题答案
洛阳市2014年中招模拟考试(一)数学试卷参考答案一、选择题:1. A2. B3. C4. D5. B6. D7. D8. A 二、填空题:9. -1 10. 8.2×10911. -3 12.041≠-≥k k 且 13.22 14. 62三、解答题: 16. 解:原式=()()()()()()()()x y x y x y x y 2x y 2x2x ==x y x y x y x y x y x y 2x y 2x y +-++--÷⋅+-+-+---. ………………………5分∵x 、y 满足()2x 22x y 3=0-+--,∴x 202x y 30-=--= ,,即x=2,y=1 ……7分 ∴原式=224=33⨯. …………8分 17.(1)4÷8%=50(人),则B 为50-4-20-9-5=12,所以条形统计图B 为12.…………2分 (2)1490×10%=149(人),所以患有严重的“手机瘾”的有149人 …………4分总有12种选法,其中一男一女的有8种,所以,选两名恰好是一男一女的概率是:P=312=. ………………9分18.(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =AE . ∵△ACD 是等边三角形, ∴AD=CD .则DE 垂直平分AC,∴∠ACB=90°. ∴DE ∥CB . ………………4分 (2)解:结论:当AC=AB 21时,四边形DCBE 是平行四边形 ………………5分证明:∵AC=AB 21,∠ACB=90° ∴∠B=30°.∵∠DCB=∠DCA+∠ACB=150°∠B+∠DCB=180°∴DC ∥BE 又∵DE ∥BC ∴四边形DCBE 是平行四边形. ………………9分19. 解:(1)如图,过点P 作PD ⊥AB 于点D ,设PD=x ,由题意可知 ,PBD=450,∠PAD=300, ∴在Rt △BDP 中,BD=PD= x. 在Rt △PDA 中,.∵AB=2,∴x 2=.解得()x 1km =. ∴点P 到海岸线l1)km. ………………4分 (2)如图,过点B 作BF ⊥CA 于点F , 在Rt △ABF 中,01BF AB sin30212=⋅=⨯=,……7分在Rt △ABC 中,∠C=1800-∠BAC -∠ABC=450,∴在Rt △BFC 中,)BC 1km .∴点C 与点B. ………………9分20.解:(1)设反比例函数的解析式为y=xk(k >0),∵A (m ,﹣2)在y=2x 上, ∴﹣2=2m , ∴m=﹣1,∴A (﹣1,﹣2),又∵点A 在y=xk上, ∴k=2, ∴反比例函数的解析式为y=x2; ………………3分(2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为﹣1<x <0或x >1; ………………5分 (3)四边形OABC 是菱形.证明:∵A (﹣1,﹣2),∴OA=52122=+,由题意知:CB ∥OA 且CB=5,∴CB=OA ,∴四边形OABC 是平行四边形, ∵C (2,n )在y=x2上,∴n=1,∴C (2,1),OC=51222=+,∴OC=OA , ∴四边形OABC 是菱形. …………9分 21.解:(1)设购进甲,乙两种钢笔每支各需a 元和b 元,根据题意得:⎩⎨⎧=+=+5503050100050100b a b a , 解得:⎩⎨⎧==105b a , FD答:购进甲,乙两种钢笔每支各需5元和10元;……………3分 (2)设购进甲钢笔x 支,乙钢笔y 支,根据题意可得:⎩⎨⎧≤≤=+y x y y x 861000105, 解得:20≤y ≤25,∵x ,y 为整数,∴y=20,21,22,23,24,25共六种方案, ∵5x=1000﹣10y >0, ∴0<y <100,∴该文具店共有6种进货方案;……………7分(3)设利润为W 元,则W=2x+3y ,∵5x+10y=1000,∴x=200﹣2y ,∴代入上式得:W=400﹣y , ∵W 随着y 的增大而减小,∴当y=20时,W 有最大值,最大值为W=400﹣20=380(元).……………10分 22. 解:(1)如图 ………………2分(2)结论:AB=AF+CF . ………………3分 证明:分别延长AE 、DF 交于点M .可证明△ABE ≌△MCE ,那么AB=CM ,因∠BAE=∠EAF ,∠BAE=∠M (AB ∥CD ),那么△AMF 就是个等腰三角形, AF=MF ,因此AB=MC=MF+FC=AF+FC ; ………………6分 (3)分别延长DE 、CF 交于点G .延长DE 、CF 交于点G ,则△ABE ∽△GCE ,可根据线段的比例关系和AB 的值得到CG=10, FG=9,同(2)可得出△DFG 是等腰三角形,那么DF=GF=9. ………………10分 23. 解:(1)当y=0时,213x x 4042--=,解得,12x 2x 8=-=,,∵点B 在点A 的右侧,∴点A ,B 的坐标分别为:(-2,0),(8,0).当x=0时,y 4=-,∴点C 的坐标为(0,-4). ………………3分 (2)由菱形的对称性可知,点D 的坐标为(0,4).设直线BD 的解析式为y kx b =+,则b 48k b 0=⎧⎨+=⎩,解得,1k 2b 4⎧=-⎪⎨⎪=⎩.∴直线BD 的解析式为1y x 42=-+.G∵l ⊥x 轴,∴点M ,Q 的坐标分别是(m ,1m 42-+),(m ,213m m 442--) 如图,当MQ=DC 时,四边形CQMD 是平行四边形.