江西师大附中、临川一中(理数)
江西省临川第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案
2018—2019学年度上学期临川一中期末考试高三理科数学试卷卷面满分:150 分 考试时间: 120分钟 命题人:朱建洲 审题人:许卫民、张文军一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1M =-,{}2,N x x a a M ==∈,则集合=⋃N M ( ) A.{}1,0,1-B. {}2,0,2-C. {}0D.{}2,1,0,1,2--2.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作5~10年的员工400人,工作0~5年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作5~10年的员工代表有( ) A .8人B .16人C .4人D .24人3.在ABC ∆中,,1CA CB CA CB ⊥==,D 为AB 的中点,将向量CD u u u r 绕点C 按逆时针方向旋转90o得向量CM u u u u r ,则向量CM u u u u r在向量CA u u u r 方向上的投影为( )A.1-B.1C.12-D.124.已知复数(2i)i 5i(,)m n m n -=+∈R ,则复数i1im n z +=-的共轭复数z 虚部为( ) A .32B .32-C .72D .72- 5.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8 C. 3 D .4 6.已知某几何体的三视图如图所示,则该几何体的体积为( ) A. 2π B. 3π C. 5π D. 7π 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图,给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出v 的值为( )A. 621-B. 62C. 631- D. 63 8.若20π<<x ,则1tan <x x 是1sin <x x 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.如图,在由0x =, 0y =, 2x π=,及cos y x =围成区域内任取一点,则该点落在0x =,sin y x =及cos y x =围成的区域内(阴影部分)的概率为( )A. 212-B. 212- C. 322- D. 21- 10.在三棱锥S ABC -中,2AB BC ==, 2SA SC AC === ,二面角S AC B--的余弦值是 33,则三棱锥S ABC -外接球的表面积是( )A. 32π B. 2π C. 6π D. 6π11.已知函数ln ,0()ln(),0mx x x f x mx x x ->⎧=⎨+-<⎩.若函数()f x 有两个极值点12,x x ,记过点11(,())A x f x 和22(,())B x f x 的直线斜率为k ,若02k e <≤,则实数m 的取值范围为( )A.1(,2]eB.1(,]e eC.(,2]e eD.1(2,]e e + 12.已知抛物线C :()022>=p py x 的焦点到准线的距离为2,直线1+=kx y 与抛物线C交于N M 、两点,若存在点()1,0-x Q 使得QMN ∆为等边三角形,则=MN ( ) A. 8 B. 10 C. 12 D. 14第Ⅱ卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知菱形ABCD 中,2=CD ,060=∠ABC ,分别以A 、B 、C 、D 为圆心,1为半径作圆,得到的图形如下图所示,若往菱形内投掷10000个点,则落在阴影部分内的点约有________________个.(3取1.8) 14.设⎰-=22cos ππxdx a ,则421⎪⎭⎫⎝⎛++x a x 的展开式中常数项为_________.15.已知数列{}n a 的首项21=a ,方程23cos sin 12019-=-⋅+⋅+n n a x a x x 有唯一实根,则数列{}n a 的前n 项和为_________.16.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线PB PA ,,切点分别为B A ,,若存在点P 使得→→→=+PO PB PA 23,则实数a 的取值范围是 .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知ABC △中,2BC =,45B =︒,(01)AD AB λλ=<<u u u r u u u r.(I )若1=∆BCD S ,求CD 的长;(II )若30A =︒,31=λ,求sin sin ACDDCB ∠∠的值.18.(本小题满分12分)如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,BE EC ⊥,6BC =,3AB =30ABC ∠=︒.(I )求证:AC BE ⊥;(II )若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值.19. (本小题满分12分)已知椭圆()222210x y a b a b+=>>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63x 轴正半轴一点(),0m 且斜率为33-的直线l 交椭圆于,A B 两点.(I )求椭圆的标准方程;(II )是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由.20.(本小题满分12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:表(1) 表(2)(I )将表(1)补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(II )现从表(2)中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为X ,求X 的分布列及数学期望()E X .n a b c d =+++.21.(本小题满分12分)已知函数)(1ln )(R a x ax x f ∈--=. (I )求)(x f 的单调区间; (II )若0=a ,令223)1()(++++=x x tx f x g ,若1x ,2x 是)(x g 的两个极值点,且0)()(21>+x g x g ,求正实数t 的取值范围.选做题(本小题满分10分):(以下两道选做题任选一道,若两道都做按第一道给分) 22.在直角坐标系xOy 中,直线l 的参数方程为5cos sin x t y t αα=+⎧⎨=⎩,(t 为参数,α为直线倾斜角).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4cos ρθ=.(Ⅰ)当45α=o 时,求直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)已知点C 的直角坐标为(2,0)C ,直线l 与曲线C 交于,A B 两点,当ABC ∆面积最大时,求直线l 的普通方程.23.已知函数错误!未找到引用源。
江西省临川区第一中学高二上学期期中考试数学(理)试题
临川一中2015-2016学年度上学期期中考试高二数学(理)试卷考试时间:120分钟;命题人:艾菊梅 审题人:邹冲注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一个选项是符合题目要求的.)1.设集合,,则=( )A . B.C.11{(),(),(0,1)}2222-- D . 2.已知平面向量,,则向量( )A .B .C .D .3. 一名小学生的年龄和身高(单位:cm )的数据如下表:由散点图可知,身高与年龄之间的线性回归方程为,则 的值为( )A .65B .74C .56D .47 4.是方程表示的曲线是椭圆的( )A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件5. 某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为 ( ) A . B . C . D . 6.下列说法中正确的是 ( )A.“”是“函数是奇函数”的充要条件; B.若2000:,10p x x x ∃∈-->R .则2:,10p x x x ⌝∀∈--<R ;C .若为假命题,则均为假命题;D .“若,则”的否命题是“若,则”.7. 已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+011y y x y x 所表示的平面区域为,若直线与平面区域有公共点,则的取值范围为是 ( ) A . B . C . D .8. 已知点在平面内,且对空间任意一点, y x 2-+=,则的最小值为( ) A . B . C . D .9. 在正方体为的中点,是棱中,O DD M D C B A ABCD 11111-底面, 任一点,则直线所成角为( )A .B .C .D .不能确定10.执行如图所示的程序框图,要使输出的S 的值小于1,则输入 的t 值不能是下面的 ( )A .8B .9C .10D .11 11. 已知数列满足312ln ln ln ln 32258312n a a a a n n +⋅⋅⋅⋅=-(),则( )A .B .C .D . 12. 定义域为R 的函数满足,当时,()[)()[)21.5,0,10.5,x 1,2x x xx f x -⎧-∈⎪=⎨-∈⎪⎩,若时,恒成立,则实数t 的取值范围是( )A. B. C. D.第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.已知为等比数列,,则 .14.已知=1,=2,与的夹角为,那么 . 15.由直线上的一点向圆引切线,则切线长的最小值 为 . 16. 设⎩⎨⎧∈-+-∈=)5,1[56)1,0(ln )(2x x x x xx f 若函数在区间上有三个零点,则实数的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步 骤.) 17.