观察三角波和反三角波序列的时域和幅频特性-用N=8点FFT

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

《数字信号处理》期末试题库有答案

《数字信号处理》期末试题库有答案

1、一线性时不变系统,输入为x (n)时,输出为y (n);则输入为2x (n)时,输出为2y(n) ___________________ ;输入为x (n-3)时,输出为y(n-3)____________ 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fS与信号最咼频率f max关系为:fS> = 2f max 。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X( e jw), 它的N点离散傅立叶变换X(K是关于X(e jw)的 ________ 点等间隔」样_____ 。

4、_____________________________________________________ 有限长序列x(n)的8点DFT为X (K),则X (K) = _________________ 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的_______________ 现象。

6、若数字滤波器的单位脉冲响应h (n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 ___________ 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

&无限长单位冲激响应(IIR )滤波器的结构上有反馈环路,因此是卫归型结构。

9、若正弦序列x(n)二sin(30n n /120)是周期的,则周期是N二_8________________________________________________________ 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11、DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12. 对长度为N 的序列x(n)圆周移位m 位得到的序列用xm(n)表示, 其数学表达式为xm(n)二x((n-m))NRN(n)。

三角波调频连续波 时间带宽积

三角波调频连续波 时间带宽积

三角波调频连续波时间带宽积1.引言1.1 概述三角波调频连续波以其独特的波形和广泛的应用领域而备受研究者的关注。

它是一种具有连续可变频率的信号,其频率随时间呈线性变化,又被称为线性调频信号。

时间带宽积则是衡量信号在时间和频率两个维度上的特性之一。

三角波调频连续波在通信领域、雷达系统和医学成像等方面具有广泛的应用。

具体来说,它可以用于无线通信系统中的频率调制和解调,提高信号传输的可靠性和抗干扰能力。

在雷达系统中,使用三角波调频连续波可以实现距离和速度的测量,用于目标探测和跟踪。

同时,在医学成像中,三角波调频连续波也常被用于超声波成像系统中的图像重建和信号处理等方面。

时间带宽积是用来描述信号在时间和频率上同时存在的能力。

它可以通过信号的频带宽度与信号的持续时间的乘积来计算得出。

时间带宽积越大,表示信号在时间和频率两个维度上的特性越好,具有更好的分辨能力和更低的互相干扰。

本文将着重介绍三角波调频连续波的原理和特点,并深入探讨时间带宽积对信号性能的影响。

同时,还将分析三角波调频连续波在不同应用领域中的应用案例,并展望未来该领域的发展方向。

通过对三角波调频连续波和时间带宽积的研究,我们可以更好地理解和应用这一信号形式,为相关领域的技术改进和创新提供有益的参考。

同时,对于工程实践和学术研究而言,掌握三角波调频连续波和时间带宽积的理论与应用也具有重要意义。

1.2文章结构1.2 文章结构在本文中,我们将按照以下结构展开对三角波调频连续波时间带宽积的深入研究。

首先,我们将在引言部分(章节1)提供文章的背景和整体框架。

在这一部分,我们将概述三角波调频连续波和时间带宽积的基本概念,介绍文章的目的和意义。

接下来,正文部分(章节2)将详细探讨三角波调频连续波和时间带宽积的相关内容。

在2.1节中,我们将重点介绍三角波调频连续波的定义、特性和应用领域。

我们将讨论它的转调原理、调制过程和波形特征等关键要素。

在2.2节中,我们将深入探讨时间带宽积的概念和意义。

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。

2. 掌握典型离散信号的Matlab 产生和显示。

二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。

数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。

三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb n x n K e += ,并给出该复指数序列的实部、虚部、幅值和相位的图形。

(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。

2. 序列信号的实现方法。

3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。

实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。

2. 用MATLAB 实现离散信号的各种运算。

应用快速傅里叶变换对信号进行频谱分析实验报告

应用快速傅里叶变换对信号进行频谱分析实验报告

应用快速傅里叶变换对信号进行频谱分析2.1 实验目的1、通过本实验,进一步加深对DFT 算法原理和基本性质的理解,熟悉FFT 算法原理和FFT 子程序应用2、掌握应用FFT 对信号进行频谱分析的方法。

