初三数学中考总复习 尺规作图、视图与投影 专题复习练习 含答案
(完整)中考数学尺规作图专题复习(含答案),推荐文档
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点 C 为圆心,任意长为半径画弧交直线与 A,B 两点,再分别以点 A,B 1AB为圆心,大于2 的长为半径画圆弧,分别交直线l 两侧于点M,N,连接MN,则MN 即为所求的垂线2.线段垂直平分线的画法1AB【分析】:作法如下:分别以点 A,B 为圆心,大于2 的长为半径画圆弧,分别交直线 AB 两侧于点 C,D,连接 CD,则 CD 即为所求的线段 AB 的垂直平分线.3.角平分线的画法【分析】1.选角顶点 O 为圆心,任意长为半径画圆,分别交角两边 A ,B 点,再分别以1ABA ,B 为圆心,大于 2 所求的角平分线.4. 等长的线段的画法直接用圆规量取即可。
5. 等角的画法的长为半径画圆弧,交 H 点,连接 OH ,并延长,则射线 OH 即为【分析】以 O 为圆心,任意长为半径画圆,交原角的两边为 A,B 两点,连接 AB ;画一条射线 l ,以上面的那个半径为半径,l 的顶点 K 为圆心画圆,交 l 与L ,以 L 为圆心,AB 为半径画圆,交以 K 为圆心,KL 为半径的圆与 M 点,连接 KM ,则角 LKM 即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2. 求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题 1.已知线段 a,求作△ABC,使 AB=BC=AC=a.解:作法如下:①作线段 BC=a;(先作射线 BD,BD 截取 BC=a).②分别以 B、C 为圆心,以 a 半径画弧,两弧交于点 A;③连接 AB、AC.则△ABC 要求作三角形.例 2.已知线段 a 和∠α,求作△ABC,使 AB=AC=a,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点 A 为圆心,a 为半径画弧,分别交射线 AM,AN 于点 B,C.③连接 B,C.△ABC 即为所求作三角形.例 3.(深圳中考)如图,已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC,则下列选项中,正确的是(D)【解析】由题意知,做出 AB 的垂直平分线和 BC 的交点即可。
中考数学专题复习尺规作图、视图与投影(含答案)
第27课 尺规作图1.尺规作图是指_______________________________________________________ . 2.某产品的标志图案如图(1)所示,要在所给的图形中,把A 、B 、C 三个菱形通过一种或几种变换,使之变为与图(1)一样的图案(1)请你在图(二)中作出变换后的图案(最终图案用实线表示)(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述)①将菱形B 向上平移;②将菱形B 绕O 旋转1200;③将菱形B 绕O 旋转1800.(一) (二)3.已知∆ABC 与∆EFG 是关于点D 的中心对称图形,请将∆EFG 补充完整.4.如图,∆ABC 是一块直角三角形余料,222A B C ∠工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上. (1) 试协助工人师傅用尺规画出裁割线(不写作法、保留作图痕迹);DCB A(2)工人师傅测得AC =80cm ,BC=120cm ,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形的零件的边长.5.如图,107国道OA 和320国道OB 在我市相交于O 点,在AOB ∠的内部有工厂C 和D,现要修建一个货站P ,使P 到OA 、OB 的距离相等,且使PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论).6.如图,已知∆ABC ,(1)以直线l 为对称轴,画出∆ABC 关于直线l 对称的∆111A B C ;(2)将∆ABC 向右平移,得到∆222A B C ,其中2A 是A 的对称点,请画出∆222A B C (不写作法、保留作图痕迹).BC AA7.某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,不写作法保留作图痕迹).8.现有一长方形木块的残留部分如图,其中AB 、CD 整齐且平行,BC 、AD 是参差不齐的毛边,请你在毛边附近有尺规画出一条与AB 、CD 都垂直的边(不写作法、保留作图痕迹).9.如图,已知∆ABC 的三个顶点的坐标分别为A (-7,1)、B (-3,3)、C (-2,6). (1)求作一个三角形,使它与∆ ABC 关于y 轴对称. (2)写出作出的三角形的三个顶点的坐标.CBA CBADCBA第28课投影与视图1.请写出三种视图都相同的两种几何体是____________、______________ .2.同一形状的图形在同一灯光下可以得到_________的图形.(填“同”或“不同”)3.两个物体在同一灯光下的影子构成的两个三角形___相似三角形.(填“是”或“不是)4.如图,一几何体的三视图如右:那么这个几何体是____________ .5.两个物体的主视图都是圆,这两个物体可能是()A.圆柱体、圆锥体B.圆柱体、正方体C.圆柱体、球D.圆锥体、球6.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是()A.两根都垂直于地面B.两根平行斜插在地上C.两根竿子不平行D.一根倒在地上7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是()A.相等B.长的较长C.短的较长D.不能确定8.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都是可能9.棱长是1㎝的小立方体组成如图所示的几何体,那么这个几何体的表面积是()A.362cm B.332cm C.302cm D.272cm10.一个人离开灯光的过程中人的影长()A.不变B.变短C.变长D.不确定11.下列图中是太阳光下形成的影子是()A B C D12.有一实物如图,那么它的主视图()俯视图左视图主视图A B C D13.画出下图所示的三视图.(第13题)(第14题)14.楼房,旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)15.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在太阳光下...的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长.16.如图,一个棱长为10㎝的正方形,当你观察此物体时.(1)在什么区域内只能看到一面?(2)在什么区域内只能看到两个面?(3)在什么区域内能看到三个面?EAB C17.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.18.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.732.13≈,414.12≈)1第27课尺规作图答案1.尺规作图就是只准有限次地使用没有刻度的直尺和圆规进行作图。
初三数学中考复习投影与视图专题复习训练题及答案
