10种软件滤波方法

合集下载

10种简单的数值滤波方法

10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效;如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。

B、优点:能有效克服因偶然因素引起的脉冲干扰。

C、缺点无法抑制那种周期性的干扰,平滑度差。

2、中位值滤波法A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。

B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。

C、缺点:对流量、速度等快速变化的参数不宜。

3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。

B、优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。

C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。

4、递推平均滤波法(又称滑动平均滤波法)。

A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。

B、优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统C、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14,B、优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

几种滤波算法

几种滤波算法

一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序滤波是数字信号处理中常用的一种方法,用于去除信号中的噪声或者改变信号的频率响应。

软件滤波是指使用计算机软件来实现滤波功能。

本文将介绍10种常用的软件滤波方法,并附上相应的示例程序。

1.均值滤波:将信号中的每个样本点都替换为其邻近样本点的平均值。

这种方法适用于去除高频噪声,但会导致信号的模糊化。

示例程序:```pythonimport numpy as npdef mean_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.mean(signal[start:end]))return filtered_signal#使用示例signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]window_size = 3filtered_signal = mean_filter(signal, window_size)print(filtered_signal)```2.中值滤波:将信号中每个样本点都替换为邻近样本点的中值。

这种方法适用于去除椒盐噪声等随机噪声,但不适用于平滑信号。

示例程序:```pythonimport numpy as npdef median_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.median(signal[start:end]))return filtered_signal#使用示例signal = [1, 3, 5, 7, 9, 8, 6, 4, 2]window_size = 3filtered_signal = median_filter(signal, window_size)print(filtered_signal)```3.高斯滤波:使用一维/二维高斯函数作为滤波器,加权平均信号的邻近样本点。

常用滤波方法

常用滤波方法

1、限幅滤波法(又称程序判断滤波法)2、A、方法:3、根据经验判断,确定两次采样允许的最大偏差值(设为A)4、每次检测到新值时判断:5、如果本次值与上次值之差<=A,则本次值有效6、如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值7、B、优点:8、能有效克服因偶然因素引起的脉冲干扰9、C、缺点10、无法抑制那种周期性的干扰11、平滑度差12、13、2、中位值滤波法14、A、方法:15、连续采样N次(N取奇数)16、把N次采样值按大小排列17、取中间值为本次有效值18、B、优点:19、能有效克服因偶然因素引起的波动干扰20、对温度、液位的变化缓慢的被测参数有良好的滤波效果21、C、缺点:22、对流量、速度等快速变化的参数不宜23、24、25、26、3、算术平均滤波法27、A、方法:28、连续取N个采样值进行算术平均运算29、N值较大时:信号平滑度较高,但灵敏度较低30、N值较小时:信号平滑度较低,但灵敏度较高31、N值的选取:一般流量,N=12;压力:N=432、B、优点:33、适用于对一般具有随机干扰的信号进行滤波34、这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动35、C、缺点:36、对于测量速度较慢或要求数据计算速度较快的实时控制不适用37、比较浪费RAM38、39、4、递推平均滤波法(又称滑动平均滤波法)40、A、方法:41、把连续取N个采样值看成一个队列42、队列的长度固定为N43、每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)44、把队列中的N个数据进行算术平均运算,就可获得新的滤波结果45、N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~446、B、优点:47、对周期性干扰有良好的抑制作用,平滑度高48、适用于高频振荡的系统49、C、缺点:50、灵敏度低51、对偶然出现的脉冲性干扰的抑制作用较差52、不易消除由于脉冲干扰所引起的采样值偏差53、不适用于脉冲干扰比较严重的场合54、比较浪费RAM55、56、5、中位值平均滤波法(又称防脉冲干扰平均滤波法)57、A、方法:58、相当于“中位值滤波法”+“算术平均滤波法”59、连续采样N个数据,去掉一个最大值和一个最小值60、然后计算N-2个数据的算术平均值61、N值的选取:3~1462、B、优点:63、融合了两种滤波法的优点64、对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差65、C、缺点:66、测量速度较慢,和算术平均滤波法一样67、比较浪费RAM68、69、70、71、72、6、限幅平均滤波法73、A、方法:74、相当于“限幅滤波法”+“递推平均滤波法”75、每次采样到的新数据先进行限幅处理,76、再送入队列进行递推平均滤波处理77、B、优点:78、融合了两种滤波法的优点79、对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差80、C、缺点:81、比较浪费RAM82、83、84、85、7、一阶滞后滤波法86、A、方法:87、取a=0~188、本次滤波结果=(1-a)*本次采样值+a*上次滤波结果89、B、优点:90、对周期性干扰具有良好的抑制作用91、适用于波动频率较高的场合92、C、缺点:93、相位滞后,灵敏度低94、滞后程度取决于a值大小95、不能消除滤波频率高于采样频率的1/2的干扰信号96、97、8、加权递推平均滤波法98、A、方法:99、是对递推平均滤波法的改进,即不同时刻的数据加以不同的权100、通常是,越接近现时刻的数据,权取得越大。