3、通过本次实验进一步掌握频域采样定理。

4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正。

确应用FFT 。

2.2实验原理与方法对于有限长序列我们可以使用离散傅里叶变换(DFT )。

这一变换不但可以好地反映序列的频域特性,而且易于用快速傅里叶变换在计算机上实现当序列x(n)的长度为N 时,它的离散傅里叶变换为:10()[()]()N knN n X k DFT x n x n W -===∑其中(2/)j N N W e π-=,它的反变换定义为:11()[()]()N kn Nk x n IDFT X k X k WN--===∑比较Z 变换公式,令k N z W -=则10()|()[()]k NN nkN z W n X z x n W DFT x n --====∑因此有()()|k Nz W X k X z -==。

所以,X(k)是x(n)的Z 变换在单位圆上的等距采样,或者说是序列傅里叶变换的等距采样。

DFT 是对序列傅里叶变换的等距采样,因此可以用于对序列的频谱分析。

在运用DFT 进行频谱分析的过程中有可能产生三种误差: 1、混叠现象序列的频谱是原模拟信号频谱的周期延拓,周期为2/T π。

因此,当采样频率小于两倍信号的最大频率时,经过采样就会发生频谱混叠,使采样后的信号序列频谱不能真实反映原信号的频谱。

2、泄漏现象实际中信号序列往往很长,常用截短的序列来近似它们,这样可以用较短的DFT 对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形函数。

这样得到的频谱会将原频谱扩展开。

3、栅栏效应DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续函数。

三角波谐波幅度

三角波谐波幅度

三角波谐波幅度三角波是一种经典的波形,它是一种周期性的周期函数,具有对称性和尖锐的波形。

我们通常用几个参数来描述三角波,包括频率、振幅、偏移量等等。

谐波是指正弦波的频率是振幅的整数倍,而谐波幅度则是谐波的振幅大小。

那么,三角波和谐波幅度的关系是什么呢?下面我们就按顺序来详细解释一下。

1. 什么是三角波?三角波是一种简单的周期函数,其波形呈现出三角形形状。

其波形正、负极值交替出现,幅度逐渐变化,最大值和最小值之间存在一个波峰。

三角波的周期length,以及振幅amplitude都会对其波形进行改变。

通常,我们使用以下公式来描述三角波的形状:f(x)=2 * amplitude / length * abs(x - length / 2)其中,abs表示取绝对值,x表示在一个周期中的位置。

2. 什么是谐波?谐波是音频、光学、电磁学等物理领域经常使用的一个概念。

在这里,我们专门介绍电信号的谐波概念。

电信号可以理解为由基波和其它谐波组成的多频信号。

对于正弦波,其基波的频率为f0,其他谐波的频率是基波的整数倍(n f0)。

具体而言,谐波是指相对于基波的整数倍的频率,其振幅大小称为谐波幅度。

3. 三角波谐波幅度分析对于正弦波,谐波的振幅为基波振幅的1/n。

但是,三角波并不像正弦波那样规则。

因此,谐波的计算需要更加复杂。

3.1. 分析三角波的谐波频率三角波是由奇数次谐波和基波组成的,其谐波频率如下所示:f(n)=f0*(2n - 1)其中,n表示谐波的顺序,f0表示基波频率,2n-1表示奇数。

因此,三角波中谐波出现的频率是将基波频率的一半加上整数倍的基波频率所得到的。

3.2. 确定三角波谐波幅度为了确定三角波的谐波幅度,我们需要对谐波分别进行计算。

对于三角波的第n个谐波,其幅度为以下公式计算得到:amplitude(n) = 8 * amplitude * sin(pi * n / 2) / (pi * pi * n * n)其中,pi表示圆周率,n表示谐波的顺序,amplitude表示三角波的振幅。

数字信号处理实验指导吴镇扬

数字信号处理实验指导吴镇扬

实验一快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。

2.熟悉应用FFT对典型信号进行频谱分析的方法。

3. 了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。

4.熟悉应用FFT实现两个序列的线性卷积的方法。

5.初步了解用周期图法作随机信号谱分析的方法。

返回页首二、实验原理与方法在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)、在运用DFT进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

