6.何时获得最大利润

合集下载

6.4 二次函数的运用(1)【何时获得最大利润】

6.4 二次函数的运用(1)【何时获得最大利润】

§6.4 二次函数的运用(1)【何时获得最大利润】---[ 教案]备课时间: 主备人:教学目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.教学重点:本节重点是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.教学难点:本节难点在于能正确理解题意,找准数量关系.这就需要同学们在平时解答此类问题时,在平时生活中注意观察和积累,使自己具备丰富的生活和数学知识才会正确分析,正确解题.教学方法:在教师的引导下自主教学。

教学过程:一、有关利润问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?二、做一做:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?三、举例:【例1】某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y(1①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数表达式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:①试求出日销售利润P元与日销售单价x元之间的函数表达式,并求出日销售单价x 为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出;若无,请说明理由.②在给定的直角坐标系乙中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.【例2】某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围. (2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442-的形式,写出顶点坐标,在图所示的坐标系中画出草图.观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:1.关于二次函数y=ax 2+bx +c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0且函数图象开口向下时,方程ax 2+bx +c=0必有两个不等实根;③当a <0,函数的图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确命题的个数有( )A .1个B .2个C .3个D .4个2.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?五、小结:本节课我们学习了什么?六、作业:七、课后练习(补充)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?2.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?3.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?4.某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间x小时的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克;服用后3小时,每毫升血液中含药量为7.5微克.(1)试求出含药量y(微克)与服药时间x(小时)的函数表达式,并画出0≤x≤8内的函数图象的示意图.(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间是多少小时?(有效时间为血液中含药量不为0的总时间)5.有一种螃蟹,从海上捕获后不放养最多只能存活两天.如果放养在塘内,可以延长存活时间.但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000kg放养在塘内,此时市场价为30元/kg,据测算,此后1kg活蟹的市场价每天可上升1元.但是,放养一天需各种费用支出400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg.(1)设x天后1kg活蟹的市场价为P元,写出P关于x的函数表达式;(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q 关于x的函数表达式;(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?6.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x的函数表达式;(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?。

《何时获得最大利润》教学课件

《何时获得最大利润》教学课件
2.6 何时获得最大利润
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000

《百分闯关》2016届九年级数学北师大版下册课件+教案:第二章 二次函数2.4 二次函数的应用(2)

《百分闯关》2016届九年级数学北师大版下册课件+教案:第二章 二次函数2.4 二次函数的应用(2)
(2)∵x=10 为抛物线的对称轴,且(7,16)在抛物线上,∴(13,16)也在 该抛物线上,∴当 7≤x≤13 时,销售利润不低于 16 元
( C)
A.30人 B.40人 C.50人 D.55人
3.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y(m) 与水平距离 x(m)之间的关系为 y=-112(x-4)2+3,由此可知铅球推出的
距离是( C )
A.2 m B.8 m C.10 m D.12 m 4.将进货单价为 70 元的某种商品按零售价 100 元售出时,每天能 卖出 20 个,若这种商品零售价在一定范围内每降价 1 元,其日销售量就
10.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y= ax2+bx-75,其图象如图所示. (1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多 少元? (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
解 : (1) ∵ y = ax2 + bx - 75 的 图 象 经 过 点 (5 , 0) , (7 , 16) , ∴ 2459aa++57bb--7755==016,,解得ab==2-01,,∴y=-x2+20x-75=-(x-10)2+25, ∴当销售价为 10 元时,最大利润为 25 元
增加 1 个,为获得最大利润,应降价( A )
A.5 元 B.10 元 C.15 元 D.20 元
5.科技园电脑销售部经市场调查发现,销售某型号电脑所获利润y(元) 与销售台数x(台)满足y=-x2+40x+15600,则当他卖出___2_0___台时, 所获利润最大.
6.有x人结伴去旅游共需支出y元,若x,y之间满足关系式y=2x2- 20x+1050,则当人数x为___5___时,总支出最少.

何时获得最大利润练习

何时获得最大利润练习

何时获得最大利润练习目标导航体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 基础过关1.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--,2.关于二次函数y =ax 2+bx +c 的图象有下列命题:①当c =0时,函数的图象经过原点;②当c >0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不等实根;③当a <0,函数的图象最高点的纵坐标是ab ac 442-;④当b =0时,函数的图象关于y 轴对称.其中正确命题的个数有( )A .1个B .2个C .3个D .4个 3.当a <0时,抛物线y =x 2+2ax +1+2a 2的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知二次函数y =-2x 2+4x +k (其中k 为常数),分别取x 1=-0.99、x 2=0.98、x 3=0.99,那么对应的函数值为y 1,y 2,y 3中,最大的为( )A .y 3B .y 2C .y 1D .不能确定,与k 的取值有关 5.已知二次函数y =x 2-bx +1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动 6.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .17.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y (件)是价格x (元/件)的一次函数.(1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).8.某旅社有客房120间,每间房的日租金为50元时,每天都客满,旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?9.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大?(总利润=总收入-总成本).能力提升10.启明公司生产某种产品,每件成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的年销售量是原销售量的y倍,且277101010xy x=-++.如果把利润看作是销售总额减去成本和广告费:(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的方式?写出每种投资方式所选的项目.11.利达经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.聚沙成塔12.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥为280千米(桥长忽略不计),货车以每小时40千米的速度开往乙地,当行驶1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时0.25米的速度持续上涨(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行.试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米/时?。

何时获得最大利润

何时获得最大利润

最大利润的含义
最大利润
最大利润是指企业在一定时间内通过 生产和销售产品或提供服务所获得的 最大的收益。
利润最大化的意义
利润最大化是企业的主要目标之一, 它可以帮助企业实现资源的最优配置 ,提高企业的竞争力和市场地位。
研究目的和意义
研究目的
研究何时获得最大利润可以帮助企业制定合理的生产和销售 策略,实现资源的优化配置,提高企业的盈利能力和市场竞 争力。
算法基础。
利用二次函数求解最大利润
确定变量
首先需要确定影响最大利润的变量。这些变量可能是产品 的售价、成本、市场需求等。
建立二次函数
根据这些变量之间的关系,可以建立一个二次函数来描述 最大利润。这个二次函数可能是关于售价、成本、需求等 变量的二次多项式。
求导数
通过求导数,可以找到这个二次函数的极值点,也就是最 大利润点。
是企业或个人在一定时期内销售产品或提供服务所获得的收入扣除成本后的余 额。
销售量
表示企业在一定时期内销售出去的产品或服务的数量。
利润和销售量的关系建模
利润 = 销售收入 - 成本
由于销售收入 = 销售量 × 单价,因此利润 = (销售量 × 单价) - 成本
当成本不变时,销售量越大,利润越高。但是,当销售量达到一定水平时,再增加销售量, 利润反而会下降。这是因为随着销售量的增加,固定成本(如设备、场地等)逐渐增加,导 致单位产品的成本上升。
研究表明,成本结构对利润也 有重要影响。高固定成本的公 司需要更高的销售量来覆盖固 定成本,而低固定成本的公司 可以在更少销售量下实现盈利 。
对未来研究的展望
01
进一步探讨市场份额与利润的关系
未来的研究可以进一步探讨市场份额与利润之间的复杂关系。例如,市

何时获得最大利润?

何时获得最大利润?

练习七何时获得最大利润?1.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外每天的房租等固定成本共24元,该经营户要想每天赢利最高,应将每千克小型西瓜的售价降低多少元?2.某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后,要提高租金.经市场调查,如果1间客房的日租金每提高5元,则客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?3.某商场经销一种销售成本为每千克40元的水产品;据市场调查,若按每千克50元销售,一个月能销售出500千克,销售单价每涨1元,月销售量下降10千克,针对这种水产品的销售情况,请探索以下问题:(1)当销售单价定为每千克55元时,月销售利润为多少?(2)设月销售单价为每千克x元,月销售利润为y元,写出y与x之间的函数关系式.4.南博汽车城销售某种型号的汽车,每辆进货价为25万元;市场调研表明,当销售价为29万元时,平均每周能售出8辆,而销售价每降低0.5万元时,平均每周能多售出4辆;设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(1)求y与x的函数关系式,在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?5.小店张老板批发进货,其中有一种商品进价为每件9元,按每件15元出售,每天可销售40件;现在他想采用降价促销的办法来增加利润,已知这种商品每件每降价1元,日销售量就增加10件,那么他把售价定为多少时,才能使每天获利最大?每天最大利润是多少?6.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元,已知P=x2+5x+1000,Q= −+45.(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元?7.如图所示,在直角坐标系xOy中,A,B是x轴上两点,以AB为直径的圆交y轴于点C,设过A、B、C三点的抛物线关系为y=x2−mx+n,若方程x2−mx+n=0两根倒数和为−2.(1)求n的值;(2)求此抛物线的关系式.8.(2004,陕西,10分)如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2= 17,且线段OA、OB的长度是关于x的一元二次方程x2−mx+2(m−3)=0的两个根.(1)求C点的坐标;(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E 三点的抛物线的关系式,并画出此抛物线的草图.(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.。