2019 初三数学中考复习投影与视图专题复习训练题1.以下几何体中,主视图是圆的是( B )2.如图是由 8 个小正方体组合而成的几何体,它的俯视图是( D )3.如图是由七个棱长为 1 的正方体构成的一个几何体,其左视图的面积是( B )A .3B. 4C.5D.64.某几何体的主视图和左视图以以下图,则该几何体可能是( C )A.长方体B.圆锥,主视图)C.圆柱D.球,左视图 )5.如图,是一个带有方形空洞和圆形空洞的小孩玩具,假如用以下几何体作为塞子,那么既能够堵住方形空洞,又能够堵住圆形空洞的几何体是( B )A.B.C.D.6.如图是由 6 个棱长均为 1 的正方体构成的几何体,它的主视图的面积为 __5__.7.如图是一个几何体的三视图(图中尺寸单位: cm),依据图中所示数据计算这个几何体的表面积为 __4π__cm2.8.春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形 (答案不独一 )__.(写出符合题意的两个图形即可 )9.如图,小军、小珠之间的距离为 2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为 __3__m.10.如图,在一次数学活动课上,张明用17 个边长为 1 的小正方形搭成了一个几何体,此后他请王亮用其余相同的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰巧能够和张明所搭几何体拼成一个无空隙的大长方体(不改变张明所搭几何体的形状 ),那么王亮最少还需要__19__个小立方体,王亮所搭几何体的表面积为 __48__.11.画出以以下图立体图形的三视图.解:以以下图:12.一组合体的三视图以以下图,该组合体是由哪几个几何体构成,并求出该组合体的表面积.解:由图形可知,该组合体是由上边一个圆锥和下边一个圆柱构成,π×(10÷2)2 1+π×10× 20+2× (π×10)×(10÷2)2+52= 25π+200π+252π=(225+25 2)π(cm2).故该组合体的表面积是 (225+25 2)πcm213.由几个相同的边长为 1 的小立方块搭成的几何体的俯视图以以下图.方格中的数字表示该地点的小立方块的个数.(1)请在下边方格纸中分别画出这个几何体的主视图和左视图.(2)依据三视图,请你求出这个组合几何体的表面积.(包含底面积 )解: (1)图形以以下图;(2)几何体的表面积为: (3+4+5)×2=24.14.如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯B 在太阳光下的影子恰巧落到里程碑 E 处,他自己的影子恰巧落在路灯CD 的底部 C 处.晚自习下学时,站在上午同一个地方,发此刻路灯CD 的灯光下自己的影子恰巧落在里程碑 E 处.(1)在图中画出小明的地点 (用线段 FG 表示 ),并画出光芒,注明太阳光、灯光;(2)若上午上学时候高 1 米的木棒的影子为 2 米,小明身高为 1.5 米,他离里程碑E 恰巧 5 米,求路灯高.解: (1)以以下图:(2)∵上午上学时候高 1 米的木棒的影子为 2 米,小明身高为 1.5 米,∴小明的影长 CF 为 3 米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△ EGF ∽△ EDC ,∴CD GF=EF1.5 5EC ,∴ CD =5+3,解得 CD =2.4.答:路灯高为 2.4 米。
中考数学专题复习《视图、投影与尺规作图》专项检测题 ( 含答案)
视图、投影与尺规作图检测题一、三视图类型一三视图的判断1.如图所示的几何体的俯视图可能是()2.如图所示的三棱柱的主视图是()3.左下图为某几何体的示意图,则该几何体的主视图应为()4.如图所示的是三通管的立体图,则这个几何体的俯视图是()5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()6.如图①放置的一个机器零件,若其主(正)视图如图②所示,则其俯视图是()第6题图7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()8.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()9.下列几何体中,正视图是矩形的是( )10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )11.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()类型二由三视图还原几何体及相关计算1.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球第1题图第2题图2.如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是( )A. 四棱锥B. 正方体C. 四棱柱D. 三棱锥3.下面是一个几何体的三视图,则这个几何体的形状是()第3题图A. 圆柱B. 圆锥C. 圆台D. 三棱柱4.一个几何体的三视图如图所示,那么这个几何体是()第4题图5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是()第5题图A. 6B. 7C. 8D. 96.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )第6题图A. 8B. 9C. 10D. 117.由若干个边长为1 cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A. 15 2cmcm D. 24 2cm C. 21 2cm B. 18 2第7题图第8题图8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A. 200π3cmcm B. 500π3C. 1000π3cmcm D. 2000π3命题点2 投影1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A. (3)(1)(4)(2)B. (3)(2)(1)(4)C. (3)(4)(1)(2)D. (2)(4)(1)(3)命题点3 立体图形的展开与折叠1.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图如图所示,原正方体与“文”字所在的面相对的面上标的字应是( )A. 全B. 明C. 城D. 国第1题图2.下列四个图形是正方体的平面展开图的是()3.把如图中的三棱柱展开,所得到的展开图是( )第3题图 第4题图4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A. 13 cmB. 261 cmC. 61 cmD. 234 cm命题点4 尺规作图1.如图,在△ABC 中,∠C =90°,∠B =30以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC =1∶3.A. 1B. 2C. 3D. 4第1题图2.如图所示,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN ,求证:∠MAN =∠MBN .第2题图参考答案命题点1三视图类型一三视图的判断1. C【解析】圆锥的主视图、左视图和俯视图分别为等腰三角形、等腰三角形和带圆心的圆.2. B 【解析】主视图是从几何体正面看得到的图形,该几何体从正面看,是两个具有公共边的长方形组成的图形,只有选项B符合题意.3. A【解析】从前往后看,可得到本题的主视图为五边形.4. A【解析】俯视图指的是从上向下看到的平面图形.圆柱体的俯视图是长方形,圆应该在长方形的中间.5. A【解析】A选项是主视图,B选项是左视图,C选项不是这个正六棱柱形密封罐的视图,D选项是俯视图.6. D【解析】长方体的俯视图是一个长方形,从上面看共有三列,所以这个组合体的俯视图是D.7. B【解析】俯视图即从上面看物体所得的平面图形.观察图形可得,从上往下看,该几何体的小正方体共有三行三列,第一行第二列有1个,第二行每列1个,第三行第一列1个,因此B选项正确.8. C【解析】俯视图是由上往下观察几何体所得到的图形.几何体上半部为正三棱柱,下半部为圆柱,所以其俯视图由圆和其内接等边三角形组成,故选C.9. B×××10. C视图都是圆,故选C.11. D【解析】从正面看共三列,第一列有三个小正方形,第二列有两个小正方形,第三列有三个小正方形,故选D.