数字信号处理实验(吴镇扬)答案-2

数字信号处理实验(吴镇扬)答案-2

(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

()()⎪⎩⎪⎨⎧≤≤=-其他0150,2n e n x q p n a解:程序见附录程序一:P=8,q 变化时:t/T x a (n )k X a (k )t/T x a (n )p=8 q=4k X a (k )p=8 q=4t/Tx a (n )p=8 q=8kX a (k )p=8 q=8幅频特性时域特性t/T x a (n )p=8 q=8k X a (k )p=8 q=8t/T x a (n )51015k X a (k )p=13 q=8t/Tx a (n )p=14 q=851015kX a (k )p=14 q=8时域特性幅频特性分析:由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱;当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值,p=14时的泄漏现象最为明显,混叠可能也随之出现;(2) 观察衰减正弦序列 的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析

三、实验内容及步骤
(一)编制实验用主程序及相应子程序
1、在实验之前,认真复习 DFT 和 FFT 有关的知识,阅读本实验原 理与方法和实验附录部分中和本实验有关的子程序,掌握子程序的原理 并学习调用方法。 2、编制信号产生子程序及本实验的频掊分析主程序。实验中需要用 到的基本信号包括: (1)高斯序列: (2)衰减正弦序列: (3)三角波序列: (4)反三角序列:
四、思考题
能说出哪一个低频分量更多一些吗?为什么? 2、 对一个有限长序列进行离散傅里叶变换(DFT),等价于将该序 列周期延拓后进行傅里叶级数(DFS)展开。因为 DFS 也只是取其中一 个周期来运算,所以 FFT 在一定条件下也可以用以分析周期信号序 列。如果实正弦信号,用 16 点的 FFT来做 DFS 运算,得到的频谱是信 号本身的真实谱吗?
(二)上机实验内容
1、观察高斯序列的时域和频域特性 ①固定信号中的参数 p=8,改变 q 的值,使 q 分别等于 2,4,8。观 察它们的时域和幅频特性,了解 q 取不同值的时候,对信号时域特性和 幅频特性的影响。 ②固定 q=8,改变 p,使 p 分别等于 8,13,14,观察参数 p 变化对 信号序列时域及幅频特性的影响。注意 p 等于多少时,会发生明显的泄 漏现象,混淆现象是否也随之出现?记录实验中观察到的现象,绘制相 应的时域序列和幅频特性曲线。 2、观察衰减正弦序列的时域和幅频特性 ①令α=0.1 并且 f=0.0625,检查谱峰出现的位置是否正确,注意频谱 的形状,绘制幅频特性曲线。 ②改变 f=0.4375,再变化 f=0.5625,观察这两种情况下,频谱的形状 和谱峰出现的位置,有无混淆和泄漏现象发生?说明产生现象的原因。 3、观察三角波序列和反三角波序列的时域和幅频特性

数字信号处理习题答案及matlab实验详解.pdf

数字信号处理习题答案及matlab实验详解.pdf

阶跃响应为: y[n] x[n] h[n] x[m]h[n m] h(n m), n m, m 0
m
m0
即 y(0) 0, y(1) 0.25, y(2) 0.5, y(3) 0.75,其余y(n) 1, (n 3)
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应 b=[0,0.25,0.25,0.25,0.25]; a=1; x=ones(1,100); h=impz(b,a,100);y=filter(b,a,x) figure(1) subplot(2,1,1); stem(h,’.’); subplot(2,1,2); plot(y,’.’);
4
解:(1)系统的转移函数是是其单位抽样响应的 Z 变换,因此
H (z)
1 1 z1
1 1 0.3z1
1 1 0.6z1
(1
3 3.8z1 1.08z2 z1)(1 0.3z1)(1 0.6z1)
1
3 1.9
3.8z1 1.08z2 z1 1.08z2 0.18z
3
Z 1
系统的零极点图如下图所示: B=[3,-3.8,1.08]; A=[1,-1.9,1.08,-0.18]; [Z,P,K]=tf2zp(B,A); Zplane(B,A)
5
单位抽样响应:
h(n)
1 2
n1
u
(n
1)
(n)
1
y(n) x(n) * h(n)
2 m1
1 2
m1
e
j (n m)
e
jn
e
jn
e j
1 2 1
2
n
u(n1)

