电位分析法3

合集下载

仪器分析学习课件 第3章 电位分析法

仪器分析学习课件 第3章 电位分析法

+ 0 .2 8 2 8
+ 0 .2 4 3 8
温度校正,对于SCE,t ℃ 时的电极电位为:
Et= 0.2438- 7.6×10-4(t-25) (V)
银-氯化银电极:
银丝镀上一层AgCl沉淀,浸在一定浓度 的KCl溶液中即构成了银-氯化银电极。
电极反应:AgCl + e- == Ag + Cl-
电极内溶液的Cl-活度 一定,甘汞电极电位固定。
参比电极
表 甘汞电极的电极电位( 25℃)
0 .1 m o l/L 甘 汞 电 极标 准 甘 汞 电 极 (N C E ) 饱 和 甘 汞 电 极 (S C E )
K C l浓 度
0 .1m o l/L
1 .0m o l/L
饱 和 溶 液
电 极 电 位 ( V ) + 0 .3 3 6 5
参比电极
甘汞电极 电极反应:Hg2Cl2 + 2e- = 2Hg + 2 Cl半电池符号:Hg,Hg2Cl2(固)KCl 电极电位(25℃):
EH2gCl/H gEH O22gCl/H g0.025l9ga2(aH (H)g2agC 2(2C l)l) EH2gCl/H gEH O22gCl/H 0 g.05lg 9a(Cl)
第二类电分析化学法是以电物理量的突变作为滴定分 析中终点的指示,所以又称为电容量分析法。属于这类分 析方法的有:电位滴定,电导滴定,电流滴定等。
第三类电分析化学法是将试液中某一个待测组分通过 电极反应转化为固相,然后由工作电极上析出物的质量来 确定该组分的量。称为电重量分析法(电子做“沉淀剂” ),即电解分析法。
1、直接电位法: 零电流条件下测量指示电极相 对于参比电极的电位,据电位 与浓度的关系计算被测物含量。

电位分析法

电位分析法
M
RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF


0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。

电位分析法

电位分析法

Mn/M
o Mn/M
RT nF
ln a M n
将一支参比电极(电位恒定)和一支指示电极(电位
随待测离子活度变化)插入待测溶液:
M | Mn+ || 参比电极
E = (+) - (-) + L
L 液接电位,较小,可忽略。
2023/10/3
E = (+) - (-) + L
E
参 Mn/M

o M
n
/
M
RT nF
ln aMn
RT K nF lnaMn
(1) 电位测定法(直接电位法):由 E → aMn+ (2) 电位滴定法:滴定过程中,E 随溶液中 aMn+活度改 变而变化,在化学计量点附近产生电位突变,以此来 确定滴定终点。
2023/10/3
2 参比电极(Reference electrodes)
0.059 2
lg
K sp(Hg2Cl2 ) a 2 (Cl )
O'
0.059lg a(Cl )
Hg 2 Cl2/Hg
0.1mol/L 甘汞电极 标准甘汞电极(NCE)
KCl 浓度 电极电位(V)
0.1 mol / L +0.3365
1.0 mol / L +0.2828
饱和甘汞电极(SCE) 饱和溶液 +0.2438
能快速、灵敏的对溶液中参与半反应的离子的活 度或不同氧化态的离子的活度比产生能斯特响应。
常用的两类指示电极电极: (1) 金属电极:银电极; (2) 膜电极:氟离子选择电极; 膜电极的选择性好、灵敏度高、发展迅速; 指示电极按结构可分为五类。
电位分析法

第七章 电位分析法

第七章 电位分析法

离子敏感场效应晶体管(ISFET)
16-4 离子选择性电极性能参数


一、检测限与响应斜率 离子选择性电极能够检测到被测离子的最低浓 度。如图16-10中的CD与FG两延长线交叉点A 所对应的离子活度。 依能斯特方程直线的理论斜率为:
2.303 RT 理论斜率 zF
实际测定时斜率与理论值不一定相同。
(二)氟电极
氟电极的敏感膜由LaF3单晶片制成,为提高导电性, 在其中参杂少量Eu2+,Ca2+ ,二价离子的引入,使晶 格点阵中La3+被Eu2+,Ca2+取代,形成较多空的F-点 阵,增强了晶体的导电性,导电由F-完成。 氟离子选择性电极是目前最成功的单晶膜电极。
RT EF k ln a F F
能斯特方 程比较
EM
RT k ln a Ag F
二、电位选择性系数


