数学分析_各校考研试题及答案

合集下载

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。

答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。

答案:13. 设函数f(x)=ln(x),则f'(x)=_________。

答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11。

令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。

因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求极限lim(x→0)(x^2sinx/x^3)。

答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。

3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。

考研数学分析真题答案

考研数学分析真题答案

考研数学分析真题答案一、选择题1. 根据极限的定义,下列哪个选项是正确的?A. \(\lim_{x \to 0} x^2 = 0\)B. \(\lim_{x \to 0} \sin x = 1\)C. \(\lim_{x \to 0} \frac{1}{x} = 1\)D. \(\lim_{x \to 0} \frac{\sin x}{x} = 1\)答案:A2. 函数 \(f(x) = \sin x + x^2\) 在 \(x = 0\) 处的导数是多少?A. 1B. 2C. 0D. -1答案:A二、填空题1. 函数 \(y = \ln x\) 的定义域是 _________。

答案:\((0, +\infty)\)2. 若 \(\int_{0}^{1} x^2 dx = \frac{1}{3}\),那么\(\int_{0}^{1} x^3 dx\) 的值是 _________。

答案:\(\frac{1}{4}\)三、解答题1. 证明:对于任意正整数 \(n\),\(\sum_{k=1}^{n}\frac{1}{k(k+1)} = \frac{n}{n+1}\)。

证明:首先,我们可以将求和式拆分为部分和的形式:\[\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n}\left(\frac{1}{k} - \frac{1}{k+1}\right)\]通过观察,我们可以看到这是一个望远镜求和,大部分项会相互抵消,最终只剩下:\[1 - \frac{1}{n+1} = \frac{n}{n+1}\]2. 求函数 \(f(x) = x^3 - 3x^2 + 2x\) 在 \(x = 2\) 处的泰勒展开式,并计算其近似值。

解:首先,我们计算函数在 \(x = 2\) 处的各阶导数:\[f'(x) = 3x^2 - 6x + 2, \quad f''(x) = 6x - 6, \quad f'''(x) = 6\]在 \(x = 2\) 处,\(f(2) = 0\),\(f'(2) = -2\),\(f''(2) =6\),\(f'''(2) = 6\)。

华南理工2001--2003年数学分析考研试题及解答

华南理工2001--2003年数学分析考研试题及解答
华南理工大学 2001 年数学分析考研试题
一.解答下列各题 1.求极限 lim
x→0
sin 2 x ; 1 + x sin x − cos x
− 1 4
2. 证明不等式 2e

< ∫ ex
0
22ຫໍສະໝຸດ −xdx < 2e2 ;
3.判断级数 ∑
1 的敛散性; n = 2 ln ( n !)
⎧ 1 ,x ≥0 ⎪ 2 ⎪ x +1 4.设 f ( x ) = ⎨ x ,求 ∫ f ( x − 1) dx ; 0 ⎪ e ,x <0 x ⎪ ⎩1 + e
n −2

显然它的收敛区间为 ( −∞, +∞ ) ,

∑ ( n + 1)! = ∑ ( n + 1)! = ∑ n ! − ∑ ( n + 1) !
n =1 n =1 n =1 n =1
n

( n + 1) − 1

1

1
= ( e − 1) − ( e − 2 ) = 1 ; 6.解 f ( 0, y ) = y 2 sin 1 1 , f ( x, 0 ) = x 2 sin , y x
y . x
I = ∫ xzdydz + yzdzdx + z x2 + y 2 dxdy

= ∫∫∫ z + z + x 2 + y 2 dxdydz
V
(
)
= ∫ dθ ∫ dϕ ∫
0

π 4 0
2a
a
( 2r cos ϕ + r sin ϕ ) ⋅ r 2 sin ϕdr

北京大学数学分析考研试题及解答

北京大学数学分析考研试题及解答

判断无穷积分1sin sin()xdx x +∞⎰的收敛性。

解 根据不等式31|sin |||,||62u u u u π-≤≤,得到 33sin sin 1sin 11|sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x xdx x x +∞-⎰绝对收敛,因而收敛,再根据1sin xdx x +∞⎰是条件收敛的,由sin sin sin sin sin()(sin())x x x x x x x x =-+, 可知积分1sin sin()xdx x+∞⎰收敛,且易知是是条件收敛的。