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理MATLAB实验

数字信号处理MATLAB实验

实验一熟悉MATLAB环境一、实验目的(1)熟悉MATLAB的主要操作命令。

(2)学会简单的矩阵输入和数据读写。

(3)掌握简单的绘图命令。

(4)用MATLAB编程并学会创建函数。

(5)观察离散系统的频率响应。

二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。

在熟悉了MATLAB基本命令的基础上,完成以下实验。

上机实验内容:(1)数组的加、减、乘、除和乘方运算。

输入A=[1 2 3 4],B=[3 4 56],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。

(2)用MATLAB实现以下序列。

a)x(n)=0.8n 0≤n≤15b)x(n)=e(0.2+3j)n 0≤n≤15c)x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π) 0≤n≤15d)将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周期。

e)将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周期。

(3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。

a )x 1(n)=2x(n+2)-x(n-1)-2x(n)b )∑=-=51k 2)k n (nx (n) x(4)绘出下列时间函数的图形,对x 轴、y 轴以及图形上方均须加上适当的标注。

a) x(t)=sin(2πt) 0≤t ≤10s b) x(t)=cos(100πt)sin(πt) 0≤t ≤4s(5)编写函数stepshift(n0,n1,n2)实现u(n-n0),n1<n0<n2,绘出该函数的图形,起点为n1,终点为n2。

(6)给定一因果系统)0.9z 0.67z -1)/(1z 2(1H(z)-2-1-1+++=求出并绘制H(z)的幅频响应与相频响应。

(7)计算序列{8 -2 -1 2 3}和序列{2 3 -1 -3}的离散卷积,并作图表示卷积结果。

三角波信号的傅里叶变换

三角波信号的傅里叶变换

三角波信号的傅里叶变换三角波信号是一种基本的周期信号,其波形呈现为一连串锯齿形的上升和下降,被广泛应用于各种电路和系统中。

傅里叶变换则是一种将时域信号转换为频域信号的数学工具,可以帮助我们对信号的频谱特性进行分析和研究。

在本文中,我们将介绍三角波信号的傅里叶变换原理、公式推导和实际应用情况。

一、三角波信号的傅里叶变换原理三角波信号是一种周期信号,可以用以下函数表示:$$x(t)=\frac{4A}{T}(\frac{t}{T}-\lfloor\frac{t}{T}+\frac{1}{2}\rfloor)$$其中,A是三角波的幅度,T是一个周期的长度,取值为正常数。

函数中的$\lfloor x\rfloor$表示对x进行下取整操作,即取不大于x的最大整数。

傅里叶变换最基本的公式是:$$X(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft}dt$$其中,x(t)为时域信号,X(f)为频域信号,f为频率。

根据欧拉公式,上式可以转化为:$$X(f)=\int_{-\infty}^{\infty}x(t)[cos(2\pi ft)-jsin(2\pi ft)]dt$$将三角波信号代入上式,得到其傅里叶变换为:$$X(f)=\int_{-\infty}^{\infty}\frac{4A}{T}(\frac{t}{T}-\lfloor\frac{t}{T}+\frac{1}{2}\rfloor)[cos(2\pift)-jsin(2\pi ft)]dt$$根据积分的周期性,我们只需要在一个周期内对上式进行积分即可。