《资源与评价》九下数学参考答案

《资源与评价》九下数学参考答案

1.B 2.作C D A C ⊥交AB 于D ,则28CAD = ∠,在Rt ACD △中,t a n C D A C C A D =∠40.53 2.12=⨯=(米).所以,小敏不会有碰头危险. 3.(1)B 17A =米,CD 20=米;(2)有影响,至少35米 4.AD=2.4米 5.小1 二次函数所描述的关系1.略2.2或-3 3.S=116c24.11,4,2,844±±5.y=16-x26.y=-x2+4x 7.B 8.D 9.D 10.C 11.y=2x2;y=18;x=±212.y=-2x2+260x-6500 13.(1)S=4x-32x2;(2)1.2≤x<1.614.s=t2-6t+72(0<t≤6)2 结识抛物线1.抛物线;下;y轴;原点;高;大;相反;相同;相同2.减小3.a=2;k=-2 4.a=-1 5.m=-1 6.(-2,4) 78.129.y=x2+6x10.(1)S=32y;(2)S是y的一次函数,S是x的二次函数11.(1)m=2或-3;(2)m=2.最低点是原点(0,0).x>0时,y随x的增大而增大;(3)m=-3,最大值为0.当x>0时;y随x的增大而减小12.A(3,9);B(-1,1);y=x213.抛物线经过M点,但不经过N点.14.(1)A(1,1);(2)存在.这样的点P有四个,即P10),P20),P3(2,0),P4(1,0)3 刹车距离与二次函数1.下;y 轴;(0,5);高;大;5 2.(0,-1) 1,02⎛⎫- ⎪⎝⎭和1,02⎛⎫ ⎪⎝⎭3.y=x 2+3 4.下;3 5.14- 6.k=9,122b = 7.22y x =- 8.C 9.A 10.C 11.C 12.C 13.(1)2212(2)2y x y x ==-;(3)2y x = 14.(1)3;(2)3 15.y=mx 2+n 向下平移2个单位,得到y=mx 2+n-2,故由已知可得m=3,n-2=-1,从而m=3,n=1 16.以AB 为x 轴,对称轴为y 轴建立直角坐标系,设抛物线的代数表达式为y=ax 2+ c .则B 点坐标为,0),N 点坐标为3),故0=24a+c ,3=12a+c ,解得a=-14,c=6,即y= -14x 2+6.其顶点为(0,6),(6-3)÷0.25=12小时. 17.以MN 为x 轴、对称轴为y 轴,建立直角坐标系,则N 点坐标为(2,0), 顶点坐标为(0,4).设y=ax 2+c ,则c=4,0=4a+4,a=-1,故y=-x 2+4.设B 点坐标为(x ,0),c 点坐标为( -x ,0),则A 点坐标为(x ,-x 2+4),D 点坐标为(-x ,-x 2+4).故BC=AD=2x ,AB=CD=-x 2+4.周长为4x+2(-x 2+4).从而有-2x 2+8+4x=8,-x 2+2x=0,得x 1=0,x 2=2.当x=0时,BC=0;当x=2时,AB=-x 2+4=0.故铁皮的周长不可能等于8分米. 18.(1)6,10;(2)55;(3)略;(4)S=12n 2+12n . 聚沙成塔 由y=0,得-x 2+0.25=0,得x=0.5(舍负),故OD=0.5(米).在Rt △AOD 中,AO=OD· tan ∠ADO=0.5tanβ=0.5×tan73°30′≈1.69.又AB=1.46,故OB≈0.23米.在Rt △BOD 中,tan ∠BDO=0.230.5BO OD ==0.46,故∠BDO≈24°42′.即α=24°42′.令x=0,得y=0.25, 故OC= 0.25,从而BC=0.25+0.23=0.48米.2.1~2.3 二次函数所描述的关系、结识抛物线、刹车距离与二次函数测试 一、1.πr 2、S 、r 2.(6-x )(8-x )、x 、y 3.①④ 4.4、-2 5.y =-2x 2(不唯一) 6.y =-3x 2 7.y 轴 (0,0) 8.(2,4),(-1,1)二、9.A 10.D 11.B 12.C 13.D 14.C 15.B 16.D三、17.解:(1)∵m 2-m =0,∴m =0或m =1.∵m -1≠0,∴当m =0时,这个函数是一次函数.(2)∵m 2-m ≠0,∴m 1=0,m 2=1.则当m 1≠0,m 2≠1时,这个函数是二次函数.18.解:图象略.(1)0;(2)0;(3)当a >0时,y =ax 2有最小值,当a <0时,y =ax 2有最大值.四、19.解:y =(80-x )(60-x )=x 2-140x +4800(0≤x <60).20.如:某些树的树冠、叶片等;动物中鸡的腹部、背部等.五、21.解:两个图象关于x 轴对称;整个图象是个轴对称图形.(图略) y =-2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向下对称轴轴顶点坐标 y =2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向上对称轴轴顶点坐标 22.解:(1)设A 点坐标为(3,m );B 点坐标为(-1,n ).∵A 、B 两点在y =13x 2的图象上,∴m =13×9=3,n =13×1=13.∴A (3,3),B (-1,13).∵A 、B 两点又在y =ax +b 的图象上,∴33,1.3a b a b =+⎧⎪⎨=-+⎪⎩解得231a b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式是y =23x +1. (2)如下图,设直线AB 与x 轴的交点为D ,则D 点坐标为(-32,0).∴|DC |=32.S △ABC =S △ADC -S △BDC =2×2×3-2×2×13=94-14=2. 4 二次函数y=ax 2+bx+c 的图像1.上,12,33⎛⎫ ⎪⎝⎭,13x = 2.-4 0 3.四 4.0 5.左 3 下 2 6.1 7.-1或3 8.< > > > < 9.12x =,19,24⎛⎫- ⎪⎝⎭10.①②④ 11.D 12. D 13. A 14. D15.∵2215044(5)1015015,113522(5)44(5)b ac b a a -⨯-⨯--=-===⨯-⨯-.故经过15秒时,火箭到达它的最高点,最高点的高度是1135米 16.由已知得2444a a -=2.即a 2-a-2=0,得a 1=-1,a 2=2a≥0,故a=2. 17.以地面上任一条直线为x 轴,OA 为y 轴建立直角坐标系,设y=a(x-1)2+2.25, 则当x=0时,y=1.25,故a+2.25=1,a=-1.由y=0,得-(x-1)2+2.25=0,得(x-1)2=2.25,x 1=2.5,x 2=-0.5(舍去),故水池的半径至少要2.5米. 18.如:7月份售价最低,每千克售0.5元;1-7月份, 该蔬菜的销售价随着月份的增加而降低,7-12月份的销售价随月份的增加而上升;2月份的销售价为每千克3.5元;3月份与11月份的销售价相同等.5 用三种方式表示二次函数 1.y=-x 2+144 2.y 3.(1) y=x 2+-2x ;(2)3或-1 ;(3) x<0或x>24.k>3 5. y=x 2+8x 6.y=x 2+3x ,小,33,24- 7.(2,4) 8.14- 9.C 10.D 11.C 12.C 13.(1)略;(2)y=x 2-1;(3)略 14.设底边长为x ,则底边上的高为10-x ,设面积为y ,则y=12x(10-x)=-12(x 2-10x)=-12(x 2-10x+25-25)=-12(x-5)2+12.5.故这个三角形的面积最大可达12.5 15.2116S l = 16.(1)对称轴是直线x=1,顶点坐标为(1,3),开口向下;(2)当x<1时,y 随x 的增大而增大;(3)y=-2(x-1)2+3 17.由已知得△BPD ∽△BCA .故22416BPD ABC S x x S ∆∆⎛⎫== ⎪⎝⎭,224(4)416PCE ABC S x x S ∆∆--⎛⎫== ⎪⎝⎭,过A 作AD ⊥BC ,则由∠B=60°,AB=4,得AD=AB·sin60°4=,故142ABC S ∆=⨯⨯∴222(4)1616BPD PCE x x S S ∆∆-+=⨯⨯-+∴22y =-+=+⎝.18.(1) s=12t 2-2t ; (2)将s=30代入s=12t 2-2t ,得30=12t 2-2t ,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元;(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16, 即第8个月末公司累积利润为16万元.16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.19.(1)略;(2)(1)2n n S -=;(3)n=56时,S=1540 20.略 6 何时获得最大利润1.A 2.D 3.A 4.A 5.C 6.B7. (1)设y=kx+b ,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k b k b =+⎧⎨=+⎩, 解得30960k b =-⎧⎨=⎩∴y=-30x+960(16≤x≤32); (2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.8. 设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.9.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000=-5x 2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.10.(1)s=10×277101010x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16. ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:①取A 、B 、E 各一股,投入资金为5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元.②取B 、D 、E 各一股,投入资金为2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元.11.(1)60吨;(2)226033(7.545)(10)(320)(100)315240001044x y x x x x x -=⨯+-=--=-+-;(3)210元/吨;(4) 不对,设月销售额为w 元.22603(7.545)240104x w x x x -=⨯+=-+,x=160时,w 最大. 12.(1)21425y x =-+;(2)货车到桥需280406(40-=小时) ,0.256 1.5(⨯=米)而O(0,4),4-3=1(米)<1.5米,所以,货车不能通过. 安全通过时间434(0.25-=小时),2804060(/4-=千米时),货车安全通过速度应超过60千米/时. 7 最大面积是多少1.y=-x 2+600,020x ≤≤,600m 2 ,200m 2 2.20cm 2 3.圆 4.16cm 2 ,正方形 5. 5± 6.10 7.21822333y x x =-+- 8. 9.-2 10. C 11. D 12.C 13.A 14.D 15.过A 作AM ⊥BC 于M ,交DG 于N ,则=16cm .设DE=xcm ,S 矩形=ycm 2,则由△ADG ∽△ABC ,故AN DG AM BC =,即161624x DG -=,故DG=32(16-x).∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.16.(1)y= 238x -+3x .自变量x 的取值范围是0<x<8. (2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6.即当x=4时,△ADE 的面积最大,为6.17.设第t 秒时,△PBQ 的面积为ycm 2.则∵AP=tcm ,∴PB=(6-t)cm ;又BQ=2t .∴y=12PB·BQ=12(6-t)·2t=(6-t)t=-t 2+6t=-(t-3)2+9,当t=3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.18.(1)可以通过,根据对称性,当x=12×4=2时,y=132-×4+8=778>7.故汽车可以安全通过此隧道;(2)可以安全通过,因为当x=4时,y=132-×16+8=172>7.故汽车可以安全通过此隧道;(3)答案不惟一,如可限高7m .19.不能,y=-x 2+4x ,设BC=a ,则AB=4-a ,(2,4)2a A a ∴+-代入解析式 24(22)404,2a a a -=-+-+=得或 A(2,4)或(4,0) 所以,不能.20.