电极选择性是指:电极对被测离子 和干扰离子响应的差异。 这种差异可用电极选择性系数Ki,j表 示。
RT z/m EM k ln( ai K iPot a ) ,j j zF
Ki,j表征了干扰离子对被测离子干扰的程度
玻璃电极的电位与溶液PH关系

玻璃电极的电位与溶液的PH有如下关系 RT E玻 k玻 ln aH F 2.303 RT E玻 k玻 pH 试 F
E玻 k玻 0.0592pH试
(三)阳离子玻璃电极
二、晶体电极

(一)电极结构 晶体电极的基本结构图16-5,其敏感膜 材料系难溶盐加压或拉制成的。能满足 室温下导电的难溶盐晶体只有少数几种, 氟化镧、硫化银、卤化银等。这类晶体 晶格能比较小,离子半径最小电荷最少 的离子F ,Ag+等参与导电。

第三章电位分析法

第三章电位分析法

第三章 电位分析法7.pH 玻璃电极与饱和甘汞电极组成如下测量电池:pH 玻璃电极|H +(标准缓冲溶液或未知溶液)‖SCE298K 时若测得pH5.00标准缓冲溶液的电动势为0.218V 。

若用未知pH 溶液代替标准缓冲溶液,测得三个未知pH 溶液的电动势分别为:(1)0.060V ;(2)0.328V ;(3)-0.019V解:得, (1)当 (2)当 (3)当 8.电池 )‖SCE 其电动势为0.367V 。

(1) 用一未知镁溶液代替上述已知Mg 2+溶液,测得电动势为0.446V ,该电极的实际斜率为0.0296V/PMg 2+,试计算未知溶液的pMg 值。

(2) 若测定中的 不稳定性为±0.002V ,那末Mg 2+浓度在多大范围内变化? 解:(1)2E lg (1)Mg K S c +=-由已知条件得,30.3670.0296lg6.8710,0.303)K K V -=-⨯=(由未知溶液电动势2+x E 0.446V,K=0.303(V),S=0.0296(V/PMg =)代入(1)式得2222E lg 0.4460.3030.0296lg ,lg 4.83,PMg=-lg 4.83Mg Mg Mg Mg K S c c c c ++++=-⇒=-=-=(2)2E lg Mg K S c ϕ+=-+液接 当0.002V ϕ=液接时代入得:22225E lg 0.4460.3030.0296lg 0.002lg 4.761.7410mol/L)Mg Mg Mg Mg K S c c c c ϕ++++-=-+⇒=-+⇒=-=⨯液接(当0.002V ϕ=-液接时代入得:22225E lg 0.4460.3030.0296lg 0.002lg 4.901.2610mol/L)Mg Mg Mg Mg K S c c c c ϕ++++-=-+⇒=--⇒=-=⨯液接(第五章 伏安法和极谱分析法6.用直流极谱法测定某试样中铅的含量。

电位分析法3

电位分析法3
由此式可以看出: a. T影响斜率S,为了校正
这种效应的影响,一般测量仪器上都有 温度
补偿器来进行调节; b. T影响截距 K',K'项 包括参比电极、液接电位等,这些都与 T有 关,在整个测量过程中应保持温度恒定 。
第十七页,编辑于星期二:十四点 十六分。
?电动势的测量
RT E = k + lnc
电位分析方法及应用
直接电位分析法 (P27 ,pH测定前面已讲过)
校准曲线法
直接电位定 量分析方法 标准加入法
格氏作图法
第一页,编辑于星期二:十四点 十六分。
1. 标准曲线法
配制一系列与试样溶液组成相似的标准溶
液Ci和试样溶液,测出相应的电动势。然后以
测得的电位 E对相应的标准溶液的 lgai (或lgCi )
∑∑ Ei
-
b
=
S lg
c xVx Vx
+ cs +
Vi Vi
Ei - b
∑ 10 S
=
cxVx + cs
Vi
∑ Vx + Vi
Ei
∑ 10 S
b
∑ 10 S
= cxVx + cs Vi V x + Vi
(阳离子)
( ∑ ) ( ∑ ) Vx + Vi 10Ei / S = 10b/ S cxVx + cs Vi
24.25
24.35
390
4400
830
第二十八页,编辑于星期二:十四点 十六分。
?2E
?
??
?
E
?
?
?
? ?
?
E
?

