大体积混凝土裂缝分析及控制措施

合集下载

大体积混凝土施工方法及裂缝处理控制措施

大体积混凝土施工方法及裂缝处理控制措施

大体积混凝土施工方法及裂缝处理控制措施在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于其体积大、水泥水化热高、结构厚实等特点,施工过程中容易出现裂缝等质量问题。

因此,掌握科学合理的施工方法以及有效的裂缝处理控制措施至关重要。

一、大体积混凝土施工方法(一)材料选择1、水泥:应选用水化热较低的水泥品种,如矿渣硅酸盐水泥、粉煤灰硅酸盐水泥等,以减少水泥水化热的产生。

2、骨料:粗骨料应选用粒径较大、级配良好的石子,细骨料宜选用中粗砂,以减少水泥用量和混凝土的收缩。

3、掺和料:适量掺入粉煤灰、矿渣粉等掺和料,可以降低水泥用量,改善混凝土的和易性和耐久性。

4、外加剂:根据混凝土的性能要求,可掺入缓凝剂、减水剂等外加剂,以延长混凝土的凝结时间,减少坍落度损失。

(二)配合比设计1、应根据工程的实际情况和设计要求,通过试验确定合理的配合比。

在满足混凝土强度、耐久性等要求的前提下,尽量减少水泥用量,降低水胶比。

2、控制混凝土的坍落度,一般不宜过大,以 120mm 160mm 为宜,以减少混凝土的收缩。

(三)混凝土的搅拌与运输1、混凝土搅拌应均匀,严格按照配合比投料,控制搅拌时间。

2、运输过程中应保持混凝土的均匀性,避免产生离析、分层等现象。

根据运输距离和时间,合理选择运输工具,并采取保温、防晒等措施。

(四)混凝土的浇筑1、浇筑方案的选择:根据混凝土的工程量、结构特点和现场条件,可选择分层浇筑、分段浇筑或斜面分层浇筑等方案。

分层浇筑时,每层厚度不宜超过 500mm,相邻两层浇筑的间隔时间应控制在初凝时间以内。

2、浇筑顺序:应从低处向高处进行,先浇筑梁,再浇筑板。

对于有预留孔洞、预埋件和钢筋密集的部位,应事先制定浇筑方案,确保混凝土的密实性。

3、振捣:采用插入式振捣器振捣,振捣时应快插慢拔,插点均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。

振捣时间以混凝土表面不再显著下沉、不再出现气泡、表面泛出灰浆为准。

大体积混凝土施工中的裂缝防治范文(2篇)

大体积混凝土施工中的裂缝防治范文(2篇)

大体积混凝土施工中的裂缝防治范文裂缝是大体积混凝土施工中常见的问题之一,严重影响结构的安全性和使用寿命。

为了有效防治裂缝,在施工过程中需要采取一系列的措施。

本文将分析裂缝的产生原因,介绍常见的裂缝防治措施,并提出一些改进方法,以期有效解决大体积混凝土施工中的裂缝问题。

一、裂缝产生原因1. 温度变化:混凝土的体积变化系数较大,在温度变化大的情况下会产生温度裂缝。

2. 干缩:混凝土养护期间由于水分的蒸发和收缩而引起干缩裂缝。

3. 内应力:混凝土内部的应力不均匀,会产生内应力裂缝。

4. 设计和施工缺陷:结构设计和施工质量不合格也会导致裂缝的产生。

二、常见的裂缝防治措施1. 控制温度变化:在混凝土施工过程中,应尽量控制温度变化,避免快速升温或降温。

可以采取覆盖物体、喷水等措施来控制混凝土温度。

2. 加强养护:混凝土在初凝期和养护期需要进行充分的湿养护,以减少干缩引起的裂缝。

可以采用覆盖保温、喷水养护等方法。

3. 合理设计:在结构设计中,应考虑混凝土的体积变化和应力分布,避免产生过大的内应力。

合理控制浇筑量、浇筑层次和结构形式等因素。

4. 施工质量控制:加强施工质量控制,确保混凝土的配合比、浇筑工艺、养护等符合标准要求。

同时,应定期检查施工过程中的缺陷,及时进行整改。

三、改进方法1. 使用控制裂缝剂:控制裂缝剂是一种特殊的添加剂,可以有效抑制混凝土裂缝的产生。

它可以减少混凝土的收缩率,提高其抗裂性能。

2. 采用预应力技术:预应力技术可以通过施加预应力,使混凝土内部产生压应力,从而有效减少裂缝的发生。

同时,预应力技术还可以提高结构的承载能力和抗震性能。

3. 使用高性能混凝土:高性能混凝土具有较低的收缩率和较高的抗裂性能,可以有效减少裂缝的产生。

其强度和耐久性也更高,能够提高结构的使用寿命。

4. 引入复合材料:在混凝土中添加适量的纤维材料,如玻璃纤维、碳纤维等,可以有效增加混凝土的韧性和抗裂性能,减少裂缝的产生。

大体积混凝土抗裂措施

大体积混凝土抗裂措施

大体积混凝土抗裂措施
混凝土在建筑工程中扮演着重要的角色,而其中的混凝土抗裂措施
尤为关键。

本文将探讨大体积混凝土抗裂的措施及方法。

大体积混凝土的抗裂措施主要包括以下几个方面:
一、合理设计配筋方案
在大体积混凝土结构的设计中,应根据不同部位和受力情况,合理
设计配筋方案。

通过增加梁、柱等构件的钢筋数量和布置方式,提高
整体的抗裂性能,有效减少混凝土开裂的可能性。

二、加入合适的外加剂
掺入适量的外加剂能够改善混凝土的性能,增强其抗裂性能。

例如,可添加合适的高分子材料或纤维增强材料,使混凝土具有更好的韧性
和抗拉强度,有效防止裂缝的扩展。

三、控制混凝土收缩和温度变化
混凝土在硬化过程中会发生收缩,而温度的变化也是导致混凝土开
裂的重要原因之一。

因此,在浇筑和养护混凝土时,要控制混凝土的
收缩和温度变化,采取适当的保护措施,避免裂缝的生成。

四、严格控制浇筑工艺
在大体积混凝土浇筑时,必须严格控制浇筑工艺,采取适当的浇筑
方式和工艺措施。

避免混凝土过早硬化或过热,导致内部应力集中,
引发裂缝的出现。

五、定期维护和检测
对于大体积混凝土的结构,在使用过程中需要进行定期的维护和检测。

及时处理潜在的裂缝,修复已有的裂缝,确保混凝土结构的稳定性和安全性。

总之,大体积混凝土的抗裂措施至关重要,需要综合考虑材料的性能、结构的设计和施工工艺等方面,确保混凝土结构具有良好的抗裂性能,延长其使用寿命,保障工程的安全可靠。

通过以上措施的有效实施,可以有效减少混凝土结构的裂缝,提高结构的整体性能和耐久性,为工程的顺利进行和长期运行提供保障。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施大体积混凝土造粒的裂缝是指混凝土某一部分中的裂缝,该部分的尺寸比一般的钢筋混凝土结构大得多。