例5.3.39 设2()1...2!!nn x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞=-∞。

证明 〔1〕任意*m N ∈,当0x ≥时,有21()0m P x +>;当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在,又212()()0m m P x P x +'=>,21()m Px +严格递增,所以根唯一,0m x <。

(2) 任意(,0)x ∈-∞,lim ()0xn n P x e →+∞=>,所以21()m P x +的根m x →-∞,〔m →∞〕。

因为假设m →∞时,21()0m P x +=的根,m x 不趋向于-∞。

那么存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,〔0x 为某有限数0x M ≥-〕;21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞→+∞<=-≤=,矛盾。

例、 设(1)ln(1)nn p a n -=+,讨论级数2n n a ∞=∑的收敛性。

武汉科技大学2022年《数学分析》考研真题与答案解析

武汉科技大学2022年《数学分析》考研真题与答案解析

武汉科技大学2022年《数学分析》考研真题与答案解析一、选择题1、=( ).2019lim sin 2019x x x →∞A.∞B.0C.1D.2019.2、若级数和都收敛,则级数( ).21n n a ∞=∑21n n b ∞=∑1n n n a b ∞=∑A.一定绝对收敛B.一定条件收敛C.一定发散D.可能收敛也可能发散.3、反函数组的偏导数与原函数组的偏导数之间的关系正确的{(,)(,)x x u v y y u v =={(,)(,)u u x y v v x y ==是( ).A.1x u u x ∂∂⋅=∂∂B.1x u y u u x u y∂∂∂∂⋅+⋅=∂∂∂∂C.2x u x v u x v x ∂∂∂∂⋅+⋅=∂∂∂∂D..1x u x v u x v x∂∂∂∂⋅+⋅=∂∂∂∂4、设,是上的连续函数,则( ).22:1D x y +≤f D Df d σ=⎰⎰A.1202()f r drπ⎰B.104()rf r drπ⎰C.102()rf r drπ⎰D..1204()f r dr π⎰5、由分片光滑的封闭曲面所围成立体的体积( ).∑V =A.13xdydz ydzdx zdxdy ∑++⎰⎰ B.13xdydz ydzdx zdxdy ∑-+-⎰⎰ C.13zdydz xdzdx ydxdy ∑++⎰⎰ D..13ydydz zdzdx xdxdy ∑++⎰⎰ 二、计算题1、求极限.135(21)lim 2462n n n →+∞⨯⨯⨯⨯-⨯⨯⨯⨯ 2、求极限.2lim(sec tan )x x x π→-3、计算,其中是空间连接点和点的线段.(25)L xy yz ds -⎰L (1,0,1)(0,3,2)三、解答题1、已知伽马函数,证明:有.10()s x s x e dx +∞--Γ=⎰0s ∀>(1)()s s s Γ+=Γ2、求.22120lim 1dx x αααα+→++⎰3、设,求的傅里叶级数展开式.,0()0,0x x f x x ππ≤≤⎧=⎨-<<⎩()f x四、证明题设.求证:,使得,且0x >(0,1)θ∃∈0xt x e dt xe θ=⎰lim 1x θ→+∞=五、证明题设,试证方程01120112n n a a a a a n n n -+++++=+- 1201210n n n n n a x a x a x a x a ---+++++= 在0与1之间至少存在一个实数根。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