电位分析法

电位分析法
上一页 下一页 返回
一、背景知识
• 电位滴定法是通过测量滴定过程中电池电动势的变化来确定滴定终点 的分析方法。与化学分析法中滴定分析不同的是电位滴定的终点是由 测量电位突跃来确定,而不是由观察指示剂颜色变化来确定。因此, 电位滴定法分析结果准确度高,容易实现自动化控制,能进行连续和 自动滴定,广泛应用于酸碱、氧化还原、沉淀、配位等各类滴定反应 终点的确定,特别是那些滴定突跃小,溶液有色或浑浊的滴定,使用 电位滴定法可以获得理想的结果。此外,电位滴定法还可以用来测定 酸碱的离解常数、配合物的稳定常数等。
模块三电位分析法
• 一、背景知识 • 二、项目化教学参考方案
一、背景知识
• (一)电位分析法的基本原理
• 1.概述 • 电位分析法是电化学分析法的一个重要组成部分。电化学分析是利用
物质的电学及电化学性质进行分析的一类分析方法,是仪器分析的一 个重要分支。 • 电化学分析法的特点是灵敏度高,选择性和准确度都很高,适用面广。 由于测定过程中得到的是电信号,因而易于实现自动化、连续化和遥 控测定,尤其适用于生产过程的在线分析。随着科学技术的发展,近 年来电化学分析在方法、技术和应用上也得到了长足进展,并呈蓬勃 发展的趋势。
所示。 • (2)响应机理。 • 当电极进入水溶液时玻璃外表面吸收水产生溶胀,形成很薄的水合硅
胶层(见图3-6)。
上一页 下一页 返回
一、背景知识
• 2)氟电极(晶体膜电极) • (1)结构。 • 氟离子选择性电极是典型的单晶膜电极,氟离子选择性电极的敏感膜
为氟化斓单晶(掺有EuF2的LaF3单晶切片),单晶膜封在硬塑料管的一 端,管内装有0.1 mol / L的NaCI和0.10 mol/ L的NaF混合溶液作内参 比溶液,以Ag-AgCI电极作内参比电极,其结构如图3-7所示。 • (2)响应机理。 • LaF3的晶格中有空穴,在晶格上的F一可以移入晶格邻近的空穴而导 电。对于一定的晶体膜,离子的大小、形状和电荷决定其是否能够进 入晶体膜内,故膜电极一般都具有较高的离子选择性。

仪器分析-第三章电位分析法

仪器分析-第三章电位分析法

5 lg A 9 []2 g k ' 0 .05 lg S 9 2 ] [2 2
既可以为Ag+离子选择电极,也可以作为S2-离子选择电极。
该电极在一定情况下可以测定CN-离子。测定时向试液 中(本身不含Ag+)加入少量的Ag(CN)2- 使其浓度为10-5~ 10-6 mol•L-1 ,试液中存在下面的平衡:
种类繁多
例如,葡萄糖电极、尿素电极、尿酸电极、胆固醇 电极、乳酸电极、丙酮酸电极等等。就是葡萄糖电 极也并非只有一种,有用pH电极或碘离子电极作 为转换器的电位型葡萄糖电极等。
氨基酸的测定用氨基酸脱羧酶和氨基酸氧化酶 催化,例如:
HO6H C4CH 2CHN 2CHOO氨 H 基 酸 脱 羧酶 HO6H C4CH 2CH 2NH 2+CO 2
非晶体膜电 极
均相晶体膜电极
非均相晶体膜电 极 刚性基质电极
流动载体电极
敏化离子选择 电极是以原电 极为基础装配 成的离子选择 电极。
敏化电极
气敏化电极 酶(底物)电极
(1)玻璃电极
玻璃电极的膜电位的建立是一个典型的例子。 玻璃电极:pH、pNa、pK玻璃电极等。
pH 玻璃电极是最早出现 的 ISE , 底 部 敏 感 膜 很 薄 0.1mm , 两 边 厚 。 内 充 0.1mol·L-1HCl 溶 液 作 为 内 参 比溶液,内参比电极是 Ag|AgCl。
由于电极的内参比溶液和试液中离子的活度不 同,感应膜的内外均形成双电层,在膜的内外壁之 间产生电位差(膜电位),此电位差与待测离子的活 度有定量关系。
(a)离子接触型;(b)全固态型 全固态型电极制作简单,可以在任意方向倒置使 用,而且消除了压力和温度对内部溶液的限制。

