七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word版含答案)一、选择题1.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为()A.53610⨯B.60.3610⨯C.53.610⨯D.43610⨯2.若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值是()A.5 B.﹣5 C.7 D.﹣73.下列运算中,结果正确的是( )A.3a2+4a2=7a4B.4m2n+2mn2=6m2nC.2x﹣12x=32x D.2a2﹣a2=24.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是()A.球B.三棱锥C.圆锥D.圆柱5.下列说法错误的是( )A.2的相反数是2-B.3的倒数是1 3C.3-的绝对值是3 D.11-,0,4这三个数中最小的数是0 6.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a的值为( )A.2 B.2-C.1 D.07.如图,几何体的名称是()A.长方体B.三角形C.棱锥D.棱柱8.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定9.一个正方体的表面展开图可以是下列图形中的()A.B.C.D.10.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′11.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变 12.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为( )元.A .90B .100C .110D .12013.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A14.3-的绝对值是( )A .3-B .13- C .3 D .3±15.下列说法正确的是( ) A .两点之间的距离是两点间的线段B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.计算:3-|-5|=____________.17.单项式-4x 2y 的次数是__.18.若2|3|(2)0x y ++-=,则2x y +的值为___________.19.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.20.2-的结果是_______.21.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.22.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.23.计算:33--=______.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 三、解答题26.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 27.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系.(3)比较大小:线段BH 线段BA ,理由为 .28.如图,网格线的交点叫格点,格点是的边上的一点(请利用网格作图,保留作图痕迹).(1)过点画的垂线,交于点;(2)线段的长度是点O到PC的距离;(3)的理由是;(4)过点C画的平行线;29.解方程(组)(1)3(4)12x-=(2)2121 136x x-+ -=(3)5616 795 x yx y+=⎧⎨-=⎩30.解方程(1)5x﹣1=3(x+1)(2)21511 36x x+--=31.按要求画图:如图,在同一平面内有三点A、B、C.(1)画直线AB和射线BC;(2)连接线段AC,取线段AC的中点D;(3)画出点D到直线AB的垂线段DE.32.计算:(1)351 (24)()8124 -⨯-+(2)22020113(1)()334---⨯-+-33.我们知道,任意一个正整数n都可以进行这样的分解:n p q=⨯(p,q是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q =. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值. 35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.38.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.39.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)40.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由;(3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=32AD 时,请直接写出t 的值. 41.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.42.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.43.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将360000用科学记数法表示为:3.6×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A解析:A【解析】【分析】把x=3代入已知方程后,列出关于m的新方程,通过解新方程来求m的值.【详解】∵x=3是关于x的方程2x﹣m=x﹣2的解,∴2×3﹣m=3﹣2,解得:m=5.故选A.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.3.C解析:C【解析】【分析】将选项A,C,D合并同类项,判断出选项B中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A、3a2+4a2=7a2,故选项A不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C.、2x-12x=32x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选C.【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.4.C解析:C【解析】【分析】根据每个几何体的特点可得答案.【详解】解:A. 球,只有曲面,不符合题意;B. 三棱锥,面是4个平面,还有4个顶点,不符合题意;C. 圆锥,是一个曲面,一个顶点,符合题意;D. 圆柱,是一个曲面,两个平面,没有顶点,不符合题意.故选:C.【点睛】本题考查认识立体图形,解题关键是熟记常见几何体的特征.5.D解析:D【解析】【分析】根据相反数的定义,倒数的定义,绝对值的意义,以及有理数比较大小,分别对每个选项进行判断,即可得到答案.【详解】解:A 、2的相反数是2-,正确;B 、3的倒数是13,正确; C 、3-的绝对值是3,正确;D 、11-,0,4这三个数中最小的数是11-,故D 错误;故选:D.【点睛】本题考查了相反数、倒数的定,绝对值的意义,以及比较有理数的大小,解题的关键数熟记定义.6.A解析:A【解析】【分析】直接把2x =代入方程,即可求出a 的值.【详解】解:∵x=2是关于x 的一元一次方程ax-6+a=0 的解,∴把2x =代入方程,得:260a a -+=,a ;解得:2故选:A.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法.7.C解析:C【解析】【分析】根据简单几何体的特点即可判断.【详解】图中的几何体为三棱锥故选C.【点睛】此题主要考查几何体的命名,解题的关键是熟知棱锥的特点.8.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.9.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C .10.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE 的度数,再根据∠CAE +∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE =60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.11.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.12.A解析:A【解析】【分析】设该商品进价为x 元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】解:设该商品进价为x 元,由题意得(x+70)×75%-x=30解得:x=90,答:该商品进价为90元.故选:A .【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.13.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.14.C解析:C【解析】【分析】利用绝对值的定义求解即可.【详解】解:3-的绝对值是3.故选:C .【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.15.D解析:D【解析】试题分析:根据线段、垂线、平行线的相关概念和性质判断.解:A 、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B 、在同一平面内,与同一条直线垂直的两条直线平行,错误;C 、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选D.考点:平行公理及推论;线段的性质:两点之间线段最短;垂线.二、填空题16.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.17.3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解析:3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x 2y 的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解题的关键.18.【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵,∴x +3=0,y−2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案解析:1【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵2|3|(2)0x y ++-=,∴x +3=0,y−2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案是:1.【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x ,y 的值是解题关键. 19.【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再解析:17-【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.20.2【解析】【分析】根据绝对值的意义,即可得到答案.【详解】解:;故答案为:2.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义进行解题.解析:2【解析】【分析】根据绝对值的意义,即可得到答案.【详解】-=;解:22故答案为:2.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义进行解题.21.59°【解析】【分析】根据折叠的性质,得到,再根据平行线的性质得到,求出解决即可.解:∵把一张长方形纸片ABCD 沿EF 折叠则故答案是59°. 【点睛】本题考查了折叠的性质解析:59°【解析】【分析】根据折叠的性质,得到DEF FEM ∠=∠,再根据平行线的性质得到62EGF ︒∠=,求出118,DEG ︒∠=解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠62AEG ︒∠=62,EGF DEF FEM ︒∴∠=∠=∠118,DEG ︒∴∠=则59DEF FEM ︒∠=∠=故答案是59°.【点睛】本题考查了折叠的性质以及平行线的性质,解决本题的关键是熟练掌握折叠与平行线的性质,找到相等的角.22.2或4【解析】解:方程整理得:(a ﹣1)x=3,解得:x=,由x ,a 都为正整数,得到a=2,4.故答案为2,4.点睛:此题考查了一元一次方程的解,方程的解即为能使方程两边相等的未知数的值.解析:2或4【解析】解:方程整理得:(a ﹣1)x =3,解得:x =31a -,由x ,a 都为正整数,得到a =2,4.故答案为2,4.点睛:此题考查了一元一次方程的解,方程的解即为能使方程两边相等的未知数的值. 23.-6【解析】根据有理数减法法则进行计算即可.【详解】解: -6故答案为:-6【点睛】本题考查了有理数的减法,掌握有理数减法法则是解题的关键.解析:-6【解析】【分析】根据有理数减法法则进行计算即可.【详解】--=-6解: 33故答案为:-6【点睛】本题考查了有理数的减法,掌握有理数减法法则是解题的关键.24.100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解得:x=100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.【解析】【分析】设这个角大小为x ,然后表示出补角和余角,根据题意列出方程解方程即可【详解】设这个角大小为x ,则补角为180°-x ,余角为90°-x ,根据题意列出方程°,解得x=解析:55°.【解析】【分析】设这个角大小为x ,然后表示出补角和余角,根据题意列出方程解方程即可【详解】设这个角大小为x ,则补角为180°-x ,余角为90°-x ,根据题意列出方程()190x 180105x ︒-=︒-+°, 解得x=55°,故填55°【点睛】 本题主要考查余角和补角,能够设出角度列出方程式本题解题关键三、解答题26.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】(1)原式=25(+277+()-)- =-1+2=1;(2)原式=5(8)(3)⨯-⨯-=40(3)-⨯-=120.【点睛】本题考查了有理数的混合运算.熟练掌握运算法则和运算顺序是解答本题的关键.27.(1)详见解析;(2)DE //BC ,AH ⊥BC ;(3)线段BH<线段BA ,直线外一点与直线上各点连成的所有线段中,垂线段最短【解析】【分析】(1)根据题意,作出平行线和垂线即可;(2)用符号语言表示出来即可;(3)根据垂线段最短,即可得到答案.【详解】解:(1)如图;(2)用数学符号表示为:DE//BC,AH⊥BC;(3)线段BH<线段BA,直线外一点与直线上各点连成的所有线段中,垂线段最短【点睛】本题考查了基本作图,以及考查了垂线段最短,解题的关键是正确的作出平行线和垂线. 28.(1)见解析;(2)OP;(3)垂线段最短;(4)见解析【解析】试题分析:(1)先以点P为圆心,以任意长为半径画弧,与OB交于两点,然后再分别以这两点为圆心,作弧在OB两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA的同位角即可得.试题解析:(1)如图所示:PC即为所求作的;(2)根据点到直线的距离的定义可知线段OP的长度是点O到PC的距离,故答案为OP;(3)PC<OC的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.29.(1)x=8;(2)76x =;(3) 21x y =⎧⎨=⎩. 【解析】【分析】(1)根据一元一次方程的解题方法解题即可.