医疗药品第二十二章抗心律失常药
【源版】抗心律失常药1
![【源版】抗心律失常药1](https://img.taocdn.com/s3/m/e5cfc6a008a1284ac850437a.png)
Cardiac electrical activity
2.心律失常的分类
(1)缓慢型(心率<60次/分) 窦性心动过缓、房室传导阻滞 常用异丙肾上腺素或阿托品治疗。
(2)快速型(心率>100次/分) 室早、房早、室速、房速、 心房纤颤、 心房扑动、阵发性室上性心动过速等
3.抗心律失常药
是指防治快速心律失常的药物。
C
正常冲动传导 B
C 单向阻滞和折返 B
浦氏纤维末梢正常冲动传导、单向阻滞和折返形成
1
A
1
A
ERP短
C
正常冲动传导
B C 邻近细胞ERP长 B
短不一引起折返
单次折返→1次早搏;多次折返→心动过速
产生折返的条件
①解剖或生理学环形通路 ②单向传导阻滞或相邻细胞ERP不均一 ③回路传导的时间足够长,折回的冲动落在
第一节 心脏的电生理学基础
1
Ca2+Na+
2
K+
K+
0
IK1
3
Na+
Ion channels and AP
4
1
20
2
0
-20
-40
-60
0
-80
-100
R
QS
细胞膜内 细胞膜外
Na+ Na+ K+ Ca+
A 动作电位时相 (0,1,2,3)
3
4 ) ( 静息膜电位 )
T B 相应的心电图
C 离子转运机制
第二十二章 抗心律失常药
(anti-arrhythmia drugs)
目的要求
掌握
抗心律失常药的分类,每类代表药物 的药理作用、临床应用及不良反应。
第22章 抗心律失常药
![第22章 抗心律失常药](https://img.taocdn.com/s3/m/51828b7443323968011c92bc.png)
3/23/2020
17
二、抗心律失常药的分类
I类 钠通道阻滞药
IA类:适度阻滞钠通道—奎尼丁
IB类:轻度阻滞钠通道—利多卡因
IC类:明显阻滞钠通道—氟卡尼
Ⅱ类 β肾上腺素受体阻断药
普萘洛尔
Ⅲ类 选择性延长复极过程的药 胺碘酮
Ⅳ类 钙拮抗药
维拉帕米
3/23/2020
18
第四节 常用抗心律失常药
3/23/2020
29
IC类药物
明显抑制钠通道,减慢0相除极速率及传导速 度,降低自律性。
对复极过程无明显影响
3/23/2020
30
普罗帕酮(心律平)
降低自律性,减慢传导速度,延长APD及ERP,且减 慢传导的程度超过延长ERP,易于引起折返冲动。
有受体阻断作用 轻度负性肌力作用 对室性及室上性心律失常均有较好的疗效,但易致
2
3
3/23/2020
早后除极与触发活动
11
t(11s)
mV
4
3/23/2020
滞后除极
4
触发活动 12
t(s12)
3/23/2020
13
二、冲动传导障碍
1.单纯性传导障碍 传导减慢、传导阻滞、 单向传导阻滞
2.折返激动 冲动经环形通路返回其 起源的部位,而反复运 行的现象。
3/23/2020
3/23/2020
41
快速性心律失常的药物选用
抗心律失常药的致心律失常作用 可引起新的心律失常或加重原有的心律失常 机理: APD及复极延长,易引起早后除极的触发活动, 传导速度的改变可引起折返 临床意义: 慎用抗心律失常药,尤其是Ⅰ类及Ⅲ类
3/23/2020
第二十二章抗心律失常药物
![第二十二章抗心律失常药物](https://img.taocdn.com/s3/m/5d836bf70740be1e640e9a72.png)
第二十二章抗心律失常药物一、选择题A型题1.交感神经过度兴奋引起的窦性心动过速最好选用:A.苯妥英钠B.奎尼丁C.普萘洛尔D.氟卡尼 E. 利多卡因2.强心苷类药物中毒导致的心律失常最好选用:A.苯妥英钠B.普萘洛尔 C. 氟卡尼D.维拉帕米 E. 普鲁卡因胺3.奎尼丁的错误叙述是:A.适度阻滞心肌细胞膜上的钠通道B.兼有α、M 受体阻断作用C.心肌中药物浓度为血浓度的10 倍D.为窄谱抗心律失常药E.为奎宁的右旋体4.对利多卡因叙述错误的是:A .可作为局麻药使用B.可降低自律性C.是治疗室性心律失常的首选药物D.绝对延长有效不应期E.Ⅱ -Ⅲ度房室传导阻滞患者禁用5.奎尼丁的电生理作用有:A .抑制 0 相除极,减慢传导,延长不应期B.加快 0 相除极,加快传导,延长不应期C.抑制 0 相除极,减慢传导,缩短不应期D.加快 0 相除极,减慢传导,延长不应期E.抑制 0 相除极,对传导和不应期无影响’6.利多卡因不宜用于哪种心律失常:A .室性早搏B.室性纤颤C.室上性心动过速D.强心苷所致室性心律失常E.心肌梗塞所致室性心律失常7.下列哪项不属于奎尼丁的禁忌证:A .严重低血压B.心力衰竭C.严重房室传导阻滞D.心房纤颤E.地高辛中毒8.能加速奎尼丁代谢,使血药浓度降低的抗心律失常药是:A .普鲁卡因胺B.苯妥英钠C.普萘洛尔D.维拉帕米E.以上都不是9.对普鲁卡因胺的叙述错误的是:A .作用与奎尼丁相似但较弱B.能降低浦肯野纤维的自律性C.减慢传导速度D.延长有效不应期E.较强的抗α受体和抗胆碱作用10.具有明显促进K’外流的抗心律失常药是:A .利多卡因B.维拉帕米C.胺碘酮D.普萘洛尔E.氟卡尼11.能与强心苷竞争Na+-K+—ATP 酶的抗心律失常药是:A .苯妥英钠B.地尔硫卓C.普萘洛尔D.普罗帕酮E.胺碘酮12.兼有抗癫痫作用的抗心律失常药物是:A .利多卡因B.奎尼丁C.普萘洛尔D.普鲁卡因胺E.苯妥英钠13.可引起甲状腺功能紊乱的抗心律失常药物是:A .维拉帕米B.胺碘酮C.普罗帕酮D.普鲁卡因胺E.奎尼丁14.伴有支气管哮喘的过速型心律失常患者应禁用:A .普萘洛尔B.苯妥英钠C.奎尼丁D.胺碘酮E.地尔硫卓15.女, 38 岁,患者曾有甲状腺功能亢进,内科治疗5 年。