(本小题满分10分)在中,分别为内角的对边,且 .⑴ 求角的大小; ⑵ 设函数2cos 2cos 2sin 3)(2xx x x f +=,当取最大值时,判断的形状.18.(本小题满分10分)已知函数()(2)(3)f x x m x m =-++(其中),F EC 1B 1A 1CBA.⑴ 若命题是假命题,求的取值范围; ⑵ 若命题,命题满足或为真命题,若 是的必要不充分条件,求的取值范围.19.(本小题满分12分)设有关于的一元二次方程.⑴ 若是从四个数中任取的一个数,是从三个数中任取的一个数, 求上述方程有实根的概率;⑵ 若是从区间任取的一个数,是从区间任取的一个数,求上述方 程有实根的概率.20.(本小题满分12分)如图,三棱柱中,侧棱平面, 为等腰直角三角形,,且分别是的 中点. ⑴ 求证:平面;⑵求锐二面角的余弦值; ⑶若点是上一点,求的最小值.21.(本小题满分13分)已知圆的圆心为,,半径为, 圆与离心率的椭圆)0(1:2222>>=+b a bya x E 的其中一个公共点为,、分别是椭圆的左、右焦点. ⑴ 求圆的标准方程;⑵ 若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.22.(本小题满分13分)若函数对定义域中任意均满足 ()(2)2f x f a x b +-=,则称函数的图象关于点对称. (1)已知函数的图象关于点对称,求实数m 的值; (2)已知函数在上的图象关于点对称,且当 时,,求函数在上的解析式; (3)在(1)(2)的条件下,当时,若对任意实数,恒有 成立,求实数的取值范围.临川一中2015-2016学年度上学期期中考试高二数学(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分,每题只有一个正确答案)1.A2.C3.A4.B5.C6.D7.C8.D9.C 10.A 11.D 12.D二、填空题(本大题共4小题,每小题5分,共20分)13. 4 14. 15. 16.三、解答题(本大题共6小题,共70分,解答应写出文字说明, 证明过程或演算步骤)17.(1);(2)△ABC 为等边三角形.【解析】(1)在△ABC 中,因为b 2+c 2-a 2=bc ,由余弦定理 a 2= b 2+c 2-2bccosA 可得 cosA=. ∵ 0<A<π ∴. (2)2cos 2cos 2sin 3)(2xx x x f +=11sin cos 222x x =++ ,∵ ∴ ∴∴当,即时,有最大值是又∵, ∴ ∴△ABC 为等边三角形. 18.(1)(2)19.(1)(2)【解析】设事件为“方程有实根”. 当,时,方程有实根的充要条件为. (1)基本事件共12个:(00)(01)(02)(10)(11)(12)(20)(21)(22)(30)(31)(32),,,,,,,,,,,,,,,,,,,,,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(2)试验的全部结束所构成的区域为{}()|0302a b a b ,,≤≤≤≤. 构成事件的区域为{}()|0302a b a b a b ,,,≤≤≤≤≥.所以所求的概率为2132222323⨯-⨯==⨯.20.(1)证明:由条件知平面,令,经计算得23,23,2611===E B EF F B ,即,又因为平面(2)过作,连结 由已知得 平面就是二面角的平面角 经计算得553,10301==M B MF ,66cos 11==∠M B MF MF B法二:空间向量法(3) 21.(1);(2) 能相切,直线的方程为,椭圆的方程为.【解析】(1)由已知可设圆的方程为()()2253x m y m -+=<, 将点的坐标代入圆的方程,得,即,解得或, ,. 圆的方程为.(2)直线与圆相切,依题意设直线的方程为, 即,若直线与圆相切,则. ,解得或.当时,直线与轴的交点横坐标为,不合题意,舍去. 当时,直线与轴的交点横坐标为, ,,.由椭圆的定义得122a AF AF =+==,,132e ∴==>,故直线能与圆相切. 直线的方程为,椭圆的方程为.22.(1);(2);(3). 【解析】(1)由题设可得,即222x mx m x mx mx x++-++=-,解得. (2)当时,且,∴2()2()1g x g x x ax =--=-++. (3)由(1)得,其最小值为.222()1()124a a g x x ax x =-++=--++,①当,即时,,得;②当,即时,, 得;由①②得.。
江西省临川第一中学暨临川一中实验学校2023届高三一轮复习验收考试理科数学试卷
临川一中暨临川一中实验学校2023届高三一轮复习验收理科数学命题人:谭华审题人:肖婷琴本试卷共4页,23小题,满分150分,考试时间120分钟【注意事项】1.答题前,请您务必将自己的姓名、准考证号用书写黑色字迹的0.5毫米签字笔填写在答题卡和答题纸上.2.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案,请保持卡面清洁和答题纸清洁,不折叠、不破损.3.考试结束后,请将试卷和答题纸一并交回.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21xA y y ==-,()12log 2B x y x ⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭,则A B =A.(]1,2-B.()1,2- C.(],2-∞ D.(),2-∞2.已知i5ia +=-,则正实数=a A.1B.2C.3D.23.下表为某外来生物物种入侵某河流生态后的前3个月繁殖数量y (单位:百只)的数据,通过相关理论进行分析,知可用回归模型()1eR aty a +=∈对y 与t 的关系进行拟合,则根据该回归模型,预测第6个月该物种的繁殖数量为A.3e 百只B. 3.5e 百只C.4e 百只D. 4.5e 百只4.平面向量a ,b 满足3=a b ,且4-=a b ,则a 与-a b 夹角的正弦值的最大值为A.14B.13C.12D.235.青铜器是指以青铜为基本原料加工而成的器皿、用器等.青铜器以其独特的器形,精美的纹饰,典雅的铭文向人们揭示了我国古代杰出的铸造工艺和文化水平.图中所示为觚,长身,侈口,口底均成喇叭状,外形近似双曲线的一部分绕虚轴所在直线旋转而成的曲面.已知,该曲面高15寸,上口直径为10寸,下口直径为7.5寸.最小横截面直径为6寸,则该双曲线的离心率为第t 个月123繁殖数量y1.4e 2.2e 2.4eA.53B.135C.52D.746.已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=A.-2B.-1C.0D.17.在ABC △中,39A B C ==,cos cos cos cos cos cos A B B C C A ++=A.14B.14-C.13D.13-8.已知C ,D 是圆O :229x y +=上两个不同动点,直线()()120m x y m ++-+=恒过定点P ,若以CD 为直径的圆恒过点P ,则CD 的最小值为A.42- B.42+ C.822- D.822+9.对于2()(221)T n n n =++单位时间(表示代码中一条语句执行一次的耗时)的算法A 来说,由于分析的是代码执行总时间()T n 和代码执行次数n 之间的关系,可不考虑单位时间.此外,若用()f n 来抽象表示一个算法的执行总次数,则前面提到的算法可抽象为2(1)22n f n n =++,因此我们可以记作()(())T n O f n =,其中O 表示代码的执行总时间()T n 和其执行总次数()f n 成正比.这种表示称为大O 记法,其表示算法的时间复杂度.在大O 记法中,非最高次项及各项之前的系数及对数的底数可以忽略,即上面所提的算法A 的时间复杂度可以表示为2()O n .对于如下流程所代表的算法,其时间复杂度可以表示为A.(log )O nB.(log )O n nC.2()O nD.(1)O 10.已知正项数列{}n a 满足11a =,且11111n n n n n a a a a a ++⎛⎫-=⎪⎪⎭,100S 为{}n a 前100项和,下列说法正确的是A.1007665S <<B.1006554S << C.1005443S << D.1004332S <<11.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,12AA =,1AB BC ==,90ABC ∠=︒,三棱柱外接球的球心为O ,点E 是侧棱1BB 上的一动点.下列说法不正确的是A.直线AC 与直线1C E 是异面直线B.1A E 与1AC 不垂直C.三棱锥1E AA O -的体积为定值D.1AE EC +的最小值为2212.已知215,sin ,lg 933a b c ===,则,,a b c 的大小关系为A.a b c >>B.a c b >>C.c b a>> D.c a b>>二、填空题:本题共4小题,每小题5分,共20分.13.若2023220230122023(13)a a x a x a x +=++++…,则01234520222023a a a a a a a a +--+++--=…__________.14.在棱长为1的正方体1111ABCD A B C D -的8个顶点中,随机选取4个构成一个四面体,记该四面体的体积为V ,则V 的数学期望EV =__________.15.已知()sin f x x ω=的周期2T =,将()f x 的图象向右平移23个单位长度得到()g x 的图象.记()f x 与()g x 在y 轴左侧的交点依次为12,n A A A …,在y 轴右侧的交点依次为12,n B B B …,O为坐标原点,则1122n n OA OB OA OB OA OB ⋅+⋅+++=…__________.16.已知曲线C 是抛物线[]28(1),1,3y x x =-∈的一部分,将曲线C 绕坐标原点O 逆时针旋转α,得到曲线C'.若曲线C'是函数()f x 的图象,且()f x 始终在其定义域内单调递减,则tan α的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知ABC △的内角,,A B C 所对边的长分别为,,a b c ,且22222b c a +=.(1)若1tan 3C =,求A 的大小;(2)当A C -取得最大值时,试判断ABC △的形状,并说明理由.18.