常用滤波方法

常用滤波方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载常用滤波方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容限幅滤波法(又称程序判断滤波法): r( O- M9 X( e2 |! Z% q- `A、方法:- |$ q# @& {# D0 {. I根据经验判断,确定两次采样允许的最大偏差值(设为A)% n1 l) Z1 ^9 ^ ]% i6 k每次检测到新值时判断:* V( z; h; J+ O; J2 b4 D如果本次值与上次值之差<=A,则本次值有效 & x9 b' R& {% k如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值8 x7 M" Y& `6 @8 W+ [9 }B、优点:# R/ {: v3 R. ~& {能有效克服因偶然因素引起的脉冲干扰8 h3 J" E6 ]4 |4 {) JC、缺点 " b g1 ?0 X1 q" {: `$ I [1 X无法抑制那种周期性的干扰 ; K8 k3 E) w) d1 e) [平滑度差7 v3 I! a2 C0 l0 T0 _; S: r9 z! R% w+ C0 h8 s r: k7 Z' [2、中位值滤波法 $ t& r* ^1 R% e6 r- H6 ?- sA、方法:7 s. I9 H0 M0 c; Q连续采样N次(N取奇数)/ W' M1 `. \8 J# ~把N次采样值按大小排列, p2 v3 Q- A k9 {; `7 B取中间值为本次有效值 , w& X& d! ]3 G3 g: `- R9 C- |. ?2 {B、优点:) \* n* ^" }- J0 q, J能有效克服因偶然因素引起的波动干扰 $ U9 b- ~! _6 K: u, z5 g* {5 o& [0 A对温度、液位的变化缓慢的被测参数有良好的滤波效果 . q3 L1 m1 Z$ qC、缺点:; d d3 D, Q5 W! H. ~0 S9 \对流量、速度等快速变化的参数不宜5 g5 \% \8 T2 b4 a9 A( q. H4 L: b* @7 C4 d8 Y6 X! q( E$ L$ z4 O: T7 _8 H6 m6 A0 r# W' R2 ^' @0 Q6 F3、算术平均滤波法5 r" D! a! }5 f+ L, WA、方法:# G' J2 A4 |, \$ d连续取N个采样值进行算术平均运算5 Z5 j2 v8 t* Q, }; `N值较大时:信号平滑度较高,但灵敏度较低 0i7 t6 l/ j/ UN值较小时:信号平滑度较低,但灵敏度较高7 G: M, x9 [! R& V& uN值的选取:一般流量,N=12;压力:N=49 r! t- G" x/ H# @& c- [2 tB、优点:& h5 k* g! N, c; F" Y$ [3 y4 K6 ]8 I适用于对一般具有随机干扰的信号进行滤波2 J! Y+ B/ G p+ D+ Y& Z这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 " o/ \* n+ E7 f9 `1 k3 e' P( @C、缺点:* a$ m+ @% [6 J t8 R5 t对于测量速度较慢或要求数据计算速度较快的实时控制不适用' r0 R3 w( m" H% J: T& [比较浪费RAM% q3 S) D3 o1 j2 c' V/ y) n4 {" w# c$ n! d2 ^4、递推平均滤波法(又称滑动平均滤波法) ) Z$ J, R: L: E$ P; [- iA、方法:9 k: d* |0 v+ C2 B; ^1 y把连续取N个采样值看成一个队列" l4 v- d8 O: P8 D) x9 m队列的长度固定为N / W& f& T" T8 S: f# _- j每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) $ {% }5 c1 u1 b把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 ' f& b.v8 I4 a" TN值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 , ~* G9 Q5 w1 X+ a9 K' JB、优点:- O8 I9 ?9 E |2 h8 n! @1 