相遇、追及问题精讲精练
高考物理专题讲练 追击相遇问题(解析版)
追击相遇问题 专题讲练一. 追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
二.几种典型的追击、相遇问题在讨论A 、B 两个物体的追击问题时,先定义几个物理量,0x 表示开始追击时两物体之间的距离,x ∆表示开始追及以后,后面的物体因速度大而比前面物体多运动的位移;1v 表示运动方向上前面物体的速度,2v 表示后面物体的速度。
下面分为几种情况:1. 特殊情况:同一地点出发,速度小者(初速度为零,匀加速运动)追击速度大者(匀速运动)。
(1)当12v v =,A 、B 距离最大。
(2)当两者位移相等时,有 122v v =且A 追上B 。
(3)A 追上B 所用的时间等于它们之间达到最大距离时间的两倍,122t t =。
(4)两者运动的速度时间图像2. 速度小者(2v )追击速度大者(1v )的一般情况·知识精讲·3. 速度大者(2v )追速度小者(1v )的一般情况匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t =t 0时刻:①若Δx =x 0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件; ②若Δx <x 0,则不能追及,此时两物体最小距离为x 0-Δx ;③若Δx >x 0,则相遇两次,设t 1时刻Δx 1=x 0,两物体第一次相遇,则t 2时刻两物体第二次相遇。
匀速追匀加速匀减速追匀加速类型图象 说明匀加速追匀速①t =t 0以前,后面物体与前面物体间距离增大②t =t 0时,两物体相距最远为x 0+Δx③t =t 0以后,后面物体与前面物体间距离减小④当两者的位移相同时,能追及且只能相遇一次。
匀速追匀减速匀加速追匀减速·三点剖析·一.考点与难度系数1.掌握追击和相遇问题的特点★★★2.能够熟练解决追击和相遇问题★★二.易错点和重难点追及、相碰是运动学中研究同一直线上两个物体运动时常常涉及的两类问题,也是匀速直线运动规律在实际问题中的具体应用。
追及问题讲座及练习答案
追及问题精讲知识导航追及路程=甲走的路程—乙走的路程=甲的速度×追及时间—乙的速度×追及时间=(甲的速度—乙的速度)×追及时间=速度差×追及时间.例1:甲、乙两地相距240千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)解析:追及路程即为两地距离240千米,速度差90-60=30(千米)所以追及时间240÷30=8(小时).【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).解析:若经过5分钟,弟弟已到了A地,此时弟弟已走了40×5=200(米);哥哥每分钟比弟弟多走20米,几分钟可以追上这200米呢?40×5÷(60-40)=10(分)答:哥哥10分钟可以追上弟弟.【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,乙每小时行驶15千米,甲每小时行驶10千米,问:乙经过多长时间能追上甲?解析:出发时甲、乙二人相距10千米,以后两人的距离每小时都缩短15-10=5(千米),即两人的速度的差(简称速度差),所以10千米里有几个5千米就是几小时能追上:10÷(15-10)=2(小时)答:还需要2个小时.【巩固3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?解析:追及路程就是先遣队12小时行驶的路程。
(6×12)÷(78-6)=1(小时).答:通讯员1小时能赶上先谴队.例2:小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?爸爸追上小明时他们离家多远?解析:如图:当爸爸开始追小明时,小明已经离家:70×12=840(米),即爸爸要追及的路程为840米,也就是爸爸与小明的距离是840米,我们把这个距离叫做“路程差”,爸爸出发后,两人同时走,每过1分,他们之间的距离就缩短280-70=210(米),也就是爸爸与小明的速度差为280-70=210 (米/分),爸爸追及的时间:840÷210=4(分钟).当爸爸追上小明时,小明已经出发12 + 4=16(分钟),此时离家的距离是: 70×16=1120 (米)【巩固1】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?解析:哥哥出发的时候弟弟走了:40×5=200(米),哥哥追弟弟的追及时间为:200÷(65-40)=8(分钟),所以家离学校的距离为:8×65=520(米).答:他们家离学校有520米。
追及相遇练习题及讲解高中
追及相遇练习题及讲解高中### 追及相遇问题练习题及讲解#### 练习题一:速度与时间的关系小李和小王分别以不同的速度从同一地点出发,小李的速度是5公里/小时,小王的速度是3公里/小时。
如果小李比小王晚出发1小时,问小李需要多少时间才能追上小王?#### 解题步骤1. 确定追及距离:小李晚出发1小时,小王在这1小时内已经前进了3公里。
2. 计算相对速度:小李和小王的相对速度是5公里/小时 - 3公里/小时 = 2公里/小时。
3. 计算追及时间:用追及距离除以相对速度,即3公里÷ 2公里/小时 = 1.5小时。
#### 练习题二:相遇问题两列火车从两个相距300公里的城市相对开出,一列火车的速度是60公里/小时,另一列火车的速度是40公里/小时。
问两列火车何时相遇?#### 解题步骤1. 确定相遇距离:两列火车的起始距离是300公里。
2. 计算相对速度:两列火车的相对速度是60公里/小时 + 40公里/小时 = 100公里/小时。
3. 计算相遇时间:用相遇距离除以相对速度,即300公里÷ 100公里/小时 = 3小时。
#### 练习题三:变速追及问题小张和小赵在一条直线上跑步,小张以匀速6公里/小时跑步,小赵以匀加速运动,初始速度为2公里/小时,加速度为1公里/小时²。
如果小赵比小张晚出发2小时,问小赵何时能追上小张?#### 解题步骤1. 确定追及距离:小张在2小时内已经前进了6公里/小时× 2小时= 12公里。
2. 计算小赵的位移:使用位移公式 \( s = ut + \frac{1}{2}at^2 \),其中 \( u \) 是初始速度,\( a \) 是加速度,\( t \) 是时间。
3. 设定追及时间:设 \( t \) 为小赵追上小张的时间,小张在 \( t + 2 \) 时的位移为 \( 6(t + 2) \)。
4. 建立方程:\( 2t + \frac{1}{2}t^2 = 6t + 12 \)。
2022届高三物理一轮复习疑难突破微专题精讲精练 009追及相遇模型+图像法【含答案】
一.模型及图像特征1.追及相遇问题中的一个条件和两个关系(1)一个条件:即两者速度相等,往往是物体能追上、追不上或两者距离最大、最小的临界条件,也是分析判断的切入点。
(2)两个关系:即时间关系和位移关系,这两个关系可通过画过程示意图得到。