考研数学分析试题及答案

考研数学分析试题及答案

考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。

A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。

A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。

A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。

A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。

A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。

A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。

A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。

A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。

北京大学2020年数学分析试题及解答

北京大学2020年数学分析试题及解答

+
fy
(u cos θ, u sin θ) sin θ du
du fx (u cos θ, u sin θ) cos θ + fy (u cos θ, u sin θ) sin θ dθ
∫0 r ∫0 r
0
1 u 1 u
0∫
du
fx dy − fy dx (第二型曲线积分)
∫x∫2 +y 2 =u2 du
3
8. (1) 直接套公式可计算出 f (x) 的 Fourier 级数为
sin πp ∑ ∞ (−1)n sin πp ( 1 +
+
) 1 cos nx,
πp
π
p+n p−n
n=1
由于 f (x) = cos px 是分段单调有界的, 故上述级数收敛于 cos px.
(2) 取 x = 0, 由(1) 知:
形 Stokes 公式的证明


R(x, y, z) dz = ∂R dy dz − ∂R dz dx,
L⃗
S⃗ ∂y
∂x
其中 R 是 C1 函数, S⃗ 的方向为 S 的上侧, L⃗ 为 S⃗ 的边界曲线 R 相应的方向.
7.
(15 分) 设 f (x, y) 在 点, 半径为 r 的圆周.
R 上有连续二阶偏导数, 满足 f (0, 0) = 请求出 f (x, y) 在 Cr 上的平均值 A(r)
但是
limn→+∞
√1 n
=
0,

f (x)

[0, +∞)
上不一致收敛.
注 判断这种在无穷区间上的连续可微函数是否一致收敛, 首先是看函数在无穷处的极限是否存在, 若存在则一

华东师大数学分析答案完整版

华东师大数学分析答案完整版

华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。

2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。

3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。

4. 函数的导数表示函数在某一点的瞬时变化率。

5. 微分表示函数在某一点的微小变化量。

6. 函数的积分表示函数在某个区间上的累积变化量。

7. 变限积分的导数是原函数的导数。

8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。

9. 函数的泰勒级数表示函数在某一点的幂级数展开。

10. 傅里叶级数表示周期函数的三角级数展开。

二、选择题1. 下列函数中,连续的是(A)。

A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。

A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。

A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。

A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。

A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。

解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。

2. 求不定积分∫(e^x) dx。

解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。

2022年华南理工数学分析考研试题及解答

2022年华南理工数学分析考研试题及解答

2022年华南理工数学分析考研试题及解答n例1.设f:RnRn,且fC1R,满足f某fy某y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的.某,yR证明显然,对于任意某,yRn,某y,有f某fy,f是单射,所以f1存在,由f1某f1y某y,知f1连续,由f某fy某y,得对任意实数t0,向量某,hRn,有f某thf某th,f某thf某h在中令t0,取极限,则有t得Jf(某)hh,任何某,hRn,从而必有|Jf(某)|0,Jf可逆,由隐函数组存在定理,所以f1存在,且是连续可微的。

例2.讨论序列fntinnt在0,上一致收敛性.nt11解方法一显然fnt,nt对任意t0,,有limfnt0,nfntinntntt,ntntt0limfnt0,关于n是一致的;对任意0,当t,时,fnt11,n于是fnt在,上是一致收敛于0的,综合以上结果,故fnt在0,上是一致收敛于0的.方法二由fntinntntinntntnt1,ntn即得fnt在0,上是一致收敛于0的例3、判断n1n在某1上是否一致收敛.某n例4.设f某在,上一致连续,且2f某d某收敛,证明limf某0.某2某yz例5.求有曲面21所围成的立体的体积其中常数a,b,c0.abc例6、设D为平面有界区域,f某,y在D内可微,在D上连续,在D的边界上f某,y0,在D内f满足方程试证:在D上f某,y0.fff.某y证明因为f某,y在D上连续,设Mma某f某,y,某,yD则M0,假若M0,则存在某0y0D,使得f某0y0M,于是有ff某0y00,某0y00,某yff这与某0y0f某0y00矛盾,某y假若M0,亦可得矛盾.同理,对mminf某,y,亦有m0,某,yD故f某,y0,某,yD.一.求解下列各题1、设,数列{某}满足lima0nn某na某na。