(2)根据一元一次方程-去分母的解题方法解题即可.(3)根据二元一次方程组的”消元”方法解题即可.【详解】(1) 3(x -4)=12x -4=4x =8 (2) 2121136x x -+-= ()622121642216776x x x x x x --=+-+=+-=-=(3) 5616795x y x y +=⎧⎨-=⎩①② ①×3+②×2,得: 29x=58,x=2.将x=2代入①,5×2+6y=16,y=1.∴解集为:21x y =⎧⎨=⎩. 【点睛】本题考查一元一次方程和二元一次方程组的解题方法,关键在于掌握基础解题方法.30.(1)x =2;(2)x =﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x﹣1=3x+3,移项,合并同类项,可得:2x=4,系数化为1,可得:x=2.(2)去分母,可得:2(2x+1)﹣(5x﹣1)=6,去括号,可得:4x+2﹣5x+1=6,移项,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)根据直线和射线的概念作图可得;(2)根据线段的概念和中点的定义作图可得;(3)过点D作DE⊥AB于点E,连接DE即可.【详解】解:(1)如图所示,直线AB和射线BC即为所求;(2)如图线段AC和点D即为所求;(3)线段DE为所求垂线段.【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.32.(1)-5;(2)1 612【解析】【分析】(1)根据乘法分配律进行展开计算即可;(2)按照有理数混合运算进行计算即可.【详解】解:(1)原式= 351(-24)-(-24)+(-24)8124⨯⨯⨯ =-9+10-6=-5(2)原式=4391()31212--⨯-+ =191312--⨯+ =19312--+ =1612- 【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算法则是解题的关键.33.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F (t )的最大值是34. 【解析】【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b =2,a =5; b =3,a =6, b =4,a =7,b =5,a =8 b =6,a =9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题. 四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111...22320192020-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++ =111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭ =111222020⎛⎫- ⎪⎝⎭ =10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.(1)①7+21;②10.82-;③22.8 3.23+-;(2)9;(3)10012004. 【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可; (3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)①|7+21|=21+7;故答案为:21+7; ②110.80.822-+=-; 故答案为:10.82-; ③23.2 2.83--=22.8 3.23+- 故答案为:22.8 3.23+-; (2)原式=1111924233202033-++- =9(3)原式 =11111111 (23344520032004)-+-+-++- =1122004- =10012004【点睛】 此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.36.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km = 425 1.5PC AC AP k ∴=-=-=()2当小明由A地去B地过程中:在AC之间时,41355t-==(小时),在BC之间时,4115t+==(小时),当小明由B地返回A地过程中:在BC之间时,1024135t⨯--==(小时),在AC之间时,102(41)1755t⨯--==(小时),故满足条件的t值为:317,1,3,55 h h h h(3)当小明从A运动到B的过程中,AP=vt= 5,当小明从B运动到A的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.37.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx 2.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 3.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 4.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 5.下列几何体中,是棱锥的为()A .B .C .D .6.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++7.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .19 8.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( )A .+B .-C .×D .÷ 9.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱10.下列立体图形中,俯视图是三角形的是( ) A . B . C . D .11.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .212.一个正方体的表面展开图可以是下列图形中的( ) A . B . C . D .13.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( )A .0.45×108B .45×106C .4.5×107D .4.5×10614.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是( ).A .-1B .0C .3D .415.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 二、填空题16.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.17.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.18.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
七年级期末试卷易错题(Word版含答案)
七年级期末试卷易错题(Word版含答案)一、选择题1.同一台显微镜,采用不同的物镜和目镜组合观察同一血液涂片,出现图中甲、乙两个视野,下列说法正确的是()A.如果目镜一样,图甲的物镜比图乙的物镜短B.如果物镜一样,图乙的目镜比图甲的目镜长C.若使用相同的光照、反光镜和光圈,则乙视野更亮D.甲观察的范围比乙观察的范围小,看到的细胞多2.在使用显微镜观察细胞的实验中,下列有关叙述正确的是()A.甲图在换用高倍镜③后,调节①使物像变清晰B.乙图中,使用物镜①看到的细胞数目较少C.由丙图转为丁图时,应将载玻片向右移动D.丁图细胞图像是在乙图物镜②下观察所得3.俗话说“民以食为天”。
这里体现的生物特征是()A.生物的生活需要营养B.生物都有遗传和变异的特性C.生物能排出身体内产生的废物D.生物能生长和繁殖4.“明月别枝惊鹊,清风半夜鸣蝉”,反映了生物基本特征中的()A.排出体内产生的废物B.生长和繁殖C.对外界刺激作出反应D.遗传和变异5.下列诗句中最能体现出光对植物生长影响的是()A.春色满园关不住,一枝红杏出墙来B.人间四月芳菲尽,山寺桃花始盛开C.竹外桃花三两枝,春江水暖鸭先知D.停车坐爱枫林晚,霜叶红于二月花6.影响我国从南到北,森林覆盖率逐渐减少的主要非生物因素是()A.水B.温度C.阳光D.大气7.如图所示为细胞分裂过程中不同时期的示意图,按发生分裂的先后顺序,正确的是()A.甲→乙→丙→丁B.甲→丙→丁→乙C.丁→乙→甲→丙D.甲→丙→乙→丁8.植物细胞的分裂过程顺序正确的是()(1)细胞质平分为二,各含一个细胞核(2)在细胞中央形成新的细胞壁和细胞膜(3)细胞核平分为二A.(1)(2)(3)B.(2)(1)(3)C.(3)(1)(2)D.(1)(3)(2)9.研究者对某池塘中部分生物摄取的食物成分进行了分析,并将结果记录在下表中。
请据表中信息判断,下列说法不正确的是()生物种类蜻蜓幼虫小球藻小鱼水蚤体内食物成分水蚤蜻蜓幼虫小球藻A.表中属于生产者的是小球藻B.根据表中信息,写出的食物链为:小球藻→水蚤→蜻蜓幼虫→小鱼C.若某一有毒物质进入到该食物链,则体内含该有毒物质最多的是小鱼D.在一段时间内,如果蜻蜓幼虫的数量增加,则小球藻的数量将减少10.如图表示生态系统的各成分之间的关系,下列分析错误的是()A.①是生产者,能利用光能制造有机物B.②和③都属于该生态系统的消费者C.图中的食物链是①→②→③→④D.图中若②全部消失,③就无法生存11.下图是是植物生长发育过程中的相关结构,下列描述正确的是()A.菜豆种子的胚由图甲中的1、2和3组成B.图甲中最先突破种皮的是2C.图乙中的A是由图甲中的1发育成的D.图丙中的a是吸水的主要部位12.菜豆种子的结构和萌发过程示意图,下列说法错误的是()A.甲图种子最先萌发的是②,它将发育成乙图中的⑧B.甲图中④是胚芽,能发育成乙图中的⑥C.⑤是胚芽,它将发育成植物的⑦D.甲图①是种皮,对幼嫩的胚有保护作用13.如图分别为玉米、向日葵、葫芦藓、肾蕨、油松、水绵六种植物,将它们分类,正确的选项是()A.③⑤⑥为苔藓植物B.①③④为蕨类植物C.③④⑥为藻类植物D.①②⑤为种子植物14.草履虫是单细胞动物,不会发生哪种生命现象()A.呼吸B.消化C.排出废物D.细胞分化15.草履虫的运动依靠A.细胞质的流动B.食物泡的流动C.纤毛的摆动D.伸缩泡的收缩16.如图是某生物细胞发生的一系列变化的过程示意图,有关分析不正确的是()A.①过程中发生了遗传物质的复制和平分B.该生物的所有细胞都能进行①过程C.A、B、C细胞的基本结构相同D.B细胞和C细胞中含有相同的遗传物质17.某同学制作并观察了动、植物细胞临时装片,据如图分析,以下说法错误的是()A.图甲中带黑边的圆圈是气泡,可能是在盖盖玻片时,没有让其一侧先接触载玻片上的水滴B.图乙是在显微镜下看到的植物细胞结构C.显微镜的放大倍数是指图丙中①与②放大倍数的乘积D.下降显微镜镜筒时,眼睛应注视图丙中的①18.美西螈属于两栖动物,有黑白两种体色,科学家用美西螈做如图所示实验。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′A D ′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37° 2.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( )A .5B .﹣5C .7D .﹣73.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114°4.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元5.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1066.-8的绝对值是( ) A .8B .18C .-18D .-87.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小8.计算233235x y y x -的正确结果是( )A .232x yB .322x yC .322x y -D .232x y -9.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°10.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上11.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >012.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 13.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 15.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( )A .90.14910⨯,B .81.4910⨯C .714.910⨯D .614910⨯二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.已知23a b -=,则736a b +-的值为__________.18.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.19.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF =______°.21.若232a b -=,则2622020b a -+=_______.22.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.23.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________24.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.25.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________.三、解答题26.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?27.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数.28.在如图所示的方格纸上作图并标上相应的字母.(1)过点P 画线段AB 的平行线a ; (2)过点P 画线段AB 的垂线,垂足为H ; (3)点A 到线段PH 的距离即线段 的长. 29.某校办工厂生产一批新产品,现有两种销售方案。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=2.2-的相反数是( ) A .2-B .2C .12D .12-3.下列四个数中,最小的数是() A .5B .0C .1-D .4- 4.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( ) A .100.30千克 B .99.51千克 C .99.80千克 D .100.70千克 5.下列合并同类项结果正确的是( )A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 66.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .7.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱8.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100 B .140 C .90 D .120 9.若a >b ,则下列不等式中成立的是( ) A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b10.下列立体图形中,俯视图是三角形的是( )A .B .C .D .11.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .212.