第二十二章抗心律失常药演示文稿
![第二十二章抗心律失常药演示文稿](https://img.taocdn.com/s3/m/00be575ba31614791711cc7931b765ce05087a98.png)
早后除极:2或3相中,主要由Ca+内 流增多所引起;
迟后除极:4相中,细胞内Ca+过多诱 发Na+短暂内流所引起。
——异常冲动的发放增多——心律失常
当前第27页\共有78页\编于星期五\22点
后除极与触发活动
迟后除极与触发电位 早后除极与触发电位
当前第28页\共有78页\编于星期五\22点
当前第22页\共有78页\编于星期五\22点
第二节 抗心律失常药的作用机制和 分类
当前第23页\共有78页\编于星期五\22点
一、心律失常的形成
(一)冲动形成异常 1、自律性增高 3相K+外流减少——最大舒张期电位
绝对值减小;
4相去极化速度加快
当前第24页\共有78页\编于星期五\22点
自律性增高
4、临床用途
为广谱抗心律失常药: 房性(房颤、房扑) 室性(室性心动过速) 房室交界性
当前第46页\共有78页\编于星期五\22点
5、不良反应 安全范围小,治疗血药浓度接近中
毒血药浓度: (1)胃肠道反应:恶心、呕吐、腹泻、 低血压等——外周植物神经作用; (2)过敏反应:药热、皮疹、血小板减 少性紫癜等过敏反应。 (3)久用还有金鸡钠反应:耳鸣、失听
心得安(普萘洛尔Propranolol)(1)
阻断β-受体: 1、降低自律性,心率减慢——尤其是运动
或情绪激动时明显;
当前第60页\共有78页\编于星期五\22点
2、大剂量时膜有稳定作用——减慢传导 3、治疗浓度缩短浦氏纤维的APD和ERP,
高浓度则延长之。对房室结ERP有明 显的延长作用。
当前第61页\共有78页\编于星期五\22点
药理学 22抗心律失常药
![药理学 22抗心律失常药](https://img.taocdn.com/s3/m/992733e0b8f67c1cfad6b8d1.png)
45
用途利多卡因
各种室性心律失常(重)
# 急性心肌梗死、外科手术、麻醉等引起的 室性早搏、 室性心动过速及室颤。
# 洋地黄中毒引起的室性心律失常。
46
苯妥英(Phenytoin )
为抗癫痫药, 50年代起用于治疗心律失常。
47
作 用 和 用 途苯妥英
相似于利多卡因,也作用于希-浦系统。
1 可降低浦肯野纤维自律性; 2 抑制洋地黄中毒所致的晚后除极及触发活动,能 与洋地黄竞争Na+ ,K+-ATP酶,用于强心苷中毒所 致快速性心律失常;降地高辛浓度。
39
相互作用 奎尼丁
1 与地高辛合用 2 与口服抗凝药合用 3与药酶诱导药合用 抑其排泄
40
普鲁卡因胺(Procainamide)
作用
1 属广谱抗心律失常药,作用与奎尼丁相似但较弱。 2 无 奎尼丁的 抗 α- 受体 及 抗 M-胆碱 作用。 3 不良反应较奎尼丁少,久用致红斑狼疮综合征,停药后 可恢复,必要时用皮质激素治疗以消除症状。高浓度
52
β-肾上腺素受体阻断药 作用
主要通过阻断β
-受体而对心脏发挥影响。
高浓度时尚有膜稳定作用。
53
普萘洛尔(Propranolol)
作用:
1 抑制窦房结自律性,在运动及情绪激动时 尤为明显。 2 能降低儿茶酚胺所致的晚后除极及触发活动。 3 高浓度时有膜稳定,明显减慢房室结传导、延 长ERP。
2 防止后除极和触发活动。 3 改变膜反应性而改变传导* 1)增强膜反应性加快传导,以取消单向传导 阻滞,终止折返激动。
2)降低膜反应性减慢传导,变单向阻滞为双 20 向阻滞而终止折返激动。
降低自律性:
抗心律失常药
![抗心律失常药](https://img.taocdn.com/s3/m/4cdfa28984868762caaed5ad.png)
细胞内Ca2+超负荷,肌浆网通过RyR频繁而小量的振荡性 释放钙离子 ,RyR钙释放又促进Na+振荡性内流(目前认 为主要是Na/CaX),从而导致后除极
]
折反的发生与邻近细胞不应期长短不一有关, 特别是在心肌肥大(IK减少,复极化延长, ERP和APD延长)与交感神经兴奋(IK增加, ERP和APD缩短)同时存在的时候,整个心脏 的复极化不均一,容易形成折反的条件。
Ⅳ类药——钙通道阻滞药 类药 钙通道阻滞药
