3.3分式的加减法2(郑)

合集下载

分式的加减法导学案

分式的加减法导学案

§3.3 分式的加减法(第一课时)一、学习目标1.经历探索分式加减运算法则,理解其算理;2.会进行简单分式的加减运算,具有一定的代数化归能力;3.能解决一些简单的实际问题,进一步体会分式的模型思想。

二、学习重点:分式的加减运算;三、学习难点:解决一些简单的实际问题,进一步体会分式的模型思想。

四、预习设计:1.同分母的分式相加减__________________________,用式子表示则为ac±bc=______.2.填空:(1)2214_______;(2)_______;(3)y x a bm m x y x y a b b a --=-=+----=____.3.把分母不相同的几个分式化成分母相同的分式叫做________.4.三个分式的分母是3ax2y,4a3x y,2xy,则它们的最简公分母是______.五、教学过程设计1.创设情景,导出问题从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km的上坡路、2km的下坡路,小丽在上坡路上的骑车速度为vkm/h,在平路上的骑车速度为2vkm/h,在下坡路上的骑车速度为3vkm/h,那么(1)当走第二条路时,她从甲地到乙地需要多长时间?(2)她走哪条路花费时间少?少用多长时间?2.探索交流,发现规律讨论:(1)同分母的分数如何加减?(2)你认为应等于什么?(3)猜一猜,同分母的分式应该如何加减?归纳:与同分母分数加减法的法则类似,同分母的分式加减法的法则是:同分母的分式相加减,分母,把分子。

3.练习巩固,促进迁移做一做:想一想:(1)异分母的分数如何加减?(2)比如应该怎样计算?类比异分母分数的加减运算,学生容易想到,解决异分母分式的加减问题,其关键是化异分母分式为分式的过程。

议一议:小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题。

小亮同意小明的这种看法,但他俩的具体做法不同。

3.3 分式的加减法

3.3  分式的加减法

x 1 化成分母为 x-1 的分式,利用分式的基本性质,得 1 x
x 1 ( x 1) (1) 1 x = = .所以第(2)题的解法如下: 1 x (1 x) (1) x 1
2 x 1 2 1 x + = + x 1 1 x x 1 x 1 2 (1 x ) 3 x = = x 1 x 1
[师]但和问题一中加减法比较一下,你会发现什么? [生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法. [师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.

1.同分母的加减法 [师]我们接着看下面的问题(出示投影片§3.3.1 B)

想一想 (1)同分母的分数如何加减?你能举例说明吗? (2)你认为分母相同的分式应该如何加减? 做一做 (1)
重点、难点
考点及考试要求
学习 过程 预 习 导 学
学习内容 [师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面 的问题: (出示投影片 §3.3.1 A) 问题一:从甲地到乙地有两条路,每条路都是 3 km,其中第一条是平路,第二条有 1 km 的上坡路、 2 km 的下坡路.小丽在上坡路上的骑车速度为 v km/h,在平路上的骑车速度为 2 v km/h,在下坡路上的骑车速 度为 3v km/h,那么 (1)当走第二条路时,她从甲地到乙地需多长时间? (2)她走哪条路花费的时间少?少用多长时间? 问题二: 某人用电脑录入汉字文稿的效率相当于手抄的 3 倍, 设他手抄的速度为 a 字/时, 那么他录入 3000 字文稿比手抄少用多少时间? [生]问题一,根据题意可得下列线段图:
(1)

1 1 2 1 2 1 3 + = + = = ; a 2a 2a 2a 2a 2a a a a a (3) - = - ab ba ab ab a (a) 2a = = . ab ab

分式的四则运算

分式的四则运算

分式的四则运算
(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分
子相加减.
(2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.
(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
(4)分式的除法法则:
①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
②除以一个分式,等于乘以这个分式的倒数:
(5)分式方程:分母中含有未知数的方程叫做分式方程.
(6)分式方程的解法:
①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);
②按解整式方程的步骤求出未知数的值;
③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

《分式的加减法》第二课时参考课件

《分式的加减法》第二课时参考课件

x 2 yz
(3)计算:

2 xy 2 z

3 =_____________. xyz 2
x x 1 =_____________. (1 ) x 1 x
3x x x2 4 2 、用两种方法计算: ( x 2 x 2 ) x
1
计算
12 2 m2 9 3 m
做一做
尝试完成下列各题:
4 1 4a (1) 2 a a a2
1 1 ab ( 2) a b ab
b a 2b 2 3a 2 2b 2 3a 2 (3) 3a 2b 6ab 6ab 6ab
(4) a b b c
ac bc ab ac bc ab ca abc abc ac
x 3 x 3 x 3 x 3 26 . x 9
分子相减时, “减式”要配括号!
例 2
2a 1 . 计算:2) 2 ( a 4 a2
2a 1 解: (2) 2 a 4 a2 2a a 2 (a 2)( a 2) (a 2)( a 2)
3x x ( x 3) 2
4x ( x 3) 2
a 3 . 2 a 1
学以致用
例 3 根据规划设计,某市工程队准备在开发区修建一条
长1120m的盲道. 由于采用新的施工方式 , 实际每天修
建盲道的长度比原计划增加10m, 从而缩短了工期. 假设原计划每天修建盲道 x m , 那么 (1) 原计划修建这条盲道需要多少天? (2) 实际修建这条盲道的工期比原计划缩短了几天?
1 2 (1) . 2 a 1 1 a 1 2 解:原式 2 a 1 a 1 2 1 a 1 a 1a 1