(1)125h =;(2)12,125x S ==最大;(3)BE=1.8,在 21.(1)第t 秒钟时,AP=t ,故PB=(6-t)cm ;BQ=2tcm .故S △PBQ =12·(6-t)·2t=-t 2+ 6t .∵S 矩形ABCD =6×12=72.∴S=72-S △PBQ =t 2-6t+72(0<t<6);(2)S=(t-3)2+63.故当t=3时,S 有最小值63.22. (1)过A 作AD ⊥BC 于D 交PQ 于E ,则AD=4.由△APQ ∽△ABC ,得446x x -=,故x=125;(2)当RS 落在△ABC 外部时,不难求得AE=23x ,故22212446335y x x x x x ⎛⎫⎛⎫=-=-+<< ⎪ ⎪⎝⎭⎝⎭.当RS 落在△ABC 内部时,y=x 2(0<x<125);(3)当RS 落在△ABC 外部时, 2222124(3)66335y x x x x ⎛⎫=-+=--+<< ⎪⎝⎭.∴当x=3时,y 有最大值6.当RS 落在BC 边上时,由x=125可知,y= 14425.当RS 落在△ABC 内部时,y=x 2(0<x<125),故比较以上三种情况可知:公共部分面积最大为6. 23.(1)由对称性,当x=4时,y=211642525-⨯=-.当x=10时,y=2110425-⨯=-.故正常水位时,AB 距桥面4米,由16943 2.52525-=>,故小船能通过; (2)水位由CD 处涨到点O 的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.8 二次函数与一元二次方程1.(-3,0),(1,0) 2.y=2x 2+4x-6 3.一、二、三 4.(1,2) 5.m=-76.m=8 7.(-1,0) 8.9016k k >-≠且 9.a=2 10.B 11.A 12.C 13.y=x 2+x+9图象与y=1的两个交点横坐标是x 2+x+9=0两根 14.224(2)(2)40m m m ∆=--=-+>15.C △ABC =AB+BC+AC=2.S △ABC =12AC·OB=12×2×3=3 16.(1)k=-2,1 (2)0<k<2 17.(1) 904m m <≠且(2)在(3) 15(,),(2,1)24Q P ---18.(1)25s ,125m ;(2)50s 19.(1)m=2或0;(2) m<0;(3)m=1,S = 20.(1)y=112-(x-6)2+5;(2) (2)由112-(x-6)2+5=0,得x 1=266x +=-图像可知:C 点坐标为(6+0) 故OC=6+.75(米),即该男生把铅球推出约13.75米.21.(1) y=-x 2+4x-3;(2) ∴直线BC 的代数表达式为y=x-3 (3) 由于AB=3-1=2,OC=│-3│=3.故S △ABC =12AB·OC=12×2×3=3 22.(1) k=1;(2)k=-1 2.6—2.8A 参考答案一、1.2 2.14,大,-38,没有 3.①x 2-2x ;②3或-1;③<0或>2 4.y =x 2-3x -10 5.m >92,无解 6.y =-x 2+x -1,最大 7.S =π(r +m )2 8.y =-18x 2+2x +1, 16.5 二、9.B 10.C 11.C 12.B 13.D 14.B 15.D 16.B 三、17.解:(1)y =-2x 2+180x -2800;(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 18.解:∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x +1上.∴y =12×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-2b a=2.∴-242(2)m m --=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2).∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.四、19.解:(1)依题意得:鸡场面积y =-2150.33x x -+∵y =-13x 2+503x =13-(x 2-50x )=-13(x -25)2+6253,∴当x =25时,y 最大=6253, 2.6—2.8B 参考答案一、1.3 2.2 3.b 2-4ac>0(不唯一) 4.15 cm cm 2 5.(1)A ;(2)D ;(3)C ;(4)B 6.5,625二、7.B 8.B 9.A 10.C 11.D 12.B三、13.解:(1)信息:①1、2月份亏损最多达2万元;②前4月份亏盈吃平;③前5月份盈利2.5万元;④1~2月份呈亏损增加趋势;⑤2月份以后开始回升.(盈利);⑥4月份以后纯获利……(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=12(x -2)2-2,当x=6时,y=6(万元)(问题不唯一). 14.解:设m=a+b y=a·b ,∴y=a(m -a)=-a 2+ma=-(a -2m )2+24a ,当a=2m 时,y 最大值为24a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大.四、15.(1)由题意知:p=30+x ;(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000;(3)设总利润为L=Q -30000-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时总利润最大,为6250元.五、16.解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ .6,,8AB BP x PC CQ x y==-∴y=-16x 2+43x . 17.解:(1)10;(2)55;(3)略;(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c .由题意知:1a ,21,1423,b ,2936,c 0.a b c a b c a b c ⎧=⎪++=⎧⎪⎪⎪++==⎨⎨⎪⎪++=⎩=⎪⎪⎩解得∴S=211.22n n + 单元综合评价一、选择题:1~12:CBDAA ,CDBDB ,AB二、填空题:13.2 14.591415. 16.-7 17.2 18.y=0.04x 2+1.6x 19.<、<、> 20.略 21.只要写出一个可能的解析式 22.1125m 23.-9.三、解答题:24.y=x 2+3x+2 (-3/2,- 1/4) 25.y=-1200x 2+400x+4000;11400,1060026.21y x =-; 5小时 27.(1)5;(2) 2003 28.(1) 2y -x x =++;(2) y=-x 2+1/3x+4/9,y=-x 2-x 29.略. 第三章 圆1 车轮为什么做成圆形1.=5cm <5cm >5cm 2.⊙O 内 ⊙O 上 ⊙O 外 3.9π cm 2 4.内部 5.5cm 6.C 7.D 8.B 9.A 10.由已知得OA=8cm ,OB==,OD==10,= ,故OA<10,OB<10,OD=10,OC>10.从而点A , 点B 在⊙O 内;点C 在⊙O 外;点D 在⊙O 上 11.如图所示,所组成的图形是阴影部分(不包括阴影的边界) 12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A 点坐标为A(-1,10),B 点坐标为(9,0);连结PC 、PD ,则PC=PD=5,又PO ⊥CD ,PO=4,故,.从而C 点坐标为(0,3) ,D 点坐标为(0,-3) 14.存在,以O 为圆心,OA 为半径的圆 15.2≤AC≤8 聚沙成塔∵PO<2.5,故点P 在⊙O 内部;∵Q 点在以P 为圆心,1为半径的⊙P 上,∴1≤OQ≤3.当Q 在Q 1点或Q 2点处,OQ=2.5,此时Q 在⊙O 上;当点Q 在弧线Q1mQ2上(不包括端点Q 1,Q 2),则OQ>2.5,这时点Q 在⊙O 外;当点Q 在弧线Q 1nQ 2上(不包括端点Q 1,Q 2),则OQ<2.5,这时点Q 在⊙O 内.2 圆的对称性1.中心,过圆心的任一条直线,圆心 2.60° 3.2cm 4.5 5.3≤OP≤56.10 7.相等8 9.C 10.B 11.A 12.过O 作OM ⊥AB 于M ,则AM=BM .又AC=BD ,故AM-AC=BM-BD ,即CM=DM ,又OM ⊥CD , 故△OCD 是等腰三角形.即OC=OD .(还可连接OA 、OB .证明△AOC ≌△BOD) 13.过O 作OC ⊥AB 于C ,则BC=152cm .由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=92 .在Rt △OCM 中, OC 2=229175824⎛⎫-= ⎪⎝⎭.连接OA ,则10=,即工件的半径长为10cm 14.是菱形,理由如下:由 BC = AC ,得∠BOC=∠AOC .故OM ⊥AB ,从而AM=BM .在Rt △AOM 中,sin ∠AOM=AM OA =,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC ,故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC ,所以四边形OACB 是菱形. 15.PC=PD .连接OC 、OD ,则∵ DB = BC ,∴∠BOC=∠BOD ,又OP=OP ,∴△OPC ≌△OPD ,∴PC=PD.16.可求出长为6cm的弦的弦心距为4cm,长为8cm的弦的弦心距为3cm.若点O 在两平行弦之间,则它们的距离为4+3=7cm,若点O在两平行弦的外部,则它们的距离为4- 3=1cm,即这两条弦之间的距离为7cm或1cm.17.可求得OC=4cm,故点C在以O为圆心,4cm长为半径的圆上,即点C 经过的路线是O为圆心,4cm长为半径的圆.聚沙成塔作点B关于直线MN的对称点B′,则B′必在⊙O上,且 B N'= NB.由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90°.连接AB′交MN于点P′,则P′即为所求的点.此时AP+BP3 圆周角与圆心角1.120°2.3 1 3.160°4.44°5.50°67.A 8.C 9.B 10.C 11.B 12.C 13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°,∴AC2+CD2=AD2,即2AC2=36,AC2=18,15.连接BD,则∴AB 是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=.在Rt△PBD中,cos∠BPD=PD CDPB AB==34,设PD=3x,PB=4x,则BD=,∴tan∠BPD=BDPD==16.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,∴ BC= BD,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD;(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°17.聚沙成塔迅速回传乙,让乙射门较好,在不考虑其他因素的情况下,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A,从而B处对MN的张角较大,在B处射门射中的机会大些.4 确定圆的条件1.三角形内部,直角三角形,钝角三角形2.34.其外接圆,三角形三条边的垂直平分线,三角形三个顶点5.6.两7.C 8.B 9.A 10.C 11.B 12.C 13.略14.略15.(1)△FBC是等边三角形,由已知得:∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC,∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,∴△FBC是等边三角形;(2)AB=AC+FA.在AB上取一点G,使AG=AC,则由于∠BAC=60°,故△AGC是等边三角形,从而∠BGC=∠FAC=120°,又∠CBG=∠CFA,BC=FC,故△BCG≌△FCA,从而BG=FA,又AG=AC,∴AC+FA=AG+BG=AB 16.(1)在残圆上任取三点A、B 、C ; (2)分别作弦AB 、AC 的垂直平分线, 则这两垂直平分线的交点即是所求的圆心; (3)连接OA ,则OA 的长即是残圆的半径 17.存在.∵AB 不是直径(否则∠APB=90°,而由cos ∠APB=13知∠APB<90°,矛盾)∴取优弧AB 的中点为P 点,过P 作PD ⊥AB 于D ,则PD 是圆上所有的点中到AB 距离最大的点.