(4)Ⅳ类——钙通道阻滞药:维拉帕米和地尔 硫卓等,能抑制Ca2+经慢通道向细胞内流动。 抑制慢反应细胞的自律性和传动,延长APD及 ERP。 维拉帕米(verapamil)又名异搏定(isoptin)戊脉 胺。
【临床应用】 临床应用】
(1) 房 室结折返 所致的 阵发 性室上 性 心动过 速 , 80%的病例可转为窦性节律。首选。 (2)窦性心动过速,可减慢窦性心率。 (3) 心房纤颤、心房扑动和房性心动过速:通过减 慢房室传导,降低患者的心室率 (4)预防或抑制缺血一再灌后所致的心律失常。 (5)对室性心律失常虽有效,但不如其它药物。 禁用于严重低血压、心源性休克、Ⅱ度以上房室传 导阻滞、病窦综合征、严重充血性心力衰竭等。
第二十二章: 第二十二章:抗心律失常药
心律失常是心动频率和节律的异常,是心血管 疾病中的常见病,也是引起心血管疾病患者猝 死的主要原因。 抗心律失常药物主要是通过影响心肌细胞膜的 离子转运、纠正心肌异常电活动而纠正心律失 常。
。
二、心律失常发生的电生理学机理
1.冲动形成障碍 (1)自律性增高: (2)后除极(after depolarization): 1)早后除极(early after depolarization): 2)迟后除极(delayed after depolarization): 2.冲动传导障碍 (1)单纯性传导障碍:传导减慢、传导阻滞、 (2)折返激动:一次冲动经环形能路返回原处而再次激动并继续向前 传导的现象称为折返(reentry)。单向传导阻滞常可引起折返激动。折 返激动是引alol) )
药理学第22章整理
![药理学第22章整理](https://img.taocdn.com/s3/m/a16358ef4128915f804d2b160b4e767f5acf80d6.png)
第二十二章抗心律失常药心律失常主要是心动节律和频率异常。
心律正常时心脏协调而有规律地收缩、舒张,顺利地完成泵血功能。
心律失常时心脏泵血功能发生障碍,影响全身器官的供血。
第一节心律失常的电生理学基础一、正常心脏电生理特性正常的心脏冲动起自窦房结,顺序经过心房、房室结、房室束及浦肯野纤维,最后到达心室肌,引起心脏的节律性收缩。
心脏活动依赖于心肌正常电活动,而心肌细胞动作电位的整体协调平衡是心脏电活动正常的基础。
单个心肌细胞动作电位特性又取决于各种跨膜电流的平衡状态。
按动作电位特征可将心肌细胞分为快反应细胞和慢反应细胞两大类。
快反应细胞:快反应细胞包括心房肌细胞、心室肌细胞和希-浦细胞。
其动作电位0相除极由钠电流介导,除极速度快、振幅大。
多种内向和外向电流参与快反应细胞的动作电位整个时程。
慢反应细胞:慢反应细胞包括窦房结和房室结细胞。
其动作电位0相除极由L型钙电流介导,除极速度慢、振幅小。
慢反应细胞无内向整流钾电流(I K1)控制膜电位,其静息电位不稳定,容易去极化,故自律性高。
心脏的自律细胞主要有窦房结细胞、房室结细胞和希-浦细胞,可自动发生节律性兴奋。
自律性的产生源于自律细胞动作电位4相自动去极化:1.希-浦细胞4相自动去极化主要由I f决定;2.窦房结及房室结细胞4相自动去极化则由I K逐渐减小而I f、I Ca(T)、I Ca(L)逐渐增强所致。
动作电位4相去极速率、动作电位阈值、静息膜电位水平和动作电位时程的变化均可影响心肌自律性。
兴奋可沿心肌细胞膜扩布并向周围心肌细胞传导。
传导速度由动作电位0相去极化速率和幅度决定,因此I Na、I Ca(L)分别对快反应细胞和慢反应细胞的传导性起决定作用。
二、心律失常的发生机制冲动形成异常和(或)冲动传导异常均可导致心律失常发生。
1.折返定义:是指一次冲动下传后,又沿另一环形通路折回,再次兴奋已兴奋过的心肌,是引发快速型心律失常的重要机制之一。
原因:心肌传导功能障碍是诱发折返的重要原因。
抗心律失常药-快速型心律失常的类型
![抗心律失常药-快速型心律失常的类型](https://img.taocdn.com/s3/m/5f9f49c9240c844768eaee10.png)
19
I O C2 H5 C I O CH2 CH2 N C2 H5
胺碘酮
O
CH 2CH 2CH 2CH 3
【药理作用及临床应用】 【不良反应】较多,与剂量大小及用药 时间长短有关。
第二十二章 抗心律失常药
心律失常是心动节律和频率的异常,此 时心房心室正常激活和运动顺序发生障 碍,是严重的心脏疾病。 心律失常有缓慢型和快速型之分,前者 常用异丙肾上腺素或阿托品治疗。后者 的药物治疗为本章讨论内容。
1
快速型心律失常的类型
室上性(窦房结、心房传导束、房室结) 室性(心室传导系统普肯野纤维) 早搏(期前收缩)、 (阵发性)心动过速、 纤颤、扑动 心房传导束
7
动作电位的5个时相
0相:细胞兴奋时, Na+通道(Ca2+ 通道) 开放, Na+ ( Ca2+)大量内流,引起除极。 膜电位负 正。 1相:快速复极初期,由于K+外流、Cl-内流, 膜电位迅速下降。 2相:缓慢复极期,平台期,K+缓慢外流和 Ca2+缓慢内流所致。 3相:快速复极末期,由K+快速外流引起。 4相:复极完毕。
