八年级数学梯形课件1
数学:3.6《三角形、梯形的中位线》课件(1)(苏科版八年级上)
②一个梯形的上底长10 cm,中位线长16 cm,则其
下底长为 22 cm;
③已知梯形的中位线长为6 cm,高为8 cm,则该梯
形的面积为___4_8____ cm2 ;
④已知等腰梯形的周长为80 cm,中位线与腰长相等,
则它的中位线长 c2m0;
例 2 : 如 图 , 在 梯 形 ABCD 中 ,
是 …( ) 11
15
A.10
B.2 C. 2 D.12
A
D
B
CE
通过本节课的学习你有 什么收获?
1、梯形中位线的定义 2、梯形中位线定理
3、梯形中位线与三角形中位线的 区别与联系
• 例1.如图,梯子各横木条互相平行,且
A1A2 A2 A3 A3 A4 A4 A5 B1B2 B2B3 B3B4 B4B5
已知横木条 A1B1 48cm, A2B2 44cm 求横木条 A3B3、A4B4、A5B5 的长。
①一个梯形的上底长4 cm,下底长6 cm,则其中位
AD∥BC , AB=AD+BC , P 为 CD 的
中点.求证:AP⊥BP
A
D
E
P
B
C
拓展练习 :
1、如图,等腰梯形ABCD中,
D
C
两条对角线AC、BD互相 E O F
垂直,中位线EF长为8cm,
求它的高CH。
A
HB
G
2、 如图,在梯形ABCD中,
AD∥BC,对角线AC⊥BD,且AC=
12,BD=9,则此梯形的中位线长
2
梯形的中位线与底边之间既有位置上的 平行关系,也有数量上的特殊关系。
梯形面积公式
数学:19.3《梯形》(第2课时)课件(人教新课标版八年级下)
能求出梯形ABCD的面积吗?有几种方法?
1 2
当堂导练
例六变式训练
导学讲义P69课后练习3
梯形ABCD中,AD ∥BC,AE ⊥BC,AE=12,BD=15, AC=20,求梯形ABCD面积 解:过点D作DF ∥AC交BC延长线于F 作DM ⊥BC于点M 因为AD ∥BC,所以得证□ADFC 所以AD=CF ,AC=DF=20 因为DM⊥BC ,DM=AE=12 F 所以BM=9,FM=16(勾股定理) 所以BF=9+16=25=BC+AD 所以梯形面积 =(AD+BC)*DM/2
梯形(二)
梯形中常见辅助线
青羊实验中学八年级数学组 樊刚
预习反馈:
1根据转化思想,梯形的问题应该转 化成什么图形的问题去解决? 2梯形常用的辅助线有哪些? 它们各自的作用是什么?
当堂导学 一、延长两腰,将梯形转化成三角形.
例一:如图,梯形ABCD中,AD∥BC, AD=5,BC=9,∠B=80°,∠C =50°.求AB的长.
把上下底之差、两腰转化到同一个三角形中。可利用三角 形知识解决问题。
F
C
还有其它的平移一腰的方式吗?
当堂导学
例2 如图,梯形ADCB中,AD∥BC,BC=
8cm,AB=7cm,AD=6cm,求DC的取值 范围. 若DC为奇数,则梯形是什么梯形?
6
7 7 6 2 E 8 解:过点D作DE ∥AB交BC于E 因为 AD ∥BC,所以四边形ABED为 平行四边形。 所以AD=BE=6,AB=DE=7,CE=2。 在△CDE中,DE-CE<DC<DE+CE, 所以5cm<DC<9cm. 当DC为奇数时,DC=7cm,
12 15 E
20 M
人教版八年级数学讲义梯形及等腰梯形(含解析)(2020年最新)
第19讲梯形及等腰梯形知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习梯形及等腰梯形。
梯形和等腰梯形属于四边形章节,选择填空中会涉及到,也经常出现在几何大题中,是中考考查范围内的一个重要知识点,熟练掌握一般梯形、直角梯形和等腰梯形及它们的性质和判定,灵活运用并处理含梯形的综合类型题目.知识梳理讲解用时:20分钟梯形的认识1、定义:一组对边平行而另一组对边不平行的四边形叫做梯形(概念记清楚哦)一般梯形梯形标注:梯形是特殊的四边形,有且只有一组对边平行哦梯形的分类2、梯形的分类:一般梯形、特殊梯形(直角梯形、等腰梯形)直角梯形:有一个角是直角的梯形叫做直角梯形等腰梯形:两腰相等的梯形叫做等腰梯形直角梯形等腰梯形AB//CD AB//CDAD≠BC AD=BCAD⊥CD AD不平行BC梯形的中位线3、梯形的中位线:连接梯形两腰上的中点的线段叫做梯形的中位线. 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半你知道怎么证明吗?EF//AB//CDEF=12(AB+CD)等腰梯形的性质和判定1、等腰梯形的性质定理性质定理1:等腰梯形同一底边上的两个角相等性质定理2:等腰梯形的两条对角线相等性质3:等腰梯形既是轴对称图形,只有一条对称轴(底边的垂直平分线)∠A=∠B AC=BD 虚线为等腰梯形的对称轴∠C=∠D2、等腰梯形的判定定理判定定理1:同一底边上两个内角相等的梯形是等腰梯形判定定理2:对角线相等的梯形是等腰梯形判定3:利用定义课堂精讲精练【例题1】已知,在梯形ABCD中,AD∥BC,AD=4,AB=CD=6,∠B=60°,那么下底BC的长为.【答案】10【解析】首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,进而得到CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.解:如图,过A作AE∥DC交BC与E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=EC=4,AE=CD,∵AB=CD=6,∴AE=AB=6,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=6,∴BC=6+4=10.故答案为:10.讲解用时:3分钟解题思路:此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形和等边三角形.难度: 3 适应场景:当堂例题例题来源:普陀区期中年份:2017【练习1.1】如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB= .【答案】5【解析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.﹣BE=BC﹣AD=7﹣2=5.∴AB=DE=CE=BC故答案为:5.讲解用时:3分钟解题思路:此题综合考查了平行四边形的判定及性质、平行线的性质、等角对等边的性质,解题的关键是作平行线构造平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形进行求解.难度: 3 适应场景:当堂练习例题来源:潍坊三模年份:2016【例题2】如图,在梯形ABCD中,AB∥CD,∠ABC=90°,如果AB=5,BC=4,CD=3,那么AD= .【答案】2【解析】试题分析:过点D作DE⊥AB于点E,后根据勾股定理即可得出答案.解:过点D作DE⊥AB于点E,如下图所示:则DE=BC=4,AE=AB﹣EB=AB﹣DC=2,AD==2.故答案为:2.讲解用时:3分钟解题思路:本题考查了梯形及勾股定理的知识,难度不大,属于基础题.教学建议:利用梯形和勾股定理的知识进行求解.难度: 3 适应场景:当堂例题例题来源:普陀区期末年份:2016【练习2.1】如图,已知梯形ABCD中,AD∥BC,E为AB中点,DE⊥EC.求证:(1)DE平分∠ADC;(2)AD+BC=DC.【答案】(1)DE平分∠ADC;(2)AD+BC=DC【解析】试题分析:(1)延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,推出∠CDF=∠F,由∠ADF=∠F即可证明;(2)由△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论;证明:(1)延长DE交CB的延长线于F,∵AD∥CF,∴∠A=∠ABF,∠ADE=∠F.