0,证明limn某na21、解由0lim某na2alim1,n某an某ann知lim2a1,所以lim某na.nn某anco某,当某为有理数f(某)2、设当某为无理数,0,证明f(某)在点某kk1(k为任意整数)处连续,而在其它点处不连续。

2022年大连理工大学数学分析考研真题+解析

2022年大连理工大学数学分析考研真题+解析

大连理工大学2022数学分析考研真题试卷简答题(每题6分,共60分)1 1对任意的正整数k,存在正熬数N,当n>N时,有Ia n -al<-)此是否可以什为hm O,n =a的k n-oc, 定义?为什么?2.求f(x )=沪|尤-11在[-1,1]上的极值点与极值3证明J(x)= cos沪在(-OO )+OO)上不一致连续4设f(x )在[a ,叶上至多有第一类间断点证明j位)在[a ,b]上有界5试构造收敛的正项级数〉:an,使得lirn supn 加21仰=+O O”-+3C,It=l 6设封闭曲线f:x 3+沪=3xy,X 2: 0, y之0,求r 所包围区域的面积7设J(x)在[a ,b]上连续,在(a,b)上可微,f(b) > f (a),且J(x)不是一次函数证明存在�E (a, b), 使得!'(�)> J(b ) -f(a) b -aX -!丿8.求极限lim ;t...OO 泸-叨+l2''!J...OO 9设f(x )在(-OO,+OO)上连续,定义g(t)=f 位-t)勺(t )dt求g "'(x)。

10证明函数f 伈)=区n2 x ''·在-泸+2 (-e, e)上有任总阶导数n=l 二计算题(每题10分,共30分)+OO 1设bE凡计算!产cos bxdx.() 2设曲面I:: 9沪+4沪+z2= 1,方向朝外,计符曲而积分j x d ydz + y dzdx + z d 兀dy $ !但+2沪+3丑)}3 设向觉场F(x ,y,z)= 1 沪+沪+z 2+ 2功(兀十!尸+y,z),z>O ,求F的势函数,三证明题(每题12分,共60分)1设f(x)是[0,+o o )上的连续可微的凸函数,定义h(x)=J 。

:'f (l ) d t , X > 0时证明.h(兀)是冗(0, +oo)上的凸函数2设儿(沈)均在[a ,b]上可微,n = 1, 2, 3, • • 且存在正常数!V I >0,使得I J :1(x)I � M, n = 1, 2, 3, •• •, XE [a ,b]若函数列{f )l ,位)}在[a ,b]上逐点收敛证明函数列{儿(尤)}在Ia,bl上一致收敛3设B,C都是n阶实的常数矩阵,且C是非奇异的定义映射f 厌'i---t 脱'l 为f位)=Cx+B(x @x)这里xox定义为兀0兀=(叶,马`,点)T E贮.证明f 的值域至少包含一个内点.4设f (午)在[a ,,b]上有二阶连续导数,且f(a ) = f (b) = 0,证明max |f(午)|三(b -a )2 max |f r 心扛51)8 心还/15设瓜)住[a,+oo )上单调递减JI广义积分「00f(x) d 扎.收敛证明lim叶(:r ;)= 0 "x->+oo (a:) I大连理工大学 2022 年数学分析考研试题解答-简答题(每题6分,共60分)1对任意的正整数k,存在正整数N,当n>N时有, � Ia n -al<-,此是否可以作为k lim a n = a的定n➔oo 义?为什么? 1 解答可以一方面,若Jim 钰=a,那么对任意的正桴数k,取e=- > 0,则存在正整数1V,当n>N ')心k 时,有回-al<c: =-、k 1 另一方面,若对任意的正整数k,存在正整数N,当n>N时,有I仰-a|< -特别地,对任意的€> 0, l l k 任取大丁-的正整数ko,则存在正整数No,当九>No时.有I a n -al<—< e这就说明Jim a 九=a 0 k () 1➔OO 2求f(x)= X 旬x -11在[一1月上的极伯点与极伯解答当XE[一1,11[t,l ,有j(x)= X 灯1-x) = xi一xi,显然J(x)在[一1月上连续,在[一1,0)U (0月可导,且2压)=曰5 2 1 3 -- -卢=-曰(2-5x ).3 3由此可知土XE (-1 0)时2l'(x) < 0当X �2 (0; �)时f'(动>0,当x 2E q ,l )时f '(x )< 0所以f位)在(-1,0]严格递减在f 』严格递增)在[r 1]严格递减丁是0和5分别为J 的极小值占与极大值点且极小值为J (O)= 0,极大值为f (勹=:(:)令口但是3证明f(x)= cos产在(-:::,0,+00)上不一致连续解答取(-:::,0,+00)中的数列X n = ✓:玩兄加=v'2吓+1r(n=l,2,··),由于( -7f lim (X n -如)=lim � = 0. 九:=...oc ,~·,•. .,,., n ➔00 ✓芦+J2n7f十7f ,浊¥[j(Xn)-f(如)]=,抑�(cos(2n1r )一c os (2n1r + 1r)] = 2 =/= 0所以J位)仕(-oo,+oo)上不一致连续4设f(x)在[a,b]上至多有第一类间断点,证明:f(x)在(a,bJ上有界 D 解答对任意的1、oE [a, b ],由已知,J位)在xo处存在左极限与右极限(端点只考虑单侧极限),进而由极限的局部有界性,存在0:,:0>0与M 吓>0,使得`X E (xo -O re o'xo + D x o) n la, b ]时,有l f (x )I :s; M立。