不妨设一个周期的起点为0,终点为T,则:$$X(f)=\int_{0}^{T}\frac{4A}{T}(\frac{t}{T}-\lfloor\frac{t}{T}+\frac{1}{2}\rfloor)[cos(2\pift)-jsin(2\pi ft)]dt$$由于cos和sin函数的积分是奇函数,即在-s到s的积分结果为0,所以我们对上述积分式分别对0到T/2和T/2到T进行分段,得到:$$X(f)=\int_{0}^{T/2}\frac{4A}{T}(cos(2\pi ft)-jsin(2\pi ft))dt-\int_{T/2}^{T}\frac{4A}{T}(cos(2\pi ft)-jsin(2\pi ft))dt$$$$=\frac{8Aj}{2\pi fT}(sin(2\pi fT/2)-sin(0))+\frac{8A}{2\pi fT}(cos(2\pi fT/2)-cos(0))-\frac{8Aj}{2\pi fT}(sin(2\pi fT)-sin(2\pi fT/2))-\frac{8A}{2\pi fT}(cos(2\pi fT)-cos(2\pi fT/2))$$$$=\frac{4Aj}{\pi fT}(sin(\pi fT)-sin(2\pi fT))+\frac{4A}{\pi fT}(1-cos(\pi fT)+cos(2\pi fT)-1)$$$$=\frac{4Aj}{\pi fT}sin(\pi fT)+\frac{4A}{\pi fT}(1-cos(\pi fT))$$二、三角波信号的傅里叶变换公式由上面的推导可以得到,三角波信号的傅里叶变换公式为:$$X(f)=\frac{4Aj}{\pi fT}sin(\pifT)+\frac{4A}{\pi fT}(1-cos(\pi fT))$$其中,A是三角波的幅度,T是一个周期的长度,取值为正常数,f为频率。

《数字信号处理》试题库答案

《数字信号处理》试题库答案

一.填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X (K)是关于X(e jw)的N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的混叠现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有交换率、结合率和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。

数字信号处理实验课课程设计

数字信号处理实验课课程设计

1温情提示各位同学:数字信号处理课程设计分基础实验、综合实验和提高实验三部分。

基础实验、综合实验是必做内容,提高实验也为必做内容,但是为六选一,根据你的兴趣选择一个实验完成即可。

由于课程设计内容涉及大量的编程,希望各位同学提前做好实验准备。

在进实验室之前对实验中涉及的原理进行复习,并且,编制好实验程序。

进入实验室后进行程序的调试。

4课程设计准备与检查在进实验室之前完成程序的编制,在实验室完成编制程序的调试。

在进行综合实验的过程中,检查基础实验结果;在做提高实验的过程中,检查综合实验结果;提高实验结果在课程设计最后四个学时中检查。

检查实验结果的过程中随机提问,回答问题计入考核成绩。

5实验报告格式一、实验目的和要求二、实验原理三、实验方法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)五、实验结果及分析(计算过程与结果、数据曲线、图表等)六、实验总结与思考6课程设计实验报告要求一、实验报告格式如前,ppt 第5页。

二、实验报告质量计10分。

实验报告中涉及的原理性的图表要自己动手画,不可以拷贝;涉及的公式要用公式编辑器编辑。

MATLAB 仿真结果以及编制的程序可以拷贝。

三、如果发现实验报告有明显拷贝现象,拷贝者与被拷贝者课程设计成绩均为零分。

四、实验报告电子版在课程设计结束一周内发送到指导教师的邮箱。

李莉:***************赵晓晖:*****************王本平:**************叶茵:****************梁辉:*******************7基础实验篇实验一离散时间系统及离散卷积实验二离散傅立叶变换与快速傅立叶变换实验三IIR 数字滤波器设计实验四FIR数字滤波器设计8实验一离散时间系统及离散卷积一、实验目的(1)熟悉MATLAB 软件的使用方法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利用MATLAB 绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

用FFT对信号作频谱分析实验报告

用FFT对信号作频谱分析实验报告

实验一报告、用FFT 对信号作频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行频谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

二、实验内容1.对以下序列进行频谱分析:()()()()4231038470n 4033470nx n R n n n x n nn n n x n n n =+≤≤⎧⎪=-≤≤⎨⎪⎩-≤≤⎧⎪=-≤≤⎨⎪⎩其它其它 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线,并进行对比,分析和讨论。

2.对以下周期序列进行频谱分析:()()45cos4coscos48x n n x n n nπππ==+选择FFT 的变换区间N 为8和16两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线,并进行对比、分析和讨论。