Z对周期性干扰有良好的抑制作用,平滑度高! _6 Z% ^3 N5 d适用于高频振荡的系统; y9 b) z; }. ?" uC、缺点: 9 P2 A; g( P5 Y7 f* g3 @4 f灵敏度低 % f" I/ A8 h5 x7 L! h0 M% h对偶然出现的脉冲性干扰的抑制作用较差 # S4 t4 t: `1 w3 G% d9 g# I1 a4 y不易消除由于脉冲干扰所引起的采样值偏差 ( s# _( X% j" L5 X不适用于脉冲干扰比较严重的场合; v9 a8 N( F! j( Z8 k" {比较浪费RAM8 V' j2 M z: |* S- e! R' h: {5、中位值平均滤波法(又称防脉冲干扰平均滤波法) - j) m# [$ t- W% U& @6 @) rA、方法:: b+ X3 { X1 L* _' j9 a1 _相当于“中位值滤波法”+“算术平均滤波法”# S9 q5 r1 ~4 R; h连续采样N个数据,去掉一个最大值和一个最小值0 a( J# ~# X2 P+ V$ `8 r/ o" v然后计算N-2个数据的算术平均值 9 {9 O# T+ _+ _' KN值的选取:3~14 $ }6 |2 k( K9 hB、优点:7 ~0 o2 F4 @, F+ D3 J5 x, o, }融合了两种滤波法的优点8 T' K; u# r- W对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差9 U* t; g' h: lC、缺点:5 T0 V. c d! ^8 [& U5 j/ @+ U/ m测量速度较慢,和算术平均滤波法一样$ r5 F! c) w& k6 x9 \9 ~7 y% x4 Y% p比较浪费RAM , {& A- Z! ^6 s4 a# u. u7 ]6 j$ S- Z2 r- KC* r' I& m1 @. O L3 N% a; r. U" K. p- F# A( [! _4 Q; R+ @* w3 r/ t* y+ @+ O9 w6、限幅平均滤波法2 w2 l- O( m1 \8 w2 _8 O W/ jA、方法:D, x. |% n+ f. p- x5 Q相当于“限幅滤波法”+“递推平均滤波法” * p4 n# v4 E3 {5 g ^+ Q7 c每次采样到的新数据先进行限幅处理,q3 K3 }5 z- Y8 {5 J& c* @再送入队列进行递推平均滤波处理9 C4 _ z/ _! A+ }; ?$ J EB、优点:: O* n( P2 r; b' W. T1 r. D0 X融合了两种滤波法的优点c! b7p- u4 U对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 'C2 M3 t5 g! z: a3 q$ @2 QC、缺点: 2 ?) J! a+ a- _3 R比较浪费RAM7 m- H3 `+ Y0 x: f: J* g3 [4 W+ U$ I) b& C! V$ T# ?+ y8 z0C ^" k9 j+ h6 _, k7 E% a0 N l7 n! f9 T$ \' c) F6 V9 @7 x0 T7、一阶滞后滤波法 $ A$ I, v) m6 i* NA、方法:@* o( l" ]4 |" d% F! x D取a=0~15 I0 [/ j, Q0 L+ W3 I: Z本次滤波结果=(1-a)*本次采样值+a*上次滤波结果& _7 [7 I- S. a* ^. p, dB、优点:+ R6 @) B5 W6 C7 b0 V对周期性干扰具有良好的抑制作用 , R- L% P+ W, I5 h/ @2 o; S适用于波动频率较高的场合 ; B' B" }/ Q; K0 n( fC、缺点:+ V4 x3 l% r& y1 _5 c4 n( g$ O, Z相位滞后,灵敏度低h+ s( s5 G3 U/ d% \9 \) M8 `滞后程度取决于a值大小 , [5 f& s" @7 v, ~ K7 u- L% C8 P不能消除滤波频率高于采样频率的1/2的干扰信号 1 O6 N/ k _; A*r' d4 A0 l( F8 i1 v p' h1 O% P+ D, B9 G8、加权递推平均滤波法 9 _6v {# L+ o1 {) t3 E* sA、方法:4 u% U; K% J$ z5 u是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 3 Z- D) F8 l- _* u% l通常是,越接近现时刻的数据,权取得越大。