这样的混凝土结构由于自重和重载等的压力,受到了较大的拉应力,容易产生裂纹,影响其使用寿命和结构性能。

本文将探讨大体积混凝土裂缝的产生原因及控制措施。

一、产生原因:1. 温度变化:混凝土构造物受季节变化和日夜变化的影响,会发生温度变化。

由于温度的变化会导致混凝土膨胀和收缩,因此在膨胀和收缩的过程中,如果其能力和约束力不匹配,就会产生应力,从而产生裂缝。

2. 湿度变化:混凝土中水的变化也是裂缝的一个重要原因。

如果混凝土湿度变化过大,会导致水的蒸发和吸收。

水分的吸收会造成混凝土的膨胀,而水的蒸发会使混凝土干缩。

如果混凝土不能够吸收或释放水分,就容易产生裂缝。

3. 材料的反应:如果混凝土中的一些化学受潮或自发燃烧,会在混凝土中产生碱性物质的反应,从而导致混凝土的膨胀和收缩,产生裂缝。

4. 应力集中:混凝土制造和施工过程中涉及到的应力分布是不均匀的,某些区域容易出现应力集中。

应力集中区域因受到超负荷应力而破裂成裂缝。

5. 其他原因:混凝土中存在的空气孔隙,坍落度不合适,水灰比偏高或者混凝土受到的外力等都可能导致裂缝的产生。

二、控制措施:1. 选用合适的混凝土比例和材料:首先,为了避免混凝土的裂缝,应该选择合适的混凝土比例和材料,确保混凝土的坍落度、水灰比和密实度达到最佳水平。

2. 加强混凝土的质量控制:加强混凝土的质量控制,确保混凝土的制作和浇筑过程中不出现任何失误。

结实,未受到外力损害的混凝土在日常使用中容易受到外力的损害而破裂。

3. 选择正确的施工方法:为了避免因施工不当而造成混凝土裂缝,应该根据所建造的混凝土结构采用合适的施工方法,在施工过程中控制混凝土软化或者干缩时间,以确保结构体的完整性。

4. 控制场地温度和湿度:为了控制混凝土结构中水分和温度的变化,在施工过程中需要控制场地的温度和湿度。

大体积混凝土裂缝分析及控制措施

大体积混凝土裂缝分析及控制措施

大体积混凝土裂缝分析及控制措施在现代建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥梁墩台等。

然而,大体积混凝土在施工和使用过程中容易出现裂缝,这不仅影响结构的外观,还可能降低结构的承载能力、耐久性和防水性能。

因此,对大体积混凝土裂缝进行分析并采取有效的控制措施具有重要的意义。

一、大体积混凝土裂缝的类型大体积混凝土裂缝主要分为表面裂缝、深层裂缝和贯穿裂缝三种类型。

表面裂缝通常出现在混凝土浇筑后的初期,由于混凝土表面散热较快,内部散热较慢,形成内外温差,导致表面产生拉应力。

当拉应力超过混凝土的抗拉强度时,就会出现表面裂缝。

表面裂缝一般较浅,对结构的影响较小,但如果不及时处理,可能会发展为深层裂缝或贯穿裂缝。

深层裂缝是指裂缝深度较大,但未贯穿整个混凝土结构。

深层裂缝通常是由于混凝土在降温过程中,内部约束产生的拉应力超过混凝土的抗拉强度而引起的。

深层裂缝对结构的耐久性和承载能力有一定的影响。

贯穿裂缝是指裂缝贯穿整个混凝土结构,将结构分成几个部分。

贯穿裂缝的危害最大,它严重削弱了结构的整体性和稳定性,甚至可能导致结构的破坏。

二、大体积混凝土裂缝产生的原因(一)温度变化大体积混凝土在浇筑后,由于水泥水化反应会释放出大量的热量,使混凝土内部温度迅速升高。

而混凝土表面散热较快,形成较大的内外温差。

当温差产生的拉应力超过混凝土的抗拉强度时,就会产生裂缝。

(二)收缩变形混凝土在硬化过程中会发生体积收缩,包括化学收缩、干燥收缩和塑性收缩等。

收缩变形受到约束时,就会产生拉应力,从而导致裂缝的产生。

(三)约束条件混凝土结构在施工和使用过程中,会受到各种约束,如基础的约束、相邻结构的约束等。

当约束产生的拉应力超过混凝土的抗拉强度时,就会产生裂缝。

(四)原材料质量原材料的质量对混凝土的性能有很大影响。

如果水泥的水化热过高、骨料的级配不合理、含泥量过大等,都可能导致混凝土裂缝的产生。

(五)施工工艺施工过程中的浇筑顺序、振捣方式、养护措施等不当,也会增加混凝土裂缝产生的可能性。

大体积混凝土裂缝产生原因及措施分析

大体积混凝土裂缝产生原因及措施分析

大体积混凝土裂缝产生原因及措施分析大体积混凝土裂缝是指混凝土结构发生裂缝的现象,其裂缝长度大于0.1mm。

大体积混凝土裂缝的产生原因复杂多样,下面将结合材料、设计和施工等方面,分析大体积混凝土裂缝的产生原因及相应的措施。

一、材料因素:(1)混凝土材料质量不达标:混凝土中的胶凝材料、骨料、掺合料、水泥掺量等不合理或质量不达标,会直接影响混凝土的抗裂性能。

措施:选用质量合格的混凝土原材料,并按照设计要求进行材料的配制和试制,保证混凝土的质量和性能。

二、设计因素:(1)结构设计不合理:结构的刚度不足或刚度分布不均匀、变形不协调等问题,会引起大体积混凝土裂缝的产生。

措施:在设计阶段,要根据结构的使用和受力特点,科学合理地确定结构的形式、尺寸和构造,尽量保证结构的刚度和变形能满足使用要求。

三、施工因素:(1)浇筑不均匀:混凝土浇筑过程中,如果浇筑速度不均匀或有停顿,容易产生裂缝。

措施:加强浇筑过程中的施工管理,保证混凝土的均匀浇筑,避免停顿和快速浇筑等情况的发生。

(2)温度控制不当:混凝土在凝固过程中会产生热量,如果温度控制不当,易造成温度差异,进而产生裂缝。

措施:在混凝土施工过程中,要根据气温、配合比等因素,合理控制混凝土的凝固温度,避免温度差异引起的裂缝。

(3)养护不到位:混凝土在早期水化过程中,需要进行充分的养护,以保持水分和温度,如果养护不到位,会影响混凝土的强度和抗裂性能。

措施:加强对混凝土养护的管理和控制,包括及时覆盖养护层、保持湿润、定期喷水养护等措施,保证混凝土的养护质量。

大体积混凝土裂缝的产生原因主要包括材料、设计和施工等方面的因素。

为了减少大体积混凝土裂缝的产生,需要在各个方面加强管理和控制,确保混凝土质量和施工质量,以提高混凝土结构的抗裂性能。

大体积混凝土结构裂缝控制措施(全文)