∵AB 的长为定值,∴当P 为优弧AB 的中点时,△APB 的面积最大,连接PA 、PB , 则等腰三角形APB 即为所求.S △APB=12AB· 聚沙成塔 过O 作OE ⊥AB 于E ,连接OB ,则∠AOE=12∠AOB ,AE=12AB ,∴∠C=12∠AOB=∠AOE . 解方程x 2-7x+12=0可得DC=4,AD=3,故=,,可证Rt △ADC ∽Rt △AEO ,故AE AO AC=,又AC==5, AD=3,AE=,故AO=,从而S ⊙O=21254ππ⨯=⎝⎭. 5 直线与圆的位置关系1.相交 2.60 3.如OA ⊥PA ,OB ⊥PB ,AB ⊥OP 等 4.0≤d<4 5.65°6.146°,60°,86° 7.A 8.B 9.C 10.C 11.D 12.B13.(1)AD ⊥CD .理由:连接OC ,则OC ⊥CD .∵OA=OC ,∴∠OAC=∠OCA ,又∠OAC= ∠DAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴AD ⊥CD ;(2)连接BC ,则∠ACB=90°由(1)得∠ADC=∠ACB ,又∠DAC=∠CAB .∴△ACD ∽△ABC ,∴AC AD AB AC=,即AC 2=AD·AB=80,故 14.(1)相等.理由:连接OA ,则∠PAO=90°.∵OA=OB ,∴∠OAB=∠B=30°,∴∠AOP=60°,∠P=90°-60°=30°,∴∠P=∠B ,∴AB=AP ;(2)∵tan ∠APO=OA PA,∴OA=PA , tan ∠0301tan ==,∴BC=2OA=2,即半圆O 的直径为2 15.(1)平分.证明:连接OT ,∵PT 切⊙O 于T ,∴OT ⊥PT ,故∠OTA=90°, 从而∠OBT=∠OTB=90°-∠ATB=∠ABT .即BT 平分∠OBA ; (2)过O 作OM ⊥BC 于M ,则四边形OTAM 是矩形,故OM=AT=4,AM=OT=5.在Rt △OBM 中,OB=5,OM=4,故,从而AB=AM-BM=5-3=216.作出△ABC 的内切圆⊙O ,沿⊙O 的圆周剪出一个圆,其面积最大 17.由已知得:OA=OE ,∠OAC=∠OEC ,又OC 公共,故△OAC ≌OEC ,同理,△OBD ≌△OED ,由此可得∠AOC=∠EOC ,∠BOD=∠EOD ,从而∠COD=90°,∠AOC=∠BDO . 根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO ,∠ACO=∠ECO=∠DOE=∠DOB ,∠A=∠B=∠OEC=∠OED ;②边相等:AC=CE ,DE=DB ,OA=OB=OE ;③全等三角形:△OAC ≌△OEC ,△OBD ≌△OED ;④相似三角形:△AOC ∽△EOC ∽△EDO ∽△BDO ∽△ODC .聚沙成塔 (1)PC 与⊙D 相切,理由:令x=0,得y=-8,故P(0,-8);令y=0,得故0),故OP=8,CD=1,∴,又PC=,∴PC 2+CD 2=9+72=81=PD 2.从而∠PCD=90°,故PC 与⊙D 相切; (2)存在.点-12)或-4),使S △EOP =4S △CDO .设E 点坐标为(x ,y),过E 作EF ⊥y 轴于F ,则EF=│x│.∴S △POE =12PO·EF=4│x│.∵S △CDO =12CO·│x│=,,当x=- 时,y=-2×(-)-8=-4;当x= 时,.故E 点坐标为-4)或-12).6 圆与圆的位置关系1.2 14 2.外切 3.内切 4.45°或135° 5.1<r<8 6.外切或内切 7.A 8.B 9.C 10.D 11.C 12.A 13.C14.外切或内切,由│d -4│=3,得d=7或1,解方程得x 1=3,x 2=4,故当d=7时,x 1+ x 2=d ;当d=1时,x 2-x 1=d ,从而两圆外切或内切 15.过O 1作O 1E ⊥AD 于E ,过O 2作O 2F ⊥AD 于F ,过O 2作O 2G ⊥O 1E 于G ,则AE=DF=5cm ,O 1G=16-5-5=6cm ,O 2O 1=5+5=10cm ,故O 2,所以EF=8cm ,从而AD=5+5+8=18cm .16.如图所示.17.如:AC=BC ,O 1A 2+AF 2=O 1F 2,AC 2+CF 2=AF 2等 聚沙成塔 有无数种分法.如:过⊙O 2与⊙O 5的切点和点O 3画一条直线即满足要求.7 弧长及扇形的积1.240°3πcm 2.389mm 3.16π 4.50 5 6.2πcm 2 7.B 8.C 9.C 10.B 11.A 12.A 13.设其半径为R ,则120180R π⨯=,R =cm ,过圆心作弦的垂线,则可求弦长为9cm 14.由已知得,S 扇形DOC=2150500203603ππ⨯=,S 扇形AOB=2150125103603ππ⨯=,故绸布部分的面积为S 扇形DOC- S 扇形AOB=125π15.由已知得,2081809n ππ⨯=,得n=50,即∠AOC=50°.又AC 切⊙O 于点C ,故∠ACO=90 °,从而OA=812.446cos50cos50OC =≈︒︒,故AB=AO-OB=12.446-8≈4.45cm 16.设切点为C ,圆心为O ,连接OC ,则OC ⊥AB ,故AC=BC=15,连接OA ,则OA 2-OC 2=AC 2=152=225,故S 阴影=2222()225AO CO AO CO ππππ⨯-⨯=-=cm 2 17.如图所示 r=22C B A r=4C A r=42-4B r=2OB A聚沙成塔 (1)依次填2468,,,3333ππππ;(2)根据表可发现:23n l n π=⨯,考虑2264001000003n ππ⨯≥⨯⨯,得n≥1.92×109,∴n 至少应为1.92×109. 8 圆锥的侧面积1.6 2.10π 3.2000π 4.2cm 5.15π 6.18 7.D 8.D9.B 10.B 11.A 12.B 13.侧面展开图的弧长为2816ππ⨯=,设其圆心角为n°,则1516180n ππ⨯=,故n=192, 即这个圆锥的侧面展开图的圆心角是192° 14.可得△SAO ≌△SBO ,故∠ASO=∠BSO=60°,∠SBO=30°,由BO=27, tan ∠SBO=tan 30°=27SO SO BO =,得SO=27=≈15.6m ,即光源离地面的垂直高度约为15.6m 时才符合要求 15.过A 作AD ⊥BC ,则由∠C=45°,得AD=DC=12cn ,AB=2AD=24cm,BC= 12312+,以A 为圆心的扇形面积为21051242360ππ⨯=cm 2,以B 为圆心的扇形面积为22302448360cm ππ⨯=,以C 为圆心的扇形面积为2245(122)36360cm ππ⨯=, 故以B 为圆心取扇形作圆锥侧面时,圆锥的侧面积最大,设此时圆锥的底面半径为r ,则30224180r ππ=⨯, r=2cm ,直径为4cm 聚沙成塔 设圆的半径为r ,扇形的半径为R ,则1224R r ππ⨯⨯=⨯,故R=4r ,又R+r+22r a =,将R=4r 代入,可求得r=522a -≈0.22a . 正多边形与圆1.正方形 2.十八 提示:正多边形的中心角等于外角,外角和为360°,360÷20=18 3.36° 提示:可求出外角的度数4.正三角形 5.C 提示:其中正确的有②④⑤⑥⑦ 6.C 7.D 提示:按正多边形的定义 8.C 9.3 提示:利用直角三角形中,30°角所对直角边等于斜边的一半 10.100cm 2 11.6:2 提示:设此圆的半径为R ,则它的内接正方形的边长为2R ,它的外切正六边形的边长为23R ,内接正方形和外切正六边形的边长比为2R :23R=6:2 12.4πa 2 提示:如图所示,AB 为正n 边形的一边,正n 边形的中心为O ,AB •与小圆切于点C ,连接OA ,OC ,则OC ⊥AB ,12AC=12AB=a ,所以AC 2=14a 2=OA 2-OC 2,S 圆环=S 大圆-S 小圆=πOA 2-OC 2=π(OA 2-OC 2)=4πa 2 13.C 14.C 15.方法一:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法二:(1)用量角器画圆心角∠BOC=120°;(2)在⊙O 上用圆规截取;(3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形.方法三:(1)作直径AD ;(2)以O 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法四:(1)作直径AE ;(2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.AC AB =16.解:相同点:都有相等的边;都有相等的角,都有外接圆和内切圆等.不同点:边数不同;内角的度数不同;内角和不同;对角线条数不同等 17.解:方法一:如题图①中,连接OB ,OC .∵正三角形ABC 内接于⊙O ,∴∠OBM=∠OCN=30°,∠BOC=120°.又∠OCN=30°,∠BOC=120°,而BM=CN ,OB=OC ,∴△OBM ≌△OCN ,∴∠BOM=∠CON ,∴∠MON=∠BOC=120°.方法二:如题图①中,连接OA ,OB .∵正三角形ABC 内接于⊙O ,∴AB=BC ,∠OAM=∠OBN=30°,∠AOB=120°,∴∠AOM=∠BON .∴∠MON=∠AOB=120°;(2)90° 72°;(3)∠MON=360n︒ 单元综合评价(一)一、1~5 AABDB 6~10 DDABD二、11.8 12.π213.9cm 14.120° 15.13 16.18πcm 2 17.60° 18.180° 19.7或1 20.(1)2;(2)3n +1三、21.10cm ,6cm 22.432m 2 23.2π6R (提示:连接CO ,DO ,S 阴影=S 扇形COD ) 24.(1)A (4,0),33y x =+;(2)3>m 时相离,m =时相切,0m <<时相交 25.解:(1)42πr r +,82πr r +;(2)62πr r +,82πr r +,102πr r +,122πr r +;(3)162πr r +,图略单元综合评价(二)1.以点A 为圆心,2cm 长为半径的圆 2.点P 在⊙O 内 3.10 4.90°5.2 6. 120° 7.3 8.2cm 或8cm 9.(12+5π)cm 10.30π11.B 12.D 13.D 14.C 15.D 16.B 17.B 18.C19.C 20.C 21.如图,所有点组成的图形是如图所示的阴影部分. 22.(1)连接CD ,=5,由CD=CA ,得∠CDA=∠A ,故tan ∠CDA=tanA=43BC AC =;(2)过C 作CF ⊥AD 于F ,则AD=2AF ,由cosA=AC AF AB AC =,得AC 2=AB·AF .故32=5·AF ,AF=95,所以AD=185. 23.(1)相切.理由:连接OC ,OB ,则OC ⊥AB ,由已知得BC=12AB=4,OB=5,故=3,从而圆心O 到直线AB 的距离等于小圆的半径,故AB 与小圆相切;(2) 22222(53)16OB OC cm ππππ-=-=. 24.(1)连接AB ,AM ,则由∠AOB=90°,故AB 是直径,由∠BAM+∠OAM=∠BOM+∠OBM=180°-120°=60°,得∠BAO=60°,又AO=4,故cos ∠BAO=AO AB,AB=048cos60=,从而⊙C 的半径为4;(2)由(1)得,C作CE ⊥OA 于E ,CF ⊥OB 于F ,则EC=OF=12BO=12⨯=,CF=OE=12OA=2, 故C 点坐标为(-,2) 25.连接AC ,BC ,分别作AC ,BC 的垂直平分线,相交于点M ,则点M 即满足条件(图略) 26.(1)设扇形半径为Rcm ,则2120300360R ππ=,故R=30cm ,设扇形弧长为Lcm ,则113030022Rl l π=⨯=,故L=20π;(2)设圆锥的底面半径为rcm ,则220r ππ=,r=10cm cm 27.如:∠D=30°,DC 是⊙O 的切线,△CBD 是等腰三角形,△ACD 是等腰三角形,AC=CD ,BD=BC ,△DCB ∽△DAC ,DC 2=DB·DA ,,等 28.略.只要符合题意即可得分.第四章 统计与概率1 50年的变化(1)1.条形,折线,扇形 2.条形,0 3.折线,同一单位长度 4.不能5.(1)1:3;(2)从0开始 6.B 7.C 8.D 9.D 10.C 11.B12.解:(1)左图给人的感觉是小明通过努力,数学成绩提高迅速,进步很大;而右图给你的感觉则是小明的学习成绩比较稳定,进小不是很大;(2)如果小明想向他的父母说明他数学成绩的提高情况,那么他应选择左图,理由是:左图看上去折线上升速度转快,表明小明的成绩提高迅速 13.解:(1)A 村的苹果产量占本村两种水果总产量的35%,梨占65%;B 村的苹果产量在本村两种水果总产量中占80%,梨占20%。