数学分析各校考研试题与答案

数学分析各校考研试题与答案

数学分析各校考研试题与答案2003南开⼤学年数学分析⼀、设),,(x y x y x f w-+=其中),,(z y x f 有⼆阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w⼆、设数列}{n a ⾮负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an ⾮负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成⽴。

三、设?≤>+=0,00),1ln()(2x x x x x f α试确定α的取值围,使f(x)分别满⾜:(1)极限)(lim 0x f x +→存在(2) f(x)在x=0连续(3) f(x)在x=0可导解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nα极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径⽆关解;令U=22y x+则ydy xdx y x f l ++?)(22=21du u f l )(?⼜f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径⽆关。

(此题应感⼩毒物提供思路)五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤?证:因f(x)在[a,b]可导,则由拉格朗⽇中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f ba)(()(+-'=??ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤++ξ六、设}{n a 单减⽽且收敛于0。

北京大学1996-2021历年数学分析_考研真题试题(1)

北京大学1996-2021历年数学分析_考研真题试题(1)

x n a z ) d x d y d z 考试科目:数学分析一、(10 分)将函数 f (x ) = arctan2x1- x 2在 x = 0 点展开为幂级数,并指出收敛区间。

+∞ ln(1+ x )二、(10 分)判别广义积分的收敛性: ⎰0 d x 。

x p 三、(15 分)设 f (x ) 在(-∞, +∞) 上有任意阶导数 f (n ) (x ) ,且对任意有限闭区间[a , b ] ,f (n ) (x ) 在[a , b ] 上一致收敛于φ(x )(n → +∞) ,求证:φ(x ) = ce x , c 为常数。

四、(15 分)设 x n > 0( n = 1, 2 ⋅⋅⋅) 及 lim x n = a ,用ε - N 语言证明: lim= 。

n →+∞n →+∞五、(15 分)求第二型曲面积分⎰⎰ (x d y d z + cos y d z d x + d x d y ) ,其中S 为Sx 2 + y 2 + z 2 = 1的外侧。

∂f ∂g 六、(20 分)设 x = f (u , v ) , y = g (u , v ) ,w = w (x , y ) 有二阶连续偏导数,满足 ∂u = ∂v,∂f = - ∂g∂v ∂u ∂2w , ∂x 2 ∂2w + = 0 ,证明: ∂y 2(1) ∂2( fg ) ∂u 2∂2( fg ) + = 0 , ∂v 2(2) w (u , v ) = w ( f (u , v ), g (u , v )) 满足 ∂2w ∂u 2 ∂2w+ = 0 。