窦房结 房室结 房室束 普氏纤维
4
静息电位:心肌细胞处于静息状态时的电位状 态,为内负外正的极化状态。
Ca2+ + + - + - Na+ + Na + K + - Na+ + - + - + - K+
Na+,K+-ATP酶
+
有机负离子A-
-
+ Na +
K+
高〔K+〕i
-+
- Na+ - - + + Na+,Ca2+交换 Ca2+
第二十二章抗心律失常药
![第二十二章抗心律失常药](https://img.taocdn.com/s3/m/d59de35e02d276a201292e88.png)
第二十二章抗心律失常药第二十二章抗心律正常药第一节心脏的电生理学基础一、心肌细胞的分类心肌细胞按生理功用分为两类:一类为任务细胞,包括心房肌及心室肌,胞浆内含有少量肌原纤维,因此具有收缩功用,主要起机械收缩作用。
除此以外,还具有兴奋性、传导性而无自律性。
另一类为特殊分化的心肌细胞,包括散布在窦房结、房间束与结间束、房室接壤、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因此无收缩功用,主要具有自律性,有自动发生节律的才干,同时具有兴奋性、传导性。
无论任务细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决议静息膜电位和举措电位的构成。
依据心肌电生理特性,心肌细胞又可分为快反响细胞和慢反响细胞。
快反响细胞快反响细胞包括心房肌细胞、心室肌细胞和希-普细胞。
其举措电位0相除极由钠电流介导,速度快、振幅大。
快反响细胞的整个APD中有多种外向电流和外向电流参与。
慢反响细胞慢反响细胞包括窦房结和房室结细胞,其举措电位0相除极由L-型钙电流介导,速度慢、振幅小。
慢反响细胞无I k1控制静息膜电位,静息膜电位不动摇、易除极,因此自律性高。
有关两类细胞电生理特性的比拟见表1。
表1 快反响细胞和慢反响细胞电生理特性的比拟参数快反响细胞慢反响细胞静息电位-80~-95mV -40~-65mV0期去极化电流I Na I Ca0期除极最大速率200~700V/s 1~15V/s超射+20~+40mV -5~+20mV阈电位-60~-75mV -40~-60mV传导速度0.5~4.0m/s 0.02~0.05m/s兴奋性恢复时间3期复极后3期复极后10~50ms 100ms以上4期除极电流I f I k, I Ca, I f二、静息电位的构成静息电位〔resting potential, RP〕是指安静形状下肌细胞膜两侧的电位差,普通是外正内负。
应用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相关于零的电位值。
《药理学》抗心律失常药 ppt课件
![《药理学》抗心律失常药 ppt课件](https://img.taocdn.com/s3/m/7aacbeea58f5f61fb7366676.png)
PPT课件
29
四、Ⅳ类药—钙拮抗剂
维拉帕米(verapamil)
【临床应用】
用于室上性心律失常,特别是房室交界性,对房颤、房扑也有效。 阵发性室上性心动过速首选药。
PPT课件
30
总结
选择性作用于浦肯野纤维,只对室性心律失常有效的药 物——利多卡因。 急性心肌梗死引起的室性心律失常首选药——利多卡因。 具有局麻作用又具有抗心律失常作用的药物——利多卡因。 普萘洛尔主要用于—室上性心律失常—窦性心动过速首选 药。 能阻滞钠、钙、钾三种通道,还有阻断α 及β 受体作用的药 物—胺碘酮—广谱抗心律失常药。 阵发性室上性心动过速首选药—维拉帕米。
药理作用特点: 1. 作用于希-浦系统,降低自律性,减慢传导,
轻度延长APD和ERP。
2. 结构类似普萘洛尔,有β受体阻断作用。 3. 对室性及室上性心律失常均有较好的疗效。
PPT课件
21
二、Ⅱ类药—β受体阻断药
普萘洛尔(propranolol)
【药理作用】
1. 降低窦房结自律性,减慢心率
对抗交感神经兴奋造成的自律性增高。
PPT课件
27
胺碘酮(amiodarone)
【不良反应】
1. 胃肠道反应 恶心、呕吐,食欲减退 2. 角膜色素沉积 3. 甲状腺功能紊乱 4. 肺纤维化
• 可致间质性肺炎,形成肺纤维化,是最严重 的不良反应,致死原因。
PPT课件
28
四、Ⅳ类药—钙拮抗剂
维拉帕米(verapamil)
【药理作用】 1. 降低自律性 窦房结,抑制4相钙的内流。 2. 减慢传导 窦房结和房室结,抑制0相除极速率。 3. 延长不应期 延长慢反应细胞的ERP,延长钙通道复活时间; 较高浓度下也延长浦氏纤维的ERP。
抗心律失常药物
![抗心律失常药物](https://img.taocdn.com/s3/m/bad83c7e700abb68a882fb58.png)
第二十二章抗心律失常药心律失常是心动规律和频率的异常,此时心房心室正常激活和运动顺序发生障碍,是严重的心脏疾病。
它有缓慢型和快速型之分,前者常用异丙肾上腺素或阿托品治疗。