第三章电位分析法

第三章电位分析法

lg
a M
n

第一类电极的电位仅与金属离子的活度有关。
二、第二类电极──金属-金属难溶盐电极
M MXn(s)∣X-(x mol/L)
电极电位:


0

0.0592 n
lg
a M
n
aM


0

0.0592 n
lg
a M
n

0

0.0592 n
lg
K sp ,MXn (aX )n
此类电极可作为一些与电极离子产生难溶盐或稳定配合
下表是 银-氯化银电极的电极电位(25℃)
KCl 浓度 电极电位(V)
0.1mol/LAg-AgCl 电极 0.1 mol / L +0.2880
标准 Ag-AgCl 电极 1.0 mol / L +0.2223
饱和 Ag-AgCl 电极 饱和溶液 +0.2000
温度校正,(标准Ag-AgCl电极),
E = + - - + 液接电位
装置:参比电极、指示电极、电位差计。 当测定时,参比电极的电极电位保持不变,电池电动 势随指示电极的电极电位而变,而指示电极的电极电位 随溶液中待测离子活度而变。
电位分析的理论基础
理论基础:能斯特方程(电极电位与溶液中待测离子
间的定量关系)。
对于氧化还原体系:
一、参比电极:与被测物质无关、电位值已知且稳
定,提供测量电位参考的电极。
对参比电极的主要要求:
⑴要求它的电位值恒定,即稳定性好; ⑵当温度和浓度改变时,电极仍能按能斯特公式响应 而无滞后现象,电极电位重现性好; ⑶当有小电流(10-8A或更小)通过时,电极的电位不 应有明显变化,或者说应能负荷一定量的交换电流,称 之为可逆性好。

电位分析法3

电位分析法3
响应时间与溶液的搅拌速度、参比电极的稳定性和被 测离子的浓度等因素有关。
被测离子的浓度高,达到平衡快,响应时间短;静态测 定响应时间长,动态测定响应时间短,因此,在实际工作 中,通常采用搅拌试液的方法来加快响应速度。
00:49:26
四、内阻
离子选择性电极的内阻主要是膜内阻,也 包括内充液和内参比电极的内阻。玻璃电极的 电阻高达107~109 Ω,PVC膜为106~107 Ω,晶 体膜为104~106 Ω.电极的电阻越高,要求测量 仪器的输入阻抗越高,而且越容易受外界噪声 的干扰,造成测量上的困难和误差
电位测量误差
当电位读数误差为1mV时,对于一价离子,由此引起结 果的相对误差为3.9%,对于二价离子,则相对误差为7.8%。 故电位分析多用于测定低价离子。 相对误差=△c/c×100%=ki,jajni/nj ×100% P230:例10-1
00:49:26
五、直读法测量溶液的pH
指示电极:pH玻璃膜电极 参比电极:饱和甘汞电极
液体积基本不变。浓度增量为:
⊿c = cs Vs / V0
再次测定工作电池的电动势为E2:
E2
K
2.303RT nF
lg( x2
2cx
x2
2c)
00:49:26
可以认为γ2≈γ1。,χ2≈χ1。则:
E
E2
E1
2.303RT nF
lg(1
c )
cx
2.303RT
c
E E2 E1
nF
lg(1 ) cx
10 15 20 25 30 35 40
0.05M 草 酸 三氢钾
1.671 1.673 1.676 1.680 1.684 1.688 1.694