15.2.2分式的加减(说课、教案、学案)

15.2.2分式的加减(说课、教案、学案)

3.3分式的加减(1)(说课稿)李天群《分式的加减法》这节课是代数运算的基础,一课时完成,主要内容是同分母的分式相加减及简单的异分母的分式相加减。

学生已掌握了分数的加减法运算,同时也学过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为学习《分式方程》做好必备的知识储备教学目标: ①知识与技能:使学生会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;③情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

重点:掌握分式的加减运算法则进行运算难点:异分母的分式加减运算本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,让学生观察归纳,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练习为主线的教学过程。

根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。

引导学生通过类比分数运算引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从类比中归纳出法则并运用法则进行运算的过程,并在此基础上激发学生寻求解决问题的方法。

15·2·2分式的加减(1)一、教学目标1、使学生在理解分式的加减法法则,并用法则进行运算。

2、通过对分式的加减法的学习,提高学生的计算能力。

二、教学重点、难点重点:分式的加减法运算。

难点:异分母分式的加减法运算。

三、教学方法:启发式教学四、教学过程(一)、复习提问:1、分数的加减法的法则是什么?计算:15+25,15-25,12+13,12-13。

2、分式的乘方性质是什么?用式子表示出来。

学生计算并回答问题,教师及时纠正出现的错误。

引言:我们在小学学习了分数的加减法,对于分式的加减如何来进行计算呢?这就是我们这节课要学习的内容。

(二)、明确学习目标。

分式教案2

分式教案2
3、解下列方程:
(1)
(2)
(3)
4、当 为何值时,关于x的方程 有增根。
模块四小结评价
一、本课知识点:
1、解分式方程的一般步骤:__________________
2、什么是增根:_______________________
二、本课典型例题:
三、我的困惑
作业布置








单元

教学内容
第四节分式方程(三)


单元

教学内容
回顾与思考
课时
1




1、会判断一个式子是分式,掌握分式意义的题
2、会进行分式加减法的运算题
3、会列分式方程解应用题
教学
重点
难点
重点:会进行分式的计算题
难点:异分母的分式计算题
教具学具资料准备
多媒体












教师活动(老师导航)
学生活动或师生互动(学程设计)
典型问题分析:
解:方程两边都乘________________,
得_______________________.
解这个方程,______________________________
检验:将___________________,
得_____________________
所以_______________________
分析:等量关系是:甲用的时间与乙用的时间相等。
解题方案:
解:设甲每天加工 个玩具,则乙每天加工()个玩具,

分式的加减 教学设计(二)

分式的加减  教学设计(二)

分式的加减教学设计(二)教学设计思想学生依据分式的混合运算的性质进行分式的混合运算,学起来并不难,但要达到运算熟练的程度并不容易.首先一起探究,让学生通过观察、思考自己总结出运算法则,然后安排典型的例题和课堂练习,让学生多实践,这是促使学生熟悉运算顺序和步骤的关键.同时教育学生建立坚韧不拔,知难而进,战胜困难的自信心.教学目标知识与技能:熟记同分母分式与异分母分式的加减法法则。

熟练地进行同分母分式、异分母分式的加减运算。

发展有条理的思考及语言表达能力。

过程与方法:经历分数加减法则的探究过程,进一步学习运用类比数学思想去观察、分析问题。

情感态度价值观:从现实情境中提出问题,提高“用数学”的意识。

结合已有经验,解决新问题,获得成就感以及克服困难的方法和勇气教学方法类比猜想,讲练结合教具准备多媒体课时安排2课时第一课时(同分母分式的加减法)教学重点和难点重点:熟练运用同分母分式的加减法法则进行计算。

难点:运算中对“把分子相加减”的处理。

对策:通过自主探究熟练掌握法则,通过例题、练习领会运用教学过程(一)引入上节课我们已经会做分式的乘法和除法运算了,那么怎样做分式的加法和减法运算呢?这节课我们就来类比同分母分数的加减运算,请你猜想同分母分式加减的运算发展是怎样的。