后者的药物治疗比较复杂,本章讨论的是治疗快速型心律失常的药物。
第一节心律失常的电生理学基础一、正常心肌电生理(一)心肌细胞膜电位心肌细胞的静息膜电位,膜内负于膜外约-90mV,处于极化状态。
心肌细胞兴奋时,发生除极和复极,形成动作电位。
它分为5个时相,0相为除极,是Na+快速内流所致。
1相为快速复极初期,由K+短暂外流所致。
2相平台期,缓慢复极,由Ca2+及少量Na+经慢通道内流与K+外流所致。
3相为快速复极末期,由K+外流所致。
0相至3相的时程合称为动作电位时间(action potential duration,APD)。
4相为静息期,非自律细胞中膜电位维持在静息水平,在自律细胞则为自发性舒张期除极,是特殊Na+内流所致,其通道在—50mV开始开放,它除极达到阈电位就重新激发动作电位。
(二)快反应和慢反应电活动心工作肌和传导系统细胞的膜电位大(负值较大),除极速率快,传导速度也快,呈快反应电活动,其除极由Na+内流所促成;窦房结和房室结细胞膜电位小(负值较小),除极慢,传导也慢,呈慢反应电活动,除极由Ca2+内流促成。
心肌病变时,由于缺氧缺血使膜电位减小,快反应细胞也表现出慢反应电活动。
(三)膜反应性和传导速度膜反应性是指膜电位水平与其所激发的0相上升最大速率之间的关系。
一般膜电位大,0相上升快,振幅大,传导速度就快;反之,则传导减慢。
可见膜反应性是决定传导速度的重要因素,其典型曲线呈S状,多种因素(包括药物)可以增高或降低之。
(四)有效不应期复极过程中膜电位恢复到-60~—50mV时,细胞才对刺激发生可扩布的动作电位。
从除极开始到这以前的一段时间即为有效不应期(effective refractory period,ERP),它反映快钠通道恢复有效开放所需的最短时间。
第22章-抗心律失常药PPT课件
![第22章-抗心律失常药PPT课件](https://img.taocdn.com/s3/m/a88d5da3f46527d3250ce03d.png)
一、冲动起源失常
1、窦性心律失常
正常心律:成人 60~100次/min; 婴儿 130~150次/min
过慢、过快、不规则即为心律失常
2021
24
2、异位心律失常
期前收缩 150次/min,房性、房室结性、室性
阵发性心动过速 突发、突停,可持续数秒~数日,
160~220次/min 室上性多无器质性心 脏病,预后好,室性多见器质性心 脏病,预后差。
2021
26
一、冲动传导失常
房室传导阻滞 传导时间延长,Ⅲ度阻滞则冲动不
能通过
束支传导阻滞 心室内阻滞,有左右束支之分
2021
27
心律失常发生机制(二)
1.折返 (reentry)
指一次冲动下传后,又可顺着一 环形通路折回再次兴奋原已兴奋过 的心肌。
2021
28
2021
29
⑴解剖性折返
三个决定因素: ①存在解剖学环路; ②环路中各部位不应期不一致; ③环路中有传导性下降的部位。
2021
4
第一节 心脏的电生理学基础
膜电位
静息膜电位 动作电位:
分5个时相
2021
15
瞬时外向钾电流
延迟整流钾电流
内向整流钾电流 Na+_起Ca搏2+电交流换
2021
16
快反应细胞
心房肌、心室肌、希-普 细胞。其动作电位0相除极由钠 电流介导,速度快、振幅大。
快反应细胞的整个动作电 位时程(action potential duration, APD)中有多种内向电流和外向电 流参与。
Ⅳ类 钙通道阻滞药 :
2021
40
第四节 常用抗心律失常药
一、Ⅰ类 钠通道阻滞药 (一)Ia类 复活时间常数1~lOs, 适度阻滞钠通道,延长APD与ERP, 以延长ERP更为显著。
(整理)第二十二章抗心律失常药
![(整理)第二十二章抗心律失常药](https://img.taocdn.com/s3/m/d2c0e0690740be1e640e9a28.png)
第二十二章抗心律失常药一、以下每一道考题下面有A、B、C、D、E五个备选答案,请从中选择一个最佳答案。
1、对强心苷类药物中毒所致的心律失常最好选用:A、奎尼丁B、普鲁卡因胺C、苯妥英钠D、胺碘酮E、妥卡尼标准答案:C2、对阵发性室上性心动过速最好选用:A、维拉帕米B、利多卡因C、苯妥英钠D、美西律E、妥卡尼标准答案:A3、急型心肌梗死所致的室速或是室颤最好选用:A、苯妥英钠B、利多卡因C、普罗帕酮D、普萘洛尔E、奎尼丁标准答案:B4、早期用于心机梗死患者可防止室颤发生的药物:A、利多卡因B、普萘洛尔C、维拉帕米D、苯妥英钠E、奎尼丁标准答案:A5、可引起金鸡纳反应的抗心律失常药:A、丙吡胺B、普鲁卡因胺C、妥卡尼D、奎尼丁E、氟卡尼标准答案:D6、可轻度抑制0相钠内流,促进复极过程及4相K+外流,相对延长有效不应期,改善传导,而消除单向阻滞和折返的抗心律失常药:A、利多卡因B、普罗帕酮、C、普萘洛尔D、胺碘酮E、维拉帕米标准答案:A7、能阻断α受体而扩张血管,降低血压,并能减弱心肌收缩力的抗心律失常药:A、普鲁卡因胺B、丙吡胺C、奎尼丁D、普罗帕酮E、普萘洛尔