大体积混凝土结构裂缝控制措施(全文)

大体积混凝土结构裂缝控制措施(全文)正文:一.前言大体积混凝土结构裂缝控制是建筑工程中一个重要的技术问题。

本文旨在介绍大体积混凝土结构裂缝控制的措施。

二.裂缝形成原因1. 混凝土收缩:混凝土在硬化过程中会发生收缩,导致裂缝的形成。

2. 温度变化:混凝土在受到温度变化时会发生膨胀或收缩,导致裂缝的形成。

3. 荷载作用:混凝土结构在承受荷载时会发生变形,若超过极限值,会引起裂缝的形成。

三.裂缝控制措施1. 控制混凝土配合比:合理控制混凝土的水灰比、骨料含量等,以减少混凝土收缩引起的裂缝。

2. 使用抗裂剂:在混凝土中加入适量的抗裂剂,能够有效减少混凝土收缩引起的裂缝。

3. 控制温度变化:采取隔热、保温等措施,以降低混凝土受到温度变化的影响。

4. 加强结构设计:合理设计结构的受力形式和构造,以减小荷载作用引起的变形和裂缝。

5. 定期检测维护:对大体积混凝土结构进行定期检测和维护,及时发现和修复裂缝,以防止裂缝的扩大和影响结构的安全性。

四.附件本文档涉及的附件包括:1. 大体积混凝土结构设计图纸;2.抗裂剂使用手册;3. 混凝土配合比试验报告。

五.法律名词及注释1. 混凝土收缩:指混凝土在硬化过程中,由于体积变化而引起的收缩现象。

2. 水灰比:指混凝土中水的含量与水泥含量的比值,反映混凝土的流动性和强度。

3. 适量:指根据混凝土的使用要求,加入的抗裂剂的合理用量。

正文:一.引言本文档旨在提供大体积混凝土结构裂缝控制的全面解决方案。

包括裂缝形成原因及相应的控制措施等内容,以期提高混凝土结构的稳定性和可靠性。

二.裂缝形成原因混凝土结构裂缝的形成原因主要包括以下几点:1. 混凝土收缩:混凝土在硬化过程中会产生收缩,造成内部应力增大,引发裂缝。

2. 温度变化:混凝土结构在受到温度变化时,会出现体积膨胀或收缩,从而导致裂缝的发生。

3. 荷载作用:混凝土结构在承受荷载时,会发生变形,若超过结构的承载能力,就会出现裂缝。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施大体积混凝土结构在使用过程中,常常出现裂缝现象,这不仅影响了建筑物的外观,更重要的是可能影响结构的安全性和耐久性。

了解大体积混凝土裂缝产生的原因,并采取相应的控制措施显得尤为重要。

1. 原材料问题混凝土质量的差异可能导致混凝土中存在空鼓等问题,这会在使用过程中引发裂缝。

材料中含有过多的气孔和流动性差也会增加混凝土的收缩性,从而加剧了混凝土裂缝的产生。

2. 温度变化混凝土在硬化过程中会发生收缩,而环境温度的变化也会对混凝土产生影响。

当混凝土中的收缩和环境温度的变化不匹配时,就会导致混凝土内部的应力过大,从而引发裂缝。

3. 设计缺陷如果在混凝土结构的设计和施工中,存在设计缺陷或者施工质量不合格的情况,也有可能导致混凝土结构内部出现裂缝。

4. 荷载变化混凝土结构在使用过程中,受到荷载的作用,比如温度荷载、湿度荷载、机械荷载等,这些荷载的变化都有可能引发混凝土结构内部的应力变化,从而导致裂缝的产生。

5. 施工工艺混凝土结构的施工工艺不当也是混凝土裂缝产生的一个重要原因。

比如浇筑过程中的振捣不足、养护不到位等都可能导致混凝土结构内部的空鼓和裂缝。

以上就是大体积混凝土裂缝产生的一些主要原因,深入了解这些原因,才能更好地采取相应的控制措施。

1. 选材在混凝土的选材过程中,应该选择质量好、掺合比适宜的原材料。

并且要求混凝土的含水量和流动性要符合设计要求,这样有利于减少混凝土中的空鼓和气孔,从而减少裂缝的产生。

2. 设计优化在混凝土结构的设计阶段,应该充分考虑混凝土的收缩性和环境温度变化对混凝土结构的影响,从而在设计阶段就采取相应的措施来减少混凝土结构内部的应力集中,减少裂缝的产生。