3.对模拟信号进行频谱分析:()8cos8cos16cos20x t t t t πππ=++选择采样频率64s F Hz =,对变换区间N=16,32,64 三种情况进行频谱分析。

分别打印其幅频特性,并进行分析和讨论。

三、实验程序1.对非周期序列进行频谱分析代码:close all;clear all;x1n=[ones(1,4)];M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);subplot(3,2,1);mstem=(X1k8);title('(1a)8点DFT[x_1(n)]');subplot(3,2,2);mstem=(X1k16);title('(1b)16点DFT[x_1(n)]');subplot(3,2,3);mstem=(X2k8);title('(2a)8点DFT[x_2(n)]');subplot(3,2,4);mstem=(X2k16);title('(2b)16点DFT[x_2(n)]');subplot(3,2,5);mstem=(X3k8);title('(3a)8点DFT[x_3(n)]');subplot(3,2,6);mstem=(X3k16);title('(3b)16点DFT[x_3(n)]');2.对周期序列进行频谱分析代码:N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n);X5k8=fft(x5n);N=16;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);X5k16=fft(x5n);figure(2)subplot(2,2,1);mstem(X4k8);title('(4a)8点 DFT[x_4(n)]');subplot(2,2,2);mstem(X4k16);title('(4b)16点DFT[x_4(n)]');subplot(2,2,3);mstem(X5k8);title('(5a)8点DFT[x_5(n)]');subplot(2,2,4);mstem(X5k16);title('(5a)16点DFT[x_5(n)]') 3.模拟周期信号谱分析figure(3)Fs=64;T=1/Fs;N=16;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k16=fft(x6nT);X6k16=fftshift(X6k16);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,1);stem(fk,abs(X6k16),'.');box ontitle('(6a)16µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))]);N=32;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=32x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k32=fft(x6nT);X6k32=fftshift(X6k32);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,2);stem(fk,abs(X6k32),'.');box ontitle('(6b)32µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))]);N=64;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=64x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k64=fft(x6nT);X6k64=fftshift(X6k64);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,3);stem(fk,abs(X6k64),'.');box ontitle('(6c)64µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))]);四、实验结果与分析分析:图(1a)和图(1b)说明X1(n)=R4(n)的8点和16点DFT分别是X1(n)的频谱函数的8点和16点采样;因X3(n)=X2((n-3))8R8(n),故X3(n)与X2(n)的8点DFT的模相等,如图(2a)和图(3a)所示。

数字信号处理实验报告(1)

数字信号处理实验报告(1)

数字信号处理实验报告(1)河南工业大学电气工程学院《数字信号处理》课程实验报告学生姓名:俞阳学号:201323020620 专业班级:自动1306实验日期:5月15日成绩:实验一离散时间信号与系统分析一、实验目的1.掌握离散时间信号与系统的时域分析方法。

2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。

3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。

二、实验原理1.离散时间系统一个离散时间系统是将输入序列变换成输出序列的一种运算。

若以][ T来表示这种运算,则一个离散时间系统可由下图来表示:图 离散时间系统输出与输入之间关系用下式表示)]([)(n x T n y =离散时间系统中最重要、最常用的是线性时不变系统。

2.离散时间系统的单位脉冲响应设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。

可得到:)()()()()(n h n x m n h m x n y m *=-=∑∞-∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。

3.连续时间信号的采样采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。

对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘积,即:][⋅T)()()(ˆt t x t x T a a δ=其中,)(ˆt x a 是连续信号)(t xa 的理想采样,)(t T δ是周期冲激脉冲 ∑∞-∞=-=m T mT t t )()(δδ设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(ˆt xa 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(ˆΩj X a ,即)]([)(t x F j X a a =Ω)]([)(t F j M T δ=Ω)](ˆ[)(ˆt x F j Xa a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即)]()([21)(ˆΩ*Ω=Ωj X j M j X aa π 其中⎰∞∞-Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(ˆ 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉 FFT 算法及其程序的编写。