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( ) A .7.5米B .10米C .12米D .12.5米13.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 14.对于任何有理数a ,下列各式中一定为负数的是( )A .(3)a --+B .2a -C .1a -+D .1a --15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5 B .若a=b ,则ac=bc C .若a bc c =,则2a=3b D .若x=y ,则x y a a= 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个几何体的主视图、左视图、俯视图都是相同的图形,这样的几何体可以是___________(写出一个符合条件的即可).18.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.19.已知1x =是方程253ax a -=+的解,则a =__.20.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.21.若一个多边形的内角和是900º,则这个多边形是 边形. 22.请写出一个系数是-2,次数是3的单项式:________________. 23.已知a ﹣2b =3,则7﹣3a +6b =_____. 24.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____.25.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________;(2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由. 27.如图,//AD EF ,12180∠+∠=. (1)求证://DG AB ;(2)若DG 是ADC ∠的角平分线,130∠=,求B 的度数.28.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么? 29.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.30.先化简,在求值:221523243m mn mn m ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2m =-,12n =31.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米? 32.已知关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解. (1)求,m n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使APm PB=,点Q 为PB 的中点,求线段AQ 的长.33.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级期末试卷易错题(Word版含答案)
七年级期末试卷易错题(Word版含答案)一、选择题1.学习已经成为人们日常生活中不可缺少的一项重要的内容,尤其是在二十一世纪这个知识经济时代,自主学习已是人们不断满足自身需要,获取有价值信息,并最终取得成功的法宝。
初中段的学习内容包括()①知识的获取②体验和感悟③如何做人④能力的培养A.①②③B.①②④C.①③④D.②③④2.玲玲上了初中以后,希望自己能有个精彩的中学行程,但又不知道如何去做准备而感觉很烦恼。
为此,你可以建议她①积极面对新环境②与同学友好交往③探索适合自己的学习方法④自觉磨砺意志和品格A.①②③B.②④C.①②③④D.②③④3.“互联网+”时代衍生出很多新现象,考验公众判断和社会治理能力。
以下行为属于正确使用网络的是()A.大二女生李某用自己身份证和私人照做抵押,从网贷公司贷款5 000元B.高中生张某应一名未见过面的网友所约,赴郊外商议购买野战游戏装备C.王某收到来历不明的宣扬暴力视频邮件后立即向网络监管部门举报D.孙某看到一则有关即将发生地震的消息后随手分享到微信朋友圈4.随着科技的发展,互联网创造了人类生活新空间,但也给我们带来了潜在的风险。
去年“3·15”晚会曝光了人工智能拨打骚扰电话等多起案例。
对此,下列认识正确的有()①互联网只有利没有弊,尽管充分地享受②互联网只有弊没有利,必须远离③互联网方便我们的生活,是科技的产物④互联网有弊有利,我们要正确使用A.①②B.③④C.①④D.②③5.面对信息时代的挑战我们必须转变学习方式,学会学习。
正确的学习方式有()①独立思考不断质疑②互助合作探究学习③自主学习持续学习④完全模仿他人学习A.①②④B.①②③C.②③④D.①③④6.“独学而无友,则孤陋而寡闻。
”《学记》中的这句名言,告诉我们要运用的学习方式是( )A.合作学习B.自主学习C.探究学习D.快乐学习7.下列做法有利于发掘自己潜能的有()①在学习生活中珍视自己的兴趣爱好②碰到难题的时候对自己说“我是世界上最笨的人”③失败的时候总是以“总是会失败的”作借口④参与多方面的活动,发现他人对自己的需要A.①②B.①④C.②④D.③④8.“在最好的时光里,做最好的自己。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .392.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( )A .2.1×104B .2.1×105C .0.21×104D .0.21×105 3.方程去分母后正确的结果是( ) A .B .C .D . 4.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab 5.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .6.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行7.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -= 8.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )9.下列平面图形不能够围成正方体的是( )A .B .C .D .10.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角 D .EOD ∠与BOC ∠是对顶角11.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯12.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( )A .7.5米B .10米C .12米D .12.5米13.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°14.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是( ).A .-1B .0C .3D .4 15.对于任何有理数a ,下列各式中一定为负数的是( )A .(3)a --+B .2a -C .1a -+D .1a -- 二、填空题 16.计算:82-+-=___________.17.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.18.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.19.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.20.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.21.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.22.如果向北走20米记作+20米,那么向南走120米记为______米.23.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.24.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB ,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ;②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离;(2)在(1)所画图中,①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 .27.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数;(3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.28.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?29.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形;(2)若30AOB ∠=︒,求出COD ∠的度数.30.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=. 31.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问:(1)学校印制多少份节目单时两个印刷厂费用是相同的?(2)学校要印制1500份节目单,选哪个印刷厂所付费用少?32.如图,已知直线AB 和CD 相交于点O ,OE CD ⊥,OF 平分AOE ∠.(1)写出AOC ∠与BOD ∠的大小关系:______,判断的依据是______;(2)若35COF ∠=︒,求BOD ∠的度数.33.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( ) A .19.1×410B .1.91×510C .19.1×510D .0.191×6102.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养3.单项式24x y 3-的次数是( ) A .43-B .1C .2D .34.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个 5.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点6.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b -- 7.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a8.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定9.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .经过一点,有无数条直线C .垂线段最短D .经过两点,有且只有一条直线10.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=211.某数x 的43%比它的一半还少7,则列出的方程是( ) A .143%72x ⎛⎫-= ⎪⎝⎭B .1743%2x x -= C .143%72x x -= D .143%72x -= 12.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .13.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段14.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( ) A .44.8310⨯ B .54.8310⨯ C .348.310⨯ D .50.48310⨯ 15.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-二、填空题16.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.17.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元, 而按标价的8折出售将赚40元,为保证不亏本,最多打__________折. 18.如图,直线//,1125∠=︒a b ,则2∠=_____________度19.若∠1= 42°36’,则∠1 的余角等于___________°. 20.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).21.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.22.如果向北走20米记作+20米,那么向南走120米记为______米. 23.请写出一个系数是-2,次数是3的单项式:________________. 24.观察下面两行数第一行: 1,4,9,16,25,36---⋯ 第二行: 3,2,11,14,27,34---⋯ 则第二行中的第8个数是 __________.25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)27.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动.①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?28.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元; (2)小明家2月交电费98元,则他家2月份用电多少度? 29.解方程:(1)4365x x -=-;(2)221134x x +-=+. 30.先化简,再求值:2a 2b ﹣3ab 2﹣2(a 2b +ab 2),其中a =1,b =﹣2. 31.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).32.先化简,再求值:()()22225343a b ababa b ---+,其中a=-2,b=12;33.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.四、压轴题34.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.35.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?39.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.40.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数41.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】191000=1.91×105,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.3.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.4.B解析:B【解析】【分析】根据同位角、对顶角、内错角以及同旁内角的定义进行判断,即可得到答案.【详解】解:由图可知,∠B和∠1是同旁内角,故①、②错误;∠2和∠4是内错角,故③正确;∠A和∠BCD不是同旁内角,故④错误;∴正确的只有1个;故选:B.【点睛】本题考查了同位角、内错角、同旁内角、对顶角的定义,解题的关键是熟练掌握定义进行判断.5.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.6.A解析:A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:−2<a<−1<0<b<1,且|a|>|b|,∴a−b<0,a+b<0,则原式=b−a+2a+2b=a+3b,故选:A.