在△AED与△BEF中,,∴△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴∠CDF=∠F,∵AD∥CF,∴∠ADE=∠F,∴∠ADE=∠CDF,∴ED平分∠ADC.(2)∵△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴CD=CF=BC+BF,∴AD+BC=DC.讲解用时:4分钟解题思路:本题考查梯形、全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是因为点E是中点,所以应该联想到构造全等三角形,这是经常用到的解题思路,同学们要注意掌握.教学建议:学会运用梯形、全等三角形的判定和性质、线段垂直平分线的性质进行解题.难度: 4 适应场景:当堂练习例题来源:松江区期末年份:2017【例题3】如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .【答案】4【解析】试题分析:根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG 是△ABD的中位线,即可求得EG的长,则FG即可求得.解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.教学建议:熟练掌握梯形的中位线、三角形的中位线知识并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】边长为8的正方形ABCD中,E、F是边AD、AB的中点,连接CE,取CE中点G,那么FG= .【答案】6【解析】试题分析:根据题意,正方形ABCD的边长为8,E边AD的中点,可得出AE、BC的长;又由点F、G分别是AB、CE的中点,根据梯形的中位线定理,可得出FG的长;解:如图,∵正方形ABCD的边长为8,E、F是边AD、AB的中点,∴AE=4,BC=8,又∵点G是CE的中点,∴FG为梯形ABCE的中位线,∴EF==×(4+8)=6.故答案为:6.讲解用时:3分钟解题思路:本题主要考查了梯形的中位线定理,熟练掌握梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】在梯形ABCD中.AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是.【答案】1:4【解析】试题分析:过A作AG⊥BC于G,交EF于H,再根据梯形的中位线定理及面积公式解答即可.解:过A作AG⊥BC于G,交EF于H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF?AH=xcm2,∴EF?AH=2xcm2,∴S梯形ABCD=(AD+BC)?AG=×2EF×2AH=2EF?AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.故答案为:1:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂例题例题来源:六安期末年份:2013【练习4.1】在梯形ABCD中,AD∥BC,E、F分别是边AB、CD的中点.如果AD=5,EF=11,那么BC= .【答案】17【解析】试题分析:根据梯形中位线定理“梯形的中位线长是上下底和的一半”,进行计算.解:根据梯形中位线定理,得EF=(AD+BC),则BC=2EF﹣AD=2×11﹣5=17.讲解用时:2分钟解题思路:考查了梯形的中位线定理.教学建议:熟练掌握并应用梯形的中位线定理.难度: 2 适应场景:当堂练习例题来源:无年份:2018【例题5】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC,∠A=60°.求:梯形ABCD的周长.【答案】10【解析】试题分析:由等腰梯形的性质得出∴∠ABC=∠A=60°.周长∠ABD=∠CBD=30°,∠ADB=90°,由直角三角形的性质得出AD=AB.AB=2AD=4.证出∠CDB=∠CBD.得出CD=BC=2.即可求出梯形ABCD的周长.解:在梯形ABCD中,∵DC∥AB,AD=BC=2,∠A=60°.∴∠ABC=∠A=60°.∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∴∠ADB=90°,∴AD=AB.∴AB=2AD=4.又 DC∥AB,∴∠CDB=∠ABD,又∠ABD=∠CBD,∴∠CDB=∠CBD.∴CD=BC=2..∴梯形ABCD的周长=AB+BC+CD+AD=4+2+2+2=10讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质和判定并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【答案】(1)2√3;(2)3√3【解析】试题分析:(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质并灵活应用.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求对角线BD的长和梯形ABCD的面积.【答案】3√3【解析】根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解,过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在Rt△ADH和Rt△BCG中,,∴Rt△ADH≌Rt△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴梯形ABCD的面积=.讲解用时:4分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:熟练地运用等腰梯形、平行线、等腰三角形的性质进行解题.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】已知:如图,等腰梯形ABCD的中位线EF的长为6cm,对角线BD平分∠ADC,下底BC的长比等腰梯形的周长小20cm,求上底AD的长.【答案】4cm【解析】试题分析:由等腰梯形的性质得出AB=DC,AD∥BC,得出∠ADB=∠CBD,,由已知再由已知条件得出BC=DC=AB,由梯形中位线定理得出AD+BC=2EF=12cm条件求出BC,即可得出AD的长.解:∵四边形ABCD是等腰梯形,∴AB=DC,AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC=AB,∵EF是等腰梯形的中位线,,∴AD+BC=2EF=12cm∵下底BC的长比等腰梯形的周长小20cm,﹣20,∴BC=AB+BC+CD+AD即BC=AB+DC﹣8,∴BC=8cm,∴AD=4cm.讲解用时:3分钟解题思路:本题考查了等腰梯形的性质、等腰三角形的判定、梯形中位线定理;熟练掌握等腰梯形的性质,并能进行推理论证与计算是解决问题的关键.教学建议:利用等腰梯形、等腰三角形的判定、梯形中位线等知识点进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.(1)求证:四边形AECD是平行四边形;(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.【答案】(1)四边形AECD是平行四边形;(2)四边形AECD是菱形【解析】试题分析:(1)由等腰梯形的性质(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性质(等边对等角)证得∠DCB=∠AEB,即可得AE∥DC,则四边形AECD为平行四边形;(2)根据平行线的性质,易得∠EAC=∠DCA,又由已知,由等量代换即可证得∠EAC=∠ECA,根据等角对等边,即可得AE=CE,则四边形AECD为菱形.