类型二由三视图还原几何体及相关计算1. B【解析】本题的几何体是常见几何体,从正面看到的是一个矩形,从左面看到的是一个矩形,从上面看到的是一个圆,所以这个几何体为圆柱.2. A【解析】由底面是有对角线的正方形,侧面是正三角形可以推断出它是四棱锥.3. B【解析】选项名称三视图(主视图,左视图,俯视图)正误A圆柱矩形,矩形,圆×B圆锥等腰三角形,等腰三角形,带圆心的圆√C圆台等腰梯形,等腰梯形,无圆心的同心圆×D三棱柱矩形,矩形,三角形×4. C【解析】选项逐项分析正误A 圆锥的主视图和左视图是等腰三角形,俯视图为带圆心的圆×B 这个几何体由圆锥和圆柱两部分构成,因此俯视图应该为带圆心的圆×C 主视图为中间有一条竖线的矩形,左视图为矩形,俯视图为三角形√D主视图、左视图、俯视图均为三角形×5. B【解析】由主视图可得这些粉盒共有3层,由俯视图可得最底层有4盒,由主视图和左视图可得第二层有2盒,第三层有1盒,共有7盒.6. B【解析】由三视图得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少有9碗.7. B【解析】由几何体的三视图得几何体如解图所示,这个几何体是由4个边长为1 cm的小正方体组成,且重叠部分的面积正好为一个小正方体的表面积,则这个几何体的表面积为6×3=18 cm2.第7题解图8. B【解析】由三视图可知该几何体是圆柱,且底面圆半径r=5 cm,高h =20 cm,所以v=πr2h=π×52×20=500πcm3.命题点2投影C【解析】从太阳“东升西落”入手.太阳光在物体上的投影随时间而变化,投影的方向是先朝西,再逐渐转向朝东,且影长的变化经历:长→短→长(中午时刻的影长最短),因此(3)表示的时刻最早,(2)表示的时刻最晚;由于地球绕着太阳运转,物体的投影应从西边开始顺时针向东旋转,所以(4)表示的时间比(1)表示的时间早.故按时间顺序应排列为(3)→(4)→(1)→(2).命题点3立体图形的展开与折叠1. C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面;“国”与“市”是相对面;“文”与“城”是相对面.2. B【解析】选项逐项分析正误A折叠后有两个面重合,缺少一个底面×B可以折叠成一个正方体√C 是“凹”字格,故不能折叠成一个正方体×D 是“田”字格,故不能折叠成一个正方体×3. B【解析】根据“两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱”把图中的三棱柱展开,所得到的展开图是B.4. A【解析】将圆柱沿A所在的高剪开,展平如解图所示.则MM′=NN′=10,作A关于MM′的对称点A′,连接A′B,则线段A′B即蚂蚁走的最短路径.过B作BD⊥A′N于D,则BD=NE=5,A′D=MN+A′M-BE=12+3-3=12,在Rt△A′BD中,由勾股定理得A′B=A′D2+BD2=13.第4题解图命题点4尺规作图1. D【解析】由尺规作图的作法可知,AD是∠BAC的平分线,∴①正确;∵∠BAC=60°,AD又是∠BAC的平分线,则∠CAD=30°,又∵∠C=90°,则∠ADC=60°,∴②正确;∵∠DAB=30°,∠B=30°,则AD=BD,所以点D在AB的中垂线上,∴③正确;设BD=AD=a,因为∠CAD=30°,∠C=90°,则CD=a2,根据勾股定理得:AC=3a2,∴S△ADC=3a28;BC=3a2,S△ABC=33a28,则S△DAC :S△ABC=3a28:33a28=1∶3,∴④正确;正确的共有4个.2. (1)解:如解图:第2题解图①………………………………………………………………………(5分)【作法提示】分别以A、B两点为圆心,以大于12AB为半径画弧,与两弧分别有两个交点,两点确定的直线即为线段AB的垂直平分线l.(2)证明:如解图②,∵直线l是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠MBA,……………………(6分)同理:∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,……………………(8分) 即:∠MAN=∠MBN. ……………………(9分)第2题解图②。
初三数学中考总复习 尺规作图、视图与投影 专题复习练习 含答案
初三数学中考总复习尺规作图、视图与投影专题复习练习1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( C )2.如图,是一个空心圆柱,它的俯视图是( B )3.图中三视图对应的几何体是( C )4.下列图形中,不可以作为一个正方体的展开图的是( C )5.下列尺规作图,能判断AD是△ABC边上的高是( B )6.某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是( A )A.梯形 B.正方形 C.线段 D.平行四边形7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是( B )A.3个B.4个C.5个D.6个9.写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.10.如图,根据尺规作图所留痕迹,可以求出∠ADC=__70__°.11.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__.12.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是__24__cm3.13.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB在地面上的投影BC长为25米,则旗杆AB的高度是__13.3__米.(结果精确到0.1)14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是__7__个.13.如图,已知线段a 及∠O ,只用直尺和圆规,求作△ABC ,使BC =a ,∠B=∠O ,∠C=2∠B.(在指定作图区域作图,保留作图痕迹,不写作法)解:如图所示∶14.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示 (2)∵DG∥AC,∴∠G =∠C ,∴Rt △ABC ∽Rt △DGE ,∴AB DE =BC EG ,即1.6DE =2.416,解得DE =323,∴旗杆的高度为323m15. 如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图, ⊙C 为所求(2)∵⊙C 切AB 于D, ∴CD⊥AB,∴∠ADC=90°, ∴∠DCE=90°-∠A=90°-30°=60°, ∴∠BCD=90°-∠ACD=30°, 在Rt△BCD 中,∵cos∠BCD=CD BC ,∴CD=3cos30°=332,∴DE ︵的长=60·π·332180=32π初三数学专题复习 尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是( )A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是( )A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是( )A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指( )A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C 在∠AOB 的边OB 上,用尺规作出了∠BCN=∠AOC ,作图痕迹中,弧FG 是( )A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。
2024年江西中考数学一轮复习考点探究 投影、视图与尺规作图 学案(含答案)