数字滤波的优点及10种常用数字滤波方法比较

数字滤波的优点及10种常用数字滤波方法比较

数字滤波的优点及10 种常用数字滤波方法比较在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。

为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。

噪声有2 大类:(1)周期性的信号,其典型代表为50Hz 的工频干扰,对于这类信号,采用积分时间等于20ms 整倍数的双积分A/D 转换器,可有效地消除其影响;(2)非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。

所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。

数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:(1) 数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。

(2) 模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。

(3)数字滤波器可以对频率很低(如0.01Hz) 的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。

(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。

10 种数字滤波方法1、限副滤波方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差A,则本次值无效,放弃本次值,用上次值代替本次值优点:能有效克服因偶然因素引起的脉冲干扰。

缺点:无法抑制那种周期性的干扰,平滑度差。

2、中位值滤波法方法:连续采样N 次(N 取奇数),把N 次采样值按大小排列,取中间值为本次有效值。

优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。

缺点:对流量、速度等快速变化的参数不宜。

3、算术平均滤波法方法:连续取N 个采样值进行算术平均运算。

N 值较大时:信号平滑度较高,但灵敏度较低;N 值较小时:信号平滑度较低,但灵敏度较高。

10种简单的数字滤波算法

10种简单的数字滤波算法

10种简单的数字滤波算法(C语言源程序) 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值*/#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/**/#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)/**/#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)/**/#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法/**/略参考子程序1、37、一阶滞后滤波法/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法/* coe数组为加权系数表,存在程序存储区。

几种经典的滤波算法

几种经典的滤波算法

几种经典的滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

10种AD采样的软件滤波方法及例程

10种AD采样的软件滤波方法及例程

10种AD采样的软件滤波方法及例程AD采样的软件滤波方法:1. 移动平均滤波(Moving Average Filtering):该方法通过计算一段时间内的采样数据的平均值来平滑信号。

例程如下:```pythondef moving_average_filter(data, window_size):filtered_data = []for i in range(len(data)):if i < window_size:filtered_data.append(sum(data[0:i+1])/(i+1))else:filtered_data.append(sum(data[i-window_size+1:i+1])/window_size)return filtered_data```2. 中值滤波(Median Filtering):该方法通过将采样数据排序,并选择中间值作为过滤后的数值来平滑信号。

例程如下:```pythonimport numpy as npdef median_filter(data, window_size):filtered_data = []for i in range(len(data)):if i < window_size:filtered_data.append(np.median(data[0:i+1]))else:filtered_data.append(np.median(data[i-window_size+1:i+1])) return filtered_data```3. 加权移动平均(Weighted Moving Average):该方法通过给予不同采样数据不同权重,计算加权平均值来平滑信号。

例程如下:```pythondef weighted_moving_average_filter(data, window_size, weights):filtered_data = []for i in range(len(data)):if i < window_size:weights_sum = sum(weights[0:i+1])filtered_data.append(sum([data[j]*weights[j] for j inrange(i+1)]) / weights_sum)else:weights_sum = sum(weights)filtered_data.append(sum([data[j]*weights[j] for j inrange(i-window_size+1, i+1)]) / weights_sum)return filtered_data```4. 指数加权平滑(Exponential Weighted Smoothing):该方法通过给予最近采样数据较大的权重,并通过滞后系数计算加权平均值来平滑信号。

常用的滤波算法

常用的滤波算法

常⽤的滤波算法滤波是传感器处理中的重要算法,经常接触底层常常⽤到,以下总结了⼀些滤波算法,供以后参考调⽤。

⼀、低通滤波1.1RC滤波的数字低通滤波 指在截⽌频率fc的时候,增益为-3db(Aup=0.707)的滤波器,也是模电书中出现的第⼀种硬件滤波器,以下是对应的软件形式的1阶RC 滤波器的数字形式(本断程序节选⾃匿名4轴) ⼀阶形式:Y(n)=(1-a)*Y(n-1)+a*X(n) 下式中 oldData表⽰上⼀次的输出Y(n-1) newData表⽰新的输⼊X(n)1 float LopPassFilter_RC_1st(float oldData, float newData, float a)2 {3 return oldData * (1 - a) + newData * a;4 }56 计算⽐例系数a:78 float LopPassFilter_RC_1st_Factor_Cal(float deltaT, float Fcut)9 {10 return deltaT / (deltaT + 1 / (2 * M_PI * Fcut));11 }1.2均值滤波: 把⼀段时间内的数据累加后求平均值,达到平滑的作⽤,适⽤性⼴泛,元素越多滤波效果越好时延越⾼。