证明:(1)∵在等腰梯形ABCD中,AD∥BC,AB=DC,∴∠B=∠DCB,∵AE=DC,∴AE=AB,∴∠B=∠AEB,∴∠DCB=∠AEB,∴AE∥DC,∴四边形AECD为平行四边形;(2)∵AE∥DC,∴∠EAC=∠DCA,∵∠B=2∠DCA,∠B=∠DCB,∴∠DCB=2∠DCA,∴∠ECA=∠DCA,∴∠EAC=∠ECA,∴AE=CE,∵四边形AECD为平行四边形,∴四边形AECD为菱形.讲解用时:3分钟解题思路:此题考查了等腰梯形的性质、平行四边形的判定、菱形的判定以及等腰三角形的判定与性质.解题的关键是仔细识图,应用数形结合思想解答.教学建议:利用等腰梯形、平行四边形的判定、菱形的判定等知识点进行解题.难度: 3 适应场景:当堂例题例题来源:连云港校级模拟年份:2010【练习7.1】如图,在梯形ABCD中,AD∥BC,BA=AD=DC,点E在边CB的延长线上,并且BE=AD,点F在边BC上.(1)求证:AC=AE;(2)如果∠AFB=2∠AEF,求证:四边形AFCD是菱形.【答案】(1)AC=AE;(2)四边形AFCD是菱形【解析】试题分析:(1)由已知条件可判定四边形ABCD是等腰梯形,利用等腰梯形的性质以及给出的条件利用SAS可判定△ABE≌△ADC,从而可证得结论;,所以四边形AFCD是菱形.(2)由(1)和外角和定理可证得AD=DC=AF=CF证明:(1)∵AD∥BC,BA=AD=DC,∴梯形ABCD是等腰梯形,∴∠ABC=∠DCE,∵∠ABE+∠ABC=180°,∠DCE+∠D=180°,∴∠D=∠ABE,又∵BE=AD,∴△ABE≌△ADC,∴AC=AE.(2)∵∠AFB=∠CAF+∠FCA,∠AFB=2∠E,∴2∠E=∠CAF+∠FCA,∵∠E=∠DAC=∠DCA,又∵AD∥BC,∴∠DAC=∠FCA,,∴AD=DC=AF=CF∴四边形AFCD是菱形.讲解用时:3分钟解题思路:此题主要考查等腰梯形的性质及全等三角形的判定方法的综合运用,难度较大,解答此类综合题目还需从基本做起,掌握一些基本性质是解答此类题目必备的.教学建议:利用等腰梯形的性质、全等三角形的判定等知识点进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于.【答案】4【解析】只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.解:根据梯形的中位线定理,得另一底边长=中位线×2﹣一底边长=2×6﹣8=4.故答案为:4难度:2 适应场景:练习题例题来源:金山区二模年份:2018【作业2】如图,等腰梯形ABCD的面积为144,AD∥BC,AB=DC,且AC⊥BD.求等腰梯形ABCD的高.【答案】12【解析】过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F,将等腰梯形的面积转化为△DBE的面积,从而求得三角形的高即可得到等腰梯形的高.解:过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F.∵AD∥BC,∴四边形ACED是平行四边形.∴AD=CE,AC=DE.又∵四边形ABCD是等腰梯形,∴AC=BD.∴BD=DE.∴BF=FE.∵AC⊥BD,∴∠BGC=∠BDE=90°.∴.又∵AB=CD,∴△ADB≌△CED.∴S△BED=S梯形ABCD=144,∵BE?DF=144,∴×2DF2=144∴等腰梯形ABCD的高等于12.难度: 3 适应场景:练习题例题来源:普陀区期末年份:2014【作业3】如图,在等腰梯形ABCD中,AB∥DC,AC、BD是对角线,△ABD≌△ABE.求证:四边形AEBC是平行四边形.【答案】四边形AEBC是平行四边形【解析】根据等腰梯形的对角线相等,易得AC=BD,又由△ABD≌△ABE,易得AD=AE,BD=BE,则可证得AE=BC,AC=BE,根据有两组对边分别相等的四边形是平行四边形,可证得四边形AEBC是平行四边形.证明:∵四边形ABCD是等腰梯形,∴AD=BC,AC=BD,又∵△ABD≌△ABE,∴AD=AE,BD=BE,∴AE=BC,AC=BE,∴四边形AEBC是平行四边形.难度: 3 适应场景:练习题例题来源:香坊区期末年份:2011。
数学:3.6《三角形、梯形的中位线》课件(1)(苏科版八年级上)
3.6 梯形的中位线
张家港市锦丰初级中学
梯形的中位线定义:
连结梯形两腰中点的线段叫 做梯形的中位线。
A
D
梯形的中位线 有什么性质呢?
E
F
B
C
梯形中位线定理:梯形的中位线平
行于两底,并且等于两底和的一半。
A
D
M
N
B
C
E
动 已手知量:一在量 梯形ABCD中,AD∥BC, AM=MB,DN=NC,求证:MN∥BC, MN= 1(BC+AD)
①一个梯形的上底长4 cm,下底长6 cm,则其中位
线长为 5 cm;
②一个梯形的上底长10 cm,中位线长16 cm,则其
下底长为 22 cm;
③已知梯形的中位线长为6 cm,高为8 cm,则该梯
形的面积为___4_8____ cm2 ;
④已知等腰梯形的周长为80 cm,中位线与腰长相等,
则它的中位线长 c2m0;
2
梯形的中位线与底边之间既有位置上的 平行关系,也有数量上的特殊关系。
梯形面积公式
S梯形
1(a 2
b)h
中位线x高
• 例1.如图,梯子各横木条互相平行,且
A1A2 A2 A3 A3 A4 A4 A5 B1B2 B2B3 B3B4 B4B5
已知横木条 A1B1 48cm, A2B2 44cm 求横木条 A3B3、A4B4、A5B5 的长。
。
5.一个等腰梯形的对角线互相垂直,梯形的高为
2cm,,则梯形的面积为
。
6.有一个木匠想制作一个木梯,共需5根横木共 200cm,其中最上端的横木长20cm,求其他四根 横木的长度(每两根横木的距离相等)。
八年级数学梯形的概念、等腰梯形的性质、判定
梯形(一)梯形的有关概念1. 梯形:一组对边平行且另一组对边不平行的四边形叫做梯形 注:(1)梯形是特殊的四边形 (2)有且只有一组对边平行。
2. 梯形中平行的两边叫做梯形的底,短边为上底,长边为下底,与位置无关,不平行的两边叫做梯形的腰,梯形两底之间的距离叫做梯形的高,它是一底上的一点向另一底作的垂线段的长度。
3. 梯形的分类梯形⎪⎩⎪⎨⎧⎩⎨⎧等腰梯形直角梯形特殊梯形一般梯形(1)直角梯形:有一个角为直角的梯形为直角梯形(2)等腰梯形:两腰相等的梯形叫做等腰梯形 (二)梯形的性质 1. 一般梯形的性质 在梯形ABCD 中,AD ∥BC ,则∠A+∠B=︒180,∠C+∠D=︒180 2. 直角梯形具有的特征 在直角梯形ABCD 中,若AD ∥BC ,∠B=︒90,则∠A=︒90,∠C+∠D=︒180 3. 等腰梯形具有的性质 (1)等腰梯形同一底上的两个内角相等(2)等腰梯形的两条对角线相等(3)等腰梯形是轴对称图形,但不是中心对称图形,等腰梯形的对称轴是两底中点所在的直线。
4. 等腰梯形的判定 (1)利用定义: (2)同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形【典型例题】例1. 如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC 平分∠BAD ,∠B ︒=60,CD=2cm ,则梯形ABCD 的面积为 A. 2cm 33B. 2cm 6C. 2cm 36D. 2cm 12例2. 如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上一点,DE=BC ,(1)求证:∠E=∠DBC (2)判断△ACE 的形状例3. 如图,梯形ABCD 中,AD ∥BC ,AD=1,BC=4,AC=3,BD=4,求ABCD S 梯形。
例4. 如图,已知:AD 是△ABC 边BC 上的高线,E 、F 、G 分别是BC 、AB 、AC 的中点,求证:四边形EDGF 是等腰梯形。
浙江省温岭市城南中学八年级数学下册《梯形》课件
7
为3cm,一底边长为4cm,
则另一底边长为_1_c_m_或__7_c_m_.