∴()2113m 4m m 444242⎛⎫⎛⎫-+---=-- ⎪ ⎪⎝⎭⎝⎭,化简得:2m 4m 0-=.解得,m 1=0(舍去),m 2=4.当m=4时,四边形CQMD 是平行四边形,此时,四边形CQBM 也是平行四边形. ………………6分 理由如下:∵m=4, ∴点P 是OB 中点. ∵l ⊥x 轴, ∴l ∥y 轴. ∴△BPM ∽△BOD. ∴21==BD BM BO BP . ∴BM=DM. ∵四边形CQMD 是平行四边形,∴DM CQ.∴BM CQ. ∴四边形CQBM 为平行四边形. ………………9分 (3)抛物线上存在两个这样的点Q ,分别是Q 1(-2,0),Q 2(6,-4).………11分 可分DQ ⊥BD ,BQ ⊥BD 两种情况讨论可求点Q 的坐标:由B (8,0),D (0,4),Q (m ,213m m 442--)应用勾股定理求出三边长,再由勾股定理分DQ ⊥BD ,BQ ⊥BD 两种情况列式求出m 即可.。
2014年河南省中招考试数学试卷及答案(解析版)
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。
2014年河南省中招考试数学试卷和答案(word版)
2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).-13(D).-3 2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).133.如图,直线AB 、CD 相交于O ,射线OM 平分∠AOC,O N ⊥OM,若∠AOM =350,则∠CON 的度数为 ( )(A) .350 (B). 450 (C) .550 (D). 6504.下列各式计算正确的是 ( ) (A )a +2a =3a 2 (B )(-a 3)2=a 6(C )a 3·a 2=a 6 (D )(a +b )2=a 2 + b 25.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件 (B )某种彩票中奖概率为10%是指买十张一定有一张中奖(c )神州飞船发射前钻要对冬部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是( )7.如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分)9.2-= .10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC ,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-1 17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题: (1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市2014年中考一模数学试卷一、选择题(每题3分,共24分)1.在实数0,﹣π,,﹣4中,最小的数是().....4.用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()....5.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班1.66米,下列说法错误的是()6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()7.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()8.如图,梯形ABCD中,AD∥BC,BF⊥AD,CE⊥AD,且AF=EF=ED=5,BF=12,动点G从点A出发,沿折线AB﹣BC﹣CD以每秒1个单位长的速度运动到点D停止.设运动时间为t秒,△EFG的面积为y,则y关于t的函数图象大致是()....二、填空题(每题3分,共21分)9.(3分)(﹣)﹣1+(1﹣)0= _________.10.去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为_________元.11.已知a=3,b﹣a=1,则a2﹣ab= _________.12.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是_________.13.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为_________.14.如图,矩形ABCD中,E是AD的中点,将△ABE折叠后得到△GBE,延长BG交CD 于点F,若CF=1,FD=2,则BC的长为_________.15.(3分)(2014•洛阳一模)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是_________.三、解答题(本大题共8个小题,满分75分)16.(8分)化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)2=0.17.