4. 预留伸缩缝在混凝土结构设计中,应该根据结构的实际情况,合理设置伸缩缝。

伸缩缝的设置可以有效地减少混凝土结构内部因为温度变化和应力变化而引发的裂缝。

5. 养护混凝土在硬化过程中,需要进行适当的养护。

大体积混凝土裂缝

大体积混凝土裂缝

03
大体积混凝土裂缝预防措 施
材料选择与优化
01
02
03
选用低水化热水泥
使用水化热较低的水泥, 如矿渣水泥、粉煤灰水泥 等,以降低混凝土内部温 升。
控制骨料级配
优化骨料的级配设计,减 少空隙率,提高混凝土的 密实度。
掺加外加剂
适量掺加缓凝剂、减水剂 等外加剂,改善混凝土的 和易性,降低水灰比,减 少收缩。
压力注浆
对于宽度在0.2mm至3mm之间的裂缝,采用压力注浆技术进行修 补,注浆材料可选用水泥浆或化学浆液。
结构加固
对于严重影响结构安全的裂缝,需进行结构加固处理,如粘贴钢板、 碳纤维加固等。
治理效果评价
裂缝处理效果
经过治理后,裂缝得到了有效封闭和修补,不再 对结构安全和使用功能产生影响。
结构安全性评估
05
工程实例分析
工程概况及裂缝情况介绍
工程背景
某大型商业综合体,地下2层,地上4 层,总建筑面积约10万平方米。
裂缝情况
在地下室底板、顶板及部分外墙出现 大量裂缝,宽度从0.1mm到3mm不 等,长度从几十厘米到数米不等。
裂缝成因分析
温度应力
大体积混凝土在浇筑后,由于水 泥水化热作用,内部温度急剧上 升,而表面散热较快,形成内外 温差,导致温度应力产生,进而
裂缝的存在会破坏混凝土结构的整体性, 使得原本连续、均匀的受力状态变得复杂 ,可能导致应力集中和局部破坏。
裂缝为水分、氧气和其他有害物质提供了 侵入混凝土内部的通道,加速了钢筋锈蚀 和混凝土碳化等耐久性问题的发生。
降低结构承载能力
影响结构使用功能
裂缝的发展可能导致混凝土结构承载能力 的降低,尤其是在受拉区和剪切区,裂缝 的存在会显著降低结构的刚度和强度。

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施

大体积混凝土温度裂缝的产生原因及控制措施一、原因分析1.温度梯度差异:混凝土内部在硬化过程中由于外部与内部温度差异较大,会导致混凝土产生温度梯度,从而引起温度裂缝的产生。

2.外部温度变化:外部环境的温度变化会对混凝土的温度产生影响,特别是大范围的温度变化,会加剧混凝土的收缩和膨胀,从而导致温度裂缝的产生。

3.混凝土内部收缩:混凝土在硬化过程中,会因为水分蒸发、水化反应等原因而产生收缩,从而引起温度裂缝的产生。

4.冷凝水的影响:在高温高湿环境中,混凝土表面易出现冷凝水,冷凝水在与混凝土接触后会快速蒸发,产生蒸发冷却效应,从而导致混凝土产生温度梯度而引发温度裂缝。

二、控制措施1.控制浇筑温度:合理控制混凝土的浇筑温度,一般建议控制在20℃~35℃范围内,避免过高或过低的浇筑温度。

2.采取保温措施:在混凝土浇筑后,可以采取保温措施,如铺设保温材料、喷水保湿等,以减缓混凝土的温度变化速率,避免温度裂缝的产生。

3.合理控制混凝土收缩:通过控制混凝土中的水灰比、选择适当的外加剂等措施,可以减小混凝土的收缩性质,从而降低温度裂缝的产生。

4.控制施工方法:在施工过程中,应严格控制施工方法,防止混凝土在浇筑、振捣和固化过程中产生温度裂缝。

如避免大范围连续浇筑、控制振捣时间和强度等。

5.增加凝结热的散发:可以在混凝土中加入适量的骨料,增加混凝土的导热性,加快凝结热的散发,从而减小温度梯度差异,减少温度裂缝的产生。

总结起来,控制大体积混凝土温度裂缝的产生,需要从浇筑温度、保温措施、混凝土收缩控制、施工方法和增加凝结热散发等方面综合考虑,采取合理的控制措施,在施工过程中注意监测和调整,以确保混凝土的质量和安全。

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施1 沉缩裂缝混凝土沉缩裂缝在体积混凝土施工中也是非常多的。

主要原因是振捣不密实, 沉实不足, 或者骨料下沉, 表层浮浆过多, 且表面覆盖不及时, 受风吹日晒, 表面水份散失快, 产生干缩, 混凝土早期强度又低, 不能抵抗这种变形而导致开裂。

在施工中采用缓凝型泵送剂, 延缓混凝土的凝结硬化速度, 充分利用外加剂( 特别是缓凝剂) 的特性, 适时增加抹加次数, 消除表面裂缝( 特别是沉缩裂缝和初期温度裂缝) , 特别是初凝前的抹压。

2 温度裂缝(1) 原因: 一是由于温差较引起的, 混凝土结构在硬化期间水泥放出量水化热, 内部温度不断上升, 使混凝土表面和内部温差较, 混凝土内部膨胀高于外部, 此时混凝土表面将受到很的拉应力, 而混凝土的早期抗拉强度很低, 因而出现裂缝。

这种温差一般仅在表面处较, 离开表面就很快减弱, 因此裂缝只在接近表面的范围内发生, 表面层以下结构仍保持完整。

二是由结构温差较, 受到外界的约束引起的, 当体积混凝土浇筑在约束地基上时, 又没有采取特殊措施降低, 放松或取消约束, 或根本无法消除约束, 易发生深进, 直至贯穿的温度裂缝。

(2) 过程: 一般( 人为) 分为三个时期: 一是初期裂缝———就是在混凝土浇筑的升温期, 由于水化热使混凝土浇筑后2- 3 天温度急剧上升, 内热外冷引起“ 约束力”, 超过混凝土抗拉强度引起裂缝。

二是中期裂缝———就是水化热降温期, 当水化热温升到达峰值后逐渐下降, 水化热散尽时结构物的温度接近环境温度, 此间结构物温度引起“ 外约束力”, 超过混凝土抗拉强度引起裂缝。

三是后期裂缝, 当混凝土接近周围环境条件之后保持相对稳定, 而当环境条件下剧变时, 由于混凝土为不良导体,形成温度梯度, 当温度梯度较时, 混凝土产生裂缝。

3 控温措施和改善约束3.1 温控措施(1) 降低混凝土内部的水化热, 采用中低热的矿渣水泥, 控制水泥的使用温度, 添加一定量的优质粉煤灰, 以降低混凝土的水化热, 同时选用高效外加剂。

大体积混凝土裂缝防治措施

大体积混凝土裂缝防治措施

大体积混凝土裂缝防治措施1.合理的设计和施工技术:在大体积混凝土结构的设计和施工过程中,应充分考虑结构的变形和收缩问题。

尽量采用合理的构造形式、减小构件的尺寸变化和设计适当的缝隙,同时选择合适的混凝土配合比。

此外,在混凝土施工过程中,需要注意控制混凝土的水灰比、保持适当的温度和湿度,避免混凝土快速干燥引起的收缩裂缝。

2.使用适当的防裂材料:在大体积混凝土结构施工中,可以添加一些适当的防裂材料,以增加混凝土的韧性和延展性,减少裂缝的发生。

常见的防裂材料有纤维素短纤维、钢纤维、聚丙烯纤维等。

3.加强混凝土的抗渗性:渗透裂缝是大体积混凝土结构中常见的问题,为了增强混凝土的抗渗性,可以在混凝土中添加一些防渗剂或使用特殊的混凝土,如高性能混凝土、微细矿物掺合料等。