2.追及相遇问题的两种典型情况(1)速度小者追速度大者类型图像说明匀加速追匀速匀速追匀减速匀加速追匀减速①0~t 0时段,后面物体与前面物体间距离不断增大②t =t 0时,两物体相距最远,为x 0+Δx (x 0为两物体初始距离)③t >t 0时,后面物体追及前面物体的过程中,两物体间距离不断减小④能追上且只能相遇一次(2)速度大者追速度小者类型图像说明匀减速追匀速匀速追匀加速匀减速追匀加速开始追时,两物体间距离为x 0,之后两物体间的距离在减小,当两物体速度相等时,即t =t 0时刻:①若Δx =x 0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx <x 0,则不能追上,此时两物体间距离最小,为x 0-Δx③若Δx >x 0,则相遇两次,设t 1时刻Δx 1=x 0,两物体第一次相遇,则t 2时刻两物体第二次相遇(t 2-t 0=t 0-t 1)3.追及相遇问题的解题思路及技巧(1)解题思路(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式。
②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件。
③若被追的物体做匀减速直线运动,一定要注意追上前该物体是否已经停止运动,另外还要注意最后对解进行讨论分析。
④紧紧抓住速度相等这个临界点。
⑤遇到此类选择题时,图像法往往是最便捷的解法。
二.例题精讲:例1.红球匀速运动,速度V1=8m/s;蓝球匀减速运动直到静止不再运动,初速度V0=12m/s,加速度a=-1m/s2,蓝球与红球在同一位置同时出发,经多长时间与红球同速?同速前,两者距离如何变化?何时相遇?相遇前何时相距最远?答案:4s,增大,8s,4s变式1:红球匀速运动,初速度 V1=8m/s;蓝球匀减速运动直到静止不再运动,初速度V0=12m/s,加速度 a=-1m/s2,蓝球在红球后8m,经多长时间与红球同速?何时相遇?还能再次相遇吗?答案:4s,4s第一次相遇,不能再次相遇。
奥数相遇与追及问题学生版精编版
【例20】小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
【巩固】甲、乙两列火车从相距千米的两地相向而行,甲车每小时行千米,乙车每小时行2822144千米,乙车先出发小时后,甲车才出发.甲车行几小时后与乙车相遇?2
【巩固】妈妈从家出发到学校去接小红,妈妈每分钟走米.妈妈走了分钟后,小红从学校出375发,小红每分钟走米.再经过分钟妈妈和小红相遇.从小红家到学校有多少米?2060
【例13】小张和小王早晨8时整从甲地出发去乙地,小张开车,速度是每小时60千米。小王步行,速度为每小时4千米。如果小张到达乙地后停留1小时立即沿原路返回,恰好在10时整遇到正在前往乙地的小王。那么甲、乙两地之间的距离是_______千米。
【例14】小明的家住学校的南边,小芳的家在学校的北边,两家之间的路程是1410米,每天上学时,如果小明比小芳提前3分钟出发,两人可以同时到校.已知小明的速度是70米/分钟,小芳的速度是80米/分钟,求小明家距离学校有多远?
【巩固】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?为什么?
【巩固】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
追及与相遇问题知识详解及典型例题
追及与相遇问题知识详解及典型例题追及与相遇问题知识详解及典型例题(精品)知识要点追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律。
追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键。
速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件。
在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。
解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。
1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。
如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离。
若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值。
再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上。
“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即V甲=V乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即V甲>V乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若V 甲>V乙,贝U能追上去,若V甲V V乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小; 三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。
相遇及追及问题(含答案)
相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=_________分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_________分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________)秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________.9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
相遇追及问题练习题及解析
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米5、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.6、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面"取单位"准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.7、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。
六年级数学相遇追击、问题练习知识讲解
六年级数学相遇追击、问题练习相遇问题与追及问题行路方面的相遇问题,基本特征是两个运动的物体同时或不同时由两地出发相向而行,在途中相遇。
基本关系如下:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间甲、乙速度的和-已知速度=另一个速度速度×时间=路程路程÷速度=时间路程÷时间=速度速度和×相遇时间=路程路程÷速度和=相遇时间路程÷相遇时间=速度和路程÷相遇时间-甲速=乙速相遇问题的题材可以是行路方面的,也可以是共同工作方面的。
由于已知条件的不同,有些题目是求相遇需要的时间,有些题目是求两地之间的路程,还有些题目是求另一速度的。
相应地,共同工作的问题,有的求完成任务需要的时间,有的求工作总量,还有的求另一个工作效率的。
追及问题主要研究同向追及问题。
同向追及问题的特征是两131 个运动物体同时不同地(或同地不同时)出发作同向运动。
在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体。
在日常生活中,落在后面的想追赶前面的情况,是经常遇到的。