【点睛】此题考查了整式的加减,数轴以及绝对值,熟练掌握运算法则是解本题的关键.7.B解析:B【解析】【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【详解】A是两个常数,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.8.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.9.A解析:A【解析】【分析】由题干图片可知,剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,据此进行解答即可.【详解】解:剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,根据两点之间线段最短可解释该现象,故选择A.【点睛】本题考查了两点之间,线段最短概念的实际运用.10.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.11.B解析:B【解析】【分析】由该数的43%比它的一半还少7,可得出关于x 的一元一次方程,此题得解.【详解】 解:依题意,得:1743%2x x -= 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 12.C解析:C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选:C .【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.13.D解析:D【解析】【分析】根据两点确定一条直线,同角的余角相等,线段的性质,两点之间的距离即可判断.【详解】A .两点确定一条直线是正确的,不符合题意;B .同角的余角相等是正确的,不符合题意;C .两点之间,线段最短是正确的,不符合题意;D .两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意. 故选D .【点睛】本题考查了对直线的性质,余角或补角,线段的性质的理解和运用,知识点有:两点确定一条直线,同角的余角或补角相等,两点之间线段最短.14.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:448300 4.8310=⨯;故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.A解析:A【解析】【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可.把x=3代入方程3x﹣a=0得:9﹣a=0,解得:a=9.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题16.24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解析:24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:第一个数就是直接输出其结果的:5x-1=119,解得x=24,第二个数是(5x-1)×5-1=119,解得x=5,第三个数是:5[5(5x-1)-1]-1=119,解得x=65.(不符合题意,舍去)∴满足条件所有x的值是24或5.故答案为:24或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.17.六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.解:设每解析:六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.【详解】解:设每件服装的成本为x元,则标价为2(x-20)元,根据题意得:0.8×2(x-20)-x=40,解得:x=120,∴2(x-20)=200.即每件服装的标价为200元,成本为120元.120÷200=0.6.即为保证不亏本,最多能打六折.故答案为:六.【点睛】本题考查一元一次方程的应用,解题关键是找准等量关系,正确列出一元一次方程.18.55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】∵∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=1解析:55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】a b∵//∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=180°-∠3=180°-125°=55°故答案为55.【点睛】本题考查的是对顶角的性质和平行线的性质,知道两直线平行同旁内角互补是解题的关键. 19.47°24′.【解析】【分析】根据余角的定义计算90°-42°36′即可.【详解】∠1的余角=90°-42°36′=47°24′.故答案为:47°24′.【点睛】本题考查了余角与补角解析:47°24′.【解析】【分析】根据余角的定义计算90°-42°36′即可.【详解】∠1的余角=90°-42°36′=47°24′.故答案为:47°24′.【点睛】本题考查了余角与补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.21.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=130 2AOC∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算.22.-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正解析:-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正负数的意义.23.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.24.-62【解析】【分析】根据数字规律,即可求出第二行中的第个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+解析:-62【解析】【分析】根据数字规律,即可求出第二行中的第8个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+2,故第二行中的第8个数是- 82+2=-62故答案为: -62.【点睛】此题考查的是数字的探索规律题,找到数字的变化规律是解决此题的关键.25.40【解析】【分析】根据平角的定义,再根据垂直的定义,再由即可求出∠2的度数.【详解】解:因为三点在一条直线上,所以,因为,所以,因为所以,即.故答案为:40.【点睛】本题解析:40【解析】【分析】根据平角的定义12180ECD ∠+∠+∠=︒,再根据垂直的定义90ECD ∠=︒,再由150∠=︒即可求出∠2的度数.【详解】解:因为A C 、、B 三点在一条直线上,所以12180ECD ∠+∠+∠=︒,因为CE CD ⊥,所以90ECD ∠=︒,因为150∠=︒所以50902180︒+︒+∠=︒,即2180509040∠=︒-︒-︒=︒.故答案为:40.【点睛】本题考查平角的定义和垂直的定义.熟练理解这些基本知识是解决此题的关键.三、解答题26.(1)72a =;(2)2222a ab -+,452 【解析】【分析】(1)由差解方程的定义可知13x a =+-,将x 的值代入方程可求得a 的值;(2)由差解方程的定义可3x a b a =+-=,可得b 的值,再将x a =代入方程可得a 的值,然后去括号化简代数式求值即可.【详解】解:(1)由差解方程的定义可知132x a a =+-=-,代入31x a =+得3(2)1a a -=+, 解得72a =. (2)由差解方程的定义可3x ab a =+-=得3b =将x a =,3b =代入3x a b =+得33a a =+ 解得32a = ()22224222ab a ab a b ⎡⎤---⎣⎦22224(224)a b a ab a b =--+22224224a b a ab a b =-+-2222a ab =-+ 将32a =,3b =代入得222233452()2322222a ab =-⨯⨯+=-+⨯. 所以代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值452. 【点睛】本题属于一元一次方程的实践创新题,同时涉及了整式的加减混合运算,正确理解差解方程的定义是解题的关键.27.(1)9,3;(2)2;(3)①118t =或254;②36 【解析】【分析】(1)由MN 的长及,OM ON 的数量关系可得OM 、ON 的长;(2)由图知MN MC CO ON =++,结合MC CO CN =+及线段MN 、ON 的长可得CO 的长;(3)①分类讨论,分点P 在线段OM 和射线ON 上两种情况,分别用含t 的代数式表示出OP 、OQ 的长,根据24cm OP OQ -=可列出关于t 的方程,求解即可;②点D 运动的时间即为点P 从点O 到停止运动所用的时间,求出点D 运动的时间再乘以其速度即为点D 运动的路程.【详解】 解:(1)12MN =,3OM ON =3412MN OM ON ON ON ON ∴=+=+== 3,39ON OM ON ∴===所以9,3OM cm ON cm ==.(2)如图12MN =,MC CO CN =+3212MN MC CO ON CO CO ON CO ON CO ON ∴=++=++++=+=由(1)知3ON =,3612CO ∴+=2CO ∴=所以CO 的长为2.(3)①如图,当点P 在线段MO 上时,93,32OP t OQ t =-=+,由24OP OQ -=得2(93)(32)4t t --+=解得118t =;如图,当点P 在射线ON 上时,39,32OP t OQ t =-=+由24OP OQ -=得2(39)(32)4t t --+=解得254t = 综合上述,当118t s =或254s ,24OP OQ cm -=. ②点P 、Q 停止运动时,3122t t -=,解得12t =,点P 经过点O 时,39t =,解得3t =,4(123)36⨯-=所以在此过程中点D 运动的总路程是36cm.【点睛】本题考查了数轴上的动点问题,同时涉及了一元一次方程,灵活的将一元一次方程与数轴相结合是解题的关键.同时分类讨论的数学思想也在本题得以体现.28.(1)82(2)160度;【解析】【分析】(1)根据总电价=0.5×用电度数以及总电价=100×0.5+(用电度数−100)×0.8,代入数据即可得出结论;(2)先确认小明家2月交电费98元时,用电量大于100度,根据总电价=100×0.5+(用电度数−100)×0.8即可得出关于x 的一元一次方程,解之即可得出结论.【详解】:解:(1)100×0.5=50(元),100×0.5+(140−100)×0.8=82(元)故答案是:82;(2)因为当月用电量为100度时,应收费50元,而小明家2月交电费90元,所以小明家2月份用电量超过100度.设小明家2月份用电x 度,根据题意,得:100×0.5+0.8×(x−100)=98,解方程,得:x =160.答:小明家2月份用电160度.【点睛】本题考查了一元一次方程的应用,根据数量关系总价=单价×数量列出一元一次方程是解题的关键.29.(1)1x =;(2)12x =-. 【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)3564x x -+=-22,1x x ==;(2)4(2)123(21)x x +=+-481263x x +=+-,461238x x -=--,121,2x x -==-. 【点睛】本题考查了解一元一次方程,解题的关键是熟练运用一元一次方程的解法是解题的关键.30.﹣5ab 2,﹣20.【解析】【分析】先将原式去括号、合并同类项化简,再将a 和b 的值代入计算可得.【详解】原式=2a 2b ﹣3ab 2﹣2a 2b ﹣2ab 2=﹣5ab 2,当a =1,b =﹣2时,原式=﹣5×1×(﹣2)2=﹣5×4=﹣20.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.31.(1)见解析;(2)见解析;(3)OA , PC 的长度 , PH <PC <OC .【解析】【分析】(1)利用三角板过点P 画∠OPC=90°即可;(2)利用网格特点,过点P 画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH 的长度是点P 到OA 的距离,PC 是点C 到直线OB 的距离,根据垂线段最短即可确定线段PC 、PH 、OC 的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH 的长度是点P 到OA 的距离,PC 是点C 到直线OB 的距离,根据垂线段最短可知PH <PC <OC ,故答案为OA ,PC ,PH <PC <OC .【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.32.3a 2b-ab 2,132 【解析】【分析】先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】解:()()22225343a b ab ab a b ---+=2222155412a b ab ab a b -+-=223a b ab -将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯= ⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键. 33.45︒【解析】试题分析:设这个角的度数为x ,则其补角为(180)x -,其余角为(90)x -,再利用题中的已知条件“一个角的补角与它的余角的度数之比是3:1”可得:3(90)180x x -=-,解方程就可求得这个角的度数.试题解析:设这个角的度数为x ,由题意可得:3(90)180x x -=-,解得x 45=,。
七年级期末试卷易错题(Word版含答案)
七年级期末试卷易错题(Word版含答案)一、选择题1.张鑫在小学时成绩一直名列前茅,可进入初中以后,由于课程的增多,难度的加大,她虽然还是很认真的学习,但感觉成绩明显下降了。
她应该:①科目增多,就选两个自己喜欢的认真学,其余的应付应付就行了②寻找自己落后的原因,找出解决问题的方法③让爸爸妈妈帮忙监督检查学习情况④合理安排时间,制定学习计划,改变学习方法A.①②B.②③C.①③④D.②③④2.中学时代是人生发展的一个新阶段,对我们人生发展的意义有()①满怀好奇地撩开精神世界的面纱②开始主动发现自己和认识自己③了解如何去掌握挣钱的方法④自觉磨砺意志和品格,思考生活的意义A.①②④B.①②③C.②③④D.①②③④3.朋友聚餐,各自低头玩手机;地铁和公交车上,乘客都低头看手机……也许,你就是低头族中的一员,正在忽视身边的风景。
某学校发出了“不当低头族,拒绝鼠标手”的行动倡议书。
能够为这一倡议提供依据的有()①网络信息良莠不齐②沉迷于网络,影响学习、工作和生活③在开放的网络世界里,个人隐私容易被侵犯④网络丰富日常生活A.①②③B.②③④C.①③④D.①②④.4.出门打不到车?滴滴叫车随叫随到;饿了不想做饭?美团来送饭……这都体现了“分享服务”和“共享经济”,它们都是借助互联网技术,打造出的新商业模式。
这体现了()A.网络打破了传统人际交往的时空限制B.网络为科技创新搭建新的平台C.网络促进民主政治的进步D.网络为经济发展注入新的活力5.“书山有路勤为径”、“学而时习之”这两句话强调学习要A.注意转变学习方式B.学习需要自己的勤奋努力C.有正确的学习方法D.学习内容要及时复习6.“在大多数情况下,学生之所以不能掌握知识,是因为他不会学习。
”以下属于会学习的有()①把精力全部用在自己喜欢的学科上②做到课前自主预习,课后及时复习③搬用网上搜寻到的学霸的学习方法④科学制订计划,合理安排学习时间A.①②B.①③C.②④D.③④7.“最美北京人”无臂女孩夏红成立了公益团队,帮助其他残疾人通过学习剪纸技艺来解决生计。
七年级期末试卷易错题(Word版含答案)