防渗剂可以通过充填细微裂缝和孔隙,减少水分和气体的渗透,从而提高混凝土的抗渗性能。

4.安装预应力和钢筋:预应力和钢筋是大体积混凝土结构中常用的防裂措施。

预应力技术可以通过施加预应力,使混凝土在受力时保持压力状态,减少裂缝的发生。

钢筋可以有效增强混凝土的抗拉强度,防止裂缝的扩展。

5.加强结构的支撑和加固:在大体积混凝土结构出现裂缝时,可以采取加固措施来加强结构的支撑能力和稳定性。

常见的加固措施包括添加附加支撑、安装横向和纵向拉杆、加固工程缝、采取预应力加固等。

6.定期检查和维修:定期检查大体积混凝土结构的裂缝情况是非常重要的,可以及时发现和修复裂缝。

对于小裂缝可以采取简单的维修措施,如填充密封剂或涂刷防水涂料等;对于较大的裂缝,需要采取更加复杂的维修措施,如加固、重建等。

总之,大体积混凝土结构裂缝的防治是一个综合性工作,需要在设计、施工、材料选择等方面做好充分的准备工作。

通过采取合理的措施和技术,可以有效降低大体积混凝土结构裂缝的发生率,提高结构的安全性和耐久性。

大体积混凝土裂缝原分析及控制措施

大体积混凝土裂缝原分析及控制措施

大体积混凝土裂缝的原分析及控制措施[摘要] 本文针对混凝土容易产生裂缝的现象,在分析其成因的基础上,根据不同原因的裂缝,提出相应的处理与控制措施。

[关键词] 裂缝成因控制措施1、前言大体积混凝土裂缝问题是当前混凝土施工的一个普遍问题,裂缝不仅会降低混凝土的强度、抗冻性,对混凝土的抗渗性和耐久性影响也尤为严重。

大体积混凝土裂缝问题的研究已成为现代建筑施工的一项主要课题,也是大体积混凝土施工的核心问题。

2、大体积混凝土产生裂缝的原因大体积混凝土因外部荷载作用产生裂缝的可能性不大,一般由自身因素造成混凝土裂缝,裂缝可分为“塑性裂缝”和“应力裂缝”两种。

2.1产生塑性裂缝的原因塑性裂缝由混凝土的塑性收缩引起,发生在混凝土的塑性阶段,属干缩裂缝,出现很普遍。

一般来说,厚度较大的混凝土浇筑4h后,水泥水化反应激烈,出现明显泌水和水分急剧蒸发现象,引起混凝土沉降收缩,在有钢筋的部位被托住,没有钢筋的部位混凝土下沉,发生顺钢筋的干裂缝;混凝土浇筑后,表面未及时覆盖,受风吹日晒,表面游离水分蒸发过快,产生急剧的体积收缩,而此时混凝土早期强度低,不能抵抗这种变形应力而导致开裂。

使用早期强度高的水泥或水泥用量过多、水灰比过大等也是混凝土产生塑性裂缝的原因。

2.2产生应力裂缝的原因应力裂缝是在某一时刻因混凝土内部产生化学收缩、干燥收缩、降温收缩使混凝土内部产生的拉应力超过了当时混凝土的抗拉强度,使混凝土形成裂缝。

对于大体积混凝土,因降温收缩产生的应力是其产生裂缝的最重要原因。

2.2.1化学收缩化学收缩由胶凝材料收缩引起,混凝土中胶凝材料在硬化过程中,化学反应后的体积比反应前缩小,这种收缩叫做化学收缩,其收缩量只是干燥收缩的1/10~1/5,一般不会产生危害。

2.2.2干燥收缩混凝土拌和水以不同形式存在于硬化后的混凝土中,拌和水包括化合水和自由水两部分。

化合水是水泥进行水化作用时所必须的水,要有足够的化合水才能保证水泥颗粒的充分水化和水解,生成结晶和凝胶,这部分水仅占拌和水的1/4,而自由水完全是为了满足施工及操作需要的水。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施
大体积混凝土常常出现裂缝,这是由于混凝土固化过程中各种外力和内部因素作用的
结果。

以下是一些常见的大体积混凝土裂缝产生原因及相应的控制措施。

1. 温度变化
混凝土的体积随温度变化而变化,从而导致应力和应变的变化。

如果混凝土早期膨胀
过快,后来突然收缩,就可能产生裂缝。

冬季施工的混凝土容易受到冻融循环的影响而产
生裂缝。

控制措施:在混凝土中加入一些减缩剂,保持混凝土温度稳定。

2. 沉降
混凝土的沉降常常导致裂缝的产生。

大体积混凝土从浇注到完全固化需要一定的时间,这个时间内混凝土会不断地进行沉降和变形,而这个过程中土壤或基础可能承受不住混凝
土的重量,导致裂缝的产生。

控制措施:在混凝土中加入一些增粘剂,增加混凝土的粘性,减少沉降。

3. 加载
混凝土承受的载荷过大也可能导致裂缝的产生。

当混凝土受到过载而形成应力过大时,就会产生裂缝。

控制措施:合理规划混凝土的厚度和稳定度,使其能够承受所需的载荷。

4. 不均匀收缩
混凝土在固化过程中,其不同区域的收缩量不同,从而产生应力差异。

这种差异使得
混凝土产生裂缝。

控制措施:在混凝土中加入一些控制混凝土收缩的化学剂。

5. 板与柱之间的连接
不充分的预制混凝土连接也可能导致裂缝的产生。

板与柱之间连接的强度达不到要求时,应力集中在连接处,从而导致裂缝的产生。

控制措施:增强连接强度,保持连接部分
完整。

总之,裂缝的发生对混凝土的强度和耐久性都会产生影响,所以应采取相应的控制措施,避免或减少裂缝的产生。

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施随着建筑结构的不断发展,大体积混凝土结构的使用越来越广泛。