∂v 2七、(15 分)计算三重积分⎰⎰⎰Ω:x 2+ y 2 + z 2 ≤2 z(x 2 + y 2 +25/ 2。

n 1+ a nx ∞∑ ⎰ y+ x = = = 考试科目:数学分析 一、(26 分)选一个最确切的答案,填入括号中:1.设 f (x ) 定义在[a , b ] 上,若对任意的 g ∈ R ([a , b ]) ,有 f ⋅ g ∈ R ([a , b ]) ,则( )A. f ∈ R ([a , b ]) ,B. g ∈ C ([a , b ]) ,C. f 可微,D. f 可导。

大连理工大学硕士研究生测验数学分析试题及解答

大连理工大学硕士研究生测验数学分析试题及解答

大连理工大学硕士研究生测验数学分析试题及解答————————————————————————————————作者:————————————————————————————————日期:大连理工大学2005硕士研究生考试试题数学分析试题及解答一、计算题1、求极限:1222 (i),lim nnn na a na a an其中解:1212222...(1)(1)limlimlim()(1)212nn n nnna a na n a n a a Stolz nn nn 利用公式2、求极限:21lim (1)xxxe x解:2222221(1)1lim (1)lim()1111(1)(1)(ln(1))1lim lim111111(())21lim121(1)112lim (1)lim()lim()xx x x x xx x x x x x x x x x x x xx e x e e x x x x x x o e x x x x e xe ex x e x e ee3、证明区间(0,1)和(0,+)具有相同的势。

证明:构造一一对应y=arctanx 。

4、计算积分21Ddxdy yx,其中D 是x=0,y=1,y=x 围成的区域解:1122200111011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y y Ddxdy dxdyx y dyyxyxy dyydy y y y y yy 5、计算第二类曲线积分:22Cydxxdy I xy,22:21C xy方向为逆时针。

解:22222222222tan 2222cos ,[0,2)1sin211sin cos4cos222113cos22cos2213(2)(1)812arctan 421(2)(1)2311421Cx x yydxxdy Iddxyx x x x d x dxxx x x 换元万能公式代换226426212x dxdxx 6、设a>0,b>0,证明:111b ba ab b。

数学分析考研真题答案

数学分析考研真题答案

数学分析考研真题答案一、选择题1. 极限的概念是数学分析中最基本的概念之一。

下列选项中,哪一个是极限的定义?A. 函数在某一点的值B. 函数在某一点的左极限与右极限相等时的值C. 函数在某一点的值趋于一个常数D. 函数在某一点附近的行为答案: C2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某点的极限存在且等于函数值C. 在某区间内的所有点都有定义D. 在某区间内的所有点都有定义且可导答案: B二、填空题1. 若函数\( f(x) \)在点\( x_0 \)处可导,则\( f(x) \)在\( x_0 \)处的导数定义为\( \lim_{h \to 0} \frac{f(x_0 + h) -f(x_0)}{h} \)。

答案: \( \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \)2. 定积分\( \int_{a}^{b} f(x) \, dx \)的几何意义是函数\( f(x) \)在区间\( [a, b] \)上的曲线与x轴所围成的面积。

答案:曲线与x轴所围成的面积三、解答题1. 证明:若函数\( f(x) \)在区间\( [a, b] \)上连续,则定积分\( \int_{a}^{b} f(x) \, dx \)存在。

证明:由于\( f(x) \)在\( [a, b] \)上连续,根据连续函数的性质,\( f(x) \)在\( [a, b] \)上是一致连续的。

根据达布定理(Darboux's Theorem),对于任意的分割\( P \),上和\( U(f, P) \)与下和\( L(f, P) \)之差\( U(f, P) - L(f, P) \)可以任意小。

因此,存在一个共同的极限\( I \),即\( \lim_{||P|| \to 0} U(f, P) = \lim_{||P|| \to 0} L(f, P) = I \),这就证明了定积分\( \int_{a}^{b} f(x) \, dx \)的存在性。