B
E8
C
F
4、如图,梯形ABCD中AD∥BC,
∠C=70°,∠B=55°,AD=4, A
D
BC=6,则CD的长__2____
B
E
C
5、等腰梯形ABCD, AD∥BC, AC与BD相交于O, ∠BOC=120°, ∠BDC=80°,则∠DAB=______。 6、已知等1腰10梯° 形的一个底角是60°,它的两底 分别13cm, 37cm,它的周长为______。 7、等腰梯形的两条对角线互相9垂8c直m,一条对角线 长为6,则其高长为______,面积为_______。 8、若等腰梯形上底与3一2条腰长的和等1于8 下底的 长,则腰与上底的夹角为_____。 9、四边形的四个内角的度1数20之°比是1∶2∶3∶4, 则此四边形是___________。
(1)若AB+DC=BC,求证∠BEC=90°
DC
(2)若BE是∠ABC的平分线,求证∠BEC=90° E
A
B
例题:
1、如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折
梯形ABCD,使点B重合于D,折痕分别交边AB、BC于点F、
E,若AD=2,BC=8. 求:BE和DC的长 A
D
AD
F
梯形
10、在梯形ABCD中,已知AB∥CD,点E为BC的中 点, 设△DEA的面积为S1,梯形ABCD的面积为S2, 则S1与S2的关系为_S_2=_2_S__1 _. 11、梯形的上底长为a,下底长是上底长的3倍, 则梯形的中位线长__2_a______.
12、在梯形ABCD中,AD∥BC,对角线AC⊥BD,且 AC=12,BD=9,则此梯形的中位线长是__7_._5___.
数学:20.4《梯形》课件(沪科版八年级下)
A
D
B
C
例1:等腰梯形的对角线相等
已知:梯形ABCD中,AD∥BC,AB=DC. 求证:AC=BD.
证明:在梯形ABCD中, ∵AB=DC, ∴∠ABC=∠DCB, B 又∵BC=CB, ∴△ABC≌△DCB. ∴AC=BC.
A
D
C
例2(补充)如图,已知梯形ABCD中,DC∥AB, ∠A=40°,∠B=70°. D 求证:AB=AD+CD. A 证明:过点D作DE ∥ BC 交AB于点E。 ∵ DE ∥ CB DC ∥ BC 2 1
求证: ∠ B = ∠ C 证明:过点D作DE AB, ∥ 交BC于点E。 AD∥BC,DE∥ AB, ∵ C ∴AB=DE。∵ AB=DC,
B
1 E
等腰梯形性质定理:
等腰梯形在同一底上的 两个角相等。
∴ DE=DC。 ∴ ∠ 1= ∠ C。
∵
∠ 1= ∠ B,
∴ ∠ B= ∠ C。
A
D
B
E
F
C
自主探索四:等腰梯形是轴对称图形吗?
梯
形
二、教学目标:
1、知道梯形、等腰梯形、直角梯形的 有关概念;说出并证明等腰梯形的两 个性质;等腰梯形的同一底上的两个 角相等;两条对角线相等;
2、会运用梯形的有关概念和性质进行 论证和计算; 3、通过添加辅助线,把梯形的问题转 化成平行四边行或三角形问题上,体 会图形变换的方法和转化的思想。
一、动手实践
F
C
B
E
∴ DC=EB ,∠ 1= ∠ B 。 ∵ ∠ A= 40°, ∠ B= 70° ∴ ∠ 1= ∠ 2= 70° ∴ AD=AE 。 ∵ AB=AE+EB。 ∴ AB=AD+CD .
人教版初中八年级下册数学课件 《梯形》四边形课件
解:(1)36 平方单位
15 (2) 8
(3)当 P、Q、C 三点构成直角三角形时,有两种情况:
①PQ⊥BC 时,设 P 点离开 D 点 x 秒, 作 DE⊥BC 于 E,∴PQ∥DE. ∴CCDP =CCQE,5-5 x=23x,∴x=1153. ∴当 PQ⊥BC 时,P 点离开 D 点1153秒. ②当 QP⊥CD 时,设 P 点离开 D 点 x 秒.
5. (2)将①中的正方形改为矩形后(如图②),其 他条件不变,则(1)中的等量关系是否成立?
四、范例精析
4. (3)将(1)中的正方形改为平行四边形后(如 图③),仿照(1)写出一个命题并判断其真假(不 必说明理由)。
5. (4)如图④,设提醒面积为S。梯形的两条对角 线与两底边所围成的两个三角形面积分别为S1, S2,则,S ,之S1 间S有2 何等量关系?并说明你找到的 结论成立的理由。
4.如图,n+1个上底、两腰长皆为1,下底长为2
的等腰梯形的下底均在同一直线上,设四边
形面P1M积1N为1N,2 四边形S的1 面积为…P…2M,2N2四N3边形的
面积S2 记为,通过逐一PnM计n N算n N,n1可得=。 Sn
S, S2
Sn
四、范例精析
4. (1)如图①,设正方形的面积为S,它的两条对角 线与一组对边所围成的两个三角形的面积分别为 S1,S2,则S,,S1三者S2之间存在的等量关系为 _________________;
平移一腰
作两高
沪教版八年级数学下册2梯形课件
(2)试探究四边形ABCD四条边之间存在 的等量关系,并说明理由;
A
D
B 图8E
C
图9
(3)现有图8中的等腰梯形四个, 利用它们你能拼出一个新的等腰梯形 吗?若能,四人小组合作拼图,并贴 到答题卡背面。
A
D
B
C
图8
图
10
假如你是一位设计师,请选择安 阳具有代表性的一处地方(如:火车 站,殷墟博物苑,人民公园,市政广 场…)进行设计。你准备怎样用这些 等腰梯形图案来装扮节日的安阳?