(二)一起探究有两张面积为S1,S2(S1>S2)的长方形纸片,它们都有一边长为a。

如图:探究1:当将这两张纸片如图拼接在一起成为一个新长方形时,新长方形的长是多少?学生活动:独立思考,画图求解,采用多种解法。

探究2:当将这两张长方形纸片如图叠在一起时,请你用不同的方法求出不重合部分的长,由此你有能得到怎样的结论?学生活动:先独立思考,再小组讨论,运用不同的方法求解。

探究3:这两个结论说明了什么?学生活动:自主探究,小组讨论,总结出同分母的分式加减法法则。

老师板书法则(三)范例讲解例1计算:(1)4a ax x-;(2)a+b a bx+a x a-++。

分式的乘除法和加减法

分式的乘除法和加减法
2 2
2
6y ( 3 )3 xy x
2
2
a 1 a 1 (4) a 4a 4 a 4
2 2 2
二、分式加减法:
同分母分式加减法的法则: 同分母的分式相加减, 分母不变,分子相加减。 异分母分式加减法的法则: 异分母的分式相加减,
先通分,化为同分母的分式,再进行计算。
【通分】 利用分式的基本性质 , 把异分母的分式化为同 分分母的过程 。 【通分的原则】 异分母通分时, 通常取各分母的最简公分母作
一、分式乘除法运算法则:
两个分式相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母;
b d bd a c ac
两个分式相除,把除式的分子和分母颠 倒位置
b d b c bc 后再与被除式相乘。 a c a d ad 计算: a2 1 6a 2 y ( 2 ) (1 ) a 2 a 2a 8 y 3a
为它们的共同分母。
3 a5 例题: (1 ) a 5a
ห้องสมุดไป่ตู้2 x 1 (2) x 1 1 x
1 1 (3) ; x3 x3 2a 1 (4) a 4 a2
2
分式的混合运算:
(1)
x+1 ÷ 2 x -2x+1 x- 1
x2 - 1
x- 1 x+1
x- 1 x+1
(2) 用两种方法计算:
1 x 1 1 1 x x
+ 1 a- b
1 1 2a
(3)
1 a 2- b 2
1 ÷ a+b

3.3分式的加减法(2)学案

3.3分式的加减法(2)学案

3.3分式的加减法(2)课型:新授 学生姓名:_________[目标导航]1、学习目标(1)知识目标:①经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力。

②进一步通过实例发展学生的符号感。

(2)能力目标:在学生已有数学经验的基础上,探求新知,从而获得成功的快乐。

(3)情感目标:提高学生“用数学”意识。

2、学习重点:①掌握异分母的分式加减运算。

②理解通分的意义3、学习难点:①化异分母分式为同分母分式的过程。

②符号法则、去括号法则的应用。

[课前导学]1、课前复习:(1)用数学符号表示同分母分式相加减的法则___ ____。

(2)=---3932x x x ___ ___。

(3)=+-++--++131112x x x x x x。

(4)=---n m n m n n _____ 。

(5)=-+pp p 64257 2、课前预习:问题引入:请同学们尝试解决以下问题(1)24a -a 1=___ _=(2)a 1+b 1=____________=(3)ab b a +-bc c b +=___________= =(4)a b 3+b a 2= 异分母分式相加减的法则是: 。

3、课前学记(课前学习疑难点、教学要求建议)[课堂研讨]1、 新知探究,把下列各式通分(1)x y 2,23y x ,xy41 (2)y x -5,2)(3x y -2、例题讲解计算: (1)31-x -31+x (2)422-a a -21-a3、随堂练习:用两种方法计算 (23-x x -2+x x )·xx 42- (1)通分法 (2)分配律法4、学以致用甲、乙两位采购员同去一家饲料公司购买两次饲料。

两次饲料的价格有变化,两位采购员的购货方式也不同。

其中,甲每次购买1000千克,乙每次用去1000元,而不管购买多少饲料。

(1)甲、乙所购饲料的平均单价各是多少?提示:设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 是正数,且m ≠n )(2)谁的购货方式更合算?5、巩固练习计算:(1)b a a b 23+ (2)21211aa ---6、问题解决:几位大学生租车去郊外游览,租金为300元,出发时又加了2位同学,总人数达到了x 人。