2、熟悉应用 FFT 对典型信号进行频谱分析的方法。

3、了解应用 FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用 FFT 。

二、实验原理与方法一个连续信号 )(t x a 的频谱可以用它的傅立叶变换表示为⎰+∞∞-Ω-=Ωdt e t x j X t j a a )()( (2-1)如果对该信号进行理想采样,可以得到采样序列)()(nT x n x a = (2-2)同样可以对该序列进行z 变换,其中T 为采样周期∑+∞-∞=-=n n z n x z X )()( (2-3) 当 ωj ez =的时候,我们就得到了序列的傅立叶变换 ∑+∞-∞=-=n n j j e n x e X ωω)()( (2-4)其中ω称为数字频率,它和模拟域频率的关系为s f T Ω=Ω=ω(2-5)式中的s f 是采样频率。

上式说明数字频率是模拟频率对采样率s f 的归一化。

同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。

序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系∑-=)2(1)(Tm j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。

从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。

注意:这里的信号必须是带限信号,采样也必须满足 Nyquist 定理。

在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。

无限长的序列也往往可以用有限长序列来逼近。

对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是 N 时,我们定义离散傅立叶变换为:∑-===10)()]([)(N n kn NW n x n x DFT K X (2-7) 其中,N j N e W π2-=它的反变换定义为:∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令 k N W z -=,则有)]([)()(10n x DFT W n x z X N n kn N W z k N ==∑-==- (2-9)可以得到 k N k N j W z W e z X k X k N -===-,)()(2π是 z 平面单位圆上幅角为k Nπω2=的点,就是将单位圆进行 N 等分以后第 k 个点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT分析信号序列Xc(n)和Xd(n)的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其频谱特性曲线。

在Xc(n)和Xd(n)末尾补零,用N=32点FFT分析这两个信号的幅频特性,观察幅频特性发生了什么变化?两种情况下的FFT频谱还有相同之处吗?这些变化说明了什么?
讨论:由图可知,N=8时正、反三角波的频域图形是相同的。

因为作DFT时要先周期延拓
作完后取主值部分,而正反三角波周期延拓后是相同的,只差一个相位,因此得到的频域图
形也是相同的。

讨论:N=32时,两者的频谱不同,因为此时再做周期延拓就不相同了。

在后面补零对于正
三角波在n=8时是连续的,而反三角波在n=8时有个突变,时域中出现了陡峭的地方,在
频域中频谱分量会增多。

通过N=8和N=32比较得,通过在原序列的末端补零,增加了采
样的点数,使谱线增多,弱化了栅栏效应,但增多后的谱线形状是与时域信号的形状有关的。

(但补零不能增加频率分辨率)
clear
n=1:4
xc(n)=n-1;
n=5:8
xc(n)=9-n;
n=1:4
xd(n)=5-n;
n=5:8
xd(n)=n-5;
clc
n=0:7
subplot(2,2,1);
stem(n,xc);
xlabel('n');
ylabel('xc(n)');
title('正三角波N=8');
subplot(2,2,2);
hc(1:8)=fft(xc(1:8));
stem(n,abs(hc));
title('幅频特性');
n=0:7
subplot(2,2,3); stem(n,xd);
xlabel('n');
ylabel('xd(n)');
title('反三角波N=8'); subplot(2,2,4);
hd(1:8)=fft(xd(1:8)); stem(n,abs(hd)); title('幅频特性'); pause;
clear
n=1:4
xcc(n)=n-1;
n=5:8
xcc(n)=9-n;
n=9:32
xcc(n)=0;
n=1:4
xdd(n)=5-n;
n=5:8
xdd(n)=n-5;
n=9:32
xdd(n)=0;
clc
n=0:31
subplot(2,2,1);
stem(n,xcc);
xlabel('n');
ylabel('xc(n)');
title('正三角波N=32'); subplot(2,2,2);
hcc(1:32)=fft(xcc(1:32)); stem(n,abs(hcc));
title('幅频特性');
n=0:31
subplot(2,2,3);
stem(n,xdd);
xlabel('n');
ylabel('xd(n)');
title('反三角波N=32'); subplot(2,2,4);
hdd(1:32)=fft(xdd(1:32));
stem(n,abs(hdd)); title('幅频特性');。

相关文档
最新文档