基本关系如下:追及所需时间=前后相隔路程÷(快速-慢速)追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间有关同向追及问题,在行路方面有这种情况,相应地,在生产上也有这种情况。
1、张、李二人分别从A、B两地同时相向而行,张每小时行5千米,李每小时行4千米,两人第一次相遇后继续向前走,当张走到B地,立即按原路原速度返回。
李走到A地也立即按原路原速度返回。
二人从开始走到第二次相遇时走了4小时。
求A、B两地相距多少千米?2、甲、乙两个学生从学校到少年活动中心去,甲每分钟走60米,乙每分钟走50米。
乙走了4分钟后,甲才开始走。
甲要走多少分钟才能追上乙?3、铁道工程队计划挖通全长200米的山洞,甲队从山的一侧平均每天掘进1.2米,乙队从山的另一侧平均每天掘进1.3米,两队同时开挖,需要多少天挖通这个山洞?4、甲、乙两车同时从A、B两地出发相向而行在距A地42千米处相遇相遇后继续行驶到达B、A两地后立即沿原路原速返回。
考点04 运动图像问题 追及相遇问题 (核心考点精讲精练)(教师版) 备战2025年高考物理一轮复习
考点04 运动图像问题追及相遇问题1. 高考真题考点分布题型考点考查考题统计选择题v-t图像2024年甘肃卷、河北卷、福建卷选择题x-t图像2024全国新课标卷2. 命题规律及备考策略【命题规律】高考对这部分的考查,考查频率较高,特别是运动图像问题,几乎每年都要考查,题型多以选择题居多,通过图像对物体运动学物理和动力学物理量加以考查。
【备考策略】1.明确各种图像的中斜率、面积、截距、拐点等内容的物理含义,并会利用图像处理物理问题。
2.掌握处理追及相遇的方法和技巧,能够利用相应的方法处理实际问题。
【命题预测】重点关注各类图像,且要明确图像的斜率、面积等物理意义。
一、运动图像问题解决此类问题时要根据物理情境中遵循的规律,由图像提取信息和有关数据,根据对应的规律公式对问题做出正确的解答。
具体分析过程如下:二、追及相遇问题1.牢记“一个流程”2.把握“两种情景”物体A追物体B,开始二者相距x0,则:(1)A追上B时,必有x A-x B=x0,且v A≥v B。
(2)要使两物体恰不相撞,必有x A-x B=x0,且v A=v B。
考点一运动图像问题考向1 v-t图像1.在2024年世界泳联跳水世界杯女子10m跳台的决赛中,中国选手再次夺冠。
如图所示为中国选手(可视为质点)跳水过程简化的v﹣t图像,以离开跳台时作为计时起点,取竖直向上为正方向,关于运动员说法正确的是()A .1t 时刻达到最高点B .2t 时刻到达最低点C .12t t :时间段与23t t :时间段的加速度方向相同D .30~t 时间段的平均速度比13t t :时间段的平均速度大【答案】A【详解】A .10t :时间段向上做减速运动,1t 时刻达到最高点,选项A 正确;B .2t 时刻运动员到达水面,3t 时刻到达水内最低点,选项B 错误;C .图像的斜率等于加速度,可知12t t :时间段与23t t :时间段的加速度方向相反,选项C 错误;D .30~t 时间段的位移比13t t :时间段的位移小,但是30~t 时间段比13t t :时间段长,根据x v t =可知,30~t 时间段的平均速度比13t t :时间段的平均速度小,选项D 错误。
相遇与追及问题练习题
相遇与追及问题练习题相遇与追及问题是数学中一个常见且有趣的问题。
在这个问题中,我们需要确定两个物体在何时相遇,或者一个物体何时追上另一个物体。
这类问题可以通过数学建模和解方程来解决。
接下来,我们将通过几个练习题来深入了解相遇与追及问题。
练习题1:相向而行的两个人假设有两个人从不同的地方出发,同时相向而行,一个人的速度为v1,另一个人的速度为v2。
已知两个人相距s的距离,请问他们何时相遇?解题思路:我们可以通过建立一个方程来解决这个问题。
假设t表示两个人相遇的时间,根据物体的速度公式,可以得到以下方程:v1 * t + v2 * t = s整理方程,得到:t = s / (v1 + v2)因此,他们相遇的时间为t = s / (v1 + v2)。
练习题2:相同起点的两个人现在,我们考虑一个稍微不同的情况。
假设有两个人从相同的起点出发,但速度不同。
一个人的速度为v1,另一个人的速度为v2。
已知他们的距离为s,请问追上对方所需的时间分别是多少?解题思路:我们可以将这个问题分解为两个部分,分别考虑两个人追上对方所需的时间。
假设t1表示v1追上v2所需的时间,t2表示v2追上v1所需的时间。
根据物体的速度公式,可以得到以下方程:v1 * t1 = sv2 * t2 = s解方程得到:t1 = s / v1t2 = s / v2因此,v1追上v2所需的时间为t1 = s / v1,v2追上v1所需的时间为t2 = s / v2。
练习题3:绕圈追及问题这个问题稍微复杂一些,假设有两个人在一个环形跑道上绕圈跑步。
一个人的速度为v1,另一个人的速度为v2。
已知他们的起点位置相距s的距离,请问他们何时会再次相遇?解题思路:对于绕圈的问题,我们需要考虑一个重要的因素,即两个人起始位置之间的夹角。
假设两个人的起始位置之间的夹角为θ。
根据物体的速度和圆周公式,可以得到以下关系:v1 * t = θ1 * rv2 * t = θ2 * r其中,t表示相遇的时间,r表示跑道的半径。
高中物理必修一追及和相遇问题专题练习及答案解析
追击和相遇问题一、追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?答案.S 人-S 车=S 0 ∴ v 人t-at 2/2=S0即t 2-12t+50=0Δ=b 2-4ac=122-4×50=-56<0方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5sΔS=S 乙-S 甲+S AB=10×2.5-4×2.52/2+12=24.5m⑵S 甲=S 乙+S ABat 2/2=v 2t+S AB t 2-5t-6=0t=6sS 甲=at 2/2=4×62/2=72m3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12/2+v m t 2v m =at 1=20卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2t ≤120s a ≥0.18m/s 24.汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车? 答案.S 汽车≤S 自行车+d当v 汽车=v 自行车时,有最小距离 v 汽车=v 汽车0-at t=1sd 0=S 汽车-S 自行车=v 汽车0t-at 2/2-v 自行车=3m 故d ≥3m 解二: ΔS=S 自行车+d-S 汽车=(v 自行车t+d)-(v 汽车 0t-at 2/2)=d-6t+3t2=d-3+3(t-1)2当t=1s时, ΔS有极小值ΔS1=d-3 ΔS1≥0d≥3m二、相遇问题的分析方法:A.根据两物体的运动性质,列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D.联立方程求解.5.高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间.答案.S梯-S钉=h∴ h=vt+at2/2-(vt-gt2/2)=(a+g)t2/26.小球1从高H处自由落下,同时球2从其正下方以速度v0竖直上抛,两球可在空中相遇.试就下列两种情况讨论的取值范围.⑴在小球2上升过程两球在空中相遇;⑵在小球2下降过程两球在空中相遇.