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,平面PAB ⊥平面PBC ,22PB PC ==,AB AP =,,M N 分别为,BP AD 的中点,且PC MN ⊥.(1)证明:PC AD ⊥;(2)若ABP △为正三角形,求直线MN 与平面PAC 所成角的余弦值.19.疫情防控期间,某学校为保障师生们的安全,建立了值日教师定点巡逻机制.已知X 老师被安排在高二年级教学楼第3层,该层共有高二9班、高二10班,高二11班3个班.假设X 老师每天早上7点开始巡逻,首先来到高二10班,此后每停留5分钟后其巡逻地点按如下方式变化:①若X 老师在高二9班,则有50%的可能前往高二11班,50%的可能前往高二10班;②若X 老师在高二10班,则有80%的可能前往高二9班,20%的可能前往高二11班;③若X 老师在高二11班,则有50%的可能前往高二9班,50%的可能前往高二10班.设X 老师在9班的可能性为i P (i 为转换地点的次数).(1)求早上7:15时X 老师在9班的可能性2P ;(2)随着时间的推移,X 老师在哪个班结束巡逻的概率最大?请说明理由.20.已知,A B 是椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,12,F F 是E 的左、右焦点,5(2,3M 是椭圆上一点,且12MF F △的内心的纵坐标为23.(1)求椭圆E 的标准方程;(2)若P 是椭圆E 上异于,A B 的一动点,过,A B 分别作12,l PA l PB ⊥⊥,12,l l 相交于点Q .则当点P 在椭圆E 上移动时,求1211QF QF +的取值范围.21.已知()()21ln ,2f x x x a x a a =---∈R .(1)判断函数()f x 的单调性;(2)已知()()112g x f x a a x a ⎛⎫=+-+-⎪⎝⎭,若12,x x 是函数()g x 的两个极值点,且12x x <,求证:()()12102f x f x <-<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为πsin 06ρθ⎛⎫-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)已知点()0,2P m ,若l 与C 交于A ,B 两点,且32PA PB =,求m 的值.【选修4-5:不等式选讲】23.已知()(,,)f x x a x b c a b c =-+++∈R 的最小值为3.(1+(2)证明:2222221()1112b c a ab bc ac a b c ++≥+++++。
江西高考理科数学摸底卷 (18)(看主页共18套)
江西师大附中、临川一中联考数学试卷(理)一、选择题:1.已知a ∈R ,设集合A ={x ||x -1|≤2a -a 2-2},则A 的子集个数共有 A .0个 B .1个 C .2个 D .无数个 2.函数y =log 12x (x >2)的反函数是A .y =2x (x <-1)B . y =(12)x (x >-1) C .y =2-x (x <-1) D .y =(12)-x (x >-1) 3.设等差数列{a n }的前n 项和为S n ,若S 13=78,a 7+a 12=10,则a 17= A .2 B .3 C .4 D .14 4.下列函数中,为偶函数的是 A .f (x )=sin(2009π2+x ) B .f (x )=cos(2009π2+x )C .f (x )=tan(2009π2+x )D .f (x )=cot(2009π2+x )5.若a 、b 、c 为实数,则下列命题正确的是A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2>ab >b 2C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab6.已知函数f (x )=m -2x +4x -2(m ≠0)满足条件:f (x +a )+f (a -x )=b (x ∈R ,x ≠2),则a +b 的值为 A .0 B .2 C .4 D .-2 7.已知函数f (x )满足条件①f (x )>0;②对任意x 、y ∈R ,都有f (x +y )=f (x )·f (y );③x >0时,0<f (x )<1.则不等式f -1(x 2-4x +3)>f -1(3)的解集为 A .(-∞,0)∪(4,+∞) B .(0,4) C .(0,1)∪(3,4) D .(-∞,0)∪(3,4)8.设正三棱锥P -ABC 的内切球半径为r ,高为h ,则条件h =4r 是正三棱锥P -ABC 成为正四面体的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件9.已知函数f (x )=⎩⎪⎨⎪⎧x +12 (x ≤12)2x -1 (12<x <1)x -1 (x ≥1),若数列{a n}满足a 1=73,a n +1=f (a n )(n ∈N *),则a 2009=A .43B .13C .56D .2310.满足A =300,BC =10的△ABC 恰好有不同两个,则边AB 的长的取值范围为 A .(10, 20) B .(5, 10) C .(20,+∞) D .(5, 10)∪(20,+∞) 11.如图所示,在△OAB 中,OA >OB ,OC =OB ,设OA →=a ,OB →=b ,若AC →=λ·AB →,则实数λ的值为 A .a ·(a -b )|a -b | B .a ·(a -b )|a -b |2C .a 2-b 2|a -b |D .a 2-b 2|a -b |212.若[]0,απ∈,,44ππβ⎡⎤∈-⎢⎥⎣⎦,λ∈R ,且3c o s 202πααλ⎛⎫---= ⎪⎝⎭,34sin cos 0βββλ++=,则cos 2αβ⎛⎫+ ⎪⎝⎭的值为A .0B . 12C . 22D . 32二、填空题:13.已知OP 1 →=(cos θ,sin θ),OP 2 →=(3-cos θ,4-sin θ),若OP 1 →∥OP 2 →,则cos2θ= .14.设等比数列{a n }的前n 项和2n n S a =+,等差数列{b n }的前n 项和22n T n n b =-+,则a +b = .15.已知函数()()2log 45a f x x a x a ⎡⎤=---+⎣⎦(a >0,a ≠1)在[1,2]是增函数,则实数a 的取值范围是 .16.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AB 、CC 1的中点,△MB 1P 的顶点P 在棱CC 1与棱C 1D 1上运动,有以下四个命题:A .平面MB 1P ⊥ND 1; B .平面MB 1P ⊥平面ND 1A 1;C .△MB 1P 在底面ADD 1A 1上的射影图形的面积为定值; D .△MB 1P 在侧面D 1C 1CD 上的射影图形是三角形.其中正确命题的序号是 .三、解答题:AA 117.已知函数f (x )=3a sin ωx -a cos ωx (a >0,ω>0)的图象上两相邻最高点的坐标分别为(π3,2)和(4π3,2).(1)求a 与ω的值;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且f (A )=2,求b -2ca cos(600+C )的值.18.已知函数f (x )=log 2(x +3x -a )的定义域为A ,值域为B .(1)当a =4时,求集合A ;(2)设I =R 为全集,集合M ={x |y =x 2-x +1(a -5)x 2+2(a -5)x -4},若(C I M )∪(C I B )=○∕,求实数a 的取值范围.19.如图所示,四边形OABP 是平行四边形,过点P 的直线与射线OA 、OB 分别相交于点M 、N ,若OM —→=x OA —→,ON —→=y OB —→.(1)把y 用x 表示出来(即求y =f (x )的解析式); (2)设数列{a n }的首项a 1=1,前n 项和S n 满足:S n =f (S n -1)(n ≥2),求数列{a n }通项公式.20.如图所示,在三棱柱ABC -A 1B 1C 1中,AB =AC =5,侧棱AA 1与底面ABC 成600角,∠OABPMN21.设方程3tan 2πx -4tan πx +3=0在[n -1,n )(n ∈N *)内的所有解之和为a n .(1)求a 1、a 2的值,并求数列{a n }的通项公式;(2)设数列{b n }满足条件:b 1=2,b n +1≥a b n ,求证: 12b 1-3+12b 2-3+…+12b n -3<2.22.若函数f (x )=ax 3+bx 2+cx +d 是奇函数,且f (x )极小值=f (-33)=-239.(1)求函数f (x )的解析式;(2)求函数f (x )在[-1,m ](m >-1)上的最大值;(3)设函数g (x )=f (x )x 2,若不等式g (x )·g (2k -x )≥(1k -k )2在(0,2k )上恒成立,求实数k 的取值范围.联考数学试题(理)参考答案一、选择题:BCAA BDCC DADC二、填空题:13.-725; 14.-1; 15.(0, 1)∪[2,3]; 16.BC 三、解答题:17.解(1)f (x )=3a sin ωx -a cos ωx =2a sin(ωx -π6)由已知知周期T =4π3-π3=π, 故a =1,ω=2;……………………6分 (2)由f (A )=2,即sin(2A -π6)=1,又-π6<2A -π6<11π6, 则2A -π6=π2,解得A =π3=600…8分故b -2c a cos(600+C )=sin B -2sin C sin A cos(600+C )=sin(1200-C )-2sin Csin600cos(600+C )=32cos C +12sin C -2sin C 32(12cos C -32sin C )=32cos C -32sin C12(32cos C -32sin C )=2.……12分18.