七年级期末试卷易错题(Word版含答案)一、选择题1.下面是小明同学在使用显微镜时遇到的问题,以及相应的解决办法,其中错误的是A.物像不清晰﹣﹣调节细准焦螺旋B.视野较暗﹣﹣选用凹面反光镜和大光圈C.物像偏上方﹣﹣转动转换器D.物像太小﹣﹣换高倍目镜或高倍物镜2.下列有关显微镜的使用叙述,不正确的是()A.在显微镜下观察洋葱表皮细胞临时装片时,先用10倍物镜观察,后换40倍物镜,目镜不变,视野中亮度变暗、细胞数目减少B.用显微镜观察细胞,我们会发现洋葱鳞片叶内表皮细胞与人口腔上皮细胞结构不同,但都具有相似的基本结构,如细胞质等C.移动玻片标本时,视野中的污物不动,则污物不在玻片标本上D.显微镜所成的是倒像,“p”在显微镜下应该是“b”3.下列自然现象中具有生命特征的是A.日出日落B.潮涨潮退C.花开花谢D.春去秋来4.下列现象与其表现的生物特征对应不相符的是()A.大鱼吃小鱼,小鱼吃虾米一一生物的生活需要营养B.种瓜得瓜,种豆得豆一一生物能排出体内产生的废物C.一枝红杏出墙来——生物能对外界刺激做出反应D.春华秋实——生物能繁殖后代5.生物既能适应环境,也能影响环境。
下列反映生物影响环境的描述是A.忽如一夜春风来,千树万树梨花开B.竹外桃花三两枝,春江水暖鸭先知C.千里之堤,溃于蚁穴D.螳螂捕蝉,黄雀在后6.农谚曰:“清明前后,种瓜点豆”。
清明时节影响播种的非生物因素主要是()A.温度B.阳光C.土壤D.空气7.某生物体细胞中含有 6 条染色体,1 个体细胞连续分裂 2 次后,形成的细胞数目和每个新细胞中的染色体数分别是()A.4 个、6 条B.4 个、3 条C.4 个、12 条D.8 个、6 条8.表明植物细胞分裂过程的正确顺序是()(1)细胞质由一份分成两份,每一份含有一个新生的细胞核(2)细胞核经过一系列变化,由一个分成同等的两个(3)在细胞质中央形成新的细胞膜与细胞壁.A.(1)(2)(3)B.(3)(2)(1)C.(2)(1)(3)D.(1)(3)(2)9.一般来说,生态系统中生物的种类和数量越多,食物链和食物网越复杂,生态系统调节能力就越强,下表为某科研人员对A—D四个生态系统中生物种类和数量的调查统计结果,据此推断,调节能力最强的生态系统是 ( )数种物种1物种物种物种4物种物种6物种7物种8物种9量类系统235A0900030300040B200350003000040C150250100800403050201D300200000005050A.A B.B C.C D.D10.如图为某生态系统食物网示意图。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案) 一、选择题1.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线2.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤3.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 4.2-的相反数是( ) A .2- B .2 C .12 D .12- 5.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .6 6.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 7.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 8.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .9.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个10.下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A .B .C .D .11.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上12.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变 13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分B .3点30分C .6点45分D .9点 14.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( )A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯ 15.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2ab D .3ab二、填空题16.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 17.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.18.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.19.正方体切去一块,可得到如图几何体,这个几何体有______条棱.20.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示)21.已知220x y +-=,则124x y --的值等于______.22.若72α∠=︒,则α∠的补角为_________°.23.﹣|﹣2|=____.24.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.25.若单项式64x y -与2n x y 的和仍为单项式,则21n 的值为________.三、解答题26.小丽早上会选择乘坐公共汽车上学,时间紧张的时候,她也会选择“滴滴打车”的方式上学.两种不同乘车方式的价格如下表所示:已知小丽12月份早晨上学乘车共计22次,乘车费共计100元,求小丽12月份早上上学乘坐公共汽车的次数和“滴滴打车”的次数各是多少? 乘车方式公共汽车 “滴滴打车” 价格(元次) 2 1027.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.28.计算:(1)()20201|4|23-+-+⨯- (2)()157246812⎛⎫--+⨯- ⎪⎝⎭29.先化简,再求值:()()2222233a b ab ab a b ---+,其中1a =-,13b =. 30.如图1,已知数轴上A ,B 两点表示的数分别为-9和7.(1)AB =(2)点P 、点Q 分别从点A 、点B 出发同时向右运动,点P 的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P 与点Q 相遇?(3)如图2,线段AC 的长度为3个单位,线段BD 的长度为6个单位,线段AC 以每秒4个单位的速度向右运动,同时线段BD 以每秒2个单位的速度向左运动,设运动时间为t 秒①t 为何值时,点B 恰好在线段AC 的中点M 处.②t 为何值时,AC 的中点M 与BD 的中点N 距离2个单位.31.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.32.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯-- 33.解下列方程:(1)76163x x +=-;(2)253164y y ---=. 四、压轴题34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 . (2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示;②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?37.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °;②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.41.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .42.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.43.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.2.C解析:C【解析】【分析】根据数轴上点的距离判断即可.【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>;∴②③⑤正确【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.3.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.4.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.D解析:D【解析】【详解】根据题意得到n ﹣3=3,即可求出n 的值.解:由题意得:n ﹣3=3,解得:n=6.故选D6.C解析:C【解析】a的2倍为2a,a的2倍与b的差为2a-b,然后再平方即可.【详解】依题意得:(2a-b)2,故选C.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.7.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.8.B解析:B【解析】【分析】计划做个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做个“中国结”,由题意可得,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 9.B解析:B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10.A解析:A【解析】【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【详解】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选A.【点睛】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.11.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.12.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】15000用科学计数法可表示为:.41510⨯故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.二、填空题16.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次 解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键.17.62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题. 【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5.....然后根解析:62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题.【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5.....然后根据20,220,2220,22220....的数字个数分别是2,3,4,5,6....∴前n组总个数为(12)1(3)22n nn n++=+,∵162(623)20152⨯⨯+=,163(633)20792⨯⨯+=,2015<2020<2079∴前2020个数字中共有62个0.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.18.59°【解析】【分析】根据折叠的性质,得到,再根据平行线的性质得到,求出解决即可.【详解】解:∵把一张长方形纸片ABCD沿EF折叠则故答案是59°.【点睛】本题考查了折叠的性质解析:59°【解析】【分析】根据折叠的性质,得到DEF FEM ∠=∠,再根据平行线的性质得到62EGF ︒∠=,求出118,DEG ︒∠=解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠62AEG ︒∠=62,EGF DEF FEM ︒∴∠=∠=∠118,DEG ︒∴∠=则59DEF FEM ︒∠=∠=故答案是59°.【点睛】本题考查了折叠的性质以及平行线的性质,解决本题的关键是熟练掌握折叠与平行线的性质,找到相等的角.19.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.20.4【解析】【分析】根据补角的定义即可求解.【详解】一个角的度数是,则它的补角的度数为180°-=134°24’=134.4°故答案为:134.4.【点睛】此题主要考查角度的求解,解题解析:4【解析】【分析】根据补角的定义即可求解.【详解】一个角的度数是4536'︒,则它的补角的度数为180°-4536'︒=134°24’=134.4°故答案为:134.4.【点睛】此题主要考查角度的求解,解题的关键熟知补角的定义.21.-3【解析】【分析】由可得:x+2y=2,运用整体思想将x+2y 代入即可.【详解】解:∵∴∴故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.解析:-3【解析】【分析】由220x y +-=可得:x+2y=2,运用整体思想将x+2y 代入即可.【详解】解:∵220x y +-=∴2=2x y +∴()12412x+2y x y --=-⨯=1-22=-3故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.22.108【解析】【分析】根据互补的定义即可求出的补角.【详解】解:∵∴的补角为180°-故答案为:108.【点睛】此题考查的是求一个角的补角,掌握互补的定义是解决此题的关键.解析:108【解析】【分析】根据互补的定义即可求出α∠的补角.【详解】解:∵72α∠=︒∴α∠的补角为180°-108α∠=︒故答案为:108.【点睛】此题考查的是求一个角的补角,掌握互补的定义是解决此题的关键.23.﹣2.【解析】【分析】计算绝对值要根据绝对值的定义求解,然后根据相反数的性质得出结果.【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定解析:﹣2.【解析】【分析】 计算绝对值要根据绝对值的定义求解2-,然后根据相反数的性质得出结果.【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.24.【解析】【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵,,∴∵∴∠EOD=180-∠EOC=90,∵OF ⊥AB ,∴∠BO解析:︒【解析】【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵:1:5BOD BOC ∠∠=,180BOD BOC ∠+∠=︒, ∴1180306BOD ∠=⨯︒=︒, ∵90COE ∠=︒∴∠EOD=180︒-∠EOC=90︒,∵OF ⊥AB ,∴∠BOF=90︒,∴∠DOF=∠BOF-∠BOD=90︒-30︒=60︒,∴∠EOF=∠EOD+∠DOF=90︒+60︒=150︒.故答案为:150︒.【点睛】本题考查了余角和补角的定义以及性质,等角的补角相等.等角的余角相等,解题时认真观察图形是关键.25.7【解析】根据和仍为单项式,可得单项式是同类项,根据同类项定义进行解答即可.【详解】解:∵单项式与的和仍为单项式∴单项式与是同类项∴∴∴故答案为:7【点睛】本题考解析:7【解析】【分析】根据和仍为单项式,可得单项式是同类项,根据同类项定义进行解答即可.【详解】解:∵单项式64x y -与2n x y 的和仍为单项式∴单项式64x y -与2n x y 是同类项 ∴26n =∴3n =∴217n =故答案为:7【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.