答案.h1+h2=Hh1=gt2/2 h2=v0t-gt2/2∴ t=h/v0⑴上升相遇 t<v0/g∴ H/v0>v0/g v02>gH⑵下降相遇 t>v0/g t′<2v0/g∴ H/v0>v0/g v02<gHH/v0<2v0/g v02>gH/2即Hg>v02>Hg/27.从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?答案.S1=v0(t+2)-g(t+2)2/2S2=v0t-gt2/2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以2v0竖直上抛一物体后,又以初速度v0在同一地点竖直上抛另一物体,若要使两物体在空中相遇,则两物体抛出的时间间隔必须满足什么条件?(不计空气阻力)答案.第二个物体抛出时及第一个物体相遇Δt1=2×2v0/g第二个物体落地时及第一个物体相遇Δt2=2×2v0/g-2v0/g=2v0/g∴ 2v0/g≤Δt≤4v0/g追及相遇专题练习1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )图5A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m3.公共汽车从车站开出以4 m/s 的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少?4.汽车A 在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s 的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向及A 车相同,则从绿灯亮时开始 ( )A.A 车在加速过程中及B 车相遇B.A 、B 相遇时速度相同C.相遇时A 车做匀速运动D.两车不可能再次相遇5.同一直线上的A 、B 两质点,相距s ,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A 做速度为v 的匀速直线运动,B 从此时刻起做加速度为a 、初速度为零的匀加速直线运动.若A 在B 前,两者可相遇几次?若B 在A 前,两者最多可相遇几次?6.一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止.试判断两车是否会相碰7.一列火车以v 1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v 2做匀速运动,于是他立即刹车,为使两车不致相撞,则a 应满足什么8.A 、B 两车沿同一直线向同一方向运动,A 车的速度v A =4 m/s,B 车的速度v B =10 m/s.当B 车运动至A 车前方7 m 处时,B 车以a =2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A 车追上B 车需要多长时间?在A 车追上B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s 2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1. 【答案】D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线及时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知,B 物体比A 物体早出发5 s ,故A 选项错;10 s 末A 、B 速度相等,故B 选项错;由于位移的数值等于图线及时间轴所围“面积”,所以前15 s 内B 的位移为150 m ,A 的位移为100 m ,故C 选项错;将图线延伸可得,前20 s 内A 的位移为225 m ,B 的位移为200 m ,故D 选项正确. 2.【答案】C【解析】υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大.据此得出正确的答案为C 。
物理:追及和相遇问题练习
追及、相遇问题的处理1、追及、相遇的特征两物体在同一直线上运动,往往涉及追及、相遇或避免碰撞等问题.解答此类问题的关键条件是:两物体能否同时到达空间某位置。
2、追及和相遇问题的特征(1)、追及问题:追和被追的两物体的速度相等(同向运动)是能否追上及两者距离有极值的临界条件。
第一类:速度大者减速(如匀减速直线运动)追速度小者(匀速直线运动)。
、当两者速度相等时,且追者位移仍小于被追者位移与初始间距之和,则永远追不上,此时两者间有最小距离.、若两者速度相等时,追者位移恰等于被追者位移与初始间距之和,则恰能追上,也是两者避免碰撞的临界条件.、若两者相遇时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值.第二类:速度小者加速(初速度为0的匀加速直线运动)追速度大者(如匀速直线运动)。
①、当两者速度相等时有最大距离。
②、若两者位移相等则追上(追者的位移等于被追者的位移与初始间距之和),即相遇。
(2)、相遇问题①、同向运动的两物体追及即相遇②、相向运动的物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
3、追及、相遇问题的解题步骤:(1)、根据对两物体运动过程的分析,画出两物体的示意图。
(2)、根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系放映在方程中。
(3)由运动示意图找出两物体位移间的关联方程.(4)联立方程求解,并对结果进行简单分析。
【说明】:追及、相遇问题的求解可概括为“一图三式法”。
①一图:画出运动草图。
②三式:找出追及、相遇中所包含的三种关系:位移关系、速度关系、时间关系,然后列式求解.【例题】:1、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行使,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。
(1)、汽车从开始运动后,在追上自行车之前经多长时间后两者相距最远?此时距离是多少?(2)、什么时候追上自行车,此时汽车的速度是多少?2、甲、乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m/s的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的。
有关追及问题的练习题及讲解高中
有关追及问题的练习题及讲解高中### 追及问题练习题及讲解#### 练习题一题目:甲乙两车分别从A、B两地同时出发,甲车速度为60km/h,乙车速度为40km/h。
若A、B两地相距200km,求两车相遇所需时间。
解答:设两车相遇所需时间为\( t \)小时。
根据题意,甲车在\( t \)小时内行驶的距离为\( 60t \)km,乙车在\( t \)小时内行驶的距离为\( 40t \)km。
两车相遇时,它们行驶的总距离等于A、B两地的距离,即:\[ 60t + 40t = 200 \]解得:\[ 100t = 200 \]\[ t = 2 \]所以,两车相遇所需时间为2小时。
#### 练习题二题目:小明和小华分别从家出发去学校,小明的速度是5m/s,小华的速度是3m/s。
如果小明比小华早出发2分钟,但两人同时到达学校,求小明和小华家到学校的距离。
解答:设小明家到学校的距离为\( x \)米,小华家到学校的距离为\( y \)米。
根据题意,小明比小华早出发2分钟,即120秒。