第七章图形的变化第1节投影、视图与尺规作图命题分析【知识清单】知识点1 尺规作图五种基本尺规作图步骤图示作图痕迹原理适用情形作一条线段等于已知线段(已知线段a)1.作射线OP;2.以点O为圆心,a为半径作弧,交OP于点A,则OA即所求线段圆上的点到圆心的距离等于半径1.已知三边作三角形;2.作圆的内接正六边形作一个角等于已知角(已知∠α)1.以点O为圆心,适当长为半径作弧,分别交∠α的两边于点P,Q;2.作射线O'A;3.以点O'为圆心,OP长为半径作弧,交O'A于点M;4.以①为圆心;②为半径作弧,交步骤3中的弧于点N;5.过点N作射线O'B,则∠AO'B即所求角1.三边相等的两个三角形全等;2.全等三角形的对应角相等1.过直线外一点作直线与已知直线平行;2.过三角形一边上一点作直线,将其分成两个相似三角形作已知角的平分线(已知∠AOB)1.以点O为圆心,适当长为半径作弧,分别交OA,OB于点N,M;2.分别以③为圆心,以④为半径作弧,两弧在∠AOB的内部相交于点P;3.作射线OP,则OP即已知角的平分线1.三边相等的两个三角形全等;2.全等三角形的对应角相等;3.两点确定一条直线1.作一点使得该点到角两边的距离相等;2.作三角形的内切圆(续表)五种基本尺规作图步骤图示作图痕迹原理适用情形作线段的垂直平分线(已知线段AB)1.分别以⑤为圆心,以⑥为半径,在AB两侧作弧,分别交于点M,N;2.过点M,N作直线,直线MN即所求垂直平分线1.到线段两端点距离相等的点在这条线段的垂直平分线上;2.两点确定一条直线的外接圆1.过三角形的一个顶点作直线平分三角形的面积;2.过不在同一直线上的三点作圆/作三角形的外接圆;3.作到已知两点距离相等的点过一点作已知直线的垂线(已点P在直线l上1.以点P为圆心,适当长为半径作弧,交直线于A,B两点;1.到线段两端点距离相等的点在这1.已知底边上的高线及腰长作等腰三角形;知点P 和 直线l )2.分别以⑦ 为圆心,以⑧ 为半径向直线两侧作弧,两弧分别交于点M ,N ;3.过点M ,N 作直线,直线MN 即所求垂线条线段的垂直平分线上; 2.两点确定一条直线2.过直线外一点作与该直线相切的圆点P 在直线l 外1.任意取一点M ,使点M 和点P 在直线l 的两侧;2.以⑨为圆心,为半径作弧,交直线l 于A ,B 两点;3.分别以为圆心,以为半径作弧,交点M 同侧于点N ;4.过点P ,N 作直线,直线PN 即所求垂线知识点2 投影与视图投影{概念:一般地,用光线照射物体,在某个平面(如地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线投影所在的平面叫做投影面分类{平行投影:由⑬ 光线形成的投影叫做平行投影,物体在太阳光照射下形成的影子可以看成平行投影正投影:投影线⑭ 于投影面产生的投影叫做正投影中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影,如灯光下某物体的投影三视图知识点3 常见几何体的三视图与展开图几何体正方体圆柱长方体圆锥球体三棱柱三视图展开图 (任一种)无【参考答案】①M ②PQ ③M ,N ④大于12MN 的长 ⑤A ,B ⑥大于12AB 的长 ⑦A ,B ⑧大于12AB 的长 ⑨P PMA ,B大于12AB 的长平行 垂直 由前向后 由左向右由上向下长对正 高平齐 宽相等 实线虚线【自我诊断】1.如图,这是由五个相同的小立方块搭成的几何体,则这个几何体的左视图是( )A BC D2.下列四幅图,表示两棵树在同一时刻阳光下的影子是( )A B C D3.某正方体的每个面上都有一个汉字,如图,这是它的一种表面展开图,那么在原正方体中,与“中”字所在面相对面上的汉字是( )A.故B.讲C.国D.事4.由几个大小相同的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数可能为( )A.5B.6C.5或6D.6或7【参考答案】1.C2.B3.D4.C【真题精粹】考向1 投影1.(拓展)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为( )A.12 cmB.20 cmC.3.2 cmD.10 cm考向2 三视图(6年4考)2.(2019·江西)如图,这是由手提水果篮抽象出的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A B C D3.(2021·江西)如图所示的几何体的主视图是( )A B C D4.(2018·江西)如图所示的几何体的左视图为( )5.(2022·江西)如图,这是由四个完全相同的小正方体搭成的几何体,它的俯视图为( )A B C D热点预测A B C D考向3 创新作图(必考)7.(2023·江西)如图,这是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图.(保留作图痕迹)(1)在图1中作锐角△ABC,使点C在格点上.(2)在图2中的线段AB上作点Q,使PQ最短.8.(2018·江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺........分别按下列要求画图.(保留画图痕迹)(1)在图1中,画出△ABD中BD边上的中线.(2)在图2中,若BA=BD,画出△ABD中AD边上的高.图1图29.(2021·江西)已知正方形ABCD的边长为4个单位长度,E是CD的中点,请仅用无刻度直尺........按下列要求作图.(保留作图痕迹)(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°.(2)在图2中,将直线AC向上平移1个单位长度.热点预测考向4 立体图形的展开图与折叠(仅2020年考查)11.(2020·江西)如图,正方体的展开图为( )【参考答案】1.B2.A3.C4.D5.A6.D7.略8.略9.略10.略11.A【核心突破】考点1投影例题1如图,树AB在路灯O的照射下形成投影AC,若树高AB=2 m,树影AC=3 m,树与路灯的水平距离AP=4.5 m,则路灯的高度OP是( )A .3 mB .4 mC .5 mD .6 m变式特训1.如图1,随着光伏发电项目投资成本下降,越来越多的“光伏”项目正在逐步走进我们的生活.光伏发电不仅能为城市提供清洁能源,还能减少城市污染和能源消耗.如图2,长BC=8 m,宽AB=1.5 m 的太阳能电池板与水平面成30°夹角,经过太阳光的正投影,它在水平面所形成的阴影的面积为( )A .12 m 2B .6 m 2C .6√3 m 2D.9√32 m 2考点2 三视图例题2(2023·鹰潭模拟) 如图,该几何体的左视图是( )A B C D变式特训2.(民族文化)江西茶文化源远流长,其历史可追溯到两千年前的秦汉时期.如图,这是江西名茶中一种装茶的罐子及抽象出的立体图形,则其主视图为( )A B C D3.(古人智慧)在我国古代建筑中经常使用榫卯构件,如图,这是某种榫卯构件的示意图,其中卯的俯视图是( )A BC D考点3立体图形的展开与折叠例题3(2023·巴中)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )A.传B.承C.文D.化方法提炼变式特训4.一个骰子相对两面的点数之和为7,它的展开图如图所示,下列判断正确的是( )A.A代表B.B代表C.C代表D.B代表5.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则下列序号中不应剪去的是( )A.3B.2C.6D.16.三棱柱的展开图不可能是( )A BC D考点4创新作图例题4(2023·鹰潭模拟) 图1,图2都是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.请仅用无刻度直尺在网格中完成下列画图.(1)在图1中,画出△ABC中AB边上的中线CM.(2)在图2中,画出∠APC,使∠APC=∠ABC,且点P在格点上.(画出一个即可)变式特训7.已知四边形ABCD 为平行四边形,E 为AB 边的中点,请仅用无刻度直尺分别按下列要求作图.(保留作图痕迹) (1)在图1中,作出AD 边的中点P.(2)在图2中,在AD 边上求作一点M ,使△ABM 的面积为▱ABCD 面积的13.8.在图1,图2中,四边形ABCD 为矩形,某圆经过A ,B 两点,请你仅用无刻度直尺分别按下列要求作图.(1)在图1中画出该圆的圆心O. (2)在图2中画出线段CD 的垂直平分线.【参考答案】 例题1 C变式特训1.C例题2 B变式特训2.D3.C例题3 D变式特训4.A5.A6.D 例题4略变式特训7.略8.略。
2024年中考数学总复习考点培优训练考点二十六 尺规作图、投影与视图