三、解答题26.15,7【解析】【分析】设乘坐公共汽车x 次,则滴滴打车(22-x )次,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设乘坐公共汽车x 次,则滴滴打车(22-x )次由题意可列方程210(22)100x x +-=解方程得15x =所以22-15=7(次).答:乘坐公共汽车15次,则滴滴打车7次.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)2;(2)−5或1或7;(3)1t =或173t =【解析】【分析】(1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5;②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1③点P 位于B 点右侧时,点P 表示4+3=7∴m=−5或1或7故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=,解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=, 解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =. 综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.28.(1)-3;(2)5【解析】【分析】(1)利用有理数的加减乘除法则运算即可;(2)利用乘法分配律计算即可.【详解】解:(1)原式1463=-+-=-(2)原式415145=+-=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.29.109【解析】【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-[x ∈-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.30.(1)16;(2)经过8秒,点P 与点Q 相遇;(3)①当2912t =时,点B 恰好经过AC 的中点M ;②当3112t =或134时,AC 的中点M 与BD 的中点N 距离2个单位 【解析】【分析】 (1)根据数轴上的数字关系即可求解;(2)根据题意列出方程即可求解;(3)根据题意分①∵M 为AC 中点,②点M 与点N 相遇前分别列出方程即可求解.【详解】(1)16AB =.(2)设经过x 秒,点P 与点Q 相遇,由题意得,4216x x -=,解得8x =.所以经过8秒,点P 与点Q 相遇.(3)①∵M 为AC 中点,∴1322AM AC ==. ∴BM AB AM =-=3291622-=,∴29422t t +=,∴2912t =, 所以当2912t =时,点B 恰好经过AC 的中点M . ②点M 与点N 相遇前, 由题意得,354222t t ++=, 解得,3112t =. 点M 与点N 相遇后, 由题意得,354222t t +-=, 解得,134t =. 综上所述,当3112t =或134时,AC 的中点M 与BD 的中点N 距离2个单位. 【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意分情况讨论求解.31.(1)18秒相遇;(2)Q 的运动速度为11cm/s 或者115cm/s ;(3)2. 【解析】【分析】(1)设运动时间为t 秒,先求出OC=90,根据速度乘以时间得到OP=2t ,CQ=3t ,再根据相遇公式路程和等于距离列方程解答即可;(2)先求出线段OB 的长度得到中点Q 所表示的数,再根据2PB PA =只存在两种情况,求出点P 的运动时间即点Q 的运动时间即可得到速度;(3)分别求出OB 、AP 及EF 的长,即可代入计算得到答案.【详解】(1)设运动时间为t 秒,此时OP=2t ,OQ=3t ,∵40OA =cm ,30AB =cm ,20BC =cm ,∴OC=OA+AB+BC=90cm ,∴2t+3t=90,t=18,∴经过18秒,P Q 两点相遇;(2)∵点Q 运动到的位置恰好是线段OB 的中点,OB=40+30=70,∴点Q 表示的数是35,此时CQ=90-35=55,由2PB PA =,可分两种情况:①当点P 在OA 上时,得PA=AB=30,此时OP=OA-PA=10,。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤ 2.钟面上8:45时,时针与分针形成的角度为( )A .7.5°B .15°C .30°D .45°3.方程去分母后正确的结果是( ) A .B .C .D .4.下列各组中的两个单项式,属于同类项的一组是( ) A .23x y 与23xyB .3x 与3xC .22与2aD .5与-35.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D6.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 7.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,78.﹣3的相反数是( ) A .13-B .13C .3-D .39.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3 B .3 C .-2 D .2 10.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点11.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A12.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒13.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .14.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个 15.对于任何有理数a ,下列各式中一定为负数的是( )A .(3)a --+B .2a -C .1a -+D .1a --二、填空题16.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.17.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.18.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 19.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________ 21.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______. 22.比较大小:-12____23-(填“>”,“<”或“=”) 23.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.24.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 27.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.28.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体. 29.计算: (1)(-23)-(+13)-|-34|-(-14) (2)-12-(1-0.5)×13×[3-(-3)2] 30.如图,点P 是∠AOB 的边OB 上的一点(1)过点P 画OA 的平行线PQ (2)过点P 画OA 的垂线,垂足为H (3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离. (5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).31.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.32.按要求画图:如图,在同一平面内有三点A 、B 、C . (1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ; (3)画出点D 到直线AB 的垂线段DE .33.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数;(1)若3与a 是关于2的关联数,则a =_______.(2)若21x - 与35x -是关于2的关联数,求x 的值.(3)若M 与N 是关于m 的关联数, 33M mn n =++,N 的值与m 无关,求N 的值.四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.40.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 41.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.42.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.43.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据数轴上点的距离判断即可. 【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>; ∴②③⑤正确 故选C. 【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.2.A解析:A 【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为:4530307.5.60-⨯= 故选A.3.B解析:B 【解析】 【分析】方程两边乘以8去分母得到结果,即可做出判断. 【详解】方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.4.D解析:D【解析】【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定.【详解】A选项,相同字母的指数不同,不是同类项,A错误;B选项,3x字母出现在分母上,不是整式,更不是单项式,B错误;C选项,不含有相同字母,C错误;D选项,都是数字,故是同类项,D正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.5.A解析:A【解析】【分析】A、B、C、D四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A、B、C、D四个点,点A离原点最远,∴点A所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.6.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x2+4x−1)−(3x2+9x)=3x2+4x-1−3x2−9x=−5x−1.故选A.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.7.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.D解析:D【解析】【分析】先去括号、合并同类项化简,然后根据题意令x 2的系数为0即可求出a 的值.【详解】解:()3222691353-x x x ax x +++--+=3222691353-x x x ax x +++-+-=()32263142-x a x x +-+- ∵关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,∴630a -=解得:2a =故选D .【点睛】此题考查的是整式的加减:不含某项的问题,掌握去括号法则、合并同类项法则和不含某项即化简后,令其系数为0是解决此题的关键.10.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.11.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.12.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.13.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.B【解析】【分析】根据有理数的概念,判定每个数是否是有理数即可.【详解】有理数有:-1,4.112134,0,227,3.14,共5个 无理数有:2π 综上选B【点睛】本题主要考查了有理数的概念,熟悉有理数的分类就能正确解出来. 15.D解析:D【解析】【分析】负数一定小于0,分别将各项化简,然后再进行判断.【详解】解:A . (3)a --+=3-a ,当a 3≤时,原式不是负数,选项A 错误;B . 2a -,当a=0时,原式不是负数,选项B 错误;C . 1a -+,当a 1≠-时,原式才符合负数的要求,选项C 错误;D . 1a --10≤-<,原式一定是负数,符合要求,选项D 正确.故选:D .【点睛】本题考查的知识点是有理数的加减法以及绝对值,正确的将各项化简是解此题的关键.二、填空题16.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y (a-1)-3∴a -1=0,∴a=1故答案为1解析:1试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y (a-1)-3∴a-1=0,∴a=1故答案为117.1【解析】【分析】根据可知AB 的长度,再根据为线段的中点,可知AC 的长度,从而可求答案.【详解】∵∴AB=DA+DB=8+6=14∵为线段的中点∴∴CD=DA-AC=8-7=1故解析:1【解析】【分析】根据8,6DA DB ==可知AB 的长度,再根据C 为线段AB 的中点,可知AC 的长度,从而可求答案.【详解】∵8,6DA DB ==∴AB=DA+DB=8+6=14∵C 为线段AB 的中点 ∴1=72AC BC AB == ∴CD=DA -AC=8-7=1故答案为1.【点睛】本题考查的是线段中点的性质,熟知线段中点的性质是解题的关键.18.-8【解析】【分析】将代入方程后解关于a 的一元一次方程即可.将代入方程得,解得:a=-8.【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方解析:-8【解析】【分析】将2x =-代入方程后解关于a 的一元一次方程即可.【详解】将2x =-代入方程得2-23a +=,解得:a=-8. 【点睛】本题考查一元一次方程的解得概念,解题的关键是将方程的解代入方程后再解关于a 的方程. 19.6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形, ∴在此正方体上与“3”相解析:6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“3”相对的面上的数字是“6”.故答案为:6.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.20.-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.21.同角的补角相等.【解析】【分析】根据同角的余角性质解答即可.【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角,∴根据同角的余角相等可得∠1=∠3.故答案为:同角的余角相等解析:同角的补角相等.【解析】【分析】根据同角的余角性质解答即可.【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角,∴根据同角的余角相等可得∠1=∠3.故答案为:同角的余角相等.【点睛】本题考查同角的余角的性质.【解析】【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】∵||,||,而,∴.故答案为:>.【点睛】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小解析:>.