小明用时\( t \)秒到达学校,小华用时\( t + 120 \)秒到达学校。
根据速度和时间的关系,我们有:\[ x = 5t \]\[ y = 3(t + 120) \]由于两人同时到达学校,所以:\[ 5t = 3t + 360 \]解得:\[ 2t = 360 \]\[ t = 180 \]代入小明的距离公式:\[ x = 5 \times 180 = 900 \]小华的距离为:\[ y = 3 \times (180 + 120) = 900 \]所以,小明和小华家到学校的距离都是900米。
#### 练习题三题目:在一次接力赛中,第一棒运动员以10m/s的速度跑了100米,第二棒运动员以12m/s的速度跑了200米。
如果第一棒运动员比第二棒运动员早出发2秒,求第二棒运动员追上第一棒运动员所需的时间。
解答:设第二棒运动员追上第一棒运动员所需的时间为\( t \)秒。
奥数相遇追击(例题+练习)
相遇追及问题(一)基本公式:速度和×相遇时间=总路程例1、甲、乙两地相距120km,一辆货车和一辆客车同时从甲乙两地相向而行,经过2.4小时相遇,客车的速度是30km/h,求货车的速度。
练习:两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?例2、甲乙两人从相距2500m的AB两地出发相向而行,甲每分钟走60米,乙每分钟走40米,甲比乙后出发五分钟,经过多少时间相遇?练习:长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?例3、小明和王华同时从自己家里出发,相向而行,小明每分钟走65米,王华每分钟走55米,经过一段时间,在距离两地中点300米的地方相遇,求小明和王华的家之间的距离。
练习:甲乙两人分别从A、B两地同时出发相向而行,甲每小时行48千米,乙每小时行42千米,两车在离中点18千米处相遇,求AB两地间的距离例4、两个小朋友从环形跑道的同一地点同时出发,背对背出发跑步,小明每分钟跑70米,小红每分钟跑60米,30分钟相遇四次,求环形跑道的长度。
练习:一个圆形跑道的周长为1200米,甲乙两人同时从同一地点沿圆周按相反方向出发,4分钟后相遇,若两人按同一方向行走,半小时后两人再次相遇,问两人速度各是多少?例5、甲乙两人同时从相距5500米AB两点出发,相向而行,甲出发的时候带着一只小狗,小狗在甲乙两人之间往返跑动,一直甲的速度是50米每分钟,乙的速度是50米每分钟,狗的速度是120米每分钟,当甲乙两人相遇时,狗跑了多远?练习:两支队伍从相距55千米的两地相向而行,通讯员骑马一以每小时16千米的速度在两支队伍之间不断往返联络,已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通讯员共行多少千米?题库:1.1、从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?1.2、甲乙两车同时从两地相对开出,甲车每小时行54千米,乙车每小时行53千米,经过5小时相遇,两地相距多远?1.3、两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?1.4、长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?1.5、甲乙两人同时从相距1395米的两地相对而行,9分钟相遇,已知甲每小时走69米,乙每分钟走多少米?1.6、甲乙两车分别从AB两地相对开出,已知甲车每小时行40千米,经过4小时,甲车已驶过中点26千米,这时与乙车还相距8千米,乙车每小时行多少千米?2.1、甲乙两车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在距中点32千米处相遇,东西两地相距多少千米?2.2、甲乙两人同时从两地骑车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地间的距离2.3、甲乙两人同时从两地骑车相向而行,甲每小时行15千米,乙每小时行10千米,两人在距中点5千米处相遇,求两地间的距离2.4、甲乙两人同时从两地骑车相向而行,甲每小时行5千米,乙每小时行4千米,两人在距中点1千米处相遇,求两地间的距离3.1、甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地3200米处与乙相遇,A、B两地相距多少千米?3.2、甲乙两人同时在上午7时从A到B地,甲每分钟比乙快80千米,上午11时甲到达B地后立即返回A地,在离B地24千米处与乙相遇,A、B两地相距多少千米?3.3、甲乙两人同时从A到B地,甲每小时行5千米,乙每小时行4千米,甲行45千米到达B地后立即返回A地,在途中与乙相遇,A、B两地相距多少千米?3.4、甲乙两人同时从A到B地,甲每分钟行120米,乙每分钟行80米,甲到达B 地后立即返回A地,在离B地700米处与乙相遇,A、B两地相距多少千米?3.5、两地相距900米,甲乙二人同时同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目的地后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?4.1 甲乙两车同时从A、B两地相向而行,在距A地80千米处第一次相遇,各自到达对方出发点后立即返回,途中又在距A地60千米处相遇,A、B两地相距多少千米?4.2甲乙两车同时从A、B两地相向而行,在距B地80千米处第一次相遇,各自到达对方出发点后立即返回,途中又在距A地90千米处相遇,A、B两地相距多少千米?4.3、甲乙两车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进各自到达目的地后返回,第二次相遇离B地55千米处,A、B两地相距多少千米?4.4、甲乙同时从A、B两地相对开出,甲每小时行10千米,乙每小时行8千米,相遇后继续前进,各自到达目的地后立即返回,第一次与第二次相遇的距离为20千米,求两地距离(90)5.1甲乙两人在环形跑道上以各自的速度跑步,如果两人同时从同地相背而行,乙跑8分钟后两人第一次相遇,甲跑一圈要12分钟,乙跑一圈要几分钟?5.2 甲乙两车同时从AB两地相对开出,10小时后相遇,甲车从A到B要15小时,乙车从A到B要几小时?6.1、小张和小李两人同时从相距1000米的两地相向而行,小王每分钟行120米,小亮每分钟行80米,如果一只狗与小王同时同地而行,每分钟行460米,在两人间往返跑,直到两人相遇时,狗共行了多少米6.2、甲乙两车同时从相距50千米的两地相向而行,甲车每小时行2千米,乙车每小时行3千米,一个人骑车每小时行18千米在两队中间往返联络,问两队相遇时,骑车的行驶了多少千米?。
精讲---相遇和追击问题
6 tan 3 t0
t0 2s
6
α
自行车
1 xm 2 6m 6m 2
动态分析随着时间的推移,矩形面积 (自行车的位移)与三角形面积 (汽车的位移)的差的变化规律
解3:(二次函数极值法) 设经过时间t汽车和自行车 之间的距离Δx,则 x汽
△x
1 2 3 2 x v自t at 6t t 2 2
1 有 100 4 a 100 0 2
则a 0.5m / s
2
把物理问题转化为根据二次函数的判别式 求解的数学问题。
例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车 以3m/s2的加速度开始加速行驶,恰在这时一辆自行 车以6m/s的速度匀速驶来,从后边超过汽车。试求: 汽车从路口开动后,在追上自行车之前经过多长时 间两车相距最远?此时距离是多少?