当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A、基本不用;B、平均一天使用1~2小时;C、平均一天使用2~4小时;D、平均一天使用4~6小时;E、平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图(图1、2),请根据相关信息,解答下列问题:(1)将上面的条形统计图补充完整;(2)若一天中手机使用时间超过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”;(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率.18.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.19.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)20.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.21.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动:探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF 与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并证明你的结论;探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的长度.23.(11分)综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.洛阳市2014年中招模拟考试(一)数学试卷参考答案18.(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =AE . ∵△ACD 是等边三角形, ∴AD=CD .则DE 垂直平分AC,∴∠ACB=90°. ∴DE ∥CB . ………………4分 (2)解:结论:当AC=AB 21时,四边形DCBE 是平行四边形 ………………5分证明:∵AC=AB 21,∠ACB=90° ∴∠B=30°.∵∠DCB=∠DCA+∠ACB=150°∠B+∠DCB=180°∴DC ∥BE 又∵DE ∥BC ∴四边形DCBE 是平行四边形. ………………9分19. 解:(1)如图,过点P 作PD ⊥AB 于点D ,设PD=x ,由题意可知 ,00, ∴在Rt △BDP 中,BD=PD= x.在Rt △PDA 中,.∵AB=2,∴x 2=. 解得()x 1km=.∴点P 到海岸线l 1)km. ………………4分 (2)如图,过点B 作BF ⊥CA 于点F ,在Rt△ABF中,01BF AB sin30212=⋅=⨯=,……7分在Rt△ABC中,∠C=1800-∠BAC-∠ABC=450,∴在Rt△BFC中,)BC1km.∴点C与点B. ………………9分22. 解:(1)如图………………2分GFD(2)结论:AB=AF+CF . ………………3分证明:分别延长AE 、DF 交于点M .可证明△ABE ≌△MCE ,那么AB=CM ,因∠BAE=∠EAF ,∠BAE=∠M (AB ∥CD ),那么△AMF 就是个等腰三角形, AF=MF ,因此AB=MC=MF+FC=AF+FC ; ………………6分 (3)分别延长DE 、CF 交于点G .延长DE 、CF 交于点G ,则△ABE ∽△GCE ,可根据线段的比例关系和AB 的值得到CG=10, FG=9,同(2)可得出△DFG 是等腰三角形,那么DF=GF=9. ………………10分 23. 解:(1)当y=0时,213x x 4042--=,解得,12x 2x 8=-=,,∵点B 在点A 的右侧,∴点A ,B 的坐标分别为:(-2,0),(8,0).当x=0时,y 4=-,∴点C 的坐标为(0,-4). ………………3分 (2)由菱形的对称性可知,点D 的坐标为(0,4).设直线BD 的解析式为y kx b =+,则b 48k b 0=⎧⎨+=⎩,解得, 1k 2b 4⎧=-⎪⎨⎪=⎩.∴直线BD 的解析式为1y x 42=-+.∵l ⊥x 轴,∴点M ,Q 的坐标分别是(m ,1m 42-+),(m ,213m m 442--) 如图,当MQ=DC 时,四边形CQMD 是平行四边形.∴()2113m 4m m 444242⎛⎫⎛⎫-+---=-- ⎪ ⎪⎝⎭⎝⎭,化简得:2m 4m 0-=.解得,m 1=0(舍去),m 2=4.当m=4时,四边形CQMD 是平行四边形,此时,四边形CQBM 也是平行四边形. ………………6分 理由如下:∵m=4, ∴点P 是OB 中点. ∵l ⊥x 轴, ∴l ∥y 轴. ∴△BPM ∽△BOD. ∴21==BD BM BO BP . ∴BM=DM. ∵四边形CQMD 是平行四边形,∴DM CQ.∴BM CQ. ∴四边形CQBM 为平行四边形. ………………9分 (3)抛物线上存在两个这样的点Q ,分别是Q 1(-2,0),Q 2(6,-4).………11分 可分DQ ⊥BD ,BQ ⊥BD 两种情况讨论可求点Q 的坐标:由B (8,0),D (0,4),Q (m ,213m m 442--)应用勾股定理求出三边长,再由勾股定理分DQ ⊥BD ,BQ ⊥BD 两种情况列式求出m 即可.。