二十六尺规作图、投影与视图1.(2023·河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是(A)A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同2.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子(B)A.越长B.越短C.一样长D.无法确定3.(2022•遵义)如图是《九章算术》中“堑堵”的立体图形,它的左视图为(A)4.(2022•鄂尔多斯)下列尺规作图不能得到平行线的是(D)5.(2023•潍坊)在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是(C)6.(2023•长春)如图,用尺规作∠MAN的平分线,根据作图痕迹,下列结论不一定正确的是(B)A.AD=AEB.AD=DFC.DF=EFD.AF⊥DE7.(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是(A)A.5B.5√2C.5√3D.5√58.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是(D)9.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是(B)A.6B.7C.8D.910.(2023·济宁)一个几何体的三视图如图,则这个几何体的表面积是(B)A.39πB.45πC.48πD.54π11.(2023·永州)如图,在Rt△ABC中,∠C=90°,以B为圆心,任意长为半径画弧,分别交AB,BC于点M,N,再分别以M,N为圆心,大于12MN的定长为半径画弧,两弧交于点P,作射线BP交AC于点D,作DE⊥AB,垂足为E,则下列结论不一定正确的是(C)A.BC=BEB.CD=DEC.BD=ADD.BD一定经过△ABC的内心12.(2023•枣庄)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论不正确的是(D)A.BE=DEB.AE=CEC.CE=2BED.S△EDCS△ABC=√3313.(2023·黄冈)如图,在矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于1EF长为半径画弧交于点P,作射线BP,过点C作2BP的垂线分别交BD,AD于点M,N,则CN的长为(A)A.√10B.√11C.2√3D.414.如图,长方体的一个底面ABCD在投影面α上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的大小关系是S=S<S2(用“=”“>”或“<”连起来)115.(2023•陕西)如图,已知△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)【解析】如图,点P即为所求.。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
【含8套中考卷】2019年中考总复习《尺规作图、视图与投影》专题复习练习及答案
2018初三数学中考总复习尺规作图、视图与投影专题复习练习1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( C )2.(2019·阜新)如图,是一个空心圆柱,它的俯视图是( B )3.图中三视图对应的几何体是( C )4.下列图形中,不可以作为一个正方体的展开图的是( C )5.下列尺规作图,能判断AD是△ABC边上的高是( B )6.某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是( A )A.梯形 B.正方形 C.线段 D.平行四边形7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是( B )A.3个B.4个C.5个D.6个9.写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.10.如图,根据尺规作图所留痕迹,可以求出∠ADC=__70__°.11.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__.12.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是__24__cm 3.13.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB 在地面上的投影BC 长为25米,则旗杆AB 的高度是__13.3__米.(结果精确到0.1)14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是__7__个.13.如图,已知线段a 及∠O ,只用直尺和圆规,求作△ABC ,使BC =a ,∠B=∠O ,∠C=2∠B.(在指定作图区域作图,保留作图痕迹,不写作法)解:如图所示∶14.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示(2)∵DG∥AC,∴∠G =∠C ,∴Rt △ABC ∽Rt △DGE ,∴AB DE =BC EG ,即1.6DE =2.416,解得DE =323,∴旗杆的高度为323m15. 如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A=30°,求DE ︵的长.解:(1)如图, ⊙C 为所求(2)∵⊙C 切AB 于D, ∴CD⊥AB,∴∠ADC=90°, ∴∠DCE=90°-∠A=90°-30°=60°, ∴∠BCD=90°-∠ACD=30°, 在Rt△BCD 中,∵cos∠BCD=CD BC ,∴CD=3cos30°=332,∴DE ︵的长=60·π·332180=32π第5题图 中考数学模拟试卷一、选择题:(本大题共有8个小题,每小题3分,共24分) 1.计算-2的相反数是 ( ▲ ) A .-2 B .2C .-12 D .12【命题意图】考查相反数的概念,让学生区别倒数、相反数、绝对值的不同,简单,注重基础。
初三数学中考复习 视图与投影 专项复习练习题 含答案
初三数学中考复习视图与投影专项复习练习题1.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( B )2.如图是一个空心圆柱体,它的左视图是( B )3.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”“牛”“羊”“马”“鸡”“狗”.将其围成一个正方体后,则与“牛”相对的是( C )A.羊 B.马 C.鸡 D.狗4.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是( B ),A) ,B) ,C) ,D)5.经过圆锥顶点的截面的形状可能是( B )6.某几何体的左视图如图所示,则该几何体不可能是( D )7.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( C )8.如图,是由若干个相同的小立方体搭成的几何体俯视图和左视图,则小立方体的个数可能是( D )A.5或6 B.5或7 C.4或5或6 D.5或6或79.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( D )A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥10.有一个正方体,A,B,C的对面分别是x,y,z三个字母,如图所示,将这个正方体从现有位置依次翻到第1,2,3,4,5,6格,当正方体翻到第3格时正方体向上一面的字母是__x__.11.太阳光形成的投影是__平行__投影,灯光形成的投影是__中心__投影,身高相同的两名同学站在同一路灯下,影子长的离路灯__远__.12.已知,如图所示,木棒AB在投影面P上的正投影为A1B1,且AB=20 cm,∠BAA1=120°,则正投影A1B1=__103__cm.13.三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为__6__cm.14.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是__4或5__.15.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__3__m. 16.画出如图所示立体图形的三视图.解:如图所示:17.如图①所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图②所示,已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度,这样的线段可画几条?(2)试比较立体图形中∠BAC与平面展开图中∠B′A′C′的大小关系.解:(1)最长线段为10,有4条.