画出两个物体运动示意图,分析两个物体的运动性质, 找出临界状态,确定它们位移、时间、速度三大关系。
(1)基本公式法——根据运动学公式,把时间关系渗 透到位移关系和速度关系中列式求解。
(2)图象法——正确画出物体运动的v--t图象,根据 图象的斜率、截距、面积的物理意义结合三大关系求 解。 (3)数学方法——根据运动学公式列出数学关系式 (要有实际物理意义)利用二次函数的求根公式中Δ 判别式求解。
由A、B 速度关系:
2 2
(包含时 间关系)
(v1 v2 ) (20 10 ) 2 2 a m / s 0.5m / s 2 x0 2 100
a 0.5m / s
2
解2:(图像法) 在同一个v-t图中画出A车和B车的速度时间图像图线, 根据图像面积的物理意义,两车位移之差等于图中梯 形的面积与矩形面积的差,当t=t0时梯形与矩形的面积 之差最大,为图中阴影部分三角形的面积.根据题意,阴影 部分三角形的面积不能超过100 . -1 v/ms 1
高考物理专题6追及相遇问题练习含解析
专题6 追及相遇问题1.(1)“慢追快”型:v后=v前时,Δx最大.追匀减速运动的机车时,注意要判断追上时前车是否已停下.(2)“快追慢”型:v后=v前时,Δx最小,若此时追上是“恰好不相撞”;若此时还没追上就追不上了;若此之前追上则是撞上.2.v-t图象在已知出发点的前提下,可由图象“面积”判断相距最远、最近及相遇.1.(2020·河南郑州市中原联盟3月联考)如图1所示,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位移-时间(x-t)图象.由图可知( )图1A.在时刻t1,a、b两车相遇,且运动方向相反B.在时刻t2,a车追上b车,且运动方向相同C.在t1到t2这段时间内,b车的速率先增大后减小D.在t1到t2这段时间内,b车的速率一直比a车小答案 A解析在时刻t1,a、b两车到达同一位置而相遇,根据图象切线的斜率表示速度可知两车运动方向相反,故A正确;在t1到t2这段时间内,a在前,b在后,则在时刻t2,b车追上a 车,根据图象切线的斜率表示速度可知两车运动方向相同,故B错误;在t1到t2这段时间内,b车图线斜率大小先减小后增大,则b车的速率先减小后增大,故C错误;在t1到t2这段时间内,b车的速率先大于a后小于a,最后又大于a,故D错误.2.(2020·福建龙岩市质检)如图2所示,直线a和曲线b分别是在平行的平直公路上行驶的汽车a和b的速度—时间(v-t)图线,在t1时刻两车刚好在同一位置(并排行驶),在t1到t3这段时间内,下列说法正确的是( )图2A.在t2时刻,两车相距最远B.在t3时刻,两车相距最远C.a车加速度均匀增大D.b车加速度先增大后减小答案 B解析 在t 1~t 3时间段内,b 车速度都小于a 车速度,两者间距一直增大,所以在t 3时刻,两车相距最远,选项B 正确,选项A 错误.a 车做匀加速直线运动,a 车加速度不变,选项C 错误.根据速度-时间图象的斜率表示加速度可知,b 车加速度一直在增大,选项D 错误.3.(2020·四川成都第七中学月考)自行车和汽车同时驶过平直公路上的同一地点,此后其运动的v -t 图象如图3所示,自行车在t =50 s 时追上汽车,则( )图3A.汽车的位移为100 mB.汽车的运动时间为20 sC.汽车的加速度大小为0.25 m/s 2D.汽车停止运动时,二者间距最大答案 C解析 在t =50 s 时,自行车位移x 1=4×50 m=200 m ,由于自行车追上汽车,所以汽车位移等于自行车位移,即汽车位移为200 m ,选项A 错误;由v -t 图象与t 轴围成的面积表示位移可知,汽车要运动40 s ,位移才能达到200 m ,由此可得汽车运动的加速度大小为a =0.25 m/s 2,选项B 错误,C 正确;两者速度相等时,间距最大,选项D 错误.4.(2020·河南三门峡市11月考试)从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度-时间图象如图4所示.在0~t 2时间内,下列说法中正确的是( )图4A.Ⅰ物体所受的合外力不断增大,Ⅱ物体所受的合外力不断减小B.在第一次相遇之前,t 1时刻两物体相距最远C.t 2时刻两物体相遇D.Ⅰ、Ⅱ两个物体的平均速度大小都是v 1+v 22答案 B解析 速度—时间图象的斜率表示加速度,从图中可知Ⅰ曲线的斜率在减小,所以Ⅰ加速度在减小,根据牛顿第二定律可得Ⅰ物体所受的合力在减小,Ⅱ斜率恒定,做匀减速直线运动,合力恒定,A 错误;速度—时间图象与坐标轴围成的面积表示位移,由图可知在t 1时刻两物体面积差最大,相距最远,故B 正确;t 2时刻,物体Ⅰ的位移比物体Ⅱ的位移大,两者又是从同一地点同时开始运动的,所以t 2时刻两物体没有相遇,故C 错误;物体的位移就等于图中两图象与时间轴所围的面积,平均速度就等于位移与时间的比值,由图知物体Ⅰ的位移比物体Ⅱ的位移大,且物体Ⅱ做匀减速运动,其平均速度为v 1+v 22,Ⅰ的平均速度大于v 1+v 22,D 错误.5.(2020·广东深圳市第二次检测)甲、乙两汽车在两条平行且平直的车道上行驶,运动的v -t 图象如图5所示,已知t =0时刻甲、乙第一次并排,则( )图5A.t =4 s 时刻两车第二次并排B.t =6 s 时刻两车第二次并排C.t =10 s 时刻两车第三次并排D.前10 s 内两车间距离的最大值为12 m答案 C解析 由图象可知,在前8 s 内,甲的位移x ′=vt =48 m ,乙的位移x ″=2+62×12 m=48 m ,说明t =8 s 时刻两车第二次并排,选项A 、B 均错误;两车第二次并排后,设经过Δt时间两车第三次并排,有:v ·Δt =v 1·Δt -12a 2·Δt 2,解得Δt =2 s ,两车恰好在乙速度为零时第三次并排,第三次两车并排的时刻为t =10 s ,选项C 正确;由图象可知,前10 s内在t =4 s 时刻两车距离最大(图象上左侧的梯形面积),Δx =2+42×6 m=18 m ,选项D 错误.6.(多选)(2020·河南驻马店市3月模拟)甲、乙两车在相邻的平行车道同向行驶做直线运动,v -t 图象如图6所示,二者最终停在同一斑马线处,则( )图6A.甲车的加速度小于乙车的加速度B.t =0时乙车在甲车前方8.4 m 处C.t =3 s 时甲车在乙车前方0.6 m 处D.