3电位分析法解析

3电位分析法解析
ISE与金属基指示电极在基本原理上有本质区别
3 应用
➢用于测定阴阳离子(包括碱金属离子及一价 阴离子)、有机离子、生物物质,并用于气体 分析
➢适用的浓度范围宽
➢医疗卫生部门、工业流程自动控制、环境监 测等各种传感器
➢微型及超微型电极用于单细胞等活体分析
➢与化学平衡理论相结合测定有关常数
§2 离子选择电极电位法基本原理
电位分析法的理论依据是能斯特公式,它 是通过测量电池电动势进行定量分析。
E电池 ISE SCE 液接
那么,ISE(离子选择电极,膜电极)的
电极电位 ISE 是多少?
一、膜电位的产生
1 含义——膜的一侧或两侧与电解质溶液接触 而产生的电位差,它实质上是一种相间电位。
2 产生 膜电位的产生是由于离子在溶液与膜相内
同理,膜对RZ-产生响应时,

k '
RT ZF
ln

故对阴、阳离子产生响应时:

k '
RT ZF
ln 外
3 离子选择电极的电极电位
ISE 内参 膜
膜电位和膜电极的电 极电位(ISE的电极 电位)有不同的含义
k RT ln
ZF
(k由膜内界面上的相间 电位、内外膜表面不完 全相同的不对称电位和 内参比电极电位决定)
离子缔合物 (有机相)
由于只有响应离子能通过膜与溶液的界面进行扩散,因此
破坏了两相界面附近电荷分配的均匀性,产生相间电位。
电极的选择性决定于缔合物的稳定性及响应离 子在有机溶剂中的淌度;电极的灵敏度取决于活 性物质(缔合物)在有机相和水相中的分配系数, 分配系数越大,灵敏度越高。
➢流动载体
测定阳离子采用带负电荷的流动载体,测定阴离 子采用带正电荷的流动载体,形成离子缔合物

电位分析法

电位分析法
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极 (敏感膜)
内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。