大体积混凝土结构中常常会出现裂缝问题,这不仅会影响结构的美观性,还会降低结构的承载能力和使用寿命。

对于大体积混凝土结构的裂缝产生原因和控制措施进行深入的研究和分析,对于提高结构的质量和安全性具有重要意义。

1.温度变化大体积混凝土结构在温度变化的作用下,由于混凝土的收缩率大于钢筋的收缩率,容易产生裂缝。

当温度升高时,混凝土会膨胀,而在温度下降时,混凝土会收缩,造成内部应力的不平衡,最终导致混凝土结构裂缝的产生。

2.干缩混凝土在凝固过程中,由于水分的蒸发脱水,混凝土内部会产生干缩现象。

如果干缩过程中得不到有效的补水保养,混凝土内部的内应力会逐渐积累,最终形成裂缝。

3.不均匀收缩大体积混凝土结构由于尺寸大、体积大,在硬化过程中会产生不均匀的收缩。

尤其是在混凝土中使用了粗骨料的情况下,更容易产生不均匀收缩,从而导致结构裂缝的产生。

4.基础沉降大体积混凝土结构在基础遇到沉降时,由于结构自重的影响,会造成结构内部的应力不平衡,从而导致混凝土结构的裂缝产生。

5.外部荷载外部荷载的作用下,如风荷载、地震荷载等,会导致混凝土结构内部的应力集中,从而引发裂缝。

6.质量缺陷在大体积混凝土结构的施工过程中,如混凝土质量不合格、施工工艺不规范等,都容易造成混凝土结构的裂缝产生。

二、大体积混凝土裂缝控制措施1. 设计合理通过合理的设计,可以减小混凝土结构内部的应力集中区域,在梁、柱、墙等结构部位设置适当的伸缩缝,以及加入预应力钢筋等措施,来减小混凝土结构的应力,有效控制裂缝的产生。

2. 优化混凝土配合比通过优化混凝土的配合比,降低混凝土的收缩率,控制混凝土的裂缝产生。

在混凝土中适量添加膨胀剂、缓凝剂等措施,也可以有效控制混凝土的收缩裂缝。

4. 加强养护措施在混凝土施工后,需要加强养护措施,及时进行混凝土的湿润养护,保证混凝土充分的龄期,减小干缩裂缝的产生。

大体积混凝土裂缝原因及控制措施

大体积混凝土裂缝原因及控制措施

大体积混凝土裂缝原因及控制措施大体积砼产生裂缝的原因是由于砼内部水化热作用产生的温度与砼表面温度存在着温差,势必产生温度应力,而温度应力与温差成正比,当这种温度应力超过砼抗拉强度时就会产生裂缝。

因此,防止砼出现裂缝的关键就是控制砼内部与表面的温差。

砼因温度应力而产生的裂缝分为两个阶段:第一阶段是因水泥水化热使砼内部温度升高,而在升温阶段砼内外温差过大,造成裂缝;第二阶段是砼内部温度达到最高后,砼因表面散热(或缩水)过快而产生较大的温降差,造成裂缝。

砼内部因水化热而温度增大达到最大值的时间为砼浇筑后第三天。

这些裂缝大致可分为两种:1、表面裂缝:大体积混凝土浇筑后,水泥产生大量水化热,使混凝土的温度上升,但由于混凝土内部和表面的散热条件不同,因而中心温度高表面温度低,形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当这个拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。

2、贯穿裂缝:大体积混凝土浇筑初期,混凝土处于升温阶段,弹性模量很小,由变形所引起的应力很小,故温度应力一般可忽略不计,但是过了数日,混凝土逐渐降温,这时温差引起的变形加上混凝土多余水分蒸发时引起的体积收缩变形引起拉应力,当该拉应力超过;混凝土抗拉强度时,混凝土整个截面应会产生贯穿裂缝。

从影响结构安全的角度讲表面裂缝的危害性较小,而贯穿裂缝则会影响结构的正常使用,所以应采取措施避免表面裂缝,并坚决控制贯穿裂缝的开展。

裂缝给工程带来不同程度的危害,因此如何进一步控制温度变形裂缝的开展,是该工程大体积混凝土构件施工中的一个重要课题。

由于大体积混凝土施工的条件比较复杂,施工情况各异,再加上混凝土原材料的材质各向异性较大,且混凝土由各种非均质材料组成,它的破坏很复杂,在施工过程中控制温度变形裂缝,是涉及材料组成和物理力学性能及施工工艺等学科的综合性问题。

要采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝的展开。

3、大体积混凝土裂缝产生的规律根据大体积砼因水化热升温和降温阶段砼内部的应力变化,表面裂缝和收缩裂缝的内在联系及产生的原因,大体积混凝土裂缝产生的规律有以下几点:(1)温差和收缩越大,越容易开裂,裂缝越宽、越密。

混凝土裂缝的原因分析及控制措施

混凝土裂缝的原因分析及控制措施

混凝土裂缝的原因分析及控制措施一、混凝土裂缝的原因分析1. 施工工艺不当施工过程中由于混凝土的浇筑、养护等环节出现了问题,比如过早脱模、养护不足等,会导致混凝土内部产生收缩裂缝。

2. 温度变化温度的变化会导致混凝土的体积产生变化,进而引起混凝土的收缩和膨胀。

在高温季节,混凝土会因为温度升高而膨胀,而在低温季节,混凝土可能因为温度下降而收缩,进而产生裂缝。

3. 湿度变化在混凝土固化过程中,由于养护不当或者环境湿度变化等原因,混凝土内部水分的变化也会引起混凝土的收缩和膨胀,从而产生裂缝。

4. 荷载作用建筑结构的荷载会对混凝土构件产生影响,比如弯曲、剪切等荷载作用会导致混凝土构件内部发生裂缝。

5. 质量问题混凝土材料本身的质量问题也会导致裂缝的产生,比如混凝土中含砂量、石子的分布不均匀等。

二、混凝土裂缝的控制措施1. 施工工艺的控制在混凝土的浇筑、养护等施工环节,要严格按照相关技术标准和规范进行操作,确保浇筑质量和养护的及时性。

尤其是对于大体积混凝土的浇筑,更要注意施工的工艺控制。

2. 材料质量的保障选择优质的混凝土原材料,并严格按照配合比进行搅拌,保证混凝土的质量。

同时要加大对原材料的检测力度,确保材料的质量符合要求。

3. 加入裂缝控制剂在混凝土浇筑中可以适当加入一些裂缝控制剂,这些控制剂可以减缓混凝土收缩的速度,并减少裂缝的产生。

4. 选用合适的混凝土结构和构件在设计混凝土结构和构件时要根据实际情况和使用要求选择适宜的结构形式和构件,避免因为荷载过大、结构不合理等原因引起的裂缝。

5. 合理的养护混凝土浇筑后的养护是非常关键的,要根据混凝土的标号和气候条件来确定养护期限和方式,严格执行养护规程。

6. 加强材料研发在混凝土的混合材料研发过程中应该选择一些具有良好性能的掺合料和添加剂,使混凝土具有更好的耐磨性和耐久性,进而减少裂缝的产生。

大体积混凝土温度裂缝原因分析及控制措施

大体积混凝土温度裂缝原因分析及控制措施

大体积混凝土温度裂缝原因分析及控制措施在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于其体积较大,水泥水化热释放集中,混凝土内部温度升高较快,与表面形成较大温差,容易产生温度裂缝。