(2)连结B′C′.由勾股定理得A′B′=5,B′C′=5,A′C′=10.∴A′B′2+B′C′2=A′C′2.∴∠A′B′C′=90°.∴∠C′A′B′=45°.又∠CAB=45°,∴∠BAC=∠B′A′C′.18.如图是一个几何体的三视图.(1)这个几何体的名称为__圆锥__;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.解:(2)16π cm 2.(3)如图,将圆锥侧面展开,得到扇形ABB′,则线段BD 为所求最短路程.设∠BAB′=n °,∵n π×6180=4π,∴n =120,即∠BAB′=120°.∵C 为BB′︵的中点,∴∠ADB =90°,∠BAD =60°,∴BD =AB·sin ∠BAD =33cm ,∴线路的最短路程为3 3 cm.19.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)当球沿铅垂方向下落时,阴影的大小会怎样变化?(3)若白炽灯到球心的距离是1 m ,到地面的距离是3 m ,球的半径是0.2 m ,求球在地面上留下的阴影的面积.解:(1)圆.(2)变小.(3)设如图所示各点,连结点O 与切点B ,由题意得△OAB∽△DAC.∵OB =0.2 m ,AO =1 m ,∴AB =256 m ,∴2563=0.2CD ,∴CD =64 m .∴S 阴影=(64)2π=38π m 2.。
中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学总复习《投影与视图》专项测试卷-附带有参考答案
中考数学总复习《投影与视图》专项测试卷-附带有参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.四棱柱D.正方体2.如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.3.如图,一个由6个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是( )A.主视图的面积为6B.左视图的面积为2C.俯视图的面积为4D.俯视图的面积为34.下列四个几何体中,主视图与左视图相同的几何体有( )A.1个B.2个C.3个D.4个5.如图,该几何体是由7个大小相同,棱长为1的小正方形搭成,关于该几何体的下列说法正确的是( )A.主视图的面积为4B.左视图的面积为5C.俯视图的面积为5D.三种视图的面积都是56.下列几何体中,主视图是矩形,俯视图是圆的几何体是( )A.B.C.D.7.下面四个几何体中,主视图与俯视图不同的共有( )A.1个B.2个C.3个D.4个8.如图所示,该几何体的主视图为( )A.B.C.D.二、填空题(共5题,共15分)9.如图所示是一个几何体的表面展开图,则该几何体的体积为.10.一个几何体的表面展开图如图所示,则这个几何体是.11.下图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中数据计算这个几何体的侧面积是.12.如图所示为一个长方体,则该几何体主视图的面积为cm2.13.有底面为正方形的四棱柱形容器A和圆柱形容器B,容器材质相同,厚度忽略不计.已知它们的主视图是完全相同的矩形,先将B容器盛满水,再将水全部倒入A容器中,则A容器中水的情况是(填“溢出”“刚好装满”或“未装满”).三、解答题(共3题,共45分)14.一个几何体的三视图如图,根据图示的数据计算该几何体的体积(结果保留π).15.如图是一个几何体的三视图.(1) 写出这个几何体的名称;(2) 根据图中所示数据,求这个几何体的表面积;(3) 若一只蚂蚁要从这个几何体上的点B出发,沿表面爬到AC的中点D处,请你求出最短路程.16.某天,当太阳移动到屋顶斜上方时,太阳光线EF与地面成60∘角,房屋的窗户AB的高为1.5m,现要在窗户外面的上方安装一个水平遮阳篷AC,当AC的宽在什么范围时,太阳光这时不能直接射入室内?参考答案1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】24π10. 【答案】四棱锥11. 【答案】185πcm212. 【答案】2013. 【答案】未装满14. 【答案】12π.15. 【答案】(1) 圆锥.(2) 16π(平方厘米).(3) 3√3厘米.m16. 【答案】√32。
中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)初中数学中考复习作图题专项练习及答案解析一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是A.B.C.D.2、如图,已知△ABC,AB <BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB <BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是共32 页,第 1 页4、下列尺规作图,能判断AD是△ABC边上的高是A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32 页,第 2 页7、如图,在?ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能条件推理得出的是 A. AG平分∠DAB B. AD=DH C. DH=BC D. CH=DH 8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC 平分∠BAD C.S△ABC=BC·AH D.AB=AD 二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P 求过点P 的⊙O的切线小涵的主要作法如下:如图,连结OP,作线段OP的中点A;以A为圆心,OA长为半径作圆,交⊙O于点B,C;作直线PB和PC.共32 页,第3 页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32 页,第 4 页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.作∠AOB的平分线OE;在射线OE上,求作一点P,使PC=PD.四、解答题15、如图,已知等腰直角△ABC,∠A=90°.利用尺规作∠ABC的平分线BD,交AC于点D;若将中的△ABD 沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.共32 页,第 5 页16、如图,在Rt△ABC中,∠ACB=90°.用尺规在边BC上求作一点P,使PA=PB;连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________. (2)小聪的作法正确吗?请说明理. 共32 页,第 6 页(3)请你帮小颖设计用刻度尺作角平分线的方法. 19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.请用尺规在图上画出此人行走的最短路线图.若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC 中,AB=AC=8cm,∠BAC=120°. 作△ABC的外接圆;求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.请找出截面的圆心;若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32 页,第7 页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.请用直尺和圆规找出疫点O;求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为、.以0点为位似中心在y轴的左侧将△OBC放大到两倍,画出图形;分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分;共32 页,第8 页请写出证明△ABC 被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.27、用尺规作图从△ABC中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大28、如图,已知△ABC,利用尺规完成下列作图.