【解析】【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】∵|12-|12=,|23-|23=,而1223<,∴12 23 ->-.故答案为:>.【点睛】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.23.【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h解析:【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.由题意6817 5714.5x yx y+=⎧⎨+=⎩,解得1.51xy=⎧⎨=⎩,∴1.5m+m=12.5,解得m=5故答案为:5.【点睛】本题主要考查二元一次方程组的应用,能够根据题意列出方程组是解题的关键.24.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.(1)①答案见解析;②答案见解析;③答案见解析;④答案见解析;(2)①垂直;②<,垂线段最短.【解析】【分析】(1)①画射线AC即可;②画线段BC即可;③过点B作AC的平行线BD即可;④过B作BE⊥AC于E即可;(2)①根据平行线的性质得到BD⊥BE;②根据垂线段最短即可得出结论.【详解】(1)①如图所示,射线AC就是所求图形;②如图所示,线段BC就是所求图形;③如图所示,直线BD就是所求图形;④如图所示,线段BE就是所求图形.(2)①∵BD∥AC,∠BEC=90°,∴∠DBE=180°-∠BEC=180°-90°=90°,∴BD⊥BE.故答案为:垂直.②∵BE⊥AC,∴BE<BC.理由如下:垂线段最短.故答案为:<,垂线段最短.【点睛】本题考查了作图﹣复杂作图、垂线、点到直线的距离、垂线段最短,解答本题的关键是充分利用网格.27.72°.【解析】【分析】根据余角定义可得∠BOD=90°−18°=72°,再根据对顶角相等可得∠AOC=∠BOD=72°.【详解】∴∠与∠BOE互为余角解:BOD90BOD BOE ∴∠+∠=︒又18BOE ∠=︒90901872BOD BOE ∴∠=︒-∠=︒-︒=︒AOC ∠与BOD ∠是对顶角72AOC BOD ∴∠=∠=︒【点睛】此题主要考查了对顶角和余角,关键是掌握对顶角相等.28.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm 2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.29.(1)-32;(2)0. 【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【详解】解:(1)(-23)-(+13)-|-34|-(-14) =(-23)+(-13)-34+14 =-32; (2)-12-(1-0.5)×13×[3-(-3)2] =-1-()113923⨯⨯- =-1-16×(-6) =-1+1=0.【点睛】 考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.(1)作图见解析;(2)作图见解析;(3)直线OA (或点H );线段CP 的长度;PH<PC<OC【解析】【分析】按照要求作图即可,利用两个方格组成的矩形的对角线可作出与OB 的平行线MN 和垂线PC ,沿方格线可作出OA 的垂线;再由垂线段最短即可解答.【详解】解:(1)(2)(3)按要求作图即可,如下图,(4) 由图可知,PH 是点P 到直线OA (或点H )的距离,点到直线的垂线段长度即为该点到直线的距离,故CP 的长度为点C 到直线OB 的距离; 故答案为: 直线OA (或点H );线段CP 的长度(5)故PH <PC ;CP 是C 到OB 的距离,故CP <CO ,故答案为:PH<PC<OC.【点睛】本题考查了与线相关的作图以及点到直线的距离.31.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】(1)原式=25(+2 77+()-)-=-1+2=1;(2)原式=5(8)(3)⨯-⨯-=40(3)-⨯-=120.【点睛】本题考查了有理数的混合运算.熟练掌握运算法则和运算顺序是解答本题的关键. 32.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)根据直线和射线的概念作图可得;(2)根据线段的概念和中点的定义作图可得;(3)过点D作DE⊥AB于点E,连接DE即可.【详解】解:(1)如图所示,直线AB和射线BC即为所求;(2)如图线段AC和点D即为所求;(3)线段DE为所求垂线段.【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.33.(1)1;(2)x=2;(3)1 3 3【解析】【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m 的方程,将33M mn n =++代入,用m 、n 的式子表示出N ,再利用N 的值与m 无关进行计算即可.【详解】解:(1)∵3与a 是关于2的关联数∴3-a=2∴a=1故答案为:1(2)∵21x - 与35x -是关于2的关联数∴2x -1-(3x-5)=2解得:x=2(3)∵M 与N 是关于m 的关联数∴M -N=m∴N=M -m∵33M mn n =++∴33-(31)3N mn n m n m n =++=-++∵N 的值与m 无关∴31=0n - ∴1=3n ∴11(31)3=3+333N n m n =-++= 【点睛】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.四、压轴题34.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.35.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.答:存在.x 的值为3.(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.。
七年级期末试卷易错题(Word版 含答案)
七年级期末试卷易错题(Word 版 含答案)一、选择题1.如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A .B .C .D .2.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( )A .两点之间,线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离3.有理数-53的倒数是( ) A .53 B .53- C .35 D .354.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a 的值为( )A .2B .2-C .1D .05.下列几何体中,是棱锥的为()A .B .C .D .6.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-37.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b 10.下列计算结果正确的是( ) A .22321x x -= B .224325x x x += C .22330x y yx -= D .44x y xy +=11.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-=12.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④ 13.下列计算正确的是( ) A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab += 14.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .15.下列说法正确的是( )A .如果ab ac =,那么b c =B .如果22x a b =-,那么x a b =-C .如果a b = 那么23a b +=+D .如果b c a a=,那么b c = 二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.方程2x+1=0的解是_______________.18.若a -2b =1,则3-2a +4b 的值是__.19.已知线段 AB=7cm ,点 C 在直线 AB 上,若 AC=3cm ,点 D 为线段 BC 的中点,则线段AD= ___________________cm.20.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.21.比较大小:-12____23-(填“>”,“<”或“=”) 22.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.23.写出一个关于三棱柱的正确结论________.24.如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于__________度.25.某地2月5日最高温度是3℃,最低温度是-2℃,则最高温度比最低温度高________.三、解答题26.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .27.解方程:(1)4365x x -=-;(2)221134x x +-=+. 28.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭29.解方程(1)()3226x x +-=;(2)212134x x +--= 30.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.31.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ;(2)请直接写出(1)中直线m 、n 的位置关系.32.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.33.先化简,后求值.(1)化简:()()22222212a b abab a b +--+- (2)当()221320b a -++=时,求上式的值.四、压轴题34.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.35.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.36.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 37.尺规作图是指用无刻度的直尺和圆规作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期末试卷易错题(Word 版 含答案)一、选择题1.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=2.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点3.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°4.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-5.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114°6.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .47.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通8.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .经过一点,有无数条直线C .垂线段最短D .经过两点,有且只有一条直线 9.下列算式中,运算结果为负数的是( ) A .()3--B .()33-- C .()23- D .3--10.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2B .-1C .1D .211.一5的绝对值是( ) A .5B .15C .15-D .-512.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .813.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .14.单项式24x y 3-的次数是( ) A .43-B .1C .2D .315.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.比较大小:π1-+ _________3-(填“<”或“=”或“>”). 18.如图,直线//,1125∠=︒a b ,则2∠=_____________度19. 若32x +与21x --互为相反数,则x =__.20.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么所列方程是______. 21.若623mxy -与41n x y -的和是单项式,则n m = _______.22.21°17′×5=_____.23.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________. 24.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.25.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b =______.(用含字母a 的代数式表示)三、解答题26.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值.27.先化简,再求值:若x=2,y=﹣1,求2(x2y﹣xy2﹣1)﹣(2x2y﹣3xy2﹣3)的值.28.解方程(1)2-3(x+1)=8 (2)5312 43x x+--=-29.如图,已知三角形ABC,D为AB边上一点.(1) 过点D画线段BC的平行线DE,交AC于点E;过点A画线段BC的垂线AH,垂足为点H.(2)用符号语言分别描述直线DE与线段BC及直线AH与线段BC的位置关系.(3)比较大小:线段BH线段BA,理由为.30.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.31.如图,直线AB、CD相交于点O,已知∠AOC=75°,∠BOE :∠DOE=2:3.(1)求∠BOE的度数;(2)若OF平分∠AOE,∠AOC与∠AOF相等吗?为什么?32.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.33.计算: (1) 351(24)()8124-⨯-+ (2)22020113(1)()334---⨯-+- 四、压轴题34.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.35.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q的运动速度是23个单位长度/秒,是否存在t的值,使得2BP BQ;(3)若点Q的运动速度是a个单位长度/秒,当点P,Q是AC边上的三等分点时,求a 的值.39.如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)(特殊发现)如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)(类比探究)如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).40.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.41.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).42.