电位分析法的原理

电位分析法的原理

电位分析法的原理
电位分析法是一种电化学实验技术,通过测量电极在不同电位下的电流来研究电化学反应的机理和动力学。

其基本原理可以归结为以下几点:
1. 电位与电荷转移:根据法拉第定律,电极上的电位与与之相关的电荷转移是密切相关的。

当电位发生变化时,伴随着电荷转移的发生。

因此,通过测量电极的电位变化,可以了解电化学反应的过程。

2. 电位与物理化学性质:电位是描述电极表面上化学反应活性的物理化学性质之一。

不同电位下,电极的表面状态、吸附物种和电流密度等均会发生变化。

通过分析电位的变化,可以推断出电极表面的性质和反应活性。

3. 电极响应与反应机理:在电位分析过程中,观察电极的电流响应可以揭示出电化学反应的机理信息。

不同电位下,电流密度的变化可以反映出化学反应速率、中间体的生成和消耗等过程。

通过电位分析,可以探究电极反应的机理和动力学。

4. 电位与反应速率:电位分析法还可以用来研究电极上的反应速率。

根据泊松方程和负荷传递原理,电流密度与电极的电位变化之间存在相关性。

通过测量电位和电流密度,并应用极谱计算和相关的数学模型,可以确定电极反应的速率常数和相关动力学参数。

总之,电位分析法通过测量电极在不同电位下的电流,揭示了
电位与电荷转移、物理化学性质、反应机理和速率之间的关系。

这项技术在电化学研究、催化剂评价、电池性能测试等领域具有广泛应用。

第三章 电位分析法

第三章  电位分析法
液膜电极的结构如图3-9所示。将溶于有机溶剂的电活性物质浸渍在作为支持体的微孔膜的孔隙内,从而使微孔膜成为敏感膜。内参比电极Ag|AgCl插入以琼脂固定的内参比溶液中,与液体电活性物质相接触。微孔膜可用聚四氟乙烯、聚偏氟乙烯或素陶瓷片制成。
(1)硝酸根离子选择电极该电极的电活性物质是带正电荷的季铵盐,将它转换成NO型,然后溶于邻硝基苯十二烷醚中。将此溶液与含5%PVC的四氢呋喃溶液混合(1:5)后,在平板玻璃上挥发制成透明膜。其结构见图3-8。硝酸根离子选择电极的电位为:
氟离子选择电极的电位可表示为:
(3.4)
k为常数,与内参比电极、内参比溶液和膜的性质有关。
测量时组成如下电池:

298K时的电池电动势可表示为:
(3.5)
(2)硫离子选择电极膜由Ag2S粉末压片制成。硫化银是一种低电阻的导体,膜内的Ag+是电荷的传递者。硫离子选择电极的电位可表示为:
(3.6)
(3)氯、溴、碘离子选择电极它们的膜分别由Ag2S-AgCl、Ag2S-AgBr和Ag2S-AgI粉末混合压片制成。膜内的电荷也是由Ag+传递。电极电位为:
离子选择电极(Ion selective electrode, ISE)是一种电化学传感器,它由敏感膜以及电极帽、电极杆、内参比电极和内参比溶液等部分组成,如图3-2所示。敏感膜是指一个能分开两种电解质溶液并能对某类物质有选择性响应的连续层,它是离子选择电极性能好坏的关键。内参比电极通常用银-氯化银电极或用银丝。内参比溶液由离子选择电极的种类决定。也有不使用内参比溶液的离子选择电极。
pH玻璃电极是最早出现的离子选择电极。pH玻璃电极的关键部分是敏感玻璃膜,内充0.1mol·L-1HCl溶液作为内参比溶液,内参比电极是Ag|AgCl,结构如图3-3所示。敏感玻璃膜的化学组成对pH玻璃电极的性质有很大的影响,其玻璃由SiO2、Na2O和CaO等组成。由纯Si2O制成的石英玻璃的结构如下:

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点1、电位分析法的定义、分类和特点定义:利用测得电极电位与被测物质离子浓度的关系求得被测物质含量的方法叫电位分析法。

分类:直接电位法――利用专用的指示电极――离子选择性电极,选择性地把待测离子的活度(或浓度)转化为电极电位加以测量,依据Nernst方程式,求出待测离子的活度(或浓度),也称为离子选择电极法。

这是二十世纪七十时代初才进展起来的一种应用广泛的快速分析方法。

·电位滴定法――利用指示电极在滴定过程中电位的变化及化学计量点相近电位的突跃来确定滴定尽头的滴定分析方法。

电位滴定法与一般的滴定分析法的根本差别在于确定尽头的方法不同。

特点:应用范围广――可用于很多阴离子、阳离子、有机物离子的测定,尤其是一些其他方法较难测定的碱金属、碱土金属离子、一价阴离子及气体的测定。

由于测定的是离子的活度,所以可以用于化学平衡、动力学、电化学理论的讨论及热力学常数的测定。

·测定速度快,测定的离子浓度范围宽。

·可以制作成传感器,用于工业生产流程或环境监测的自动检测;可以微型化,做成微电极,用于微区、血液、活体、细胞等对象的分析。

2.化学电池化学电池是由两组金属—溶液体系构成的。

每一个化学电池有两个电极。

分别浸入适当的电解质溶液中,用金属导线从外部将两个电极连接起来,同时使两个电解质溶液接触,构成电流通路。

电子通过外电路导线从一个电极流到另一个电极,在溶液中带正负电荷的离子从一个区域移动到另一个区域以输送电荷,*后在金属—溶液界面处发生电极反应,即离子从电极上取得电子或将电子交给电极,发生氧化—还原反应。

假如两个电极浸在同一个电解质溶液中,这样构成的电池称为无液体接界电池;假如两个电极分别浸在用半透膜或烧结玻璃隔开的或用盐桥连接的两种不同的电解质溶液中,这样构成的电池称为有液体接界电池。