1 uint16_t LowPassFilter_Average(uint16_t data[],uint16_t length)23 {45 uint32_t add=0;6 uint16_t result;7 int i;89 for(i=0;i<length;i++)10 {11 add += data[i];12 }13 result=add/length;14 return result;15 }1617 //data[]放⼊⼀段时间⾥的数值,length:data数组的长度1.3滑动滤波 在均值滤波的基础上,加上⽐例系数,最新的数据具有更⼤的⽐例,增加时效性。

matlab11种数字信号滤波去噪算法

matlab11种数字信号滤波去噪算法

matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。

在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。

本文将介绍Matlab中的11种数字信号滤波去噪算法。

1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。

它适用于高斯噪声和椒盐噪声的去除。

2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。

它适用于椒盐噪声的去除。

3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。

它适用于高斯噪声的去除。

4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。

它适用于高斯噪声的去除。

5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。

它适用于非线性噪声的去除。

6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。

它适用于各种类型的噪声的去除。

7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。

它适用于线性系统的去噪。

8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。

它适用于非线性系统的去噪。

9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。

它适用于平稳信号的去噪。

10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。

它适用于各种类型的噪声的去除。

11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。

它适用于各种类型的噪声的去除。

以上是Matlab中的11种数字信号滤波去噪算法。

每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。

Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。

通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。

十一种通用软件滤波算法

十一种通用软件滤波算法

十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。

通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。

它适用于消除高频噪声。

2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。

它适用于去除椒盐噪声。

3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。

4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。

5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。

6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。

7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。

8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。

9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。

10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。

滤波算法

滤波算法

FPGA之路:tdyizhen1314自己走十一种通用滤波算法一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

按键滤波方法范文

按键滤波方法范文

按键滤波方法范文按键滤波是一种用于消除在电子系统中出现的按键抖动问题的方法。

在按下或释放按键时,由于机械结构和物理特性,开关可能会产生抖动或不稳定信号,可能会引发误触。

因此,按键滤波成为了一种重要的技术手段。

本文将介绍几种常见的按键滤波方法。

一、软件滤波方法1.简单的时间延迟滤波该方法通过在按键按下或释放后加入一段时间延迟,来判断是否真正发生按键动作。

具体实现是将按键状态检测延时一段时间,比如几十毫秒,然后再次读取按键状态,若两次读取结果相同,则判断按键状态有效。

利用时间延迟进行的软件滤波方法简单易行,但存在一个问题,即在输入延迟时间内无法捕捉到短暂的按键动作。

2.边缘检测滤波该方法通过检测按键状态的变化来判断是否真正发生按键动作。

具体实现是在按键按下或释放时记录下当前时间戳,然后再次读取按键状态并记录当前时间戳,比较两次时间戳之差是否超过设定的阈值。

若超过阈值,则判断按键状态有效。

该方法能够消除按键抖动问题,同时能够捕捉到快速按键动作。

但要注意选择合适的阈值,太短的阈值容易产生误触,太长的阈值可能导致延迟感。

3.计数器滤波该方法通过对连续的按键状态进行计数,来判断是否真正发生按键动作。

具体实现是设置一个计数器,每次读取到有效按键状态后进行累加,若计数值连续达到设定的阈值,则判断按键状态有效。

计数器滤波方法是一种相对稳定的滤波方法,对抖动现象有较好的处理能力。

但在处理快速按键动作时,可能会引入非预期的延迟。

二、硬件滤波方法1.RC滤波该方法利用RC电路的特性来实现按键信号的滤波。

具体实现是在按键与MCU之间串联一个RC电路,通过RC电路的低通滤波特性来消除按键信号的高频部分。

通过调整RC电路的参数,如电阻和电容的数值,可以实现不同程度的滤波效果。

RC滤波方法能够有效地抑制按键信号的高频抖动,但在处理快速按键动作时效果较差。

2.降噪电路该方法通过在按键与MCU之间添加降噪电路,来抑制按键信号的噪声。

10 种经典的软件滤波方法

10 种经典的软件滤波方法

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算Hale Waihona Puke 平均值 N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
C、缺点:
比较浪费RAM
7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号

halcon曲线 滤波

halcon曲线 滤波

halcon曲线滤波Halcon是一种常用的图像处理软件,它提供了多种曲线滤波算法。

以下是一些常用的曲线滤波方法:1. 移动平均滤波(MA):这是一种简单的时间域滤波方法,通过计算一定窗口内的平均值来平滑曲线。

在Halcon中,可以使用以下算子进行移动平均滤波:```meanimage(InputCurve, OutputCurve, WindowSize)```其中,InputCurve为输入的曲线,OutputCurve为输出的曲线,WindowSize为窗口大小。