作△ABC的外接圆;若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,尺规作图:作⊙O的内接正六边形ABCDEF;共32 页,第9 页求中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E 到B,D两点的距离相等.用尺规作图作出点E;连接BE,求证:BD平分∠ABE.31、如图,BC 是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形.32、已知:如图,在△ABC中,∠A=30°,∠B=60°.作∠B的平分线BD,交AC于点D;作AB的中点E;连接DE,求证:△ADE≌△BDE.共32 页,第10 页33、如图,已知△ABC,用直尺和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.作△ABC的外接圆;求它的外接圆半径. 35、如图,已知等腰直角△ABC,∠A=90°.利用尺规作∠ABC的平分线BD,交AC于点D;若将中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D..共32 页,第11 页37、如图,将矩形ABCD沿对角线AC 折叠,点B落在点E处,请用尺规作出点E.38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.作⊙O,使它过点A、B、C.在所作的圆中,求出劣弧BC的长.39、如图,在△ABC 中,∠C=90°,∠B=30°.作∠CAB 的平分线,交BC边于点D;求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.共32 页,第12 页41、如图,AE∥BF,AC平分∠BAE,交BF于C.尺规作图:过点B作AC的垂线,交AC于O,交AE于D,;在的图形中,找出两条相等的线段,并予以证明.42、?ABCD 中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图在图1中,画出∠C的角平分线;在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.44、从△ABC中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.用尺规作图作出△ABD.若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32 页,第13 页45、如图,在中,.利用直尺和圆规按下列要求作图,并在图中标明相应的字母. ①作②以的垂直平分线,交为圆心,于点,交于点;. 为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题. ①点②若与的位置关系是_____________;,,求的半径. 46、在数轴上作出表示的点.47、△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC 关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么共32 页,第14 页理是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.共32 页,第15 页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;.16、(1)、答案见解析;(2)、5. 17、答案见解析18、(1)SSS;(2)、理见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、见试题解析;这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)千米.24、(1)图形详见解析;(2) B′,C′.25、26、作图详见解析. 27、28、作图见解析作图见解析29、(1)见试题解析;2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm 35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析. 38、作图参见解析;π. 39、作图见解析1:3 40、答案见解析41、作图见解解析;AB=AD=BC.42、作图参见解析.43、m 244、如图;45、作图见解析;①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P 在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:作图痕迹可知,四边形ABCD 的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D. 考点:平行四边形的性质;平行线的性质. 8、试题分析:作法可得BH为线段AD的垂直平分线,故答案选A. 考点:线段垂直平分线的性质. 9、试题分析:∵OP 是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。
5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。
专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。
中考数学总复习《投影与视图》专项提升训练题-附答案
中考数学总复习《投影与视图》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.2.(2023·衡阳)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从左面看到的图形的是()A.B.C.D.3.(2023·烟台)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.4.(2023·苏州)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能...是()A.长方体B.正方体C.圆柱D.三棱锥5.(2023·天津市)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(2023·温州)截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A.B.C.D.7.(2023·绍兴)由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.8.(2023·台州)如图是由5个相同的正方体搭成的立体图形,其主视图是().A.B.C.D.9.(2023·宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.10.(2023·嘉兴)如图的几何体由3个同样大小的正方体搭成,它的俯视图是()A.B.C.D.11.(2023·金华)某物体如图所示,其俯视图是()A.B.C.D.12.(2023·泸州)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱13.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.14.(2023·丽水)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体,它的主视图是()A.B.C.D.15.(2023·随州)如图是一个放在水平桌面上的圆柱体,该几何体的三视图中完全相同的是()A.主视图和俯视图B.左视图和俯视图C.主视图和左视图D.三个视图均相同16.(2023·武汉)如图是由4个相同的小正方体组成的几何体,它的左视图是()A.B.C.D.17.(2023·广安)如图,由5个大小相同的小正方体搭成的几何体,它的俯视图是()A.B.C.D.18.(2023·眉山)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6 B.9 C.10 D.14 19.