ABCD四个内角的度数; ∠A=∠D=120°,∠B=∠C=60°
(2)试探究四边形ABCD四条边之间存在
的等量关系,并说明理由; BC=2AB=2AD=2CD
A
D
B
C
图8
图9
如图8,四边形ABCD是等腰梯形, AD//BC.由四个这样的等腰梯形可以拼出如 图9所示的平行四边形。
(1)求四边形ABCD四个内角的度数;
A
D
E
B
图5
C
B
C
图5
林州市红旗渠某一段的横截面可近似地
看作等腰梯形,如图:测得上口宽为7米,
渠底为3米,渠深为3米。求斜坡AB的长。
AB=√13
AE
米
F DA
E FD
B
C
图6
B
C
图7
如图8,四边形ABCD是等腰梯形,
AD//边形。 (1)求四边形
一组对边平行,另一组对边
不平行的四边形叫做梯形。
AE
D
B 图1 C
F
如图2,有一个角是直角的梯形叫做 直 角梯形。
如图3,两腰相等的梯形叫等腰梯形。
数学:19.3梯形-19.3.1等腰梯形的性质课件(人教新课标八年级下)
等腰梯形动画演示
请单击此处
结论:等腰梯形是轴对称图形
练习1:
课堂练习
如图,梯形ABCD,AD//CB, AB=DC,若∠B=750,则∠C,∠A与∠D 各为多少度?(口答)
A D
750
B C
练习2
课堂练习
求证:等腰梯形上底中点到下底两 端点距离相等 已知:在梯形ABCD中,AD//BC, AB=DC, 若E是AD的中点。
A 求证:AC=BD 证明: ∵ AB=DC(已知) B ∴ ∠ ABC= ∠ DCB (等腰梯形在同一底上的两个底角相等) ∵ BC=CB(公共边) ∴ △ABC≌△DCB(SAS) ∴ AC=DB(全等三角形的对应边相等) D
C
等腰梯形的性质
性质1:等腰梯形在同一底上的两角相等 性质2:等腰梯形的对角线相等
在梯形ABCD中,AD//BC, ∵ AB=DC ∴ ∠ ABC= ∠ DCB (等腰梯形在同一底上的两角相
A
D
等)
AC=DB(等腰梯形的对角线
相等)
B
C
小 结:
一、等腰梯形的性质: 1. 等腰梯形 2. 等腰梯形 3. 等腰梯形 4. 等腰梯形是
相等 相等 相等 图形
二、解决梯形问题的基本思路和 方法:通过添加适当的辅助线,把 梯形问题转化为 与 问 题来解决。
实物中的梯形
梯形的相关知识
上底 A 腰
E
D 腰
梯形的各要素
C F
B
高
下 底
梯形的分类
等腰梯形
直角梯形
等腰梯形的性质
等腰梯形
如图: 等腰梯形会具有那些 性质了,请大家猜想一下.
提示:从梯形的边,角两方面考虑
八年级数学梯形1
[单选]仓储管理包括()两部分。A.仓库管理和库存管理B.仓库管理和储存管理C.库房管理和储存管理D.库房管理和库存管理 [单选]船上海图一旦受潮,应()。A.尽量平放阴干B.尽快烘烤干C.尽可能晒干D.立即晒干或烤干 [单选]18岁未婚少女,14岁初潮,月经周期不规则,25日至60日,每次经期可达10余日,量多,无痛经。本例诊断最可能是()。A.月经过多B.黄体功能不足C.子宫内膜不规则脱落D.无排卵性功血E.排卵性功血 [单选,A2型题,A1/A2型题]生理性红细胞沉降率增快可见于()A.细菌感染B.肺结核C.女性月经期D.大手术E.旷巨球蛋白血症 [单选]在常温常压下,难溶气体是指溶解度在()的物质。A、10g以上B、1-10g之间C、0.01-1gD、0.01g以下 [单选]理论要不要经过实验验证:()A、一切理论都要B、有些理论不一定要 [问答题,简答题]维修用电设备时,应采取哪些安全措施? [问答题,简答题]导线温度升高,有何危害? [单选]关于躯体疾病所致精神障碍的共同特点,正确的是()。A.精神症状具有特异性(不同疾病引起不同的精神症状)B.精神障碍与原发病的病情平行发展C.急性期多数意识清晰D.精神症状相对比较固定E.预后一般不可逆 [配伍题,B1型题]口咽检查时应观察咽后壁()。</br>在口咽检查时应观察口咽粘膜()。</br>在口咽检查时应观察扁桃体()。</br>在口咽检查时应观察腭垂()。</br>在口咽检查时应观察软腭()。A.有无充血、溃疡或新生物B.有无下塌或裂开,双侧运动是否对称C.是否过长、分叉D.有 [单选]心室颤动时,首次直流电除颤用()A.100JB.150JC.200JD.300JE.360J或以上 [单选,A2型题,A1/A2型题]甲状旁腺功能减退症患者在滴注外源性PTH后,下列说法正确的是()。A.尿磷增加尿cAMP降低B.尿磷与尿cAMP无变化C.尿磷与尿cAMP降低D.尿磷降低尿cAMP增加E.尿磷与尿cAMP显著增加 [问答题,简答题]新户分配抄表段的原则是什么? [名词解释]俄狄浦斯情结(05年十月已考) [单选]患者以皮肤黏膜出血为主要临床表现,应选下列哪一组筛选试验()A.血小板计数,束臂试验,出血时间测定B.血小板计数,凝血酶时间,出血时间测定C.部分活化凝血活酶,凝血酶原时间测定及凝血酶时间测定D.纤维蛋白原,血块收缩,血小板计数E.血小板计数,部分活化凝血活酶时间 [单选,共用题干题]患者女,19岁,学生。因"亚急起凭空闻人语、疑人害、兴奋夸大、精力旺盛1月余"于2008年7月23日入院。患者诉1月前独自在家时听见同学们议论她很坏;感觉有人在谋害她,并被跟踪、监视;同时表现兴奋、半夜里学习,觉自己思维反应像火箭,能力无限大,可以统治宇宙 [多选]下列关于出口玩具的表述,正确的有()。A.我国对出口玩具及其生产企业实行质量许可制度B.我国对出口玩具及其生产企业实行注册登记制度C.出口玩具检验不合格的,应国外买方的要求也可先出口D.出口玩具必须逐批实施检验 [单选]下列哪些不属于颈浅丛属支()A.lesseroccipitalnerveB.greatauricularnerveC.transversenerveofnerveD.supraclavicularnerveE.trochlearnerve [单选]出境快件在其运输工具离境()小时前向离境口岸检验检疫机构办理报检手续。A.4B.8C.12D.24 [单选]家政服务员应做到的“五自”是()。A、自大、自爱、自信、自主、自强B、自尊、自爱、自卑、自暴、自强C、自尊、自爱、自信、自立、自强D、自尊、自爱、自弃、自立、自强 [填空题]如果需要在吊起的()、()以及汽缸盖下面进行清理结合面、涂抹涂料等工作时,应使用专用(),由检修工作负责人()后方可进行。 [单选]中华人民共和国海洋环境保护法规定了违法者应承担法律责任,包括民事责任,行政责任和三类。A.纪律责任B.法律责任C.刑事责任D.道德谴责 [填空题]多细胞动物起源于单细胞动物的证据有()、()、()。 [单选,A2型题,A1/A2型题]梅毒引起的鼻中隔穿孔多位于()。A.Little区B.鼻中隔前上部C.鼻中隔前下部D.鼻中隔骨部E.鼻中隔软骨部 [单选]当边际产量大于平均产量时()A.平均产量增加;B.平均产量减少;C.平均产量不变;D.平均产量达到最低点。 [多选]某企业报检一批出口玩具,并于9月10日领取了《出境货物通关单》,以下情况中,企业须重新报检的有()。A.该企业于11月20日持上述《出境货物通关单》办理报关手续。B.应客户的要求,在出口前更换了纸箱。C.临时更改出口口岸D.临时减少出口数量 [单选]()是指国家在一定时期内生产的最终产品和服务按价格计算的货币价值总量。A.总需求B.总需求价格C.总供给D.总供给价格 [单选]下列有关肺癌放疗的描述,哪项是正确的()A.根治性放疗适宜病灶局限于一侧肺内的早期病例B.根治性放疗中心型肺癌时先用小野照射病灶C.根治性放疗中心型肺癌照射野只包括患侧纵隔D.大野完成根治剂量的3/4时,改小野治疗,保护脊髓E.对肺功能差,大量胸腔积液的患者.可用根 [单选]装置引蒸气时不用进行的操作有:()。A、排凝B、暖管C、检查保温D、检查流程 [单选]城乡规划是()。A.一定时期内城市和乡村建设、发展和管理的依据B.包括城市规划和乡村规划C.城市或乡村在一定时期内的发展计划D.城乡空间布局各项建设的综合部署和具体安排E.以上都是 [单选]教育部先后于1999年和2002年分别颁布了《关于加强中小学心理健康教育的若干意见》与《中小学心理健康教育指导纲要》两个重要文件,对中小学心理健康教育的目的、任务、方法、形式和具体内容都作出了明确的规定。根据文件精神和当前中小学实际,你认为下列论述正确的是:() [单选]缺陷责任期满后,承包人向发包人申请返还保证金。按照《建设工程质量保证金管理暂行办法》规定,可视同发包人认可返还承包人的保证金申请的条件是()。A.在接到该申请后l4日内不予答复,且经催告后7日内仍不予答复B.在接到该申请后l4日内不予答复,且经催告后14日内仍不予 [单选,A1型题]肺功能检查时,阻塞性通气功能障碍最主要的表现是()A.肺活量降低B.残气量增加C.气流指数>1.0D.第一秒用力呼气容积降低E.肺总量降低 [问答题,简答题]励磁变的作用? [名词解释]水系沉积物地球化学找矿 [问答题,简答题]写出香农公式,并说明其物理意义。当信道带宽为5000Hz,信噪比为30dB时求信道容量。 [单选]通过遥控器的以下组合操作来操作高清变焦摄像机的变焦()A、shift键↑+滚转指令→B、shift键↑+俯仰指令↓↑C、shift键↑+滚转指令←D、shift键↑+油门指令↓↑ [单选]()是提出旅游规划思路的前提条件,应当立足当前,以发展的视角进行实事求是的分析判断。A.旅游发展环境分析B.旅游资源分析C.环境保护规划D.旅游业发展战略 [单选]下列属于普通保险的是()。A.农业保险B.社会保险C.进出口信用保险D.财产保险 [单选]在淬火应力()材料的破断强度时,可以引起淬火裂纹。A、大于B、小于C、等于D、大于等于
人教版八年级数学第19章第3节《梯形》
探 索 (2) 你发现了什么?
请你用手中的等腰梯形纸片,探索等腰梯形的 角有什么关系?
A
D
B
C
∠A=∠D, ∠B=∠C.
快验证你的发现吧!等腰梯形同一底边上的两个角相等
已知:在梯形ABCD中,AD∥BC,AB=DC,求证: ∠B=∠C,∠A=∠D
A
D证明:过点D作DE∥AB交BC于点E ∵DE∥AB
在已知△ABC内部剪一刀,并使所剪过的 线DE与边BC平行,则剪下△ADE后剩下部分 是一个什么图形?
E B
A
梯形的定义:
D 一组对边平行,另一组对边不平行的
四边形叫做梯形.
C
由四边形如何得到:平行四边形、梯形?
平行四边形
四边形
梯形
梯形的有关概念:
画一个梯形,并指出梯形的上底,下底和腰,画出梯形的高
CB
D
A
如图,梯形ABCD,AD//CB, AB=CD,若E是AD的中点。求证:
EB=EC.
E D
A
B
C
活动、体验、探究
如图,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,
AD=18cm,BC=21cm,点P从点A开始沿AD边 向点D以1cm每秒的速度移动,点Q从点C A
P
D
开始沿CB向点B以2cm每秒的速度移动,
∠B=∠C,∠A=∠D
A
D
A
D
B
E
C
平移一腰是梯形常用
的辅助线。
BE F C
过过上点底A作两A端E⊥点BC作于点高E也 是过梯点形D作常D用F⊥的BC辅于助点F线。
又来验证你的发现! 等腰梯形的两条对角线相等.
已知:在梯形ABCD中,AD∥BC,AB=DC,对角
八年级数学下册《19.3梯形-等腰梯形的判定》课件
B
作腰的平行线
延长两腰
C
E
作对角线的平行线
思考: 已知:在△ABC中,AB = AC,BD、
CE是高。 求证:四边形BCDE是等腰梯形.
A
思路点拔:设法证Βιβλιοθήκη DE∥ BCE D C变式一:将题中的高改为角平分线,
结论是否仍成立? B
变式二:将题中的高改为中线,结论是否仍成立?
求证:AB=DC. A
D
B
C
E
等腰梯形的判定定理:
对角线相等的梯形是等腰 梯形
1. 如图,矩形ABCD中,点E、F在边AD上, AE=FD.求证: 四边形EBCF是等腰梯形.
2 、在梯形ABCD中,AD∥CB,∠A = ∠D, E为AD中点。 求证:EB = EC E
A D
B
C
思路点拔:由∠A = ∠D可得 AB = CD
3.等腰梯形的对角线相等. 4.等腰梯形是轴对称图形,
过两底中点的直线是它的对称轴. 如何判定一个梯形是否为等腰梯形呢?
根据等腰梯形的定义 两腰相等的梯形是等腰梯形.
你还能总结出哪些判定的方法?
在同一底上的两个内角相等的梯形是等腰梯 形.
如图,已知:在梯形ABCD中, AD∥BC,∠B= ∠C .