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据合并同类项的法则进行运算依次判断. 【详解】解:A.两项不是同类项不能合并,错误; B. 532y y y -=,错误; C. 78a a a +=,错误; D.正确. 故选D. 【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.2.D解析:D 【解析】 【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可. 【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A 、B 、C 三点在一条直线上时,当AC=BC 时,点 C 是线段 AB 的中点;故错误; 故选:D . 【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B解析:B 【解析】 【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可. 【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC ,∵ON 平分∠BOC ,∴∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC=12 (∠AOC-∠BOC)=12∠AOB=45°. 故选B.【点睛】 本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角. 4.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.5.D解析:D【解析】【分析】如图,设∠B′FE=x ,根据折叠的性质得∠BFE=∠B′FE=x ,∠AEF=∠A′EF ,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.【详解】如图,设∠B′FE=x ,∵纸条沿EF 折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF ,∴∠BFC=∠BFE−∠CFE=x−18°,∵纸条沿BF 折叠,∴∠C′FB=∠BFC=x−18°,而∠B′FE+∠BFE+∠C′FB=180°,∴x+x+x −18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−66°=114°,∴∠AEF=114°.故答案选:D.【点睛】本题考查了翻折变换(折叠问题)与平行线的性质,解题的关键是熟练的掌握翻折变换(折叠问题)与平行线的性质.6.C解析:C【解析】【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.7.D解析:D【解析】【分析】根据正方体的表面展开图中,相对面之间一定相隔一个正方形的特点选出答案即可.【详解】因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“安”字的对面是是“通”字,故答案选D.【点睛】本题考查的是正方体的展开图,熟知正方体的表面展开图的特点是解题的关键.8.A解析:A【解析】【分析】由题干图片可知,剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,据此进行解答即可.【详解】解:剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,根据两点之间线段最短可解释该现象,故选择A.【点睛】本题考查了两点之间,线段最短概念的实际运用.9.D解析:D【解析】【分析】根据有理数的运算即可依次求解判断.【详解】A. ()3--=3>0,故错误;B. ()33--=27>0,故错误;C. ()23-=9,>0,故错误;D. 3--=-3<0,故正确;故选D.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则. 10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.A解析:A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A.12.B解析:B【解析】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4.故选B.13.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.14.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x−1)−2(2x+3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠A解析:110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠AOC=2∠AOE,∵∠BOE=∠AOB-∠AOE,∴2∠BOE-∠BOD=2(∠AOB-∠AOE) -∠BOD=2∠AOB-2∠AOE -∠BOD=2∠AOB-∠AOC -∠BOD=2∠AOB-(∠AOC +∠BOD)=2∠AOB-(∠AOB -∠COD)=∠AOB+∠COD=75°+35°=110°.故答案为:110°.【点睛】本题考查了角平分线的有关计算,以及角的和差,结合图形找出不同角之间的数量关系是解答本题的关键.17.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.18.55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】∵∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=1解析:55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】∵//a b∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=180°-∠3=180°-125°=55°故答案为55.【点睛】本题考查的是对顶角的性质和平行线的性质,知道两直线平行同旁内角互补是解题的关键.19.-1【解析】【分析】由于与互为相反数,由此可以列出方程解决问题.【详解】解:∵与互为相反数,∴+()=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法解析:-1【解析】【分析】由于32x +与21x --互为相反数,由此可以列出方程解决问题.【详解】解:∵32x +与21x --互为相反数,∴32x ++(21x --)=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法,解题时首先正确理解同一,然后利用题目的数量关系列出方程解决问题.20.2(x-1)+3x=13.【解析】【分析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3解析:2(x-1)+3x=13.【解析】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元”可得方程2(x-1)+3x=13.【详解】解:设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,由题意得:2(x-1)+3x=13,故答案为:2(x-1)+3x=13.【点睛】考查了由实际问题抽象出一元一次方程,关键是设出其中一种饮料的价格,再表示出另一种饮料的价格,根据关键语句列出方程即可.21.8【解析】【分析】根据同类项的特点即可求解.【详解】∵与的和是单项式∴与是同类项,故6-m=4,n-1=2∴m=2,n=3∴8故答案为:8.【点睛】此题主要考查整式的运算,解解析:8【解析】【分析】根据同类项的特点即可求解.【详解】∵623m xy -与41n x y -的和是单项式 ∴623m x y -与41n x y -是同类项,故6-m=4,n-1=2∴m=2,n=3∴n m =8故答案为:8.【点睛】此题主要考查整式的运算,解题的关键是熟知同类项的特点.22.106°25′.【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题解析:106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题主要考查角的运算,掌握度分秒之间的换算关系是解题的关键.23.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.24.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 25.a-5【解析】【分析】设阴影部分上面的数字为x ,下面为x+7,根据日历中数字特征确定出a 与b 的关系式即可.【详解】设阴影部分上面的数字为x ,下面为x+7,根据题意得:x=b-1,x+7解析:a -5【解析】【分析】设阴影部分上面的数字为x ,下面为x+7,根据日历中数字特征确定出a 与b 的关系式即可.【详解】设阴影部分上面的数字为x ,下面为x+7,根据题意得:x=b-1,x+7=a+1,即b-1=a-6,整理得:b=a-5,故答案为:a-5【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.三、解答题26.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F (t )的最大值是34. 【解析】【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b =2,a =5; b =3,a =6, b =4,a =7,b =5,a =8 b =6,a =9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.27.xy 2+1,3【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式=2x 2y ﹣2xy 2﹣2﹣2x 2y+3xy 2+3=xy 2+1当x=2,y=﹣1时,原式=2×(-1)2+1=3【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.28.(1)x=-3;(2)x=3711-. 【解析】【分析】(1)直接去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后去括号,移项合并,系数化为1,即可得到答案.【详解】解:(1)23(1)8x -+=,∴2338x --=,∴39x -=,∴3x =-;(2)531243x x +--=-, ∴3(53)4(1)24x x +--=-,∴1594424x x +-+=-,∴1137x=-,∴3711 x=-.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤.29.(1)详见解析;(2)DE//BC,AH⊥BC;(3)线段BH<线段BA,直线外一点与直线上各点连成的所有线段中,垂线段最短【解析】【分析】(1)根据题意,作出平行线和垂线即可;(2)用符号语言表示出来即可;(3)根据垂线段最短,即可得到答案.【详解】解:(1)如图;(2)用数学符号表示为:DE//BC,AH⊥BC;(3)线段BH<线段BA,直线外一点与直线上各点连成的所有线段中,垂线段最短【点睛】本题考查了基本作图,以及考查了垂线段最短,解题的关键是正确的作出平行线和垂线. 30.(1)如图所示. 见解析;(2)5.【解析】【分析】(1)由已知条件可知,主视图有4列,每列小正方体数目分别为1,2,3,1左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每列小正方数形数目分别为2,1,1,1据此可画出图形.(2)根据三视图投影间的关系确定即可.【详解】(1)如图所示.(2)可在最底层第一列第一行加2个,第二列第一行加1个,第四列第一行加2个,共5个.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.解决本题的关键是熟练掌握三视图的投影规律.31.(1)30°;(2)相等,理由见解析【解析】【分析】(1)根据对顶角相等求出∠BOD 的度数,设∠BOE=2x ,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF 的度数即可.【详解】(1)设∠BOE=2x ,则∠EOD=3x ,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF 平分∠AOE ,∴∠AOF=75°,∴∠AOF=∠AOC ,【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.32.72°.【解析】【分析】根据余角定义可得∠BOD =90°−18°=72°,再根据对顶角相等可得∠AOC =∠BOD =72°.【详解】解:BOD ∴∠与∠BOE 互为余角90BOD BOE ∴∠+∠=︒又18BOE ∠=︒90901872BOD BOE ∴∠=︒-∠=︒-︒=︒ AOC ∠与BOD ∠是对顶角72AOC BOD ∴∠=∠=︒【点睛】此题主要考查了对顶角和余角,关键是掌握对顶角相等.33.(1)-5;(2)1612- 【解析】【分析】 (1)根据乘法分配律进行展开计算即可;(2)按照有理数混合运算进行计算即可.【详解】解:(1)原式= 351(-24)-(-24)+(-24)8124⨯⨯⨯ =-9+10-6=-5(2)原式=4391()31212--⨯-+ =191312--⨯+ =19312--+ =1612- 【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算法则是解题的关键.四、压轴题34.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.35.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可.【详解】解:当OQ ,OP 第一次相遇时,2t +6t =120,t =15;当OQ 刚到达OA 时,6t =120,t =20;当OQ ,OP 第二次相遇时,2t 6t =120+2t ,t =30;(1)当t =2时,∠AOP =2t =4°,∠BOQ =6t =12°,∴∠POQ =∠AOB -∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t ≤15时,2t +40+6t=120, t =10;当15<t ≤20时,2t +6t=120+40, t =20;当20<t ≤30时,2t =6t -120+40, t =20(舍去);答:当∠POQ =40°时,t 的值为10或20.(3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ . 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.36.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a ﹣6|+(b +12)2=0,∴a ﹣6=0,b +12=0,∴a =6,b =﹣12,∴AB =6﹣(﹣12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况: ①若相向而行,则2t+t =18,解得t =6;②若同时向右而行,则2t ﹣t =18,解得t =18.综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2;②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38;综上,经过2或38秒时,A 、B 相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.37.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=; ③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图。