最大利润问题

最大利润问题

(3)家佳源购进一批单价为20元的日用 品,如果以单价30元销售,那么半个月 内可以售出400件。根据销售经验,提 高单价会导致销售量的减少,即销售单 价每提高1元,销售量相应减少20件。 如何 提高售价,才能在半个月内获得最 大利润?最大利润是多少?
4、某产品进货单价为90元,按100元一个售出时, 能售500个,如果这种商品涨价1元,其销售额就 减少10个,为了获得最大利润,其单价应定为( ) A.130元; B.120元 C.110元; D.100元
时, y最大=k
1、某商店销售一种销售成本为40元的 水产品,若按50元/千克销售,一月可售出 500千克,销售价每涨价1元,月销售量就 减少10千克.销售单价定为多少时,获得 最大利润?最大利润是多少?
2、某商场销售某种品牌的纯牛奶,已知进价 为每箱40元,生产厂家要求每箱售价在40元 ~70元之间.市场调查发现:若每箱发50元销售, 平均每天可售出90箱价格每升高1元,平均每 天少销售3箱. 每箱定价多少元时,才能使平均 每天的利润最大?最大利润是多少?
5、某商场销售一种名牌衬衫,平均每 天可售出30件,每件盈利50元,为了扩 大销售,增加盈利,尽快减少库存,商 场决定采取适当的降价措施,经调查发 现,如果每件衬衫每降价1元,商场平 均每天可多售出2件。每件降价多少元, 获得最大利润?最大利润是多少?
何时获得最大利润
• 6、某化工材料经销公司购进了一种化工原料共 700千克,已知进价为30元/千克,物价部门规定其 销售价在30元~70元之间.市场调查发现:若单价定 为70元时,日均销售60千克.价格每降低1元,平均 每天多售出2千克.在销售过程中,每天还要支出其 它费用500元(天数不足一天时,按整天计算). • (1)求销售单价为x(元/千克)与日均获利y(元)之 间的函数关系式,并注明x的取值范围 • (2)何时获得的最大利润

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

初中数学课程标准实验教科书总目录(鲁教版)

初中数学课程标准实验教科书总目录(鲁教版)