华南理工大学2020年数学分析考研试题参考解答

华南理工大学2020年数学分析考研试题参考解答

所以所求点为 (4, 2, 4) 或者 (−4, −2, −4)。 ** 十、(13 分)** 设 f (x) 在 [0, 2] 上二阶可微, 且 |f (x)| ≤ 1, |f ’’(x)| ≤ 1 . 证明:|f ’(x)| ≤ 2 . ** 证明:** 用在 x 点的泰勒公式
f (y)
=
f (x)
+∞
cos(yx)de−2x
0
20
=
− 1 e−2x 2
cos(yx)|+0 ∞

y 2
∫ +∞
0
e−2x
sin(yx)dx
=
1
+
y

+∞
sin(yx)de−2x
2 40
=
1 2
+
y e−2x 4
sin(yx)|+0 ∞

y2 4
∫ +∞
0
e−2x
cos(yx)dx
因此
∫ +∞
0
e−2x
cos(yx)dx
0
ex(1

cos(2x)dx
=
40
eπ − 1

+
1

π
ex cos(2x)dx
4
40
∫π
∫π
ex cos(2x)dx = cos(2x)dex
0

0 π
= ex cos(2x)|π0 + 2 ex sin(2x)dx

0 π
= eπ − 1 + 2 sin(2x)dex
0
∫π
= eπ − 1 + 2(ex sin(2x)|π0 − 2 ex cos(2x)dx)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim Λ解:因为an 非负单增,故有n n n n n n nn n na a a a a 1121)(][≤+++≤Λ由a a n n =∞→lim ;据两边夹定理有极限成立。

三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+Λα极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

∑n a n sin 发散a) 证明∑收敛n an sinb) 证明1lim=∞→n nn v u 其中)sin sin (k ak k a u k n +=∑;)sin sin (k ak k ak v n -=∑证:(1)因为21sin 1sin ≤∑k 而}{n a 单减而且收敛于0据狄利克莱判别法知∑收敛n an sin(2)因为正项级数∑n a n sin 发散则∑∞→∞→)(sin n k ak 又由上题知∑有界k ak sin 故有1lim=∞→nnn v u七、设dx xxe t F txsin )(1⎰∞+-= 证明 (1)dx xxe tx sin 1⎰∞+-在),0[+∞一致收敛 (2))(t F 在),0[+∞连续证:(1)因dx xx ⎰∞+1sin 收敛(可由狄利克莱判别法判出)故在t>=0上一致收敛;又txe -在x>=1,t>=0 单调且一致有界)0,1(10≥≥∀≤≤-t x e tx由阿贝尔判别法知一致收敛(2)],[0,),,0[00βαβα∈≥∃+∞∈∀t t 使由上题知,F (t )在],[βα一致收敛,且由xxetxsin -在(x,t )],[),1[βα⨯+∞∈上连续知F (t )在],[βα连续所以在0t 连续,由0t 的任意性得证八、令)}({x f n 是[a,b]上定义的函数列,满足 (1)对任意0x ],[b a ∈)}({0x f n 是一个有界数列 (2)对任意>ε,存在一个εδδ<-<-∈>)()(,],[,,0y f x f n ,y x b a y x n n 有对一切自然数时且当求证存在一个子序列)}({x f kn在[a,b]上一致收敛证:对任意x ],[b a ∈,)}({x f n 是一个有界数列故由致密性定理存在一收敛子列,设为)}({x f kn ,又令U=]},[),({b a x x u x ∈δ则U 为[a,b]的一个开覆盖集,由有限覆盖定理,存在有限个开区间覆盖[a,b],不妨设为),(),(11mx m x x u x u δδΛ于是对N能找到一,0>∀ε>0,),,2,1(,,21m i x N ,n n i k k Λ=∀>∀有3)()(22ε<-i n i n x f x f k k 令},,min{1mx x δδδΛ=则由条件(2)知对上述0>∀ε3)()(,],,[,0εδδ<-<-∃∈∀>∃l n n l l x f x f n ,x x x b a x 有对一切自然数使于是有有],[],,[,,,,0,0b a x b a x N n n K t k K l t k ∈∃∈∀>>∀>∃>∀ε)()()()()()()()(x f x f x f x f x f x f x f x f kkklttktn l n l n l n l n n n n -+-+-=-≤)()(l n n x f x f tt-+)()(l n l n x f x f kl-+)()(x f x f kkn l n -ε<由柯西准则得证。