用半透膜、烧结玻璃隔开或用盐桥连接两个电解质溶液,是为了避开两种电解质溶液的机械混合,同时又能让离子通过。

电位分析法3-6

电位分析法3-6
温度对测量的影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上,有的仪器可同时对前两 项进行校正,但多数仅对斜率进行校正。温度的波动可以 使离子活度变化而影响电位测定的准确性。在测量过程中 应尽量保持温度恒定。
线性范围和电位平衡时间
一般线性范围在10-1~10-6mol / L,平衡时间越短越好。 测量时可通过搅拌使待测离子快速扩散到电极敏感膜,以 缩短平衡时间。测量不同浓度试液时,应由低到高测量。
式中pHs已知,实验测出Es和Ex后,即可计算出试液的pHx 。IUPAC推 荐上式作为pH的实用定义,通常也称为pH标度。使用时,尽量使温度保持 恒定并选用与待测溶液pH接近的标准缓冲溶液,减小测定误差。
pH基准缓冲溶液的pHs值
温度 t ℃ 10 15 20 25 30 35 40 0.05M 草 酸 25 ℃ 饱 和 0.05M 邻 0.01mol/ 三氢钾 酒石酸氢钾 苯二甲酸氢 L 钾 硼 砂 1.671 3.996 9.330 1.673 3.996 9.276 1.676 3.998 9.226 1.680 3.559 4.003 9.182 1.684 3.551 4.010 9.142 1.688 3.547 4.019 9.105 1.694 3.547 4.029 9.072 25℃ Ca(OH)2 13.011 12.820 12.637 12.460 12.292 12.130 11.975
11:29:52
三、标准加入法——测定金属离子总浓度
设某一试液体积为V0,其待测离子的浓度为cx,测定的工作电池电 动势为E1,则:
2.303RT E1 K lg(xi i c x ) nF
式中:χ i为游离态待测离子占总浓度的分数;γ i是活度系数;cx是待测 离子的总浓度。 往试液中准确加入一小体积Vs(大约为Vo的1/100)的用待测离子的纯 物质配制的标准溶液, 浓度为Cs(约为cx的100倍)。由于V0>Vs,可认为溶 液体积基本不变。浓度增量为: ⊿c = cs Vs / V 0 再次测定工作电池的电动势为E2:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电位分析(二)
5.2.2 金属基电极和离子选择性电极
一、引言
1. 电位分析法(potentiometry):是基于测量浸入被测液中两电极间的电动势或电动势变化来进行定量分析的一种电化学分析方法,称为电位分析法。

根据分析应用的方式又可分为直接电位法和电位滴定法。

直接电位法(direct potentiometry) :是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。

电位滴定法 (potentiometric titration): 是借助测量滴定过程中电池电动势的突变来确定滴定终点,再根据反应计量关系进行定量的方法。

2. 电极的类型
基于电子交换反应的电极
(1) 第一类电极: M n+/M
(2) 第二类电极: M/MX (固体)
(3) 第三类电极: M/MX (s),NX (s), N n+,
(4) 第零类电极: 惰性金属
选择性电极
(1)离子选择性电极(ion selective electrode, ISE): 包括常见的各种膜电极
(2)生物活性物选择性电极: 包括组织电极和酶电极。

(3)场效应微电子传感器(集成电极)
二、金属基电极
1、第一类电极(Electrode of the first kind):金属和该金属离子溶液组成的电极体系,电位由金属离子活度决定
要求:ϕ0(Mn+/M)> 0, 如Cu, Ag, Hg 等;Zn, Cd, In, Tl, Sn, Sn 虽然它们的电极电位较负,因氢在这些电极上的超电位较大,仍可做一些金属离子的指示电极。

特点:因下列原因,此类电极用作指示电极并不广泛:
a) 选择性差:既对本身阳离子响应,亦对其它阳离子响应;
b) 许多这类电极只能在碱性或中性溶液中使用,因为酸可使其溶解;
c) 电极易被氧化,使用时必须同时对溶液作脱气处理;
d) 一些“硬”金属,如Fe, Cr, Co, Ni 。