这些裂缝不仅影响混凝土的外观质量,更严重的是会降低混凝土的结构性能和耐久性,给工程带来安全隐患。

因此,深入分析大体积混凝土温度裂缝的原因,并采取有效的控制措施,具有重要的现实意义。

一、大体积混凝土温度裂缝的原因(一)水泥水化热水泥在水化过程中会释放出大量的热量,对于大体积混凝土来说,由于其结构厚实,水泥水化热难以迅速散发,导致混凝土内部温度升高。

尤其是在浇筑后的最初几天,水泥水化热释放最为集中,内部温度可高达 50℃至 80℃,而混凝土表面散热较快,从而形成较大的内外温差。

当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力,一旦拉应力超过混凝土的抗拉强度,就会产生温度裂缝。

(二)混凝土收缩混凝土在硬化过程中会发生体积收缩,主要包括化学收缩、干燥收缩和自收缩等。

大体积混凝土由于水泥用量较大,水灰比较小,其收缩变形相对较大。

而且,收缩变形在混凝土内部受到约束时,也会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会导致裂缝的产生。

(三)外界气温变化大体积混凝土在施工过程中,外界气温的变化对其温度场分布有显著影响。

在混凝土浇筑初期,外界气温越高,混凝土的入模温度就越高,水泥水化热的释放速度也越快,从而导致混凝土内部温度升高。

而在混凝土养护期间,外界气温骤降会使混凝土表面温度迅速下降,而内部温度下降相对较慢,形成较大的内外温差,从而产生温度裂缝。

(四)约束条件大体积混凝土在浇筑过程中,由于基础、垫层或相邻结构的约束,使其在温度变化时不能自由伸缩。

当混凝土内部产生的温度应力超过其约束所能承受的极限时,就会产生裂缝。

约束越强,产生的温度裂缝就越严重。

(五)施工工艺施工工艺不当也是导致大体积混凝土产生温度裂缝的重要原因之一。

大体积混凝土裂缝的原因分析及防治措施

大体积混凝土裂缝的原因分析及防治措施

大体积混凝土裂缝的原因分析及防治措施在建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥墩等。

然而,大体积混凝土在施工和使用过程中容易出现裂缝,这不仅影响结构的外观,还可能降低结构的承载能力和耐久性,严重时甚至会威胁到结构的安全。

因此,深入分析大体积混凝土裂缝的原因,并采取有效的防治措施,具有重要的现实意义。

一、大体积混凝土裂缝的类型大体积混凝土裂缝主要有表面裂缝、深层裂缝和贯穿裂缝三种类型。

表面裂缝一般出现在混凝土的表面,裂缝宽度较小,深度较浅,通常不会影响结构的承载能力,但会影响结构的耐久性和外观。

深层裂缝则深入混凝土内部一定深度,裂缝宽度和深度相对较大,对结构的耐久性和承载能力有一定影响。

贯穿裂缝贯穿整个混凝土结构截面,裂缝宽度较大,对结构的承载能力和耐久性影响严重。

二、大体积混凝土裂缝的原因分析(一)水泥水化热的影响水泥在水化过程中会释放出大量的热量,由于大体积混凝土结构的断面较厚,水泥水化产生的热量不易散失,导致混凝土内部温度升高。