标准答案:C8、胺碘酮不具有哪项作用:A、阻滞4相Na+内流,而降低浦氏纤维的自律新性B、抑制0相Na+内流,减慢传导C、阻滞Na+内流和K+外流,延长心房肌、房室结、心室肌及浦氏纤维的APD和ERP,消除折返激动D、抑制Ca2+内流,降低窦房结、房室结的自律性E、阻滞Na+内流,促进K+外流,相对延长所有心肌组织的ERP标准答案:E9、关于普罗帕酮叙述错误的是:A、重度阻滞4相Na+内流,降低自律性B、延长APD和ERP,消除折返C、阻滞钠通道,减慢传导D、阻断β受体,减慢心率,抑制心肌收缩力,扩张外周血管E、有轻度普鲁卡因样局麻作用标准答案:D10、普萘洛尔不具有的作用A、阻断心脏β受体,降低窦房结,房室结的自律性B、大剂量或高浓度是可抑制窦房结及浦氏纤维的传导C、治疗量时可促进K+外流,缩短APD和ERP,相对延长ERPD、治疗量时可产生膜稳定作用,延长APD和ERPE、高浓度或大剂量时可、产生膜稳定作用,而延长APD和ERP标准答案:D11、禁用于慢性阻塞性支气管病患者的抗心律失常药物:A、胺碘酮C、普鲁卡因胺D、利多卡因E、苯妥英钠标准答案:B12、易引起药热,粒细胞减少和红斑狼疮综合症等过敏反应的抗心律失常药物:A、普鲁卡因胺B、维拉帕米C、利多卡因D、普罗帕酮E、普萘洛尔标准答案:A13、室性早搏可首选:A、普萘洛尔B、胺碘酮C、维拉帕米D、利多卡因E、苯妥英钠标准答案:D14、利多卡因对下列哪种抗心律失常无效:A、室颤B、失性早搏C、室上性心动过速D、心肌梗死所致的室性早搏E、强心苷中毒所致的室性早搏标准答案:C15、下列抗心律失常药不良反应中,哪一项叙述是错误的;A、丙吡胺可致口干,便秘及尿潴留B、普鲁卡因胺可引起药热,粒细胞减少C、利多卡因可引起红斑狼疮综合症D、普罗帕酮可减弱心肌收缩力,诱导急性左心衰竭,或心源性休克E、胺碘酮可引起间质新肺炎,肺泡纤维化标准答案:C二、思考题1简述抗心律失常药的分类。
21第22章抗心律失常药
![21第22章抗心律失常药](https://img.taocdn.com/s3/m/d43acf08bed5b9f3f90f1c2d.png)
快反应细胞的跨膜电位及其离子流基础
P208~210
静息电位和最大舒张电位(自律细胞)
动作电位(AP):据周期内的不同特点,可
将其分为下列5个时相。 0相(去极化期) 1、2、3相(复极期)
4相(静息期)
静息电位和最大舒张电位
心肌细胞由于膜内外各种离子的分布浓度差
异,形成膜内较膜外负约90mV的极化状态, 这一电位差称静息电位,在自律细胞称最大 舒张电位。
早后去极和迟后去极
3.2 冲动的传导异常P210-212
传导阻滞:
原因包括:
①膜反应性降低;②膜已部分去 极,膜电位上移,0相去极减慢; ③快反应细 胞产生慢反应电活动。 折返激动: 原因包括: ①单相传导阻滞;②房室旁路的 形成。
单相传导阻滞
房室旁路的形成
4 抗快速型心律失常药1作用机制P212-213
心肌细胞兴奋性的变化P208-210
心肌细胞在一次兴奋后的不同时期内,其兴奋性随之发生一 系列变化,据此可分为下列4个时相。 ①绝对不应期:强刺激不能引起细胞膜去极化(V:>55mV)。 ②局部反应期:强刺激可引起细胞膜去极化,但不产生AP (V:-60mV~-55mV)。 ③相对不应期:阈上刺激可引起细胞膜去极化并产生AP (V:-80mV- -60mV)。 ④超常期:阈下刺激即可引起细胞膜去极化并产生AP(V: 〈-80mV)。 以上绝对不应期和局部反应期合称有效不应期。此期内 强刺激也不产生AP,故当冲动在此时传入,即会消失于此处, 引起传导障碍。
2 心脏电生理特点P208-210
由于心律失常的种类繁多、发病机制不一,临床上应用的抗 心律失常药物的作用机制又不同,产生的效应也不一,故只 适于治疗不同类型的心律失常,否则不但不会产生治疗作用, 且会加重心律失常或产生新的甚至不可预知的心律失常及其 他毒副作用。因此,首先必须了解心律失常的电生理基础及 抗心律失常的作用机制。 2.1 心肌的跨膜电位及其离子流基础 2.2 快反应与慢反应电活动 2.3 心肌细胞的自律性 2.4 兴奋性和不应期 2.5 膜反应性和冲动的传导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、心肌细胞的分类心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。
除此以外,还具有兴奋性、传导性而无自律性。
另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。
无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。
根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。
快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。