分式的加减专项练习20题答案

分式的加减专项练习20题答案

. . .. . .分式的加减专项练习20题答案1.化简:.考点:分式的加减法.分析:首先将原分式化为同分母的分式,然后再利用同分母的分式的加减运算法则求解即可求得答案.解答:解:====x﹣2.点评:此题考查了分式的加减运算法则.解题的关键是要注意通分与化简.2.化简的结果是a+b .考点:分式的加减法.专题:计算题.分析:根据同分母的分数相加,分母不变,分子相加减.解答:解:原式===a+b,故答案为a+b.点评:本题考查了分式的加减法,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.计算:.考点:分式的加减法.专题:计算题.分析:先找出最小公倍数,再通分,最后计算即可.解答:解:原式==.点评:本题考查了分式的加减法,解题的关键是找出各分母的最小公倍数.4.考点:分式的加减法.专题:计算题.分析:观察发现,只需对第二个分母提取负号,就可变成同分母.然后进行分子的加减运算.最后注意进行化简.解答:解:原式===.点评:注意:m﹣n=﹣(n﹣m).分式运算的最后结果应化成最简分式或整式.5.计算:.考点:分式的加减法.分析:首先把分子分解因式,再约分,合并同类项即可.解答:解:原式=,=a﹣2+a+2,=2a.点评:此题主要考查了分式的加减法,关键是掌握计算方法,做题时先注意观察,找准方法再计算.6.化简:考点:分式的加减法.专题:计算题.分析:首先把各分式进行约分,然后进行加减运算.解答:解:原式==x﹣y﹣=x﹣y﹣2x+y=﹣x.点评:本题不必要把两式子先通分,约分后就能加减运算了.7.计算:.考点:分式的加减法.专题:计算题.分析:先通分,再把分子相加减即可.解答:解:原式=+﹣====.点评:本题考查的是分式的加减法,异分母分式的加减就转化为同分母分式的加减.8.化简:考点:分式的加减法.专题:计算题.分析:(1)几个分式相加减,根据分式加减法则进行运算;(2)当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.解答:解:原式===1+1=2.点评:归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.9.按要求化简:.考点:分式的加减法.分析:首先通分,把分母化为(a+1)(a﹣1),再根据同分母分数相加减,分母不变,分子相加减进行计算,注意最后结果要化简.解答:解:原式=﹣===.点评:此题主要考查了分式的加减,关键是掌握异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.10.化简﹣考点:分式的加减法.专题:计算题.分析:此题分子、分母能分解的要先分解因式,经过约分再进行计算.解答:解:原式===1.点评:此题的分解因式、约分起到了关键的作用.11.化简:考点:分式的加减法.专题:计算题.分析:把异分母分式转化成同分母分式,然后进行化简.解答:解:原式====.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.计算:.考点:分式的加减法.分析:根据异分母分式相加减,先通分,再加减,可得答案.解答:解:原式=﹣+====.点评:本题考查了分式的加减,先通分花成同分母分时,再加减.13.)已知:,求A、B的值.考点:分式的加减法;解二元一次方程组.专题:计算题.分析:此题可先右边通分,使结果与相等,从而求出A、B的值.解答:解:∵=,∴,比较等式两边分子的系数,得,解得.点评:此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.14.化简:考点:分式的加减法.专题:计算题.分析:通过观察分式可知:将分母分解因式,找最简公分母,把分式通分,再化简即可.解答:解:原式=﹣=﹣=.点评:解答本题时不要盲目的通分,先化简后运算更简单.15.计算:(x﹣)+.考点:分式的加减法.分析:将括号里通分,再进行同分母的运算.解答:解:(x﹣)+=+=.点评:本题考查了分式的加减运算.关键是由同分母的加减法法则运算并化简.16.计算:考点:分式的加减法.专题:计算题.分析:根据分式的加减运算法则,先通分,再化简.解答:解:原式=+===.点评:本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.17.化简﹣.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣===.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.化简:﹣+考点:分式的加减法.专题:计算题.分析:首先将各式的分子、分母分解因式,约分、化简后再进行分式的加减运算.解答:解:原式=﹣•(2分)=(3分)=.(4分)点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减;如果分式的分子、分母中含有公因式的,需要先约分、化简,然后再进行分式的加减运算.19.计算:考点:分式的加减法.专题:计算题.分析:先通分,把异分母分式加减运算转化为同分母分式加减运算,求解即可.解答:解:原式====.点评:本题主要考查异分母分式加减运算,先通分,把异分母分式化为同分母分式,然后再相加减.20.化简:.考点:分式的加减法.分析:本题需先根据分式的运算顺序及法则,分别对每一项进行整理,再把每一项合并即可求出答案.解答:解:原式=,=,=,=,=.点评:本题主要考查了分式的加减,在解题时要根据分式的运算顺序及法则进行计算这是本题的关键.21.计算:.考点:分式的加减法.专题:计算题.分析:先找到最简公分母,通分后再约分即可得到答案.解答:解:原式====.点评:本题考查了分式的加减,会通分以及会因式分解是解题的关键.22..考点:分式的加减法.专题:计算题.分析:观察各个分母,它们的最简公分母是x(x﹣3),先通分把异分母分式化为同分母分式,然后再加减.解答:解:===.点评:本题主要考查异分母分式加减,通分是解题的关键.。

5-3-3分式的加减法(课件)-八年级数学下册同步精品课件(北师大版)

5-3-3分式的加减法(课件)-八年级数学下册同步精品课件(北师大版)

3. 先化简,再求值::
,其中x=202X.
练习&巩固
1.分式加减运算的方法思路:
异分母 通分 相加减 转化为
同分母 相加减
小结&反思
分母不变, 分子相加减
2.分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.
(2)实际修建这条盲道的工期比原计划缩短了几天?
解:(1)原计划修建需 天, 实际修建需 (2)实比原计划缩短了
探索&交流
天;
天.
探索&交流
阅读下面题目的计算过程.
x 3 2 x 3 2 x 1
x2 1 1 x x 1 x 1 x 1 x 1