而混凝土表面散热较快,形成较大的内外温差,从而产生温度应力。

当温度应力超过混凝土的抗拉强度时,就会产生裂缝。

(二)混凝土收缩的影响混凝土在硬化过程中会发生体积收缩,包括塑性收缩、干燥收缩和自收缩等。

塑性收缩发生在混凝土浇筑后的初期,此时混凝土尚未完全硬化,表面水分迅速蒸发,导致混凝土体积收缩。

干燥收缩则是由于混凝土内部水分向表面迁移并蒸发,引起混凝土体积减小。

自收缩是水泥水化过程中消耗内部水分而导致的体积收缩。

混凝土的收缩受到多种因素的影响,如水泥品种、水灰比、骨料级配、养护条件等。

收缩产生的应力如果超过混凝土的抗拉强度,也会引起裂缝。

(三)外界环境温度变化的影响大体积混凝土在施工和使用过程中,外界环境温度的变化会对其产生影响。

特别是在混凝土浇筑初期,当环境温度骤降时,混凝土表面温度迅速下降,而内部温度变化相对较小,从而产生较大的温度梯度,导致温度应力增加,容易引起表面裂缝。

大体积混凝土防止裂缝的措施

大体积混凝土防止裂缝的措施

大体积混凝土防止裂缝的措施
一、合理的混凝土配合比
混凝土配合比是指混凝土中水泥、砂、石和水等各组分的比例关系。

合理的配合比可以提高混凝土的抗裂性能。

首先,应适当增加水泥的用量,增强混凝土的抗压强度,防止裂缝的产生。

其次,应控制砂、石的粒径和粒形,使其分布均匀,减小内部缺陷的产生。

最后,添加适量的外加剂,如减水剂、粉煤灰等,可以改善混凝土的流动性和耐久性,减少裂缝的生成。

二、科学的施工技术
混凝土的施工技术对于防止裂缝的产生至关重要。

首先,应合理安排浇筑顺序,避免过早浇筑上层混凝土,导致下层混凝土的收缩不均匀而产生裂缝。

其次,应采用适当的浇筑方法,如分层浇筑、振捣等,确保混凝土密实均匀。

此外,还应注意控制施工温度和冷却速率,避免温度差引起的热裂缝。

三、科学的养护措施
混凝土的养护是防止裂缝产生的重要环节。

养护主要包括湿养护和温养护两个方面。

湿养护是通过保持混凝土表面湿润,延缓水分的蒸发,促使混凝土的水化反应充分进行,提高混凝土的强度和抗裂性能。

温养护是通过控制混凝土的温度,避免温度变化引起的收缩和热应力,减少裂缝的产生。

此外,还应注意避免外界环境的影响,如风、雨、阳光等,对混凝土进行有效的保护。

要防止大体积混凝土裂缝的产生,需要在混凝土配合比、施工技术和养护措施等方面进行科学合理的控制。

只有在配合比合理、施工技术科学、养护措施到位的情况下,才能有效地提高混凝土的抗裂性能,保证工程的质量和使用寿命。

因此,在进行大体积混凝土施工时,应严格按照相关要求进行操作,确保每个环节的质量控制,以期达到防止裂缝的目的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期 水泥 水 化 热 ; 一 减 系 数 。 K折 对 于 粉 煤 灰 , 取 0 5水 泥 的 水 化 热 是 依 赖 于 龄 期 , 者 分 可 . 2 笔 别 用将 水 泥 水 化 热 的 指 数 式 和 复 合 指 数 式 表 达 式 代 入 () , 2 式 获 得 两 组 理论 结果 【 在 此 基 础 再 根 据 现 场 的 混凝 土 测 温 记 录 比较 。
1 工 程 概 况
某 建 筑 工 程 总 建 筑 面 积 1 63 mz 下 室 底 板 东 西 向 长 0 2 0 ,地 18 0 m.南 北 向 长 7 .m 91 总 占地 面 积 8 2 m 混 凝 土 总 用 量 为 51 ̄ 12 0 。无 论 从 混 凝 土 底 板 的 长 度 , 还 是 底 板 的厚 度 。 20 m3 宽度 以及 所 用 的混 凝 土 数 量 来 看 属 大 体 积 、 体 量 、 长 度 的无 缝 混 均 大 超
材料及配合比, 表 1 列。 见 所
材 料 用 量 水 泥 44 2 砂 子 62 9 碎石 17 07 J A E 3 2 矿粉 2 7 水 15 8 C I 一1 68
Q() Q (一 ~) T = 。1 e
() 4 C) 5
复合 指 数 式 :
Q() Q (一 -) T = o1 e b ቤተ መጻሕፍቲ ባይዱ
其 中 : T 为 在 龄 期 T时积 累 水 化 热 ,J g Q, T 。 时 Q() k/ : k 为 一 。 的最 终 水 化 热 ,6 k/gT为龄 期 ;l 4 1J ; k n 为常 数 。 随水泥品种、 比表 面 及 浇 筑 温 度 不 同而 不 同 , 据 某 些 实 验 根 资 料 , 数 m 取 值 范 围 在 03 05之 间 H b为 常 数 , 据 文 献 常 .~ . ; 根 『]a03 ,= . 。 根据 实验 结 果 与 经 验 公 式对 比可 知 , 验 公 2,: .6b 07 4 经 式 能够 求 出混 凝土 最 高 积温 值 , 中 , 其 指数 式 与 实 测 结 果更 接 近 。
多、 结构复杂。②结构的整体性及 防水质量要求高。③主楼桩筏 板式承台厚大 、 混凝土 强度 等级高、 单方水泥用量大 、 水泥 水化
热温 升 高 、 降温 变化 大 。 升 本 工 程 大 体积 混 凝 土 施 工 , 采 取 一 系 列措 施 , 证 混 凝 土 除 保 的 施 工质 量 外 ,特 别 要 注 重 预 测 并 控 制 好 混 凝 土 浇 筑 后 的温 差 和 温 度 应 力 变化 , 防 混凝 土 出现 有 害 的温 度 收 缩 裂 缝 。 两 个 预 经 多 月 施 工 实践 , 好 地 完 成 了 《 工 技 术 方 案》 定 的 目标 和 任 较 施 确
凝 土结构。此次设计采用 U A补偿收缩微膨 胀 自防水混凝土, E 混凝土 设计 强度为 C 0设计抗渗等级为 s 。 4. 8 本项 目基础 混凝土工程 的特 点是: 总体规模大、 ① 单项类型
为了更好控制混凝土 内外温差 , 需求 出混凝土的绝热升温 曲 线 。 凝 土 的 绝 热 温 升 曲线最 好 由实 验 测 定 , 缺 乏 直 接 测 定 的 混 在
3 大体 积 混凝 土 抗 裂 预 测
31 温度应 力 的计算 .
混凝 土 内 部最 高温 度 是 造 成 混 凝 土裂 缝 的关 键 因素 l 。 I 混凝 l 目 土 内部 最 高 绝 热 升 温 值 为 : Wllw2 2 + A 0 Q+ Qp F 5 C () 1 其 中 : 水泥 的水 化 热 , 4 1J g Q 为 J A 的 水化 热 , Q为 Q = 6 k/ ; : E k
施 工 技 术
建材 发 展 导 向 2 1 年 0 01 6月
大体 积 混凝 土裂缝分 析及控 制措 施
王 丽 红
摘 要: 大体积混凝土结构施工中 由于水泥水化 热引起混凝土浇注 内部温 度和温度应力剧烈变化, 由此 而产 生的温 度应力是导致混 凝土产生裂缝的主要原因。 本文结合工程实例 , 对大体积混凝土裂缝的产生原因进行 分析, 并通过理论计算 以及从设计材料和施工等方面 提出 了一套优化的温控 方案. 在工程 中取得 了较好的效果。 关键词 : 大体积混凝土 ; 水化热 ; 温度收缩裂缝; 优化温 控
务, 各混凝土浇筑块的强度均超过设计强度值 , 混凝土温度变化 及 降 温 阶 段温 差 , 到 有 效 的监 控 , 得 混凝 土 未 发现 有 裂 缝 。
哪种方法更符合实际情况。其中指数式 :
2 混凝土配合 比设计
本工 程 大 体 积 混 凝 土 筏 板基 础 采 用 C 0 P 4 , 8商 品 混凝 土 。其
资 料 时 , 可根 据 水 泥 水 化 热 估 算 。本 文 中 , 者 尝 试 了利 用 实 也 笔 测 值 对 经 验 公 式 参 数 进 行修 正 , 使 得 理 论值 与 实测 结 果 更加 吻 合 。混 凝 土 绝 热 升 温 至 公 式 为 : 验
0 T_ T ( K )C () Q() W+ F /p - () 3 式 中 : 水 泥 用 量 ; 一 凝 土 比热 ;一 凝 上 密 度 ; T 一 w一 C混 p混 Q() 龄
算 得 : 2 + 62 06 = 6 3C T 0 8 . . 7 . o。 x 5 0
混凝 土 内外 温 差 , 大 气 温 度 T 2C 则 : 一 7 .3 2 = 取 2  ̄, T T= 60 — 2 5 .6 2 ' 40 %> 5 C。根 据 文 献 1 定 , 3规 混凝 土 表 面 和 内部 温 差 应 控 制 在 设计 要 求 的 范 围 内 , 当设 计 无 具 体 的 要 求 时 温 差 不 宜 超 过 2  ̄ 因施 工 图 均无 温 差 要 求 , 以施 工 普 遍 按 不超 过 2℃温 度 5 C。 所 5 控制 , 因此 需采 取 温 控 措 施 。 本 工 程 在 进 行 技 术 、 济 比较 的前 经 提 下采 取 外 保 内 降 的综 合 优 化 温 度 控 制 方 案 。
相关文档
最新文档