其动作电位0相除极由钠电流介导,速度快、振幅大。
快反应细胞的整个APD中有多种内向电流和外向电流参与。
慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。
慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。
有关两类细胞电生理特性的比较见表1。
表1快反应细胞和慢反应细胞电生理特性的比较参数快反应细胞慢反应细胞静息电位-80~-95mV -40~-65mV 0期去极化电流I Na I Ca0期除极最大速率200~700V/s 1~15V/s超射+20~+40mV -5~+20mV 阈电位-60~-75mV -40~-60mV 传导速度0.5~4.0m/s 0.02~0.05m/s兴奋性恢复时间3期复极后10~50ms 3期复极后100ms以上4期除极电流I f I k,I Ca,I f二、静息电位的形成静息电位(restingpotential,RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。
利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。
在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。
各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。
如Na-K泵(Na-Kpump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。
Na-K-ATP 酶的磷酸化需要分解ATP,通常每分解一分子ATP可将3个Na+转运至膜外,同时将2个K+转运至膜内。
心肌细胞外Ca2+([Ca2+]0)和细胞内Ca2+([Ca2+]i)相差万倍,维持Ca2+跨膜浓度梯度的转运系统其一是位于细胞膜上的Na+/Ca2+交换体(Na+/Ca2+exchanger),它的活动可被ATP促进,但不分解ATP,因而也不直接耗能。
Na+/Ca2+交换体对Na+和Ca2+的转运是双向的,可将Na+转入胞内同时将Ca2+排出胞外(正向转运),也可将Na+排出而将Ca2+转运至胞内(反向转运)。
转运的方向取决于膜内外Na+、Ca2+浓度和膜电位。
无论是正向还是反向转运,其化学计量学都是3个Na+与1个Ca2+的交换,Na+/Ca2+交换电流(I Na/I Ca)为内向电流,电流方向与Na+流动的方向相一致,Na+内流而Ca2+外排。
经Na+/Ca2+交换排出Ca2+的过程是间接地以Na泵的耗能活动为动力的。
另一个维持Ca2+跨膜梯度的转运系统是位于肌质网(sarcoplasmicreticulum,SR)膜上的Ca泵起着主要作用。
Ca泵也称Ca-ATP酶,它每分解一分子ATP可将胞浆中2个Ca2+逆电化学梯度转动至SR内,使[Ca2+]i降低到0.1µmol·L-1以下。
心肌细胞膜上也存在Ca-ATP酶,可逆电化学梯度将胞浆内Ca2+转运至胞外。
带电功率离子的跨膜流动将产生膜电位的变化,变化的性质和幅度决定于电流的方向和强度。
离子电流的方向是以正电荷移动的方向来确定的;正电荷由胞外流入胞内的电流为内向电流,它引起膜的去极化;正电荷由胞内流出胞外的电流称为外向电流,它引起膜的复极化或超极化。
心室肌、心房肌的RP能保持稳定,是由于静息状态下内向电流与外向电流大小相等,电荷在膜两侧的净移动为零。
决定RP的离子电流主要是Na+和K+。
原因是静息状态下膜对Ca2+几乎没有通透性,其作用可以忽略。
Cl-是一个被动分布的离子,它不决定RP,而是RP决定它的分布。
以上分析表明一个稳定的RP,其外向的K+电流和内向的Na+电流相等。
RP主要取决于膜的K+电导和Na+电导。
膜对哪一种离子的电导更大,RP就更接近哪一种离子的平衡电位。
静息时,K+电导》Na+电导,RP接近于K+平衡电位。
三、心肌细胞动作电位的产生机制动作电位(actionpotential,AP)是指一个阈上刺激作用于心肌组织可引起一个扩布性的去极化膜电位波动。
AP产生的基本原理是心肌组织受到刺激时会引起特定离子通道的开放及带电离子的跨膜运动,从而引起膜电位的波动。
由于不同心肌细胞具有不同种类和特性的离子通道,因而不同部位的心肌AP的开关及其它电生理特征不尽相同。
(一)心室肌、心房肌和普肯耶细胞动作电位心室肌、心房肌和普肯耶细胞均属于快反应细胞,AP形态相似。
心室肌AP复极时间较长(100~300ms),其特征是存在2期平台。
AP分为0,1,2,3,4期。
0期:除极期,膜电位由-80~-90mV在1~2ms内去极化到+40mV,最大去极化速度可达200~400V/s。
产生机制是电压门控性钠通道激活,Na+内流产生去极化。
1期:快速复极早期,膜电位迅速恢复到+10±10mV。
复极的机制是钠通道的失活和瞬间外向钾通道Ito的激活,K+外流。