= x 32x 1

= x32x2

= x 1
m 3m 3
m
m3
3m
3
1 m3
当m=1时,原式 1 1
1-3 2
例题欣赏 ☞
例4. 计算:(1) (m 2 5 ) 2m 4 ;
2m 3m
例题&解析
解:原式
m 22 m 5 • 2m 4
2m
3m
9-m2 • 2 m 2
2m 3m
先算括号里的加法, 再算括号外的乘法
第五章 分式与分式方程
3.3 分式的加减法
北师大版八年级数学下册
学习&目标
1.掌握分式加减法则,进一步发展运算能力;(重点) 2.能解决一些与分式加减有关的实际问题.(难点)
情境&导入
在前面的课程中,我们学习了同分母分式的加减法法则和 异分母分式的加减法法则.
同分母分式的加减法法则:b c b c .
aa a

北师大版八年级数学(下)课件:5.3.3 分式的加减法

北师大版八年级数学(下)课件:5.3.3 分式的加减法

答案:(1) 4 a ;
a2
a 1 (2) ;
a2 1
(3) c a . ab
例5 计算:
(1) y 1 ; xy x xy x
(2) x2 x 1; x 1
解:原式 y( y 1) y 1 x(y 1)(y 1)
解:原式 x2 (x 1) x 1

(2 y)2 (2y)2 y2

4. 3
还有其它 方法吗?
1.先化简,再求值:
已知
x y
=3,求 4xy
x2 y2

x y 的值.
x y
解: 4xy x2 y2

x x

y y

4xy(- x2 2xy x2 y2

y2)

(x y)2 (x y)(x y)
3
(2)已知
x

3 y ,求
4xy x2 y2

x y x y
的值. 答案: 1 .
2
3.某蓄水池装有 A,B 两个进水管,每小时可分别 进水 at,bt.若单独开放 A 进水管,ph 可将该水池 注满.如果 A,B 两根水管同时开放,那么能提前多 长时间将该蓄水池注满?
答案: bp h . ab
(a 1)2 a 1 . a(a 1)(a 1) a2 a
例6
已知
x y
2,求
x x y
y x y

y2 x2 y2
的值.
解:原式

x(x
y) y(x x2 y2
y)
y2

x2 x2 y2
因为 x 2, 即 x 2y. y

2022年《分式的加减》教案 (省一等奖)

2022年《分式的加减》教案 (省一等奖)

15.2.2分式的加减〔一〕一、教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、教学过程:〔一〕板书标题,呈现教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 〔二〕引导学生自学:阅读P15-16练习,并思考以下问题:1. 分数的加减运算法那么是什么?分式的加减运算法那么又是什么? 2. 异分母的分式加减法的一般步骤是什么?8分钟后,检查自学效果〔三〕学生自学,教师巡视: 学生认真自学,并完成P16练习 〔四〕检查自学效果:1.学生答复老师所提出的问题 2.学生答复P16练习〔五〕引导学生更正,归纳: 1.更正学生错误;2.P16例6. 第〔1〕题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比拟简单;第〔2〕题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.[分析] 第〔1〕题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.[分析] 第〔2〕题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 3.进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法那么计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:〔1〕取各分母系数的最小公倍数;〔2〕所出现的字母(或含字母的式子)为底的幂的因式都要取;〔3〕相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.4.异分母的分式加减法的一般步骤:〔1〕通分,将异分母的分式化成同分母的分式;〔2〕写成“分母不变,分子相加减〞的形式;〔3〕分子去括号,合并同类项;〔4〕分子、分母约分,将结果化成最简分式或整式. 〔六〕课堂练习 1.计算:〔1〕 〔2〕 〔3〕2.计算:〔1〕 〔2〕 111---x x x b a ab b a a +++2329122---m m aa a a a a a a a 2444122222--÷⎪⎭⎫ ⎝⎛+----+)225(423---÷-+x x x x作业:1.习题15.2第4,5题〔A本〕2.?感悟?P8-9分式的加减〔一〕3.预习P17-18练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