解:(1)当a =4时,由x +3x -4=x 2-4x +3x =(x -1)(x -3)x >0, 解得0<x <1或x >3,故A ={x |0<x <1或x >3}………………6分 (2)由(C I M )∪(C I B )=○∕,得C I M =○∕,且C I B =○∕, 即M =B =R ,…………………8分若B =R ,只要u =x +3x -a 可取到一切正实数, 则x >0及u min ≤0,∴u min =23-a ≤0, 解得a ≥23……①………10分若M =R ,则a =5或⎩⎨⎧a -5≠0△=4(a -5)2+16(a -5)<0 解得1<a ≤5……②由①②得实数a 的取值范围为[23,5]……………………12分 19.解:(1)OP —→=AB —→=OB —→-OA —→,则NM —→=OM —→-ON —→=x OA —→-y OB —→,OAPMNMP —→=OP —→-OM —→=(OB —→-OA —→)-x OA —→=-(1+x )OA —→+OB —→又NM —→∥MP —→,有x -y (1+x )=0,即y =x x +1 (x >0);…………6分(2)当n ≥2时,由S n =f (S n -1)=S n -1S n -1+1,则1S n =S n -1+1S n -1=1S n -1+1………8分又S 1=a 1=1,那么数列{1S n}是首项和公差都为1的等差数列,则1S n=1+(n -1)=n ,即S n =1n ,……………………10分故a n =⎩⎨⎧1 (n =1)S n -S n -1(n ≥2)=⎩⎪⎨⎪⎧1 (n =1)-1n (n -1)(n ≥2).………………12分20.(1)证明:⎭⎬⎫AB =AC ∠BAA 1=∠CAA 1⇒A 1在底面ABC 上的射影H 必 在∠BAC 的平分线AM 上,⎭⎬⎫在△AA 1H 中,∠HAA 1=600,AA 1=2,得AH =1又在△ABC 中,AB =AC =5,BC =2,得AM =2⇒H 为AM 的中点,即H 与O 重合,故A 1O ⊥平面ABC ;………………4分 (2)如图,过O 作ON ⊥AC 于N ,连A 1N ,由三垂线定理知 ∠ONA 1就是二面角A 1―AC ―B 的平面角, 在Rt △ONA 1中,ON =12AM·MC AC =55,A 1O =3,则tan ONA 1=15故二面角A 1―AC ―B 为arctan 15;…………8分(3)如图,过C 作CP ∥AM ,且CP =AO ,延长AM 至Q , 使MQ =AO ,连PQ ,则平行四边形PQMC ,则点B 到平面C 1AM 的距离=点C 到平面C 1AM 的距离 =点P 到平面C 1AM 的距离d ,⎭⎬⎫⎭⎪⎬⎪⎫⎭⎬⎫CM ⊥AA 1AA 1∥CC 1⇒CM ⊥CC 1CM ⊥AM ⇒CM ⊥平面C 1AMPQ ∥CM⇒PQ ⊥平面C 1AM ,又PQ ⊂平面C 1PQ ,平面C 1PQ ⊥平面C 1AM ,过P 作PS ⊥C 1Q 于S ,则PS ⊥平面C 1AM , 即PS 就是点P 到平面C 1AM 的距离d ,在△C 1PQ 中,PS =d =PQ·C 1P C 1Q =3·12=32.…………12分故点B 到平面C 1AM 的距离为32. (第(2)(3)问用向量坐标法按相应步骤给分) 21.方程3tan 2πx -4tan πx +3=(3tan πx -1)(tan πx -3)=0ABCCMA 1B 1O N C 1A 1BCM OB 1QSA得tan πx =33或tan πx = 3(1)当n =1时,x ∈[0,1),即πx ∈[0,π)由tan πx =33,或tan πx =3得πx =π6或πx =π3 故a 1=16+13=12;………………2分当n =2时,x ∈[1,2),则πx ∈[π,2π)由tan πx =33或tan πx =3,得πx =7π6或πx =4π6 故a 1=76+43=52………………4分 当x ∈[n -1,n )时,πx ∈[(n -1)π,n π)由tan πx =33,或tan πx =3得πx =π6+(n -1)π或πx =π3+(n -1)π 得x =16+(n -1)或x =13+(n -1), 故a n =16+(n -1)+13+(n -1)=2n -32………6分(2)由(1)得b n +1≥a b n =2b n -32……………………8分即b n +1-32≥a b n =2(b n -32)≥22(b n -1-32)≥…≥2n (b 1-32)=2n -1>0……10分 则1 b n +1-32≤12n -1,即12b n +1-3≤12n 12b 1-3+12b 2-3+…+12b n -3≤1+12+…+12n -1=2-12n -1<2.……12分 22.解:(1)函数f (x )=ax 3+bx 2+cx +d 是奇函数,则b =d =0,∴f /(x )=3ax 2+c ,则⎩⎨⎧f /(-33)=a +c =0f (-33)=-3a 9-3c 3=-239⇒⎩⎨⎧a =-1c =1故f (x )=-x 3+x ;………………………………4分(2)∵f /(x )=-3x 2+1=-3(x +33)(x -33)∴f (x )在(-∞,-33),(33,+∞)上是 增函数,在[-33,33]上是减函数, 由f (x )=0解得x =±1,x =0, 如图所示,当-1<m <0时,f (x )max =f (-1)=0;当0≤m <33时,f (x )max =f (m )=-m 3+m , 当m ≥33时,f (x )max =f (33)=239.故f (x )max =⎩⎪⎨⎪⎧0 (-1<m <0)-m 3+m (0≤m <33)239 (m ≥33).………………9分(3)g (x )=(1x -x ),令y =2k -x ,则x 、y ∈R +,且2k =x +y ≥2xy , 又令t =xy ,则0<t ≤k 2,故函数F (x )=g (x )·g (2k -x )=(1x -x )(1y -y )=1xy +xy -x 2+y 2xy =1xy +xy -(x +y )2-2xy xy =1-4k 2t +t +2,t ∈(0,k 2] 当1-4k 2≤0时,F (x )无最小值,不合当1-4k 2>0时,F (x )在(0,1-4k 2]上递减,在[1-4k 2,+∞)上递增,且F (k 2)=(1k -k )2,∴要F (k 2)≥(1k -k )2恒成立, 必须⎩⎪⎨⎪⎧k >01-4k 2>0k 2≤1-4k 2⇒⎩⎪⎨⎪⎧0<k <12k 2≤5-2, 故实数k 的取值范围是(0,5-2)].………………14分。
2023届江西省临川第一中学高三上学期期末考试数学(理)试题(解析版)
2023届江西省临川第一中学高三上学期期末考试数学(理)试题一、单选题1.设集合2{|230}A x Z x x =∈--≤,{0,1}B =,则A C B = A .{3,2,1}--- B .{1,2,3}-C .{1,0,1,2,3}-D .{0,1}【答案】B【详解】由题可知{}1,0,1,2,3A =-,则{}1,2,3A B =-.故本题选B .2.在复平面内,复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则复数12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】利用复数的几何意义写出复数1z ,2z ,再结合共轭复数、复数的乘法运算求解作答.【详解】因复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则2112i,3i z z =-=-+,23i z =--, 于是得12(12i)(3i)55i z z =---=-+, 所以复数12z z 对应的点(5,5)-位于第二象限. 故选:B3.对于实数x ,条件p :152x x +≠,条件q :2x ≠且12x ≠,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】解分式不等式,得到解集,从而作出判断. 【详解】152x x +≠,解得:2x ≠且12x ≠且0x ≠,故p q ⇒,但q p ⇒/,所以p 是q 的充分不必要条件. 故选:A4.设0a >,0b >,且21a b +=,则12a a a b++( )A .有最小值为4B .有最小值为1C .有最小值为143D .无最小值【答案】B【分析】0a >,0b >,且21a b +=,可得12b a =-.代入12a a a b++,化简整理利用基本不等式的性质即可得出.【详解】0a >,0b >,且21a b +=, 120b a ∴=->,解得102a <<.∴12122(1)1212122(1)()2321111a a a a a a a a b a a a a a a a a ---+=+=+-=+-+-=++-+---- 122111a aa a-+=-,当且仅当1a =,3b =-∴12aa a b++有最小值1. 故选:B .【点睛】本题考查基本不等式的性质、方程的解法,考查推理能力与计算能力. 5.设537535714a ,,log 755b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小顺序是 A .b a c << B .c<a<b C .b<c<a D .c b a <<【答案】D【分析】先利用指数函数的性质比较得a>b>1,再分析得c<1,从而得到a,b,c 的大小关系.【详解】553775577()()()755a b -==>=,30577()()1,55b =>=因为314log 5c =3log 31<=,所以c b a <<. 故答案为D【点睛】(1)本题主要考查指数对数函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较大小,一般先把所有的数分成正负两个集合,再把正数和1比,负数和-1比.6.已知(0,)4πα∈,4cos25α=,则2sin ()4πα+=( )A .15B .25C .35D .45【答案】D【解析】首先由角(0,)4πα∈知sin20α>,再利用同角三角函数平方关系求sin 2α,二倍角余弦公式以及诱导公式求2sin ()4πα+即可.【详解】(0,)4πα∈,∴2(0,)2πα∈,又4cos25α=,∴3sin 25α=.2311cos(2)1sin 2452sin ()42225παπαα+-++∴+====. 故选:D.7.已知ABC 的内角,,A B C 的对边分别是,,a b c ,且()()222cos cos a b c a B b A abc +-⋅+=,则角C =( ) A .30° B .45° C .60° D .90°【答案】C【分析】根据余弦定理和正弦定理将条件转化为1cos 2C =,由此可得60C =︒. 