在心外膜下心肌Ito电流很明显,使AP出现明显的尖锋;在心内膜下心肌该电流很弱,1期几乎看不到。
2期:平台期,形成的机制是内向电流与外向电流平衡的结果。
平台期的内向电流有I Ca-L,I Na+/Ca2+,以及慢钠通道电流。
其中最重要的是I Ca-L,它失活缓慢,在整个平台期持续存在。
I Na+/Ca2+在平台期是内向电流,参与平台期的维持并增加平台的高度。
慢钠通道电流是一个对TTX高度敏感的钠电流,参与平台期的维持。
参与平台期的外向电流有I k1,I k 和平台钾通道电流I kp。
I Ca-L的失活和I k的逐渐增强最终终止了平台期而进入快速复极末期(3期)。
3期:快速复极末期,参与复极3期的电流有I k,I k1和生电性Na泵电流。
3期复极的早期主要是I k的作用,而在后期I k1的作用逐渐增强。
这是因为膜的复极使I k1通道开放的概率增大,后者使K+外流增加并加速复极,形成正反馈,使复极迅速完成。
4期:自动除极期(又称舒张期自动除极期),主要存在于自律细胞,如普肯耶细胞和窦房结细胞。
普肯耶细胞4期除极的最重要的内向电流为I f电流。
由于它激活速度较慢,故它的4期除极速率较慢。
在普肯耶细胞4期除极的后期,稳态的Na+窗电流参与自动除极过程。
窦房结细胞参与4期除极的离子有延迟整流钾电流(I k),起搏电流(I f),电压门控性I Ca-L,I Ca-T。
这些离子电流没有一个能独立完成窦房结的4期除极,外向I k衰减,相当于内向电流逐渐加强,在4期除极中起主要作用,也是4期除极的主要机制;I f超极化激活,故在膜电位负值较大的细胞起较大作用;Ca2+内流主要参与4期后半部分的除极。
心房肌动作电位与心室肌相比,主要特点是:①1期复极较迅速,平台期不明显,因为心房肌I to电流较强而I Ca-L较弱;②3期复极和静息期有乙酰胆碱激活的钾通道K Ach参与。
普肯耶细胞属于快反应自律细胞,其AP与心室肌相比一个显著区别是具有4期自动除极过程。
普肯耶细胞I k1电流较强,RP可达-90mV。
0期最大除极速率高;它的I to电流较强,1期复极速度较快;它的平台期持续时间长,可达300~500ms。
(二)窦房结和房室结细胞动作电位窦房结细胞属于慢反应细胞,其AP与心室肌相比一个特点是0期去极化幅度小,没有1期和2期,由0期直接过渡到3期,也具有4期自动除极过程。
另一个特点是窦房结产生AP各时相的离子电流也与快反应细胞不同。
0期去极化是I Ca-L激活引起的,激活过程较慢,故0期的去极化速度低。
3期复极主要是由于I Ca-L的失活和I k的激活形成的,I KAch也参与了3期复极。
房室结细胞AP的0期除极速度与幅度略高于窦房结,而4期去极化速度较低。
四、心肌细胞的电生理特性(一)兴奋性1.心肌兴奋性的产生机制兴奋性(excitability)是指心肌细胞受刺激后产生动作电位的能力。
包括静息电位去极化到阈电位水平以及有关离子通道的激活两个环节。
对快反应细胞来说,形成AP的关键是钠通道的激活。
当静息电位绝对值高于80mV 时,所有钠通道都处于可开放状态,接受阈刺激即可产生动作电位。
随着膜的去极化,电压门控钠通道开放的概率增大,当刺激能使膜电位去极化到某一临界值时,这一临界值称为阈电位(thresholdpotential),内向钠电流的强度充分超过了背景外向电流使膜迅速去极化形成AP的0期。
慢反应细胞形成AP的关键是钙通道的激活而产生的。
2.影响兴奋性的因素心肌兴奋性主要取决于静息膜电位的大小及阈电位水平。
静息膜电位绝对值减小,阈电位水平下降均能提高心肌兴奋性。
其中阈电位水平是最重要的。
决定阈电位的主要因素是钠通道的机能状态。
虽然钠通道的关闭状态和失活状态都是不导通的,但它们对兴奋性的影响却是截然相反的。
关闭状态的通道越多,兴奋性越高;而失活状态通道所占的比例越大,细胞就越不容易兴奋。
在此处简述一下钠通道的三种机能状态。
根据钠通道的Hodgkin-Huxley(H-H)工作模型,电压依赖性钠通道受膜电位的影响,在不同电压影响下,通道蛋白发生构象变化而使通道不断转换于静息态(restingstate)、开放状态(openstate)和失活状态(inactivestate)。
通道内侧有m激活闸门和h失活闸门来控制通道的开启和关闭(图6-1-2)。
静息时,m门位于通道内,使通道处于关闭状态,即静息态;兴奋时,在去极化作用下,m闸门激活而移出通道外,使通道开放,Na+内流,即为激活态;但在去极化作用下,原来位于通道外的h闸门也被激活,而以稍慢的速度移到通道内部,从而使通道开放瞬间后失活而关闭,即为失活态;随后在膜电位复极化的作用下,m和h闸门又逐渐移到原来的位置,即m闸门位于通道内,h闸门位于通道外,进入静息状态,此时兴奋恢复正常。
单从电压依赖性上看,两个闸门几乎没有同时开放的可能性,但两个闸门的动力学参数相关很大,激活门开放的时间常数τm比失活门关闭的时间常数τh 小得多,若刺激使膜从静息状态迅速去极化时,激活门迅速开放而失活门还未来得及关闭,钠通道便进入两个闸门都开放的激活状态,此时Na+内流。