2. 中值滤波(Median Filtering):这种滤波方法主要用于去除曲线中的噪声点和孤立像素。

在Halcon中,可以使用以下算子进行中值滤波:```medianimage(InputCurve, OutputCurve, WindowSize)```其中,InputCurve为输入的曲线,OutputCurve为输出的曲线,WindowSize为窗口大小。

3. 高斯滤波(Gaussian Filtering):高斯滤波是一种常用的平滑滤波方法,可以通过卷积运算实现。

在Halcon中,可以使用以下算子进行高斯滤波:```gaussimage(InputCurve, OutputCurve, Sigma)```其中,InputCurve为输入的曲线,OutputCurve为输出的曲线,Sigma为高斯核的的标准差。

4. Laplace滤波:Laplace滤波主要用于检测曲线边缘和突变更剧烈的区域。

在Halcon中,可以使用以下算子进行Laplace滤波:```laplace(InputCurve, OutputCurve, ResultType, MaskSize, Fi lterMask)```其中,InputCurve为输入的曲线,OutputCurve为输出的曲线,ResultType为输出曲线的类型,MaskSize为滤波器的核尺寸,FilterMask为滤波器掩膜的类型。

plc软件滤波思路

plc软件滤波思路

首先应做好信号的数据分析,明确信号的变化特征,以确定信号属于哪种干扰类型,选择合适的滤波方法。

具体操作可利用wincc数据存档完成。

软件滤波方法及其优缺点1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)"每次检测到新值时判断:"如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点:能有效克服因偶然因素引起的脉冲干扰"C、缺点无法抑制那种周期性的干扰"平滑度差"2、中位值滤波法A、方法:连续采样N次(N取奇数)"把N次采样值按大小排列"取中间值为本次有效值"B、优点:能有效克服因偶然因素引起的波动干扰"对温度、液位的变化缓慢的被测参数有良好的滤波效果"C、缺点:对流量、速度等快速变化的参数不宜"3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算"N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波"这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动"C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用"比较浪费RAM"4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列"队列的长度固定为N"每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)"把队列中的N个数据进行算术平均运算,就可获得新的滤波结果"N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4"B、优点:对周期性干扰有良好的抑制作用,平滑度高"适用于高频振荡的系统"C、缺点:灵敏度低"对偶然出现的脉冲性干扰的抑制作用较差"不易消除由于脉冲干扰所引起的采样值偏差"不适用于脉冲干扰比较严重的场合"比较浪费RAM"5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”"连续采样N个数据,去掉一个最大值和一个最小值"然后计算N-2个数据的算术平均值"N值的选取:3~14"B、优点:融合了两种滤波法的优点"对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差"C、缺点:测量速度较慢,和算术平均滤波法一样"比较浪费RAM "6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”"每次采样到的新数据先进行限幅处理,"再送入队列进行递推平均滤波处理"B、优点:融合了两种滤波法的优点"对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差"C、缺点:比较浪费RAM "7、一阶滞后滤波法A、方法:取a=0~1"本次滤波结果=(1-a)*本次采样值+a*上次滤波结果"B、优点:对周期性干扰具有良好的抑制作用"适用于波动频率较高的场合"C、缺点:相位滞后,灵敏度低"滞后程度取决于a值大小"不能消除滤波频率高于采样频率的1/2的干扰信号"8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权"通常是,越接近现时刻的数据,权取得越大。