【详解】由条件及余弦定理得:()2cos cos cos ab C a B b A abc ⋅+= ∴()2cos cos cos C a B b A c ⋅+=,由正弦定理得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,即2cos sin sin C C C = ∵sin 0C ≠,∴1cos 2C =, 又0180C ︒<<︒,∴60C =︒. 故选:C .8.已知函数()()2log 3a f x x ax =-+在[]0,1上是减函数,则实数a 的取值范围是( )A .()0,1B .()1,4C .()()0,11,4⋃D .[)2,4【答案】D【分析】根据给定的函数,结合对数函数、二次函数单调性,分类讨论求解作答.【详解】函数()()2log 3a f x x ax =-+在[]0,1上是减函数,当01a <<时,22223()330244a a a x ax x -+=-+-≥->恒成立, 而函数23u x ax =-+在区间[]0,1上不单调,因此01a <<,不符合题意,当1a >时,函数log a y u =在(0,)+∞上单调递增,于是得函数23u x ax =-+在区间[]0,1上单调递减, 因此12a≥,并且21130a -⋅+>,解得24a ≤<, 所以实数a 的取值范围是[)2,4. 故选:D9.已知圆C :()()22344x y -+-=和两点(),0A,)(),00Bm >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值为( )ABC .2 D【答案】D【分析】根据点P为半径的圆上和在圆C 上,由两圆有交点求解. 【详解】解:由题意得:点P为半径的圆上, 又因为点P 在圆C 上, 所以只要两圆有交点即可,252-≤≤+,m ≤≤, 所以m故选:D10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 的坐标为,02a ⎛⎫- ⎪⎝⎭,点P 是双曲线在第二象限的部分上一点,且1212∠=∠F PF F PA ,112PF F F ⊥,则双曲线的离心率为( ) A .3 B .2C .32D【答案】B【分析】由角平分线的性质可得1122||||||||PF AF PF AF =及双曲线的定义,化简方程即可求双曲线的离心率. 【详解】如图,因为112PF F F ⊥,所以=-P x c ,由2222(1)ya c b-=-可得21||||b PF y a ==,由双曲线定义可知22||2b PF a a=+,由1212∠=∠F PF F PA 知:PA 平分12F PF ∠,所以1122||||||||PF AF PF AF =,即22222b ac aa b c a a-=++,整理得:222222b c a a b c a -=++, 由222b c a =-,c e a =,可化简为22121121e e e e --=++,即22211121e e -=-++,可得2121e e +=+,解得2e =或1e =(舍去), 故选:B11.在ABC 中,4AB =,3BC =,5CA =,点P 在该三角形的内切圆上运动,若BP mBC nBA =+(m ,n 为实数),则m n +的最小值为( ) A .12B .13C .16D .17【答案】C【分析】设该三角形的内切圆的半径为r ,CA 边上的高为 h ,由BP mBC nBA =+,得到BPm n m nBC BA m n m n+=+++,再利用平行线等比关系求解. 【详解】解:在ABC 中,4AB =,3BC =,5CA =, 设该三角形的内切圆的半径为r , 则()113453422r ⨯++⨯=⨯⨯,解得 1r =, 设CA 边上的高为 h ,则1153422h ⨯⨯=⨯⨯,解得 125h =,因为 BP mBC nBA =+,所以()m n BP m n BC BA m n m n ⎛⎫=++⎪++⎝⎭, 因为点P 在该三角形的内切圆上运动,所以BPm n m nBC BA m n m n+=+++, 设m n BE BC BA m n m n+=++,则 ()BP m n BE =+, 因为1m n m n m n+=++, 则BP m n BE+=,且,,B P E 三点共线,E 在AC 上,由平行线等比关系得:要使m n +,即BP 与BE 之间的比例最小,则点P 内切圆的最高点,如图所示:由222BA BC AC +=,知2B π=,所以()111222ABCS BA BC h AC r BA BC AC =⋅=⋅=⋅++, 由12,5h =所以1r = 所以m n +的最小值为216h r h -=, 故选:C12.若函数()f x 的定义域为R ,且()21f x +偶函数,()31f x -关于点()1,3成中心对称,则下列说法正确的个数为( ) ①()f x 的一个周期为2; ②()()222f x f x =-;③()f x 的一个对称中心为()6,3;④()19157i f i ==∑.A .1B .2C .3D .4【答案】C【分析】由()()2121f x f x +=-+得到()()222f x f x =-+,故②正确;由()31f x -关于点()1,3成中心对称,得到()f x 关于()2,3中心对称,推理出()()4f x f x +=,从而得到周期为4,①错误;由函数的周期及()f x 关于()2,3中心对称,得到一个对称中心为()6,3,③正确;利用函数的周期性及对称性求出函数值的和.【详解】由题意得:()()2121f x f x +=-+,将x 替换为12x -得:11212122f x f x ⎡⎤⎡⎤⎛⎫⎛⎫-+=--+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,即()()222f x f x =-+,②正确;()()2121f x f x +=-+中将x 替换为12x 得:()()11f x f x +=-+,因为()31f x -向左平移13个单位得到()3f x ,而()31f x -关于点()1,3成中心对称,所以()3f x 关于2,33⎛⎫⎪⎝⎭中心对称,故()f x 关于()2,3中心对称,所以()()226f x f x ++-+=,故()()()()()2626116116f x f x f x f x f x +=--+=---=-+-=-⎡⎤⎡⎤⎣⎦⎣⎦, 所以()()()()()46266f x f x f x f x +=-+=--=, 所以()f x 的一个周期为4,①错误;()f x 关于()2,3中心对称,又()f x 的一个周期为4,故()f x 的一个对称中心为()6,3,③正确;()()226f x f x ++-+=中,令1x =得:()()316f f +=,()()226f x f x ++-+=中,令0x =得:()()226f f +=,故()23f =, ()()226f x f x ++-+=中,令2x =得:()()406f f +=,又因为()()04f f =,故()246f =,所以()43f =, 所以()()246f f +=,其中()()()1717441f f f =-⨯=,()()()18181623f f f =-==,()()()1919163f f f =-=,故()()()()()()()()19141234171819i f i f f f f f f f ==++++++⎡⎤⎣⎦∑()()()()466123483657f f f =⨯++++=++=,④正确.故选:C【点睛】若()()f x a f x b c ++-+=,则函数()f x 关于,22a b c +⎛⎫⎪⎝⎭中心对称, 若()()f x a f x b +=-+,则函数()f x 关于2a bx +=对称.二、填空题13.已知P 是椭圆22110036x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,若1260F PF ∠=︒,则12PF F △的面积为________.【答案】【分析】借助韦达定理得1248PF PF ⋅=,再套用面积公式即可. 【详解】易得1212220,216PF PF a F F c +====, 则222121212122cos F F PF PF PF PF F PF =+-⋅∠()21212121222cos PF PF PF PF PF PF F PF =+-⋅-⋅∠,即22121211620222PF PF PF PF =-⋅-⋅⨯,故1248PF PF ⋅=121211sin 604822PF F SPF PF =⋅︒=⨯=,故答案为:14.若(13)n x -展开式中第6项的二项式系数与系数分别为p q 、,则pq=__________. 【答案】1243-【分析】根据二项式定理中二项式系数与项系数的求解即可得. 【详解】有题意可知5C n p =,55C (3)n q =-,所以555C 1C (3)243n n p q ==--.故答案为:1243-.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为26,则模型中九个球的表面积和为__________.【答案】9π【分析】先求出正四面体内切球半径与正四面体棱长和高的关系,再分析大、中、小内切于正四面体的高即可求解.【详解】如图所示正四面体A BCD -,记棱长为a ,高为h ,O 为正四面体A BCD -内切球的球心,延长AO 交底面BCD 于E ,E 是等边三角形BCD △的中心,过A 作AF CD ⊥交CD 于F ,连接BF ,则OE 为正四面体A BCD -内切球的半径, 因为3AF BF ==,233BE BF ==,133EF BF ==, 所以226h AE AF EF ==-, 所以()2222OE BO BE AE OE BE =---614r OE h ===, 由图可知最大球内切于高6264h ==大的正四面体中,最大球半径114r h ==大,中等球内切于高22h h r =-=中大大的正四面体中,中等球半径1142r h ==中中, 最小求内切于高21h h r =-=小中中的正四面体中,最小球半径1144r h ==小小, 所以九个球的表面积之和222114π1449π24V ⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:9π16.