其电极电位的重现性差;
e) pM-a M n+作图,所得斜率与理论值(-0.059/n)相差很大、且难以预测;
较常用的金属基电极有:Ag/Ag +、Hg/Hg 22+(中性溶液);Cu/Cu 2+、Zn/Zn 2+、Cd/Cd 2+、Bi/Bi 3+、M M
n ↔+-+ne +++=n n M ,M θln 0591.0a n
M ϕϕ
Tl/Tl +、Pb/Pb 2+(溶液要作脱气处理)。

2、第二类电极(Electrodes of the second kind ): 金属及其难溶盐(或络离子)组成的电极体系,间接反映了与该金属形成难溶盐(或络合离子)的阴离子活度。

如:银电极;
__
Cl θ
)Ag Ag(Cl,lg 059.0Cl Ag e AgCl αϕϕ+=+↔+
如银离子与CN -形成的络合物电极
2
Ag(CN)θ
Ag ,Ag(CN)_
2_CN _2_2_
lg 059.0CN 2Ag e Ag(CN)ααϕϕ+=+↔+
此类电极可作为一些与电极离子产生难溶盐或稳定配合物的阴离子的指示电极; 如对Cl -响应的Ag/AgCl 和Hg/Hg 2Cl 2电极,对Y 4-响应的Hg/HgY(可在待测EDTA 试液中加入少量HgY)电极.
3、第三类电极(Electrodes of the third kind):金属与两种具有共同阴离子的难溶盐或难离解的络合离子组成的电极体系
Ag2C2O4, CaC2O4, Ca2+|Ag
银电极电位可以由下式确定:
++++=2lg 2
059.0lg 2059.0)2()1(θAg ,Ag Ca SP sp K K αϕϕ M ⎥ (MX+NX+N +)
其中MX ,NX 是难溶化合物或难离解配合物。

举例如下。

Ag/Ag 2C 2O 4,CaC 2O 4,Ca 2+
电极反应:Ag 2C 2O 4+2e==2Ag + C 2O 42-
电极电位:
++
=Ag a z lg 0592.00ϕϕ
因为: 21,][
242422-+=O c O C Ag sp Ag a K a ;
+-=242242,Ca O CaC sp O C a K a 代入前式得: +++=242422lg 20592.0lg 20592.0,,0
Ca O CaC sp O C Ag sp a K K ϕϕ 或者:
++
=2lg 20592.0'0Ca a ϕϕ 可见该类电极可指示Ca 2+活度的变化。

对于难离解的配合物,如Hg/HgY ,CaY ,Ca 2+电极
电极反应:HgY 2- + 2e ===Hg + Y 4-
电极电位:
++++=2lg 2
0592.0lg 20592.0lg 20592.0,,0Ca CaY HgY HgY f CaY f a a a K K ϕϕ 式中比值a HgY/aCaY 可视为常数, 因此得到: ++
=2lg 20592.0'0Ca a ϕϕ 同上例,该电极可用于指示Ca2+活度的变化(测定时,可在试液中加入少量HgY)。

4、零电极(Metallic redox indicators),利用铂,金等惰性金属材料为电极,指示同时存在于溶液中的氧化态和还原态活度的比值,及用于一些气体参加的电极反应。

电极本身不参加电极反应,只作为电子传递电子和传导电流
+++=23Fe Fe lg 2059.0ααϕϕθ
22
H H θlg 059.0p αϕϕ+=
1906年,克莱姆发现玻璃在两种不同的水溶液间产生电位差
1929年,麦克英斯制成pH 玻璃电极
1965年,频歌奥研制出卤素离子电极(1966年,弗兰特,研制出氟离子电极)
到目前为止,已研制出30多中商品化的离子电极
离子选择性电极定义:1976年,国际纯粹与应用化学联合会(IUPAC )定义
离子选择性电极是一种电化学传感器,它的电极电位与溶液中相应离子的活度的对数值成线形关系;离子选择性电极是一类指示电极,它所指示的电极电位值与相应离子活度的关系符合能斯特方程。

相关文档
最新文档