前3 s 内甲车始终在乙车后边答案 BC解析 根据v -t 图象的斜率大小表示加速度大小,斜率绝对值越大加速度越大,则知甲车的加速度大于乙车的加速度,故A 错误;设甲车运动的总时间为t ,根据几何关系可得:3 s t =1518,得t =3.6 s ,在0~3.6 s 内,甲的位移x 甲=18×3.62m =32.4 m,0~4 s 内,乙的位移x 乙=12×42m =24 m ,因二者最终停在同一斑马线处,所以,t =0时乙车在甲车前方x 甲-x 乙=8.4 m ,故B 正确;0~3 s 内,甲、乙位移之差Δx =6×32m =9 m ,因t =0时乙车在甲车前方8.4 m 处,所以t =3 s 时甲车在乙车前方0.6 m 处,故C 正确;由上分析知,前3 s 内甲车先在乙车后边,后在乙车的前边,故D 错误.7.(2019·四川德阳市质检)如图7甲所示,A 车原来临时停在一水平路面上,B 车在后面匀速向A 车靠近,A 车司机发现后启动A 车,以A 车司机发现B 车为计时起点(t =0),A 、B 两车的v -t 图象如图乙所示.已知B 车在第1 s 内与A 车的距离缩短了x 1=12 m.图7(1)求B 车运动的速度v B 和A 车的加速度a 的大小.(2)若A 、B 两车不会相撞,则A 车司机发现B 车时(t =0)两车的距离x 0应满足什么条件? 答案 (1)12 m/s 3 m/s 2(2)x 0>36 m解析 (1)在t 1=1 s 时A 车刚启动,两车间缩短的距离 x 1=v B t 1代入数据解得B 车的速度v B =12 m/sA 车的加速度a =vB t 2-t 1将t 2=5 s 和其余数据代入解得A 车的加速度大小a =3 m/s 2(2)两车的速度相等时,两车的距离达到最小,对应于v -t 图象的t 2=5 s 时刻,此时两车已发生的相对位移为梯形的面积,则x =12v B (t 1+t 2)代入数据解得x=36 m因此,若A、B两车不会相撞,则两车的距离x0应满足条件:x0>36 m.。
(完整word版)追击相遇问题专题讲解
追击与相遇专题讲解1。
速度小者追速度大者:匀加速追匀速①t=t 0以前,后面物体与前面物体间距离增大②t=t 0时,两物体相距最远为x 0+Δx③t=t 0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速2。
速度大者追速度小者:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx匀速追匀加速匀减速追匀加速③若Δx〉x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2—t0=t0—t1;④v1是前面物体的速度,v2是后面物体的速度.考点1 追击问题1、追及问题中两者速度大小与两者距离变化的关系.甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离(填最大或最小)。
2、追及问题的特征及处理方法:“追及"主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即v v.乙甲⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
判断方法是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态.解决问题时要注意二者是否同时出发,是否从同一地点出发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1 v2 )做匀速运动,司机立即以加速度 a 紧急刹车,要使两车不相撞, a 应满足什么条件?
3.A、B 两车在一条水平直线上同向匀速行驶,B 车在前,车速 v2=10m/s,A 车在后,车速 72km/h,当 A、 B 相距 100m 时,A 车用恒定的加速度 a 减速。求 a 为何值时,A 车与 B 车相遇时不相撞。
2.速度大者追速度小者 匀减速追匀速 开始追及时, 后面物体与前面物体间 的距离在减小,当两物体速度相等时,即 t=t0 时刻: ①若Δ x=x0,则恰能追及,两物体只 能相遇一次, 这也是避免相撞的临界条件 ②若Δ x<x0,则不能追及,此时两物 体最小距离为 x0-Δ x ③若Δ x>x0,则相遇两次,设 t1 时刻Δ x1=x0,两物体第一次相遇 ,则 t2 时刻两 物体第二次相遇
考点 2 相遇问题
相遇问题的分析思路: 相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同. (1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件. (4)与追及中的解题方法相同. 【例 2】甲、乙两物体相距 s,同时同向沿同一直线运动,甲在前面做初速度为零、加速度为 a1 的匀加速 直线运动,乙在后做初速度为 υ 0,加速度为 a2 的匀加速直线运动,则 ( A.若 a1=a2,则两物体可能相遇一次 B.若 a1>a2,则两物体可能相遇二次 C.若 a1<a2,则两物体可能相遇二次 D.若 a1>a2,则两物体也可相遇一次或不相遇 【实战演练 1】A、B 两棒均长 1m,A 棒悬挂于天花板上,B 棒与 A 棒在一条竖直线上,直立在地面,A 棒 的下端与 B 棒的上端之间相距 20m,如图 1-5-3 所示,某时刻烧断悬挂 A 棒 的绳子,同时将 B 棒以 v0=20m/s的初速度竖直上抛,若空气阻力可忽略不计 2 ,且 g=10m/s ,试求: (1)A、B 两棒出发后何时相遇? (2)A、B 两棒相遇后,交错而过需用多少时间?
小者追速度大者 类型 匀加速追匀速 图象 说明 ①t=t0 以前, 后面物体与前面物体间 距离增大 ②t=t0 时, 两物体相距最远为 x0+Δ x ③t=t0 以后, 后面物体与前面物体间 距离减小 匀速追匀减速 ④能追及且只能相遇一次
匀加速追匀减速
3
)
A
l=1 m
L=2 0m
B
图 1-5-3
l=1 m
【例 3】 (易错题) 经检测汽车 A 的制动性能: 以标准速度 20m/s 在平直公路上行驶时, 制动后 40s 停下来。 现 A 在平直公路上以 20m/s 的速度行驶发现前方 180m 处有一货车 B 以 6m/s 的速度同向匀速行驶,司机立 即制动,能否发生撞车事故?
4.辆摩托车行驶的最大速度为 30m/s。现让该摩托车从静止出发,要在 4 分钟内追上它前方相距 1 千米、 正以 25m/s 的速度在平直公路上行驶的汽车,则该摩托车行驶时,至少应具有多大的加速度?