初中数学课程标准实验教科书总目录(鲁教版)鲁教版初中数学教科书目录九年级下册:第五章视图1应用数学模型解决问题2解决开放型的实际问题2分情况讨论3将未知转化为已知4数与形相结合数学课程标准实验教科书总目录(鲁教版)1鲁教版初中数学教科书目录六年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.有理数的混合运算11.用计算器进行有理数的运算回顾与思考复习题第三章字母表示数1.用字母表示数2.代数式3.合并同类项4.去括号5.探索规律回顾与思考复习题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的表示与度量4.角的比较5.平行6.垂直回顾与思考复习题第五章一元一次方程1.等式与方程2.解一元一次方程3.一元一次方程的应用回顾与思考复习题第六章生活中的数据1.科学记数法2.扇形统计图3.统计图的选择回顾与思考复习题课题学习制作一个尽可能大的无盖长方体容器总复习2鲁教版初中数学教科书目录第七章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法回顾与思考复习题第八章平行线与相交线1.余角和补角2.探索直线平行的条件3.平行线的性质4.用尺规作线段和角回顾与思考复习题第九章可能性1.确定事件与不确定事件2.不确定事件的可能性3.游戏中的可能性回顾与思考复习题第十章数据的表示1.科学记数法2.近似数和有效数字3.数据的形象表示回顾与思考复习题课题学习制作“人口图”第十一章三角形1.认识三角形2.图形的全等3.利用全等图形设计图案4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复习题第十二章变量之间的关系1.用表格表示变量之间的关系2.用关系式表示变量之间关系3.用图象表示变量之间的关系回顾与思考复习题总复习3鲁教版初中数学教科书目录第一章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镶边与剪纸回顾与思考复习题第二章勾股定理1.探索勾股定理2.勾股数3.勾股定理的应用举例回顾与思考复习题课题学习利用拼图验证勾股定理第三章实数1.无理数2.平方根3.立方根4.方根的估算5.用计算器开方6.实数回顾与思考复习题第四章概率的初步认识1.可能性的大小2.认识概率3.概率的简单计算回顾与思考复习题第五章平面直角坐标系1.确定位置2.平面直角坐标系3.直角坐标系中的图形回顾与思考复习题第六章一次函数1.函数2.一次函数3.一次函数的图象4.一次函数图象的应用回顾与思考复习题第七章二元一次方程组1.二元一次方程组2.解二元一次方程组3.二元一次方程组的应用6.二元一次方程与一次函数回顾与思考4鲁教版初中数学教科书目录复习题总复习七年级下册第八章图形的平移与旋转1.平面图形的平移2.简单的平移作图3.平面图形的旋转4.简单的旋转作图5.平面图形的全等变换6.利用变换设计图案回顾与思考复习题第九章四边形性质探索1.平行四边形的性质2.平行四边形的判定3.菱形4.矩形、正方形5.梯形6.多边形的内角和与外角和7.平面图形的密铺8.中心对称图形回顾与思考复习题课题学习有趣的七巧板第十章数据的代表1.平均数2.中位数3、众数4.利用计算器求平均数回顾与思考复习题第十一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第十二章因式分解1.分解因式2.提公因式法3.运用公式法5鲁教版初中数学教科书目录回顾与思考复习题总复习八年级上册第一章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第二章相似图形1.线段的比2.比例线段3.形状相同的图形4.相似三角形5.探索三角形相似的条件6.相似三角形的性质7.测量旗杆的高度8.相似多边形9.位似图形回顾与思考复习题课题学习制作视力表第三章证明(一)1.定义与命题2.证明的必要性3.公理与定理4.平行线的判定定理5.平行线的性质定理6.三角形内角和定理回顾与思考复习题第四章数据的收集与处理1.普查和抽样调查2.数据的收集3.数据的整理4.频数与频率5.数据的波动回顾与思考复习题课题学习吸烟的危害第五章二次根式1.二次根式2.二次根式的性质6鲁教版初中数学教科书目录3.二次根式的加减法4.二次根式的乘除法回顾与思考复习题总复习八年级下册第六章证明(二)1、全等三角形1.2、2、等腰三角形3、直角三角形4.线段的垂直平分线5.角平分线回顾与思考复习题第七章一元二次方程1.一元二次方程2.配方法解一元二次方程3.公式法解一元二次方程4.分解因式法解一元二次方程5.一元二次方程的应用回顾与思考复习题课题学习五角星与黄金分割第八章证明(三)1.平行四边形2、特殊平行四边形3、等腰梯形4、中位线定理回顾与思考复习题第九章反比例函数1、反比例函数2、反比例函数的图象和性质3、反比例函数的应用回顾与思考复习题第十章频率与概率7鲁教版初中数学教科书目录1.用频率估计概率2.用列举法计算概率3.生活中的概率问题回顾与思考复习题总复习九年级上册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30º.45º.60º角三角函数值3.三角函数的有关计算4.船有触礁的危险吗5.测量物体的高度回顾与思考复习题课题学习猜想、证明与拓广第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数ya某2b某c的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题第四章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系8鲁教版初中数学教科书目录4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题总复习九年级下册第五章投影与视图1、视点、视线与盲区2、灯光与影子3、太阳光与影子4、三视图回顾与思考复习题第六章数学应用举例1、应用数学模型解决问题2、应用统计知识作出评价3、解决开放性的实际问题4、数学在经济生活中的应用回顾与思考复习题课题学习磁带问题第七章解决问题的策略1、利用特殊情形探索规律2、分情况讨论3、将未知转化为已知4、数与形相结合5、利用多种策落解决问题回顾与思考复习题课题学习猜想、证明与拓广9鲁教版初中数学教科书目录总复习10。

利润最大化目标的具体内容

利润最大化目标的具体内容

利润最大化目标的具体内容
利润最大化目标是企业管理中一个非常重要的概念,它的含义是指企业通过优化生产、销售和运营策略,实现企业在一定时期内收益的最大化。

具体来说,这个目标通常包含以下几个方面的内容:
1. 生产效率最大化:企业通过改进生产过程、提高生产效率、降低生产成本等手段,使企业在生产过程中创造最大的价值。

2. 销售收入最大化:企业通过合理的定价、促销、拓展销售渠道等手段,增加产品销售量,提高销售收入,实现利润最大化。

3. 运营成本最小化:企业通过优化采购、降低库存、控制费用等手段,降低运营成本,提高盈利能力。

4. 风险管理最小化:企业通过建立健全的风险管理体系、加强内部控制等手段,降低企业在经营过程中面临的各种风险,实现利润最大化。

5. 品牌价值最大化:企业通过提升产品质量、加强品牌宣传等手段,提高品牌知名度和美誉度,增加品牌价值,实现利润最大化。

总的来说,利润最大化目标是一个综合性的目标,它需要企业在多个方面进行优化和改进,以达到实现最大利润的目的。

同时,企业也需要根据市场环境、自身状况等因素制定具体的经营策略,以实现利润最大化目标。

第二章 二次函数

第二章  二次函数

果园共有(100+x)棵树,平均每棵树结 (600-5x)个橙子,因此果园橙子的总产量
Y=(100+x)(600-5x)=-5x² +100x+60000
在上述问题中,种多少棵橙子树,可以使 果园橙子的总产量最多?
x/ 棵 X/ 棵 Y/ 个 Y/ 个
11 2 6 6 0 0 0 1 9 8 5 0 4 4 23 3 5 6 5 7 6 8 79 810 1 1 121 9 11 6 6 6 6 6 6 6 6 0 162 6 0 2 5 5 0 3 2 0 0 3 7 5 0 4 2 0 0 4 5 5 0 4 8 0 0 4 9 5 0 5 0 0 0 4 9 5 0 4 8 0 13 1 6 3 0 4 5 5
• 例2.(08武汉23)(本题10分)某商品 的进价为每件30元,现在的售价为每件4 40元,每星期可卖出150件.市场调查反映: 如果每件的售价每涨1元(售价每件不能高 于45元),那么每星期少卖10件.设每件 涨价x元(x为非负整数),每星期的销量 为y件.(1)求y与x的函数关系式及自变量 x的取值范围;(2)如何定价才能使每星 期的利润最大且每星期销量较大?每星期 的最大利润是多少?
七、教法学法
• 教法:对于函数关系式的列法是重点也是难点, 这要求学生尽量的采用小组合作形式,教师要适 当的参与学生的交流,发现问题,及时的处理问 题,将学习中的问题消灭在萌芽状态,在这部分 内容上,学生要高度的重视,因为这是中考的一 个热点。 • 学法:将实际问题转化为二次函数,在小组中充 分发表自己的见解,敢于说出困惑,请求帮助。 • 学习方式:小组合作交流探究的学习方式。
=-200x2+3700x-8000
( x -2.5 )[500+200(13.5- x )] (4)获得的总利润y=________________________

高等数学 线性代数 习题答案第四章

高等数学 线性代数 习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。

北师大版初中数学目录

北师大版初中数学目录

七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复习题第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用回顾与思考复习题第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律回顾与思考复习题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计回顾与思考复习题第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄回顾与思考复习题第六章生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择回顾与思考复习题第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大回顾与思考复习题课题学习制成一个尽可能大的无盖长方体总复习第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整流器式的除法回顾与思考复习题第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角回顾与思考复习题第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图回顾与思考复习题课题学习制作“人口图”第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率回顾与思考复习题第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复习题第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化回顾与思考复习题第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸回顾与思考复习题总复习八年级上册第一章勾股定理1.探索勾股定理2.能得到直角三角形吗3.蚂蚁怎样走最近回顾与思考复习题课题学习拼图与勾股定理第二章实数1.数怎么又不够用了2.平方根3.立方根4.公园有多宽5.用计算器开方6.实数回顾与思考复习题第三章图形的平移与旋转1.生活中的平移2.简单的平移作图3.生活中的旋转4.简单的旋转作图5.它们是怎样变过来的6.简单的图案设计回顾与思考复习题第四章四边形性质探索1.平行四边形的性质2.平行四边形的判别3.菱形4.矩形、正方形5.梯形6.探索多边形的内角和与外角和7.平面图形的密铺8.中心对称图形回顾与思考复习题第五章位置的确定1.确定位置2.平面直角坐标系3.变化的鱼回顾与思考复习题第六章一次函数1.函数2.一次函数3.一次函数的图象4.确定一次函数表达式5.一次函数图象的应用回顾与思考复习题第七章二元一次方程组1.谁的包裹多2.解二元一次方程组3.鸡兔同笼4.增收节支5.里程碑上的数6.二元一次方程与一次函数回顾与思考复习题第八章数据的代表1.平均数2.中位数与众数3.利用计算器求平均数回顾与思考复习题总复习第一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第二章相似图形1.线段的比2.黄金分割3.形状相同的图形4.相似多边形5.相似三角形6.探索三角形相似的条件7.测量旗杆的高度8.相似多边形的周长比和面积比9.图形的放大与缩小回顾与思考复习题课题学习制作视力表第三章分解因式1.分解因式2.提公因式法3.运用公式法回顾与思考复习题第四章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第五章数据的收集与处理1.每周干家务活的时间2.数据的收集3.频数与频率4.数据的波动回顾与思考复习题课题学习吸烟的危害第六章证明(一)1.你能肯定吗2.定义与命题3.为什么它们平行4.如果两条直线平行5.三角形内角和定理的证明6.关注三角形的外角回顾与思考复习题总复习九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是1.618 回顾与思考复习题第三章证明(三)1.平行四边形2.特殊平行四边形回顾与思考复习题第四章视图与投影1.视图2.太阳光与影子3.灯光与影子回顾与思考复习题第五章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比例函数的应用回顾与思考复习题课题学习猜想、证明与拓广第六章频率与概率1.频率与概率2.投针实验3.池塘里有多少条鱼回顾与思考复习题总复习(培训用书)第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30o,45o,60o角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计遮阳棚第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题课题学习媒体中的数学总复习。