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭的极小值点只有一个,则a 的取值范围是_________.【答案】32e e ,49【分析】对()f x 求导,利用导数与函数极值的关系,分类讨论3是否为极值点,结合2e xy x=的图像性质即可求得a 的取值范围.【详解】因为()3e 3()ln 0x f x a x x x x ⎛⎫=-+> ⎪⎝⎭,所以()()4222333e e xx x x x f x a a x x x x -⎛⎫--=-=- ⎪⎝⎭',设2(e )xg x x=(0x >),因为32(e )x x g x x -'=,所以当02x <<时,()0g x '<,当2x >时,()0g x '>, 则2(e )xg x x =在()0,2上单调递减,在()2,+∞上单调递增,①若2e 0x a x -≥恒成立,即2e xa x≤在(0,)+∞上恒成立,因为2222e e e ()24x g x x =≥=,所以22min e e 4x a x ⎛⎫≤= ⎪⎝⎭,此时令()0f x '<,解得03x <<;令0fx,解得3x >;所以()f x 在()0,3单调递减,在(3,)+∞单调递增,有唯一极小值点,满足题意; ②方程2e 0xa x-=有两个不同的根1x ,2x ,且12x x <,当10x x <<和2x x >时,2e 0x a x ->;当12x x x <<时,2e 0xa x-<,因为()f x 只有一个极小值点,所以3是2e 0x a x -=即2e xa x =的一个根,且存在另一个根02m <<,此时3e 9a =;当3e 9a =时,()()3223e e 9x x f x x x -⎛⎫=- ⎪⎝⎭', 令()0f x '<,解得0x m <<;令0fx,解得x >m ;所以()f x 在()0,m 单调递减,在(,)m +∞单调递增,满足题意, 综上:2e 4a ≤或3e 9a =,即32e e 9,4a. 故答案为:32e e ,49. 【点睛】()()223e x x f x ax x-⎛⎫=- ⎝'⎪⎭,因为函数()f x 只有一个极小值点,需对2ex y a x =-的符号进行分类讨论.三、解答题17.已知数列{}n a 满足数列{}1n n a a +-为等比数列,11a =,22a =,且对任意的n *∈N ,2132n n n a a a ++=-. (1)求{}n a 的通项公式;(2)n n b n a =⋅,求数列{}n b 的前n 项和S n .【答案】(1)12n n a -=(2)()121nn -+【分析】(1)利用等比数列的定义以及累加法求通项; (2)利用错位相减法求和.【详解】(1)设{}1n n a a +-的公比为q ,2132n n n a a a ++=-,()2112n n n n a a a a +++-=-又211a a -=,112n n n a a -+∴-=,()()()1211213211211221212n n n n n n a a a a a a a a -----∴=+-+-++-=++++=+=-,又11a =符合上式,所以{}n a 的通项公式为12n n a -=.(2)()1122n n n n b n a n n --=⋅=⋅=⋅,{}n b 的前n 项和为01211222322n n -⋅+⋅+⋅++⋅记01211222322n n S n -=⋅+⋅+⋅++⋅, 则12321222322n n S n =⋅+⋅+⋅++⋅,作差可得01211222222212nn nn n S n n ---++++-⋅=-⋅-=,()121n n S n ∴=-+,因此,数列{}n b 的前n 项和为()121nn -+.18.如图,在直三棱柱111ABC A B C -中,E ,F ,G 分别为线段111,B C B B 及AC 的中点,P 为线段1A B 上的点,1,8,62BG AC AB BC ===,三棱柱111ABC A B C -的体积为240.(1)求点F 到平面1A AE 的距离;(2)试确定动点P 的位置,使直线FP 与平面11A ACC 所成角的正弦值最大. 【答案】2473(2)P 为1BA 中点【分析】(1)由题意,建立空间直线坐标系,求解平面法向量,根据点面距向量计算公式,可得答案;(2)由(1)的空间直角坐标系,求解平面法向量以及直线方向向量,根据线面角与向量夹角的关系,结合二次函数的性质,可得答案. 【详解】(1)在ABC 中,12BG AC =,G 为AC 的中点,=90ABC ∴∠,即AB BC ⊥, 由直三棱柱111ABC A B C -的体积111==2ABC V BB SBB AB BC ⋅⋅⋅⋅,则11×8?6=2402BB ⋅,解得110BB =, 以B 为原点,并分别以1,,BA BC BB 所在直线为,,x y z 轴,建立空间直角坐标系,则()8,0,0A ,()18,0,10A ,()10,0,10B ,()10,6,10C ,()0,0,0B , 由E 为11B C 的中点,则()0,3,10E ,由F 为1BB 的中点,则()0,0,5F ,在平面1AA E 中,取()10,0,10AA =,()=8,3,10AE -,设该平面的法向量为(),,n x y z =, 则1=0=0n AA n AE ⎧⋅⎪⎨⋅⎪⎩,即10=08+3+10=0z x y z ⎧⎨-⎩,令=3x ,则8,0y z ==,故平面1AA E 的一个法向量为()3,8,0n =,取()=8,0,5AF -,由点面距公式,可得F 到平面1AA E 的距离242473==9+64AF n d n⋅-(2)由(1)可知:()8,0,0A ,()18,0,10A ,()0,6,0C ,()10,6,10C ,()0,0,5F , 由1P A B ∈,1A B ⊂平面11AA B B ,则设(),0,P a b ,08,010a b ≤≤≤≤, 设1==(4,0,5)2kBP BA k k ,即()4,0,5P k k ,02k ≤≤,在平面11AA B B 内,取()10,0,10AA =,()=8,6,0AC -,设其法向量(),,m x y z '''=, 则1=0=0m AA m AC ⎧⋅⎪⎨⋅⎪⎩,即10=08+6=0z x y ''-'⎧⎨⎩,令=3x ',则=4,=0y z '',故平面11AA B B 的一个法向量()3,4,0m =,取()=4,0,55FP k k -,设直线FP 与平面11A ACC 所成角为θ,则sin =|cos ,|m FP θ, 则212sin ==53m FP m FP⋅θ⋅⋅ 当=0k 时,P 与B 重合,sin 0θ= 当0k ≠时,12sin =5θ⋅令11=[,)2x k +∞∈,1212sin =55=θ⋅当=1x 时,即=1k ,P 为1BA 中点时,()max 123sin 55θ== 19.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张. (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列. 【答案】(1)23;(2)分布列见解析.【分析】(1)根据古典概型的概率公式,结合组合数即可求解;(2)求得X 所有可能的取值为(单位:元):0,10,20,50,60,求出对应的概率,即可列出分布列.【详解】(1)记顾客中奖为事件A ,11204646210302()453C C C C P A C ⋅+⋅===,即该顾客中奖的概率为23; (2)X 所有可能的取值为(单位:元):0,10,20,50,60,且02462101(0)3C C P X C ⋅===,11362102(10)5C C P X C ⋅===, 232101(20)15C P X C ===,11162102(50)15C C P X C ⋅===,11132101(60)15C C P X C ⋅===, 故X 的分布列为:20.已知抛物线C :22y px =,抛物线上两动点()11,A x y ,()22,B x y ,12x x ≠且126x x +=(1)若线段AB 过抛物线焦点,且10AB =,求抛物线C 的方程.(2)若2:8C y x =,线段AB 的中垂线与x 轴交于点C ,求ABC 面积的最大值. 【答案】(1)28y x =【分析】(1)假设,02p F ⎛⎫⎪⎝⎭,利用12AF BF x x p +=++辨析即可;(2)先计算AB 方程:()0043y y x y -=-,联立抛物线方程,结合韦达定理得AB ,再计算出d =,进而计算三角形面积.【详解】(1)(1)取抛物线焦点为,02p F ⎛⎫⎪⎝⎭,12p AF x =+,22p BF x =+,126AF BF x x p p +=+=++因为AF BF AB +≥,AB 最大值为10, 所以610p +=,4p =,抛物线方程为28y x =.(2)令()11,A x y ,()22,B x y ,设M 为AB 中点,()00,M x y , 又因为126x x +=,所以03x =,()03,,M y 212112084AB y y k x x y y y -===-+, 所以AB 中垂线方程为:()0034y y y x -=--,令()07,0y C =⇒ 所以AB 方程为:()0043y y x y -=- 与抛物线方程联立()022000243222408y y x y y y y y y x ⎧-=-⎪⇒-+-=⎨⎪=⎩,显然,()22000442240y y y ∆=-->⇒-<<.1202y y y +=,2120224y y y ⋅=-AB,.()C 7,0到AB 的距离为d ,12ABC S AB d =⋅==△≤所以ABC S21.已知()2e x f x x x =+-,()2g x x ax b =--,,a b ∈R(1)若()f x 与()g x 在1x =处的切线重合,分别求a ,b 的值. (2)若b ∀∈R ,()()()()f b f a g b g a -≥-恒成立,求a 的取值范围. 【答案】(1)1a e =-,0b = (2)0a =【分析】(1)求出函数的导函数,依题意可得()()11f g =且()()11f g ''=,即可得到方程组,解得即可;(2)依题意可得()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,求出函数的导函数,由()0H a =可得()0H a '=,从而求出a 的值,再验证即可.