5
高一物理相遇、追及问题精讲精炼
例一【解析一】 物理分析法 A 做 υ A=10 m/s 的匀速直线运动,B 做初速度为零、加速度 a=2 m/s 的匀加速直线运动.根据题意, 开始一小段时间内,A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后, 它们间的距离又逐渐变小;A、B 间距离有最大值的临界条件是 υ A=υ B. 设两物体经历时间 t 相距最远,则 υ A=at ② 把已知数据代入①②两式联立得 t=5 s 在时间 t 内,A、B 两物体前进的距离分别为 ①
【实战演练 2】(2011·东北三校联考)从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度—时 间图象如图所示.在 0~t2 时间内,下列说法中正确的是( A.Ⅰ物体的加速度不断增大,Ⅱ物体的加速度不断减小 B.在第一次相遇之前,t1 时刻两物体相距最远 C.t2 时刻两物体相遇 D.Ⅰ、Ⅱ两个物体的平均速度大小都是 )
【实战演练 2】甲、乙两辆汽车,同时在一条平直的公路上自西向东运动,开始时刻两车平齐,相对于地 面的 v-t 图象如图所示,关于它们的运动,下列说法正确的是( )
A.甲车中的乘客说,乙车先以速度 v0 向西做匀减速运动,后向东做匀加速运动 B.乙车中的乘客说,甲车先以速度 v0 向西做匀减速运动,后做匀加速运动 C.根据 v-t 图象可知,开始乙车在前,甲车在后,两车距离先减小后增大,当乙车速度增大到 v0 时,两车恰好平齐 D.根据 v-t 图象可知,开始甲车在前,乙车在后,两车距离先增大后减小,当乙车速度增大到 v0 时,两车恰好平齐
★解题模型★ 考点 1 追击问题
求解追及问题的分析思路 (1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之 间的关系. (2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件 是两个物体在追上时位置坐标相同. (3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离; 速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题 过程. (4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二 次 函数求极值,及应用图象法和相对运动知识求解. 【例1】 物体 A、B 同时从同一地点,沿同一方向运动,A 以 10m/s 的速度匀速前进,B 以 2m/s 的加速度 从静止开始做匀加速直线运动,求 A、B 再次相遇前两物体间的最大距离.
6
2 2 2 2
1 2
1 2
图可知,A 、B =5 s. 错误!.
1 2 1 2 【例 2】 【解析】 设乙追上甲的时间为 t,追上时它们的位移有υ 0t+ a2t - a2t =s 2 2 上式化简得:(a1-a2)t -2υ 0t+2s=0 2υ 0± 4υ 0 -8s(a1-a2) 解得:t= 2(a1-a2) (1)当 a1>a2 时,差别式“△”的值由 υ 0、a1、a2、s 共同决定,且 △<2υ 0,而△的值可能小于零、 等于零、大于零,则两物体可能不相遇,相遇一次,相遇两次,所以选项 B、D 正确. -2υ 0± 4υ 0 -8s(a2-a1) (2)当 a1<a2 时,t 的表达式可表示为t= 2(a2-a1) 显然,△一定大于零.且 △>2υ 0,所以 t 有两解.但 t 不能为负值,只有一解有物理意义,只能相遇 一次,故 C 选项错误. (3)当 a1=a2 时,解一元一次方程得 t=s/υ 0,一定相遇一次,故 A 选项正确. 【答案】A、B、D 【点拨】注意灵活运用数学方法,如二元一次方程△判别式.本题还可以用 v—t 图像分析求解。 【实战演练 1】 【解析】本题用选择适当参考系,能起到点石成金的效用。 由于 A、B 两棒均只受重力作用,则它们之间由于重力引起的速度改变相同,它们之间只有初速度导致的 相对运动,故选 A 棒为参考系,则 B 棒相对 A 棒作速度为 v0 的匀速运动。 则 A、B 两棒从启动至相遇需时间
【实战演练 1】在平直公路上,自行车与同方向行驶的一辆汽车在 t=0 时同时经过某一个路标,它们的位 移随时间变化的规律为:汽车 x=10t-t2,自行车 x=5t,(x 的单位为 m,t 的单位为 s),则下列说法 正确 的是( )
A.汽车做匀加速直线运动,自行车做匀速直线运动 B.经过路标后的较短时间内自行车在前,汽车在后 C.在 t=2.5 s 时,自行车和汽车相距最远 D.当两者再次同时经过同一位置时,它们距路标 12.5 m
v1+v2
2
4
练习: 1、在十字路口,汽车以 0.5 m s 的加速度从停车线启动做匀加速运动,恰好有一辆自行车以 5 m s 的速度 匀速驶过停车线与汽车同方向行驶,求: (1) 什么时候它们相距最远?最远距离是多少? (2) 在什么地方汽车追上自行车?追到时汽车的速度是多大?
2
2、火车以速度 v1 匀速行驶,司机发现前方同轨道上相距 S 处有另一列火车沿同方向以速度 v 2 (对地、且
匀速追匀加速
1
匀减速追匀加速
说明: ①表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x0 是开始追及以前两物体之间的距离; ③t2-t0=t0-t1; ④v1 是前面物 体的速度,v2 是后面物体的速度. 二、相遇问题 第一类:同向运动的两物体的相遇问题,即追及问题. 第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇. 解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还 要注意该物体是否停止运动了.
2
sA=υ At=10×5 m=50 m sB= at2= ×2×52 m=25 m
A、B 再次相遇前两物体间的最大距离为 Δ sm=sA-sB=50 m-25 m=25 m 【解析二】 相对运动法 因为本题求解的是 A、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A 相对 B 的初速 度、末速度、加速度分别是 υ 0=10 m/s、υ t=υ A-υ B=0、a=-2 m/s . 根据 υ t -υ 0=2as.有0-10 =2×(-2)×sAB 解得A、B 间的最大距离为 sAB=25 m. 【解析三】 极值法 1 2 1 2 5 物体 A、B 的位移随时间变化规律分别是 sA=10t,sB= at = ×2×t =t . 2 2 4×(-1)×0-10 2 则 A、B 间的距离Δ s=10t-t ,可见,Δ s 有最大值,且最大值为Δ sm= m=25 m 4×(-1) 【解析四】 图象法 根据题意作出 A、B 两物体的 υ -t 图象,如图 1-5-1 所示.由 再次相遇前它们之间距离有最大值的临界条件是 υ A=υ B,得 t1 A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 Δ Oυ AP 的 面 积 , 即 【答案】25 m 【点拨】相遇问题的常用方法 (1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析. (2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系. (3)极值法:设相遇时间为 t,根据条件列方程,得到关于 t 的一元二次方程,用判别式进行讨论,若 △>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能 相碰. (4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 【实战演练 1】:【解析】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 0→2s,乙追赶 甲到 2s 末追上,从 2s 开始是甲去追乙,在 4s 末两物相距最远,到 6s 末追上乙.故选 B. 【答案】B 【实战演练 2】 【答案】A 【详解】甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度 v0 向西做减速运动,速 度减为零之后,再向东做加速运动,所以 A 正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动, 甲车以初速度 v0 向东做减速运动,速度减为零之后,再向西做加速运动,所以 B 错误;以地面为参考系, 当两车速度相等时,距离最远,所以 C、D 错误.