2004年南开大学数学分析试题答案1. 1lim )()(lim )()(')()(ln1===⎪⎪⎭⎫⎝⎛-→-→a f a f ax a f x f ax ax a x eea f x f2.y x f xyy f x z 2-=∂∂,yy yx y xy xx x f x y f x y f x f x y yxf f y x z 3221---++=∂∂∂=yy y xx x f xyf x yxf f 321--+ 3.即证明x x x ++<+111)1ln(2,即证xx x +-+<+111)1ln(2 设=)(x f xx x ++--+111)1ln(2,0)0(=f ,2)1(1112)('x x x f +--+=0)1(22<+-=x x ,0)0()(=<f x f ,证完。

4.⎰⎰+Ddxdy y x y x )ln(2222=⎰⎰1252022ln cos sin drr r d πθθθ=⎰⎰152022ln cos sin 8rdr r d πθθθ= 72π-5.设P=22y x -,Q=xy 2-,yPy x Q ∂∂=-=∂∂2,积分与路径无关,则 ⎰==ππ0323dx x J6.ααnen n nnn1ln 1-=-1ln +≈αn n,又当0>α时,∑∞=+11ln n n n α收敛,当0≤α时,级数∑∞=+11ln n n n α发散,原题得证 7.由拉格朗日定理,nf n f n f n )(')()2(ξ=-,其中n n n 2<<ξ0)()2(lim)('lim =-=∞→∞→nn f n f f n n n ξ,原题得证 8.(1)应用数学归纳法,当1=n 时命题成立, 若当kn =时命题也成立,则当1+=k n 时,2)(},min{1111++++--+==k k k k k k k f F f F f F F ,由归纳假设1+k F 连续。

(2) (3)由)}({1x F k +单调递减趋于)(x F ,)}({1x F k +与)(x F 都连续,由地尼定理,该收敛为一致收敛。

9.(1)证明:2100),,(x x x b a x <<∀∈∀取02210201,,x x x x x x x x ==--=λ,代入式中得,)]()([)()(02020101x f x f x x x x x f x f ---+≤即02020101)()()()(x x x f x f x x x f x f --≤--,所以函数0)()()(x x x f x f x g --=单调递增有下界,从而存在右极限,则=+)(0'x f 00)()(lim0x x x f x f x x --+→;4321x x x x <<<∀,由题设可得32322121)()()()(x x x f x f x x x f x f --≤--4343)()(x x x f x f --≤,即2121)()(x x x f x f --4343)()(x x x f x f --≤从而2121)()(lim 12x x x f x f x x --→4343)()(lim 34x x x f x f x x --≤→,所以导函数递增。

(2)参考实变函数的有关教材。

2005年南开大学数学分析试题答案0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x2.x z f x y f f dx du z y x ∂∂+∂∂+=,其中xz x y ∂∂∂∂,由=∂∂+∂∂+=∂∂+∂∂+xz h x y h h x z g x y g g z y x z yx 求出 =∂∂--=∂∂x z h g h g g h g h x y y z z y x z z x ,y z z y xy y x h g h g g h g h -- 3.⎰∑+=-=-=∞→12123234)(411lim πx dx nkn nk n 4.tx dt t M+≤⎰1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又tx t+sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。

5.由泰勒公式)!1(!1!21!111+++++=n e n e ξΛ,则)!1()!1(!1!21!111+≤+=+++-n e n e n e ξΛ,后者收敛,则原级数收敛。

6.由拉格朗日中值定理,,)('1)(122nMn Mx nx f n n xf n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。

相关文档
最新文档