八年级数学下册
等腰梯形的判定
复习提问
1、什么样的四边形叫梯形? 什么样的四边形是等腰梯形? 2、等腰梯形有哪些性质? 3、解决梯形问题时常见的辅助线有哪些?
E A D A D
A
B E C B
D C B E F C
作腰的平行线
延长两腰
过上底端点作高
等腰梯形具有那些性质?
1.等腰梯形的两条腰相等.
数学:8.3《等腰梯形》课件(鲁教版八年级下)
E A 1 2 D
B
C
A
腰
外 , 你等 还腰 知梯 道形 它除 什了 么定 特义 性可 ?知 的 性 质
B
腰
C ∴AB∥CD,AC=BD
A O B C E D
证明:作DE∥AC,交BC延长线于点E,则∠2= ∠E ∵ AD∥BC ∴四边形ACED是平行四边形 ∴ AC=DE ∴∠ 1= ∠E即 ∠ 1= ∠2 ∵ AC=BD ∴BD=DE
在⊿ABC和⊿DCB中
A 1 B
GO
D O 2 C E
∵AC=BD ,∠ 1= ∠2,BC=CB
∴⊿ABC≌⊿DCB
∴AB=CD
∴梯形ABCD是等腰梯形
A
O B E
D
F
C
说说你是怎 样思考,并口 述证明过程?
同学们: 这节课你有什么收获呢? 1、定义 两腰相等的梯形叫做等腰梯形 2、定理 同一底上的两个角相等的梯形是等腰梯形
3、性质
定理:等腰梯形同一底上的两个角相等 定理:等腰梯形的对角线相等
B 2、已知:在梯形ABCD中,AD∥BC, ∠A+∠C=1800 求证:梯形ABCD是等腰梯形
D
C
试一试
3.下列说法中正确的个数是( B ) (1)一组对边平行的四边形是梯形. (2)等腰梯形的对角线相等. (3)等腰梯形的两个底角相等. (4)等腰梯形有一条对称轴.
A.1个
B.2个
C.3个
D.4个
D
∵梯形ABCD是等腰梯形
北师大版初中八年级数学上册-《梯形》课件-01
A
D
B
C
学习了本节课,你有什么收获?
1.梯形的定义及类型:
一组对边平行而 四边形 另一组对边不平行 梯形
2.等腰梯形的性质
(1)两底平行,两腰相等
A
AD∥BC, AB=CD
(2)同底上两角相等
∠A= ∠D, ∠B= ∠C
B
(3)对角线相等 AC=BD
(4)是轴对称图形
等腰梯形 直角梯形
D C
A
D
A
D
B 图1
C
B 图2 C
在图1中,AD∥BC,AD和BC能相等吗?
在图2中,AB⊥BC,那么,AB⊥AD吗?AB 叫梯形的高。 当AB ⊥BC时,CD也能垂直BC吗?
做一做:
在一张有平行线的纸上作一个等腰梯形, 连接两条对角线,仔细的观察图形,图中有哪些 相等的线段? 有哪些相等的角? 这个图形是轴对称图形吗? 设法验证你的猜想.
二:等腰梯形的性质
等腰梯形同一个底上的两个 内角相等,对角线相等.
书写格式:
在等腰梯形ABCD中,
∠BAD=∠ADC,∠ABC=∠BCD,AC=BD
A
D
B
C
议一议:
在右下图中,四边形ABCD是等腰梯形,将腰AB 平移到DE的位置。
(1)DE把四边形ABCD分成了怎样的两个图形?
(2)图中有哪些相等的线段、相等的角?
A
D
B
E
C
研究梯形时,常常移动一腰,把梯形转化为平
行四边形和三角形
三:应用:
例1 如图,在等腰梯形ABCD中,AD=2,BC=4, 高DF=2,求腰DC的长.你有几种方法?
A
D
A
八年级数学下册 等腰梯形的判定课件 华东师大版
A B
如图,在梯形ABCD中, AD∥BC,
D
给出条件:∠A+∠C=1800
∵ AD∥BC
C
∴ ∠A+∠B=1800
又∵ ∠A+∠C=1800
梯形ABCD是等腰梯形吗? ∴ ∠B=∠C
结论:一组对角互补的梯形是等腰梯形.
1、如图:在四边形ABCD中, AD ∥ BC,但 AD ≠ BC,若使它成为等腰梯形, 则需要添加的条件是_______________________, 写出一个即可
两条对角线相等的梯形是等腰梯形,
梯形中常 见辅助线
1、作高, 2、延长两腰, 3、平移腰, 4、平移对角线,
辅助线.ppt
等腰梯形中常用的辅助线的作法:
1、作高,
2、平移腰,
3、延长两腰,
4、平移对角线,
好好学习, 天天向上,
1、定义:两腰相等的梯形叫作等腰梯形.
2、定理:①同一底上的两个角相等的 梯形是等腰梯形.
得 ACED, 所以 DE = AC , ∠2 = ∠E
∵ AC = BD
∴ DE = BD ∴ ∠1 =∠E
A
D
∴ ∠1 =∠2 在△ABC和△DCB中
AC = DB
1
∠1 = ∠2
B
2
C
E
BC = CB
∴ △ABC ≌△DCB SAS ∴ AB = DC ∴ 梯形ABCD是等腰梯形.