【详解】(1)解:因为()2e x f x x x =+-,()2g x x ax b =--,所以.()e 21xf x x '=+-,()2g x x a '=-,因为()()11f g =且()()11f g ''=, 即e 212a +-=-且22e 1111a b +-=-⨯-, 解得1a e =-,0b =.(2)解:因为()()()()f b f a g b g a -≥-对b ∀∈R 恒成立,.()()()22222e e b a b b a a b ab b a a b ∴+--+-≥-----对b ∀∈R 恒成立,即()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,()e 1bH b a '=+-因为()0H a =,所以a 是()H b 的最小值点,且a 是()H b 的极值点,即()e 10aH a a '=+-=,因为()a H '在R 上单调递增,且()00H '=,所以0a =,下面检验:当0a =时,()e 10bH b b =--≥对b ∀∈R 恒成立,因为()e 1bH b '=-,所以当0x <时()0H b '<,当0x >时()0H b '>,所以()H b 在(),0∞-上单调递减,在()0,∞+上单调递增. 所以()()00H b H ≥=,符合题意, 所以0a =.22.在平面直角坐标系xOy中,已知直线1:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :3sin x C y θθ=+⎧⎨=⎩(θ为参数)相交于,A B 两点.(1)求直线l 及圆C 的普通方程; (2)已知()1,0F ,求FA FB +的值. 【答案】(1) ()2229x y -+=(2)【分析】(1)利用代入消元法可得直线l 普通方程;利用平方关系可得圆C 的普通方程; (2)将直线参数方程代入圆的标准方程得280t -=,再利用参数的几何意义求解.【详解】解:(1)由112x y t ⎧=⎪⎪⎨⎪=⎪⎩,消去t,得10x -=,即直线l的普通方程为10x -=,由23cos 3sin x y θθ=+⎧⎨=⎩,得3cos 23sin x y θθ=-⎧⎨=⎩,两式平方相加得()2229x y -+=, 即圆C 的普通方程为()2229x y -+=.(2)将1:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩代入()2229x y -+=,得280t -=.设方程的两根为12,t t ,则12t t +=128t t =-.所以1212FA FB t t t t +=+=-=23.已知0a >,0b >.(1)求证:3322a b a b ab +≥+; (2)若3a b +=,求14a b+的最小值.【答案】(1)证明见解析;(2)3.【分析】(1)根据条件得33220a b a b ab -+-≥,从而证明不等式成立;(2)根据条件得()141143a b a b a b ⎛⎫+=++ ⎪⎝⎭,然后利用基本不等式,即可求14a b +的最小值,注意等号成立的条件.【详解】(1)证明:∵0a >,0b >.∴()()332222a b a b ab a a b b b a +--=-+-()()()()2220a b a b a b a b =--=-+≥,∴3322a b a b ab +≥+.(2)∵0a >,0b >,3a b +=,∴()1411414455333b a a a b a b a b a b b ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即1a =,2b =时取等号,∴14a b+的最小值为3.。
2021年江西省抚州市临川一中暨临川一中实验学校高考数学三模试卷(理科)(解析版)
2021年江西省抚州市临川一中暨临川一中实验学校高考数学三模试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.已知集合M={x|3x2﹣4x﹣4<0},N={y||y﹣1|≤1},则M∩N=()A.[0,2)B.(﹣,0)C.[1,2]D.∅2.已知i是虚数单位,复数z=2﹣i,则z•(1+2i)的共轭复数为()A.2+i B.4+3i C.4﹣3i D.﹣4﹣3i3.若a=30.3,b=ln2,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.已知平面向量=(﹣1,2),=(k,1),且,则在上的投影为()A.B.2C.D.15.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A.120B.156C.188D.2406.某几何体的三视图如图所示,则该几何体的侧视图的面积为()A.B.C.D.7.设变量x,y满足约束条件,则目标函数z=2x+y的最大值为()A.7B.8C.15D.168.勾股定理是一个基本的几何定理,中国《周髀算经》记载了勾股定理的公式与证明.相传是在商代由商高发现,故又有称之为商高定理.我国古代称短直角边为“勾”,长直角边为“股”,斜边为“弦”.西方文献中一直把勾股定理称作毕达哥拉斯定理.毕达哥拉斯学派研究了勾为奇数、弦与股长相差为1的勾股数:如3,4,5;5,12,13;7,24,25;9,40,41;…,如设勾为2n+1(n=1,2,3,4,5,……),则弦为()A.2n2﹣2n+1B.4n2+1C.2n2+2n D.2n2+2n+19.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=()A.2B.C.D.10.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]11.定义在R上的偶函数f(x)满足f(x﹣1)=f(x+1),且当x∈[﹣1,0]时,f(x)=x2,函数g(x)是定义在R上的奇函数,当x>0时,g(x)=lgx,则函数h(x)=f(x)﹣g(x)的零点的个数是()A.9B.10C.11D.1212.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.记S n为等比数列{a n}的前n项和.若a1=1,,则S5=.14.二项式(ax﹣)3的展开式的第二项的系数为﹣,则x2dx的值为.15.已知双曲线的右焦点为F,点P在双曲线C上,若|PF|=5a,∠PFO=120°,其中O为坐标原点,则双曲线C的离心率为.16.已知梯形ABCD中,AD∥BC,AB⊥BC,BC=4,CD=2,AD=3,=3,以BE 为折痕将△ABE折起,使点A到达点P的位置,且平面PBE⊥平面EBCD,则四棱锥P﹣EBCD外接球的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.17.已知等比数列{a n}满足条件a2+a4=3(a1+a3),a2n=3a n2,n∈N*,数列{b n}满足b1=1,b n﹣b n﹣1=2n﹣1(n≥2,n∈N*)(1)求数列{a n},{b n}的通项公式;(2)若数列{c n}满足,n∈N*,求{c n}的前n项和T n.18.2021年,福建、河北、辽宁、江苏、湖北、湖南、广东、重庆8省市将迎来“3+1+2”新高考模式.“3”指的是:语文、数学、英语,统一高考:“1”指的是:物理和历史,考生从中选一科:“2”指的是:化学、生物、地理和政治,考生从四种中选两种.为了迎接新高考,某中学调查了高一年级1500名学生的选科倾向,随机抽取了100人统计选考科目人数如表:选考物理选考历史共计男生4050女生共计30(1)补全2×2列联表;(2)将此样本的频率视为总体的概率,随机调查了本校的3名学生,设这3人中选考历史的人数为X,求X的分布列及数学期望;(3)根据表中数据判断是否有95%的把握认为“选考物理与性别有关”?请说明理由.参考附表:P(K2≥k)0.1000.0500.025 k 2.706 3.841 5.024参考公式:K2=,其中n=a+b+c+d.19.已知三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC=CA1=BC,A1B=BC.(Ⅰ)求证:BC⊥平面ACC1A1;(Ⅱ)求直线AB1与平面A1BC所成角的大小.20.已知椭圆+=1(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程.(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.21.已知函数f(x)=me x﹣ln(x+1)+lnm.(Ⅰ)若f(x)在x=0处取到极值,求m的值及函数f(x)的单调区间;(Ⅱ)若f(x)≥1,求m的取值范围.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标下,曲线C1的方程是ρ⋅cosθ﹣3=0,曲线C2的参数方程是(α为参数),点P是曲线C2上的动点.(1)求点P到曲线C1的距离的最大值;(2)若曲线交曲线C2于A、B两点,求△ABC2的面积.[选修4-5:不等式选讲]23.已知函数f(x)=k﹣|x﹣4|,x∈R,且f(x+4)≥0的解集为[﹣1,1].(1)求k的值;(2)若a,b,c是正实数,且,求证:.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知集合M={x|3x2﹣4x﹣4<0},N={y||y﹣1|≤1},则M∩N=()A.[0,2)B.(﹣,0)C.[1,2]D.∅解:因为集合M={x|3x2﹣4x﹣4<0}={x|(x﹣2)(3x+2)<0}=,又N={y||y﹣1|≤1}={y|0≤y≤2},由集合交集的定义可知,M∩N=[0,2).故选:A.2.已知i是虚数单位,复数z=2﹣i,则z•(1+2i)的共轭复数为()A.2+i B.4+3i C.4﹣3i D.﹣4﹣3i解:∵z=2﹣i,∴z•(1+2i)=(2﹣i)(1+2i)=4+3i.∴z•(1+2i)的共轭复数为4﹣3i.故选:C.3.若a=30.3,b=ln2,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a解:∵a=30.3>1,0<b=ln2<1,,∴a>b>c.故选:A.4.已知平面向量=(﹣1,2),=(k,1),且,则在上的投影为()A.B.2C.D.1解:∵,∴﹣k+2=0,即k=2.