分式的加减

分式的加减

分式的加减【学习目标】1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法. 【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:a b a b c c c±±=. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式. 要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分. 要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母. (3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:a c ad bc ad bcb d bd bd bd±±=±=. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式. 要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.【典型例题】类型一、同分母分式的加减1.计算:(1)22222333a b a b a b a b a b a b +--+-; (2)222422x x x x x+-+--;举一反三: 【变式】计算:(1)22a b b ab a a b b a++----; (2)xx x x x x x x +---+--+++35223634222.2.计算:(1)22256343333a b b a a b a bc ba c cba +-++-;(2)2222()()a ba b b a ---; (3)22m n n m n m m n n m ++----; (4)33()()x yx y y x ---.类型二、异分母分式的加减3.计算:(1)21132a ab +;(2)2312224x x x x +-+--;(3)211a a a ---.举一反三: 【变式】计算:(1)212293m m ---;(2)112323x y x y++-.4.(2014秋•新罗区校级月考)计算:.举一反三:【变式】计算(1)222244224y x yx y y x y x+-+--; (2)222()()()()()()a b c b c a c b aa b a c b c b a c b c a ------++------.5. 化简222236523256 x x x xx x x x++++-++++举一反三:【变式】某商场文具专柜以每支a(a为整数)元的价格购进一批“英雄”牌钢笔,决定每支加价2元销售,由于这种品牌的钢笔价格廉、质量好、外观美,很快就被销售一空,结账时,售货员发现这批钢笔的销售总额为(399a+805)元.你能根据上面的信息求出文具专柜共购进了多少支钢笔吗?每支钢笔的进价是多少元?类型三、分式的加减运算的应用6.2015•青海)先化简再求值:,其中.举一反三:【变式】(2015•北仑区一模)先化简分式(﹣)÷,再在﹣3<x≤2中取一个合适的x,求出此时分式的值.7.已知34(1)(2)12x A Bx x x x-=+----,求整式A,B.【变式】(2015春•东台市校级期中)已知计算结果是,求常数A 、B 的值.类型四、分式的混合运算8.计算:(1)22111a b a b a b ⎛⎫÷+ ⎪-+-⎝⎭; (3)22111a b a b a b⎛⎫+÷⎪+--⎝⎭.9.先化简,再求值.222142442x x x x x x x x ---⎛⎫-÷ ⎪++++⎝⎭,其中x 满足2210x x +-=.一.选择题 1.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 2.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22x y +3.b c aa b c-+的计算结果是( ) A .222b c a abc-+B .222b c ac a b abc--C .222b c ac a b abc-+D .b c aabc-+ 4.(2015•山西)化简﹣的结果是( )A. B. C. D.5.313---a a 等于( ) A .2261a a a +--B .1242-++-a a a C .1442-++-a a a D .a a -16.21111xx x x n n n +-+-+等于( ) A .11+n x B .11-n x C .21x D .1二.填空题 7.分式2222,39a bb c ac的最简公分母是______. 8.(2014•闸北区二模)化简﹣的结果是 .9.计算aa -+-329122的结果是____________.10.=-+abb a 6543322____________. 11.211a a a-+=+_________. 12.若ab =2,a b +=3,则ba 11+=______. 三.解答题13.(2015•保康县模拟)化简:+.14.已知2222222xy x y M N x y x y+==--、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.15.已知220x -=,求代数式222(1)11x x x x -+-+的值.【提高练习】一.选择题1.下列运算中,计算正确的是( ). A.)(212121b a b a +=+ B.acb c b a b 2=+ C.aa c a c 11=+- D.110a b b a+=-- 2.ab a b a -++2的结果是( ).A.a 2-B.a4 C.ba b --2 D.ab- 3.下列计算结果正确的是( )A .11422(2)(2)x x x x -=+-+- B .))((211222222222x y y x x xy y x ---=--- C .yx xy y x x 231223622-=- D .33329152+-=----x x x x4.下列各式中错误..的是( ) A .2c d c d c d c d d a a a a -+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=--- 5.(2014•十堰)已知:a 2﹣3a+1=0,则a+﹣2的值为( ) A.+1B.1C.﹣1D.﹣56. 化简232a b c a b c c ba b c a c b c a b-+-+--++--+--的结果是( )A.0B.1C.-1D.()22b c c a b---二.填空题 7.分式)2(,)2(++m b nm a m 的最简公分母是______.8.a 、b 为实数,且ab =1,设11,1111a b P Q a b a b =+=+++++,则P______Q(填“>”、“<”或“=”).9.已知:244x x -+与|1|y -互为相反数,则式子()xy x y y x ⎛⎫-÷+ ⎪⎝⎭的值等于=________. 10.aa a -+-21422=______. 11.若x <0,则|3|1||31---x x =______.12.(2015•黄冈中学自主招生)若x ,则= .三.解答题13.计算下列各题(1)223215233249a a a a ++++-- (2)43214121111xx x x x x +-++-+-- 14.化简求值:22[()]33x y x y x y x x y x x+----÷+,其中530x y +=.15.(2014秋•乳山市期中)阅读,做题时,根据需要,可以将一个分数变成两个分数之差,如:==1﹣;==﹣;==(﹣),等等.解答下列问题:(1)已知a=,b=,c=,比较a,b,c的大小.(2)求++++…++的值.(3)求++++…++的值.(4)求++++…+.【答案与解析】一.选择题1. 【答案】D;【解析】11163211 2366x x x x x++++==.2. 【答案】A;【解析】333333x a a y x yx y y x x y+---+=+++.3. 【答案】C;【解析】222222b c a b c ac a b b c ac a ba b c abc abc abc abc-+-+=-+=.4. 【答案】A;【解析】解:原式=﹣=﹣==,故选A.5. 【答案】A;【解析】22 33332326 311111a a a a aaa a a a+--++---=-==----.6. 【答案】D;【解析】1131112311 n n n n nn nx x x x xx x x+-+++++--++==.二.填空题7. 【答案】229ab c;8. 【答案】.【解析】解:﹣==,故答案为:.9. 【答案】23 a-+;【解析】()()()()221223231222 939333a aa a a a a a-+--+===----+-+.10.【答案】22891012b a aa b+-;【解析】222 2358910 34612b a aa b ab a b+-+-=.11. 【答案】11a+; 【解析】22211111a a a a a a a --+=-=+++11a+. 12.【答案】32; 【解析】1132a b a b ab ++==. 三.解答题13.【解析】 解:原式=+=+=.14.【解析】解:M -N =()()()2222222222222x y xy x y xy x y x y x y x y x y x y x y x y-+----==-=----+-+.因为x ∶y =5∶2,设52x k y k ==, 所以原式=523527k k k k --=-+.15. 【解析】解:()22222221(1)(1)1111x x x x x x x x x ---+=+-+-- 因为22x =所以原式()2222221(1)21221111x x x x x x x x ---++-=+==---.【答案与解析】一.选择题1. 【答案】D ; 【解析】11222a b a b ab ++=;b b bc ab a c ac ++=;11c c a a a+-=-. 2. 【答案】C ;【解析】()()222a b a b a a b a b b a a b a b a b+-++=-=-----; 3. 【答案】C ;【解析】11422(2)(2)x x x x -=-+-+-;222222112x y y x x y-=---;()2223152153939(3)(3)3x x x x x x x x x +---=+=----++. 4. 【答案】C ; 【解析】x y x y x yx y y x x y x y x y+-=+=-----. 5. 【答案】B ;【解析】解:∵a 2﹣3a+1=0,且a≠0,∴同除以a ,得a+=3,则原式=3﹣2=1, 故选:B .6. 【答案】A ; 【解析】原式=2320a b c a b c c ba b c a b c a b c-+-+---=+-+-+-.二.填空题7. 【答案】()2ab m +; 8. 【答案】=;【解析】()()()()()2111110111111ab a b ab a b ab b a P Q a b a b a b ---+--++---=+===++++++.9. 【答案】12; 【解析】由题意21x y ==,,()211212x y x y x y y x xy ⎛⎫---÷+=== ⎪⨯⎝⎭. 10.【答案】12a +; 【解析】()22222114242a a a a a a a -++==---+. 11.【答案】229xx -; 【解析】2111123|||3|339xx x x x x -=+=--+--.12.【答案】119;【解析】解:将已知等式平方得:(x ﹣)2=x 2﹣2+=16,即x 2+=18,则==119. 故答案为:119.三.解答题 13.【解析】解:(1)原式()()2222332321523215023234949a a a a a a a a --++++=-+==+---. (2)原式3337224448224448111111x x x x x x x x x x x x-=-+=-=-++-+-. 14.【解析】 解:原式22[()]331x y x y x y x x y x x++-=--÷+ 22(2)332x x x x yx x y =-+⨯-=-因式530x y +=,所以53y x =-,代入223543x x x yx x ==-+. 15.【解析】 解:(1)a==1﹣,b==1﹣,c==1﹣,∵>>, ∴﹣<﹣<﹣,即1﹣<1﹣<1﹣,则a <b <c ;(2)原式=++…+=1﹣+﹣+﹣+…+﹣=;(3)原式=[++…+]=(1﹣+﹣+…+﹣)=; (4)原式=++…+=(1﹣+﹣+…+﹣)=.。