初中数学各个版本教材目录

初中数学各个版本教材目录

人教版初中数学目录:七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程第四章图形认识初步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状.七年级下册第五章相交线与平行线5.1 相交线5.2 平行及其判定5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解.8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法举例第九章实际问题与一元一次不等式9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上册第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第13章实数13.1 平方根13.2 立六根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等.14.4 课题学习选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级下册第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习体质健康测试中的数据分析九年级上册第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第22章一元二次方程22.1 一元二次方程22.2 降次—— 一元二次方程的解.22.3 再探实际问题与一元二次方程第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第24章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第25章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习键盘上字母的排列规律九年级下册第26章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型北京课改版初中数学目录:七年级上册第一章走进数学世界1.1 生活中的图形1.2 我们周围的“数”1.3 计算工具的发展1.4 科学计算器的使用第一章复习第二章对数的认识的发展2.1 负数的引入2.2 用数轴上的点表示有理数2.3 相反数和绝对值2.4 有理数的加法2.5 有理数的减法2.6 有理数加减法的混合运算2.7 有理数的乘法2.8 有理数的除法2.9 有理数的乘方2.10 有理数的混合运算2.11 有效数字和科学记数法2.12 用计算器做有理数的混合运算第二章复习第三章一元一次方程3.1 字母表示数3.2 同类项与合并同类项3.3 等式与方程3.4 等式的基本性质3.5 一元一次方程3.6 列方程解应用问题第三章复习第四章简单的几何图形4.1 平面图形与立体图形4.2 某些立体图形的展开图4.3 从不同方向观察立体图形4.4 点、线、面、体4.5 直线4.6 射线4.7 线段4.8 角及其表示4.9 角的分类4.10 角的度量4.11 用科学计算器进行角的换算4.12 角平分线4.13 两条直线的位置关系4.14 相交线与平行线4.15 用电脑绘图第四章复习七年级下册第五章一元一次不等式和一元一次不不等式不等式的基本性质不等式的解集一元一次不等式及其解法一元一次不等式组及其解法单元综合第六章二元一次方程组二元一次方程和它的解二元一次方程组和它的解用代入消元法解二元一次方程组用加减消元法解二元一次方程组二元一次方程组的应用单元综合第七章整式的运算整式的加减法幂的运算整式的乘法乘法公式整式的除法单元综合第八章观察、猜想与证明观察实验归纳类比猜想证明几种简单几何图形及其推理单元综合第九章因式分解因式分解提取公因式法运用公式法单元综合八年级上册第十章数据的收集与表示总体与样本数据的收集与整理数据的表示用电脑绘制统计图平均数用科学计算器求平均数众数中位数单元综合第十一章分式11.1 分式11.2 分式的基本性质11.3 分式的乘除法11.4 分式的加减法11.5 可化为一元一次方程的分式方.第十二章实数和二次根式12.1 平方根12.2 立方根12.3 用科学计算器开方12.4 无理数与实数12.5 二次根式及其性质12.6 二次根式的乘除法12.7 二次根式的加减法第十二章复习第十三章三角形13.1 三角形13.2 三角形的性质13.3 三角形中的主要线段13.4 全等三角形13.5 全等三角形的判定13.6 等腰三角形13.7 直角三角形13.8 基本作图13.9 逆命题、逆定理13.10 轴对称和轴对称图形13.11 勾股定理13.12 勾股定理的逆定理第十三章复习第十四章事件与可能性14.1 确定事件与不确定事件14.2 事件发生的可能性14.3 求简单事件发生的可能性第十四章复习八年级下册第十五章一次函数,函数函数的表示法函数图象的画法一次函数和它的解析式15.5 一次函数的图象一次函数的性质一次函数的应用本章综合第十六章四边形,多边形平行四边形和特殊的平行四边.平行四边形的性质与判定特殊的平行四边形的性质与判.三角形中位线定理中心对称图形梯形等腰梯形与直角梯形本章综合第十七章一元二次方程,一元二次方程一元二次方程的解法列方程解应用问题本章综合第十八章方差与频数分布,极差、方差与标准差用计算器计算标准差和方差频数分布表与频数分布图本章综合九年级上册第十九章相似形,比例线段黄金分割平行线分三角形两边成比例相似多边形相似三角形的判定相似三角形的性质应用举例本章综合第二十章二次函数和反比例函数,二次函数二次函数的图象二次函数解析式确实定二次函数的性质二次函数的一些应用反比例函数反比例函数的图象、性质和应.本章综合第二十一章解直角三角形,锐角三角函数锐角的三角函数值用计算器求锐角三角函数值解直角三角形应用举例本章综合第二十二章圆〔上〕,圆的有关概念过三点的圆圆的对称性圆周角本章综合第二十三章概率的求法与应用,求概率的方法概率的简单应用本章综合九年级下册第二十四章圆〔下〕,直线和圆的位置关系圆的切线圆和圆的位置关系正多边形的有关计算本章综合第二十五章图形的变换,平移变换旋转变换轴对称变换位似变换本章综合第二十六章投影、视图与展开图,中心投影与平行投影简单几何体的三视图简单几何体的平面展开图本章综合第二十七章探索数学问题的一些方法.探索数学问题的一些方法探索数学问题举例本章综合第二十八章数学应用的一般思路,数学应用的一般思路数学应用举例本章综合北师大版初中数学目录:七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄第六章生活中的数据1.认识100万2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸八年级上册第一章勾股定理1.探索勾股定理2.能得到直角三角形吗3.蚂蚁怎样走最近第二章实数1.数怎么又不够用了2.平方根3.立方根4.公园有多宽5.用计算器开方6.实数第三章图形的平移与旋转1.生活中的平移2.简单的平移作图3.生活中的旋转4.简单的旋转作图5.它们是怎样变过来的6.简单的图案设计第四章四边形性质探索1.平行四边形的性质2.平行四边形的判别3.菱形4.矩形、正方形5.梯形6.探索多边形的内角和与外角和7.平面图形的密铺8.中心对称图形第五章位置确实定1.确定位置2.平面直角坐标系3.变化的鱼第六章一次函数1.函数2.一次函数3.一次函数的图象4.确定一次函数表达式5.一次函数图象的应用第七章二元一次方程组1.谁的包裹多2.解二元一次方程组3.鸡兔同笼4.增收节支5.里程碑上的数6.二元一次方程与一次函数第八章数据的代表1.平均数2.中位数与众数3.利用计算器求平均数八年级下册第一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组第二章分解因式1.分解因式2.提公因式法3.运用公式法第三章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程第四章相似图形1.线段的比2.黄金分割3.形状相同的图形4.相似多边形5.相似三角形6.探索三角形相似的条件7.测量旗杆的高度8.相似多边形的性质9.图形的放大与缩小第五章数据的收集与处理1.每周干家务活的时间2.数据的收集3.频数与频率4.数据的波动第六章证明(一)1.你能肯定吗2.定义与命题3.为什么它们平行4.如果两条直线平行5.三角形内角和定理的证明6.关注三角形的外角九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是第三章证明(三)1.平行四边形2.特殊平行四边形第四章视图与投影1.视图2.太阳光与影子3.灯光与影子第五章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比例函数的应用第六章频率与概率1.频率与概率2.投针实验3.生日相同的概率4.池塘里有多少条鱼九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30º,45º,60º角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数y=ax +bx+c 的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积第四章统计与概率年的变化2.哪种方式更合算3.