(2023·遂宁)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是()A.正方体B.圆锥C.圆柱D.四棱锥20.(2023·连云)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.21.(2023·凉山)如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.22.(2023·自贡)如图中六棱柱的左视图是()A.B.C.D.23.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.二、填空题24.(2023·成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.参考答案一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解析】【解答】A、∵不是几何体的主视图,∴A不符合题意;B、∵不是几何体的主视图,∴B不符合题意;C、∵是几何体的主视图,∴C符合题意;D、∵不是几何体的主视图,∴D不符合题意;故答案为:C.【分析】利用三视图的定义逐项判断即可。
2018年中考总复习《尺规作图、视图与投影》专题复习练习及答案
2018初三数学中考总复习尺规作图、视图与投影专题复习练习1.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是(C )6. 某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是(A )A. 梯形B .正方形C .线段D .平行四边形7. 如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体(D )A D C5.下列尺规作图,能判断AD是△ ABC边上的高是(B )BCDC D2.3.4.下列图形中,不可以作为一个正方体的展开图的是(C )8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是(B )11. 某几何体的三视图如图所示,则组成该几何体的小正方体的个数是12. 如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24—cm.13. 课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB在地面上的投影BC长为25米,则旗杆AB的高度是13.3 米.(结A. 主视图改变, 左视图改变B. 俯视图不变, 左视图不变C. 俯视图改变, 左视图改变D. 主视图改变, 左视图不变A. 3个B. 4个C. 5个D. 6个9. 写出一个在三视图中俯视图与主视图完全相同的几何体球或正方体10. 如图,根据尺规作图所留痕迹,可以求出/ ADC=70帕找图4果精确到0.1)a --------- 「14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则 搭成该几何体的小正方体最多是7个.13.如图,已知线段a 及/ 0,只用直尺和圆规,求作△ ABC 使BC= a ,Z B = / O / C = 2/B.(在指定作图区域作图,保留作图痕迹,不写作法解:如图所示:解:(1)影子EG 如图所示14. 如图,小明与同学合作利用太阳光线测量旗杆的高度,身高 1.6 m 的小明落在地面上的影长为BC= 2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子 EG⑵ 若小明测得此刻旗杆落在地面的影长EG= 16 m ,请求出旗杆 DE 的高度.主视图俯视图aAB BC 1.6 2.4(2) V DG AC •••/ G=Z C,「. Rt △ABS Rt △ DGE 二D E= EG 即"DE=76,解32 32得DE=m,•旗杆的高度为y m15. 如图,△ ABC是直角三角形,/ ACB = 90°.(1)尺规作图:作O C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC = 3, / A = 30°\1)解:(1)如图, OC为所求⑵VOC切AB于D,90°—30°= 60°••• CD!AB •••/ ADC= 90°•••/ DC吕90°—/A=•••/ BCD= 90°—/ ACD= 30°CDV cos/BCD= BC •- CD= 3cos30° 2 , • DE的长=, 在Rt△ BCD 中,3\[360.冗.2 心180 = 2 兀求DE的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018初三数学中考总复习尺规作图、视图与
投影专题复习练习
1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是(C) 2.(2019·阜新)如图,是一个空心圆柱,它的俯视图是( B )
3.图中三视图对应的几何体是( C )
4.下列图形中,不可以作为一个正方体的展开图的是( C )
5.下列尺规作图,能判断AD是△ABC边上的高是( B )
6.某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是( A )
A.梯形B.正方形C.线段D.平行四边形
7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )
A.主视图改变,左视图改变
B.俯视图不变,左视图不变
C.俯视图改变,左视图改变
D.主视图改变,左视图不变
8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是(B)
A.3个B.4个C.5个D.6个
9.写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.10.如图,根据尺规作图所留痕迹,可以求出∠ADC=__70__°.
11.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__.
12.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是__24__cm 3.
13.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB 在地面上的投影BC 长为25米,则旗杆AB 的高度是__13.3__米.(结果精确到0.1)
14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是__7__个.
13.如图,已知线段a 及∠O ,只用直尺和圆规,求作△ABC ,使BC =a ,∠B =∠O ,∠C =2∠B.(在指定作图区域作图,保留作图痕迹,不写作法) 解:如图所示∶
14.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4 m.
(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;
(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度. 解:(1)影子EG 如图所示
(2)∵DG ∥AC ,∴∠G =∠C ,∴Rt △ABC ∽Rt △DGE ,∴AB DE =BC EG ,即1.6DE =2.416,
解得DE =323,∴旗杆的高度为323 m
15. 如图,△ABC 是直角三角形,∠ACB =90°.
(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;
(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵
的长.
解:(1)如图, ⊙C 为所求
(2)∵⊙C 切AB 于D, ∴CD ⊥AB ,∴∠ADC =90°, ∴∠DCE =90°-∠A =90°-30°=60°, ∴∠BCD =90°-∠ACD =30°, 在Rt △BCD 中,
∵cos ∠BCD =CD BC ,∴CD =3cos30°=332,∴DE ︵的长=60·π·332180=32π。