分式的加减法(2)导学案

分式的加减法(2)导学案

(通分,依据是
。 )
一. 课前复习自查 1、分式的加减运算法则 (1) 同分母分式相加减: ______________________________________________________________ (2) 异分母分式相加减: ______________________________________________________________ (3)最后结果应化为_______________,依据是_______________________。 2、通分:把____________分式化成_____________分式的过程叫做分式的通分。 3、通分的关键:确定各分母的__________________。 4、最简公分母的确定: ①最简公分母的系数,取各分母系数的最小公倍数; ②分母中出现的字母() ; ③每个字母或式子的指数应当取它在各个分母中次数最高的 ▲分母是多项式时能分解因式的一般先_______________. 二、自主学习与合作探究 1、做一做 (1)
学习评价:
六、课堂小结:
七、过关检测 1、基础闯关 (1)
a b 2 2 2 ab a b
(2)
4 1 x 4 2 x
2
x3 x2 x (3) x 1
五、当堂练习
2、能力提升
b a ⑴ 3a 2b
1 2 ⑵ a 1 1 a2
(1)
2 3 4 x 18 2 2x 3 3 2x 4x 9
(2)
m n 2mn 2 m n m n m n2
(3)
ab bc ab bc
(4)
x x 1 x 1

(同分母分式相加减,分母

分式的加减教学反思(优秀4篇)

分式的加减教学反思(优秀4篇)