DSP开发常用软件滤波算法

DSP开发常用软件滤波算法

DSP开发常用软件滤波算法第1种方法限幅滤波法(又称程序判断滤波法)A 方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值;B 优点:能有效克服因偶然因素引起的脉冲干扰;C 缺点:无法抑制那种周期性的干扰平滑度差;第2种方法中位值滤波法A 方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值;B 优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果;C 缺点:对流量、速度等快速变化的参数不宜;第3种方法算术平均滤波法A 方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4;B 优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动;C 缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM;第4种方法递推平均滤波法(又称滑动平均滤波法)A 方法:把连续取N个采样值看成一个队列队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4;B 优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统;C 缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM;第5种方法中位值平均滤波法(又称防脉冲干扰平均滤波法)A 方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14;B 优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差;C 缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM;第6种方法限幅平均滤波法A 方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理再送入队列进行递推平均滤波处理;B 优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差;C 缺点:比较浪费RAM;第7种方法一阶滞后滤波法A 方法:取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果;B 优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合;C 缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号;第8种方法加权递推平均滤波法A 方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的资料,权取得越大给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低;B 优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统;C 缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差;第9种方法消抖滤波法A 方法:设置一个滤波计数器将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出) 如果计数器溢出,则将本次值替换当前有效值,并清计数器;B 优点:对于变化缓慢的被测参数有较好的滤波效果, 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动;C 缺点:对于快速变化的参数不宜如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统;第10种方法限幅消抖滤波法A 方法:相当于“限幅滤波法”+“消抖滤波法”先限幅后消抖;B 优点:继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统;C 缺点:对于快速变化的参数不宜;第11种方法IIR 数字滤波器A 方法:确定信号带宽,滤之。

几种经典的滤波算法(转)

几种经典的滤波算法(转)

⼏种经典的滤波算法(转)1、限幅滤波法(⼜称程序判断滤波法)A、⽅法:根据经验判断,确定两次采样允许的最⼤偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值⽆效,放弃本次值,⽤上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲⼲扰C、缺点⽆法抑制那种周期性的⼲扰平滑度差2、中位值滤波法A、⽅法:连续采样N次(N取奇数)把N次采样值按⼤⼩排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动⼲扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、⽅法:连续取N个采样值进⾏算术平均运算N值较⼤时:信号平滑度较⾼,但灵敏度较低N值较⼩时:信号平滑度较低,但灵敏度较⾼N值的选取:⼀般流量,N=12;压⼒:N=4B、优点:适⽤于对⼀般具有随机⼲扰的信号进⾏滤波这样信号的特点是有⼀个平均值,信号在某⼀数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适⽤⽐较浪费RAM4、递推平均滤波法(⼜称滑动平均滤波法)A、⽅法:把连续取N个采样值看成⼀个队列队列的长度固定为N每次采样到⼀个新数据放⼊队尾,并扔掉原来队⾸的⼀次数据.(先进先出原则)把队列中的N个数据进⾏算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压⼒:N=4;液⾯,N=4~12;温度,N=1~4B、优点:对周期性⼲扰有良好的抑制作⽤,平滑度⾼适⽤于⾼频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性⼲扰的抑制作⽤较差不易消除由于脉冲⼲扰所引起的采样值偏差不适⽤于脉冲⼲扰⽐较严重的场合⽐较浪费RAM5、中位值平均滤波法(⼜称防脉冲⼲扰平均滤波法)A、⽅法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉⼀个最⼤值和⼀个最⼩值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性⼲扰,可消除由于脉冲⼲扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法⼀样6、限幅平均滤波法A、⽅法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进⾏限幅处理,再送⼊队列进⾏递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性⼲扰,可消除由于脉冲⼲扰所引起的采样值偏差C、缺点:⽐较浪费RAM7、⼀阶滞后滤波法A、⽅法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性⼲扰具有良好的抑制作⽤适⽤于波动频率较⾼的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值⼤⼩不能消除滤波频率⾼于采样频率的1/2的⼲扰信号8、加权递推平均滤波法A、⽅法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越⼤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10种软件滤波方法
1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点
无法抑制那种周期性的干扰
平滑度差
2、中位值滤波法
A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜
3、算术平均滤波法
A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM
6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
比较浪费RAM
7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号
8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
B、优点:
适用于有较大纯滞后时间常数的对象
和采样周期较短的系统
C、缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
B、优点:
对于变化缓慢的被测参数有较好的滤波效果,
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
C、缺点:
对于快速变化的参数不宜
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
10、限幅消抖滤波法
A、方法:
相当于“限幅滤波法”+“消抖滤波法”
先限幅,后消抖
B、优点:
继承了“限幅”和“消抖”的优点
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
C、缺点:
对于快速变化的参数不宜。

相关文档
最新文档