等腰梯形的判定定理2:
数学是自然 科学的皇后,
高斯 德国
世界著名天文学家、 物理学家、数学家,
--- 高斯
谁什梯有能么形哪告叫等些诉作腰性我等梯质:腰形呢
八年级数学梯形课件1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次构造柱泵https:///product/list_7.html [单选]国家赔偿的主要方式是()。A.赔礼道歉B.恢复原状C.金钱赔偿D.返还财产 [单选]骨盆内测量一般在孕多少周为宜().A.4~8周B.8~16周C.16~18周D.24~36周E.36~38周 [多选]队列研究中的发病密度具有下列哪些特征()A.适应于一个观察人数变动较大的动态人群B.是表示一定时期内的平均发病率C.没有时间单位D.分子为一个人群在一定时期内新发生的病例数E.分母是研究人群中所有成员所提供的人时的总和 [单选]对于螺内酯试验,说法错误的是()A.螺内酯是醛固酮的竞争性拮抗剂B.螺内酯可以抑制醛固酮的分泌C.不可以判断是原发性还是继续性D.服药后,血钾升高E.服药后,尿钾降低 [单选]具有设计任务书和总体设计,经济上实行独立核算,行政上具有独立组织形式的工程被称为()。A.单位工程B.建设项目C.分部工程D.分项工程 [单选]架空线路敷设的基本要求()。A.施工现场架空线路必须采用绝缘铜线B.施工现场架空线必须采用绝缘导线C.施工现场架空线路必须采用绝缘铝线D.施工现场架空线路必须采用绝缘铜铰线 [单选]危机的持续时间较为短暂,一般不超过()A.2~4周B.3~5周C.4~6周D.5~7周E.6~8周 [多选]下列关于期转现交易优越性的说法,正确的有()。A.加工企业和生产经营企业利用期转现可以节约期货交割成本B.比"平仓后购销现货"更便捷C.可以灵活商定交货品级、地点和方式D.比远期合同交易和期货实物交割更有利 [单选]对于男性不育症的病人,下列护理措施不正确的是()A.缓解紧张、焦虑B.避免接触放射类物质C.停服影响生育的药物D.至少需要服用改善生精药物1个月以上E.提供人类辅助生殖技术相关信息 [单选]不孕症中,女方因素占()A.40%B.50%C.60%D.70%E.80% [单选,A1型题]巨噬细胞主要是通过以下哪种方式摄入和消化细菌的()A.胞饮作用B.受体介导的胞吞作用C.泡膜运输的方式D.巨吞饮作用E.吞噬作用 [单选]渗出、变性和增生是下列哪种病变的基本病理变化()A.肿瘤B.炎症C.视神经萎缩D.青光眼E.白内障 [单选]黄体由两种细胞组成().A.颗粒黄体细胞和卵泡颗粒层B.颗粒黄体细胞和卵泡膜黄体细胞C.膜黄体细胞和门细胞D.颗粒黄体细胞和门细胞E.膜黄体细胞和卵泡膜细胞 [单选]不受气候影响的地下水是()。A.气包带水B.潜水C.承压水D.裂隙水 [单选,共用题干题]患者女,17岁,8岁时因老师发问首次突然昏倒,17岁时因频繁晕厥、抽搐4年入院。查体:无明显阳性体征。ECG示窦性心律,Q-T间期460ms,T波电交替。诊断应首先考虑()A.血管迷走神经性晕厥B.儿茶酚胺敏感性室性心动过速C.先天性长Q-T综合征D.获得性长Q-T综合征E.癫 [单选]价格低廉、使用寿命长,具有良好的耐腐蚀性、耐温性、耐压性,且无电化学腐蚀,可制成氯碱工业工艺管、污水处理及输送管、热能输送管、水电站压力水管等,此种管材为()。A.玻璃钢管B.硬聚氯乙烯管C.硬聚氯乙烯/玻璃钢复合管D.钢塑复合管 [问答题,简答题]简述采用访谈法进行培训效果评估的具体步骤。(2009年11月二级真题) [单选,A2型题,A1/A2型题]下列哪项是错误的()A.HbA--α2β2B.HbA2--ζ2γ2C.HbGower2--α2ε2D.HbF--α2γ2E.HbBart--γ4 [单选,B1型题]属于健康观内容的项目是()A.预防为主B.三级预防C.强化社区行动D.人人享有卫生保健E.群众性自我保健 [单选]关于全身药物浴,错误的是()A.盐水浴常用于原发性多发性关节炎、肌炎B.松脂浴常用于原发性高血压1级C.苏打浴常用于银屑病、皮肤角质层增厚D.中药浴常用于关节炎、皮肤病E.西药浴(安定)常用于神经衰弱 [单选,A2型题,A1/A2型题]基础护理合格率的控制指标属于()A.过程控制B.反馈控制C.同期控制D.环节质量控制E.面向未来控制 [单选,A2型题,A1/A2型题]若问诊,经期腹痛3天,灼痛拒按,经量多,色紫红,质稠伴血块,小便黄赤,多为()A.气滞血瘀B.湿热蕴结C.寒凝血瘀D.气血虚弱E.肾气亏损 [单选]亚急性感染性心内膜炎最常见的并发症是()A.心肌脓肿B.心力衰竭C.急性心肌梗死D.肾脓肿E.化脓性脑膜炎 [问答题,简答题]分别说明以下图示表形位公差特征符号的意思。;;;;;;;;;;; [填空题]在超声波探伤中,由于波的传播方向改变使声程增加或由于波形转换后使声速变慢出现的波形通常称为()波。 [单选,A2型题,A1/A2型题]pT0的含义是()A.术前影像证实早期癌B.术前已判定为原位癌C.术后病理检查发现原位癌D.术后组织病理学检查未发现原发肿瘤E.术后病理检查诊断明确分型 [填空题]民主集中制是民主基础上的集中和集中指导下的民主相结合。它既是党的(),也是群众路线在党的生活中的运用。 [单选]关于意外伤害保险描述正确的是()A.费率一般区分年龄、性别B.保险金可采用定额给付或费用补偿的方式C.责任准备金按当年保费收入的40%/50%计提D.保险事故须在责任期限内发生,在保险期限内达到理赔条件 [单选]我国知识产权的主体包括著作权、专利权和()。A.发现权B.商标专用权C.发明权D.其他科技成果权 [填空题]三种常用的钢筋混凝土高层结构体系是指()、()、()。 [问答题,简答题]简述清创术 [单选]心肺复苏时,心脏按压与人工呼吸之比应为()A.4:1B.5:1C.10:2D.15:2E.30:2 [单选]脊柱骨折造成脊髓半横切损伤,其损伤平面以下的改变是()A.双侧肢体完全截瘫B.同侧肢体运动消失,双侧肢体深浅感觉消失C.同侧肢体运动和深感觉消失,对侧肢体痛温觉消失D.同侧肢体运动和痛温觉消失,对侧肢体深感觉消失E.同侧肢体痛温觉消失,对侧肢体运动及深感觉消失 [填空题]焦炉煤气着火时应使用()()()灭火剂进行灭火。 [单选]WAIS-RC的数字符号分测验在正式测验时,限时()秒。A.90B.60C.120D.30 [单选]同申请复议的具体行政行为有利害关系的公民、法人或其他组织,经()的批准,可作为第三人参加复议。A.复议申请人B.原行政机关C.复议机关D.人民法院 [名词解释]免疫自稳(immunologichomeostasis) [单选,案例分析题]66结果提示,胸片正常,心电图正常,针刺反应阳性,目前诊断为()A.单纯性口腔溃疡B.系统性红斑狼疮C.白塞病D.瑞特综合征E.血清阴性脊柱关节病F.系统性血管炎G.干燥综合征H.类风湿关节炎 [单选,A2型题,A1/A2型题]不索取和非法收受患者财物;不收受医疗器械、药品、试剂等生产、经营企业或人员以各种名义、形式给予的回扣、提成;不违规参与医疗广告宣传和药品医疗器械促销”体现了哪项基本行为规范()A.廉洁自律,恪守医德B.遵纪守法,依法执业C.严谨求实,精益求精D 务,医患和谐E.以上都是 [Байду номын сангаас选]下列有关公务员职务任免与升降的说法哪一项是正确的?()A.公务员职务实行任期制B.选任制公务员在选举结果生效时即任当选职务C.经有关机关批准在机关外兼职的公务员可领取适当兼职报酬D.公务员晋升领导职务的,均应实行任职前公示制度