分式的加减教学反思(优秀4篇)八年级数学教案《分式的加减》篇一教学目标:(1)理解通分的意义,理解最简公分母的意义;(2)掌握分式的通分法则,能熟练掌握通分运算。

教学重点:分式通分的理解和掌握。

教学难点:分式通分中最简公分母的确定。

教学工具:投影仪教学方法:启发式、讨论式教学过程:(一)引入(1)如何计算:由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的'概念。

(2)如何计算:(3)何计算:引导学生思考,猜想如何求解?(二)新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

2、通分的依据:分式的基本性质。

3、通分的关键:确定几个分式的最简公分母。

通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。

根据分式通分和最简公分母的定义,将分式通分:最简公分母为:然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:通过本例使学生对于分式的通分大致过程和思路有所了解。

让学生归纳通分的思路过程。

例1 通分:分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

解:∵ 最简公分母是12xy2,小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

解:∵最简公分母是10a2b2c2,由学生归纳最简公分母的思路。

分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。

取这些因式的积就是最简公分母。

八年级数学教案《分式的加减》篇二教学任务分析教学目标知识技能1、类比同分母分数的加减,熟练掌握同分母分式的加减运算。

2、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法。

《分式的加减法》分式与分式方程(第2课件)

《分式的加减法》分式与分式方程(第2课件)

2023-11-09CATALOGUE目录•分式的基本概念•分式的加减法•分式的乘除法•分式方程及其解法•分式在实际生活中的应用•分式与分式方程的历史与发展01分式的基本概念如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式的定义定义读作“分子A,分母B”,写作“A/B”符号表示当A=0,B≠0时,分式无意义;当A≠0,B=0时,分式值为无穷大特殊情况分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

性质1性质2性质3分式的分子和分母同时扩大(或缩小)相同的倍数,分式的值改变。

当分式的分子和分母是多项式时,首先要进行因式分解,然后约分。

03分式的基本性质0201把一个分式的分子和分母的公因式约去,叫做分式的约分。

定义先把分子、分母分解因式,然后约去它们公因式。

方法约分时,分子、分母必须是公因式的最高次幂。

注意分式的约分02分式的加减法运算法则同分母分式相加减,分子相加减,分母不变。

概念同分母分式是指具有相同分母的分式。

例子如$\frac{2}{3} + \frac{3}{3}$,$\frac{5}{6} - \frac{1}{6}$等。

同分母分式的加减法异分母分式是指具有不同分母的分式。

概念异分母分式的加减法异分母分式相加减,先通分,变为同分母分式,再按照同分母分式的加减法进行运算。

运算法则如$\frac{2}{3} + \frac{1}{2}$,$\frac{5}{6} - \frac{1}{2}$等。

例子概念混合运算是指包含加法、减法、乘法、除法等多种运算的算式。

分式加减法的混合运算运算法则按照运算的优先级,先乘除后加减,有括号先算括号里面的。

例子如$(2 + 3) \times 5 - \frac{1}{2} \times 4$,$5 \div (3 - 1) + \frac{1}{3} \times 6$等。

03分式的乘除法总结词了解分式乘法的运算方法,能够熟练进行分式乘法运算。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: 1120 天; 原 (1) 计划修建这条盲道需要 x (2) ∵ 实际每天修建盲道的长度 = (x+10) m ,
1120 ∴ 实际修建这条盲道用了 天 x 10
因此 , 实际修建这条盲道的工期比 原计划缩短了
小结
异分母分式的加减法法则: 异分母的分式相加减,先通 分,化为同分母的分式,然后再 按同分母分式的加减法法则进行 计算。
2b a = 2 2 6 a b 6a b
2b a = 2 6a b
2
2
异分母分式加减法运算法则:
先进行通分化为同分母后,再 进行加减运算.
ad bc a c bd bd b d
ad bc bd
例:计算
先分解因 式
1 1 (1) x3 x3
2a 1 ( 2) 2 a 4 a2
做一做
5 3 (1) 2 6a b 4ab
y x y (2) x 2 xy 2 x 2 y
x 3x 1 (3) 2 x 2 x 4x 4
1.计算: (1) 随 堂 练 习:
1 2 2 a 1 1 a 4 2 1 (2) 2 x 4 x2 2 x
分式加减法(2)
4 1 2 a a 4 a 解:原式 2 2 a a 4a 2 a
1 1 a b b a 解:原式 ab ab ba ab
如何求分式 解:
b 3a 2

1 6 ab
的和 ?
b 1 b 2b 1 a = 2 2 3a 6ab 3a 2b 6ab a
4 xy ( 3) x y x y 2 1 (4)1 2 工程队准 备在开发区修建一条长1120m的盲 道. 由于采用新的施工方式 , 实际每 天修建盲道的长度比原计划增加 10m, 从而缩短了工期. 假设原计划 每天修建盲道 x m , 那么 (1) 原计划修建这条盲道需要多少? (2) 实际修建这条盲道的工期比原计 划缩短了几天?
相关文档
最新文档