游戏公平吗浙教版初中数学目录:七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 有理数1.3 数轴1.4 绝对值1.5 有理数大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 立方根3.4 用计算器进行数的开方3.5 实数的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 解一元一次方程的方法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据和图表6.1 数据的收集和整理6.2 统计表6.3 条形统计图和折线形统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段射线和直线7.3 线段的长短比较7.4 角和角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步认识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高线1.4 全等三角形1.5 三角全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4 乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式6.3 用乘法公式分解因式6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角内错角同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理直角三角形的全等判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的外表展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据的分析初步4.1 抽样4.2 平均数中位数和众数4.4 方差和标准差4.5 统计量的选择和应用第5章一元一次不等式5.1 认识一元一次不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量和变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4 梯形九年级上册第一章反比例函数反比例函数反比例函数的图象和性质反比例函数的应用第二章二次函数2.1 二次函数2.2 二次函数的图象2.3 二次函数的性质2.4 二次函数的应用第三章圆的基本性质3.1 圆3.2 圆的轴对称3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第四章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及应用4.5 相似多边形4.6 图形的位似九年级下册第一章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形第二章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第三章直线与圆、圆与圆的基本性质3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第四章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图湘教版初中数学目录:七年级上册第一章有理数1.1具有相反意义的量1.2 数轴,相反数与绝对值1.3有理数大小的比较1.4有理数的加法1.5 有理数的减法1.6有理数的乘法1.7有理数的除法1.8有理数的乘方1.9有理数的混合运算1.10用计算器计算第二章代数式2.1用字母表示数2.2列代数式2.3代数式的值2.4一类代数式的加法第三章图形欣赏人与操作3.1图形欣赏3.2平面图形与空间图形3.3观察物体3.4图形操作3.5视图第四章一元一次方程模型与算法4.1 一元一次方程模型4.2 解一元一次方程的算法4.3 一元一次方程的应用第五章一元一次不等式5.1 不等式的基本性质5.2 一元一次不等式的解法5.3 一元一次不等式的应用第六章数据的收集与描述6.1 数据的收集6.2 统计图6.3 平均数、中位数和众数七年级下册第一章一元一次不等式组1.1 一元一次不等式组1.2 一元一次不等式组的解法1.3 一元一次不等式组的应用第二章二元一次方程组2.1 二元一次方程组2.2 二元一次方程组的解法2.3 二元一次方程组的应用第三章平面上直线的位置关系和度量3.1 线段、直线、射线3.2 角3.3 平面直线的位置关系3.4 图形的平移3.5 平行线的性质与判定3.6 垂线的性质与判定第四章多项式4.1 多项式4.2 多项式的加减4.3 多项式的乘法4.4 乘法公式第五章轴对称图形5.1 轴反射与轴对称图形5.2 线段的垂直平分线5.3 三角形5.4 三角形的内角和5.5 角平分线的性质5.6 等腰三角形5.7 等边三角形第六章数据的分析与比较6.1 加权平均数6.2 极差、方差6.3 两组数据的比较八年级上册第一章实数1.1 平方根1.2 立方根1.3 实数1.4 平面直角坐标系第二章一次函数2.1 函数和它的表示法2.2 一次函数和它的图象3.3 建立一次函数模型第三章全等三角形3.1 旋转3.2 图案设计3.3 全等三角形及其性质3.4 全等三角形的判定定理3.5 直角三角形3.6 勾股定理3.7 作三角形第四章频数与频率4.1 频数与频率4.2 数据的分布八年级下册第一章因式分解1.1 多项式的因式分解1.2 提公因式法1.3 公式法第二章分式2.1 分式和它的基本性质2.2 分式的乘除法2.3 整数指数幂2.4 分式的加减法2.5 分式方程第三章四边形3.1 平行四边形与中心对称图形3.2 菱形3.3 矩形3.4 正方形3.5 梯形3.6 多边形的内角和与外角和第四章二次根式4.1 二次根式和它的化简4.2 二次根式的乘除法4.3 二次根式的加、减法第五章概率的概念5.1 概率的概念5.2 概率的含义九年级上册第一章一元二次方程1.1 建立一元二次方程模型1.2 一元二次方程的算法1.3 一元二次方程的应用第二章定义命题公理与证明2.1 定义2.2 命题2.3 公理与定理2.4 证明第三章相似形3.1 相似的图形3.2 比与比例3.3 相似三角形的性质和判定3.4 相似多边形及性质3.5 图形的放大与缩小、位似变换第四章解直角三角形4.1 正弦和余弦4.2 正切4.3 直角三角形及其应用第五章概率的计算5.1 用频率估计概率5.2 用列举法计算概率九年级下册第一章反比例函数1.1 建立反比例函数模型1.2 反比例函数的图像与性质1.3 实际生活中的反比例函数第二章二次函数2.1 建立二次函数模型2.2 二次函数的图像与性质2.3 二次函数的应用第三章圆3.1 圆3.2 点、直线与圆的位置关系,圆3.3 圆与圆的位置关系3.4 弧长和扇形的面积,圆锥的侧面积3.5 平行投影和中心投影第四章统计估计4.1 总体与样本4.2 用样本估计总体华师大版初中数学目录:七年级上册第一章走进数学世界1.1 与数学交朋友1.2 让我们来做数学第二章有理数2.1 正数和负数2.2 数轴2.3 相反数2.4 绝对值2.5 有理数的大小比较2.6 有理数的加法2.7 有理数的减法2.8 有理数加减混合运算2.9 有理数的乘法2.10 有理数的除法2.11 有理数的乘方2.12 科学记数法2.13 有理数的混合运算2.14 近似数和有效数字2.15 用计算器进行数的简单运算第三章整式的加减3.1 列代数式3.2 代数式的值3.3 整式3.4 整式的加减第四章图形的初步认识4.1 生活中的立体图形4.2 画立体图形4.3 立体图形的展开图4.4 平面图形4.5 最基本的图形——点和线4.6 角4.7 相交线4.8 平行线第五章数据的收集与表示5.1 数据的收集5.2 数据的表示七年级下册第六章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程6.3 实践与探索第七章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法7.3 实践与探索第八章一元一次不等式8.1 认识不等式8.2 解一元一次不等式8.3 一元一次不等式组第九章多边形9.1 三角形9.2 多边形的内角和与外角和9.3 用正多边形拼地板第十章轴对称10.1 生活中的轴对称10.2 轴对称的认识10.3 等腰三角形第十一章体验不确定现象11.1 可能还是确定11.2 时机的均等与不等11.3 在反复实验中观察不确定现象八年级上册第12章数的开方12.1 平方根与立方根12.2 实数与数轴第13章整式的乘除13.1 幂的运算13.2 整式的乘法13.3 乘法公式13.4 整式的除法13.5 因式分解第14章勾股定理14.1 勾股定理14.2 勾股定理的应用第15章平移与旋转15.1 平移15.2 旋转15.3 中心对称15.4 图形的全等第16章平行四边形的认识16.1 平行四边形的性质16.2 矩形、菱形与正方形的性质16.3 梯形的性质八年级下册第17章分式17.1 分式及其基本性质17.2 分式的运算17.3 可化为一元一次方程的分式方程17.4 零指数幂与负整指数幂第18章函数及其图像18.1 变量与函数18.2 函数的图象18.3 一次函数18.4 反比例函数18.5 实践与探索第19章全等三角形19.1 命题与定理19.2 三角形全等的判定19.3 尺规作图19.4 逆命题与逆定理课题学习图形中的趣题第20章平行四边形的判定20.1 平行四边形的判定20.2 矩形的判定20.3 菱形的判定20.4 正方形的判定20.5 等腰梯形的判定第21章数据的整理与初步处理21.1 算术平均数与加权平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级 数学
第二章 二次函数
2.6
何时获得最大利润
授课人: 王秀莲
义安一中
九年级 数学
第二章 二次函数
2.6 何时获得最大利润 某大型商场的杨总到 T恤衫部 去视察,了解的情况如下:已知 成批购进时单价是20元.根据市 场调查,销售量与销售单价满足 如下关系:在一段时间内,单价 是35元时,销售量是600件,而单 价每降低1元,就可以多销售200 件.于是杨总给该部门王经理下 达一个任务,马上制定出获利最 多的销售方案,这可把王经理给 难住了?你能帮他解决这个问题 吗?
60500 60400 60300 60200
60100
60000
O
5
x1
10
x2
15
20
x/棵
九年级 数学
第二章 二次函数
感悟和反思 通过这节课的学习你有哪些 收获?
九年级 数学
第二章 二次函数
作业
1.单价是20元.根据 市场调查,销售量与销售单价满足如下关系:在一 段时间内,单价是35元时,销售量是600件,而单 价每降低1元,就可以多销售200件,问销售单价是 多少时获利最多 ?
• • • • •
如果设销售单价为x元,(20≤x≤35的整数) 35- x 每件降价____________ 元 600+200( 35- x ) 销售量可以表示_________________件 x -20 每件利润__________元 ( x -20 )[600+200( 35- x ) ] 获得的总利润y =_________________________
九年级 数学
第二章 二次函数
y (600 - 5 x)(100 x) -5 x 100 x 60000
2
(1)利用函数图象描述橙子的总产量与增 种橙子树的棵数之间的关系。
九年级 数学
第二章 二次函数
y/个
60600
增种多少 棵橙子,可 以使橙子 的总产量 在60400 个以上?
3、若杨经理说马上就要换季啦,为减少 库存,又要保证每天利润达到15400元, 那么王经理 该如何制定 价格?
九年级 数学
第二章 二次函数
何时橙子总产量最大
还记得本章一开始涉及的“种多少棵橙子树” 的问题吗?
九年级 数学
第二章 二次函数
某果园有100棵橙子树,每一棵树平均 结600个橙子.现准备多种一些橙子树以 提高产量,但是如果多种树,那么树之间 的距离和每一棵树所接受的阳光就会减 少.根据经验估计,每多种一棵树,平均每 棵树就会少结5个橙子.问增种多少棵橙 子树,总产量最高?
=-200x2+11600x-152000
列表
x y
y/元
… 27
28
29
30
31

15400 16000 16200 16000 15400
16400 16200
16000 15800 15600
15400
O
27
28
29
30
31
x /元
九年级 数学
第二章 二次函数
2.6 何时获得最大利润
2、观察图像:若杨经理要求只要每天的纯 利润不低于15400元即可,那么王经理可以 制定几种价格?
相关文档
最新文档