∴=(1,3),()•=﹣1+6=5,∴在上的投影为:==.故选:A.5.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A.120B.156C.188D.240解:根据题意,分3种情况讨论:①京剧排第一个,越剧、粤剧必须排在一起,有4种情况,此时有4×A22×A33=48种顺序,②京剧排第二个,越剧、粤剧必须排在一起,有3种情况,此时有3×A22×A33=36种顺序,③京剧排第三个,越剧、粤剧必须排在一起,有3种情况,此时有3×A22×A33=36种顺序,则有48+36+36=120种不同的顺序,故选:A.6.某几何体的三视图如图所示,则该几何体的侧视图的面积为()A.B.C.D.解:由题意可知三视图的侧视图是直角三角形,高为2,底面直角边长为:,所以侧视图的面积为:=.故选:C.7.设变量x,y满足约束条件,则目标函数z=2x+y的最大值为()A.7B.8C.15D.16解:作出变量x,y满足约束条件可行域如图:由z=2x+y知,所以动直线y=﹣2x+z的纵截距z取得最大值时,目标函数取得最大值.由得A(3,2).结合可行域可知当动直线经过点A(3,2)时,目标函数取得最大值z=2×3+2=8.故选:B.8.勾股定理是一个基本的几何定理,中国《周髀算经》记载了勾股定理的公式与证明.相传是在商代由商高发现,故又有称之为商高定理.我国古代称短直角边为“勾”,长直角边为“股”,斜边为“弦”.西方文献中一直把勾股定理称作毕达哥拉斯定理.毕达哥拉斯学派研究了勾为奇数、弦与股长相差为1的勾股数:如3,4,5;5,12,13;7,24,25;9,40,41;…,如设勾为2n+1(n=1,2,3,4,5,……),则弦为()A.2n2﹣2n+1B.4n2+1C.2n2+2n D.2n2+2n+1解:设斜边(弦)为x,则股为x﹣1,∴x2=(2n+1)2+(x﹣1)2,解答x=2n2+2n+1,故选:D.9.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=()A.2B.C.D.解:由题意以及正弦定理可知:=,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2sin60°=.故选:C.10.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.11.定义在R上的偶函数f(x)满足f(x﹣1)=f(x+1),且当x∈[﹣1,0]时,f(x)=x2,函数g(x)是定义在R上的奇函数,当x>0时,g(x)=lgx,则函数h(x)=f(x)﹣g(x)的零点的个数是()A.9B.10C.11D.12解:f(x﹣1)=f(x+1),即为f(x+2)=f(x),可得f(x)为周期为2的偶函数,且当x∈[﹣1,1]时,f(x)=x2,画出函数y=f(x)的图象;函数g(x)是定义在R上的奇函数,当x>0时,g(x)=lgx,可得x=0时,g(0)=0,x<0时,g(x)=﹣lg(﹣x),作出y=g(x)的图象,由lg10=1,f(x)的最大值1,可得x>0时,y=f(x)和y=g(x)的图象有9个交点;x=0时,f(0)=g(0)=0;x<0时,y=f(x)和y=g(x)的图象有1个交点;综上可得y=f(x)和y=g(x)的图象共有11个交点,即有h(x)=f(x)﹣g(x)的零点的个数是11.故选:C.12.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围是()A.B.C.D.解:画出函数f(x)的图象如图所示.在R上恒成立即函数y=f(x)的图象恒在直线的图象的下方,且直线过定点,当直线与y=ln(x+1)(x>0)相切时,设切点P(x0,ln(x0+1)),,可得,解得,则直线斜率为,即;当直线与y=﹣x2﹣2x﹣2(x≤0)相切时,此时由,得,令△=(a+2)2﹣4a﹣6=0,得或(舍),所以由图像可知,故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.记S n为等比数列{a n}的前n项和.若a1=1,,则S5=121.解:设等比数列{a n}公比为q,由,则,因为a1=1,代入可得q6=3q5,解得q=3,所以由等比数列的前n项和公式可得,故答案为:121.14.二项式(ax﹣)3的展开式的第二项的系数为﹣,则x2dx的值为3或.解:二项式(ax﹣)3的展开式的通项为T r+1=(ax)3﹣r(﹣)r,∵展开式的第二项的系数为﹣,∴a3﹣1(﹣)1=﹣,解得:a=±1,当a=﹣1时,x2dx=x2dx==[﹣1﹣(﹣8)]=,当a=1时,x2dx=x2dx==[1﹣(﹣8)]=3,∴x2dx的值为3或.故答案为:3或.15.已知双曲线的右焦点为F,点P在双曲线C上,若|PF|=5a,∠PFO=120°,其中O为坐标原点,则双曲线C的离心率为.解:双曲线的右焦点为F,点P在双曲线C上,若|PF|=5a,∠PFO=120°,可得P到左焦点的距离为:7a,可得49a2=4c2+25a2﹣20ac cos120°,可得4e2+10e﹣24=0,e>1解得e=.故答案为:.16.已知梯形ABCD中,AD∥BC,AB⊥BC,BC=4,CD=2,AD=3,=3,以BE 为折痕将△ABE折起,使点A到达点P的位置,且平面PBE⊥平面EBCD,则四棱锥P ﹣EBCD外接球的表面积为16π.解:取BC中点O,过点P作BE的垂线,垂足为F,连接PO,FO,BO=OC=OD=OE=2,在原平面图形中,由AE=1,BE=2,得∠ABE=30°,EBO=60°,则BF=PB×,,,∴,即OP=OB=OC=OD=OE=2,∴球心在BC的中点处,得外接球的半径为2,其表面积为S=4π×22=16π.故答案为:16π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.17.已知等比数列{a n}满足条件a2+a4=3(a1+a3),a2n=3a n2,n∈N*,数列{b n}满足b1=1,b n﹣b n﹣1=2n﹣1(n≥2,n∈N*)(1)求数列{a n},{b n}的通项公式;(2)若数列{c n}满足,n∈N*,求{c n}的前n项和T n.解:(1)设{a n}的通项公式为,n∈N*,由已知a2+a4=3(a1+a3),,得q=3,由已知,即,解得q=3a1,a1=1,所以{a n}的通项公式为.因为b1=1,b n﹣b n﹣1=2n﹣1(n≥2,n∈N*),累加可得.(2)当n=1时,,c1=1,当n≥2时,①,②,由①﹣②得到,,n≥2,综上,,n∈N*.③,④,由③﹣④得到,所以.18.2021年,福建、河北、辽宁、江苏、湖北、湖南、广东、重庆8省市将迎来“3+1+2”新高考模式.“3”指的是:语文、数学、英语,统一高考:“1”指的是:物理和历史,考生从中选一科:“2”指的是:化学、生物、地理和政治,考生从四种中选两种.为了迎接新高考,某中学调查了高一年级1500名学生的选科倾向,随机抽取了100人统计选考科目人数如表:选考物理选考历史共计男生4050女生共计30(1)补全2×2列联表;(2)将此样本的频率视为总体的概率,随机调查了本校的3名学生,设这3人中选考历史的人数为X,求X的分布列及数学期望;(3)根据表中数据判断是否有95%的把握认为“选考物理与性别有关”?请说明理由.参考附表:P(K2≥k)0.1000.0500.025 k 2.706 3.841 5.024参考公式:K2=,其中n=a+b+c+d.解:(1)根据题意补全2×2列联表,如下:选考物理选考历史总计男生401050女生302050总计7030100(2)根据题意知,随机变量X的可能取值为0,1,2,3,且X服从二项分布,由题意知,学生选考历史的概率为,且X~B(3,),计算P(X=0)=•=,P(X=1)=••=,P(X=2)=••=,P(X=3)=•=,所以X的分布列为:X0123P数学期望为E(X)=3×=.(3)由表中数据,计算K2的观测值k=≈4.762>3.841,所以有95%的把握认为“选考物理与性别有关”.19.已知三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC=CA1=BC,A1B=BC.(Ⅰ)求证:BC⊥平面ACC1A1;(Ⅱ)求直线AB1与平面A1BC所成角的大小.【解答】(Ⅰ)证明:取A1C1中点M,连接MC,因为C1C=A1A=A1C,所以MC⊥A1C1,因为A1C1∥AC,所以MC⊥AC,、又因为平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,所以MC⊥平面ABC,又因为BC⊂平面ABC,所以BC⊥MC,CA1=BC,A1B=BC,所以A1B2=BC2+A1C2,所以BC⊥A1C,CM∩A1C=C,所以BC⊥平面ACC1A1.(Ⅱ)解:由(Ⅰ)知BC⊥平面ACC1A1,又因为CA、CM⊂平面ACC1A1,所以BC⊥CA,BC⊥CM,于是CA、CB、CM两两垂直,建立如图所示的空间直角坐标系,不妨设AC=2,A(2,0,0),B(0,2,0),C(0,0,0),B1(﹣1,2,),A1(1,0,),=(0,2,0),=(1,0,),=(﹣3,2,),设平面A1BC的法向量为=(x,y,z),,令z=﹣1,=(,0,﹣1),所以直线AB1与平面A1BC所成角的正弦值为==,故直线AB1与平面A1BC所成角的大小为60°.20.已知椭圆+=1(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程.(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.解:(1)由e=,得3a2=4c2.再由c2=a2﹣b2,解得a=2b.由题意可知,即ab=2.解方程组得a=2,b=1.所以椭圆的方程为.(2)由(Ⅰ)可知点A的坐标是(﹣2,0).设点B的坐标为(x1,y1),直线l的斜率为k.则直线l的方程为y=k(x+2).于是A、B两点的坐标满足方程组消去y并整理,得(1+4k2)x2+16k2x+(16k2﹣4)=0.由,得.从而.所以.设线段AB的中点为M,则M的坐标为.以下分两种情况:①当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是.由,得.②当k≠0时,线段AB的垂直平分线方程为.令x=0,解得.由,,==,整理得7k2=2.故.所以.综上,或.21.已知函数f(x)=me x﹣ln(x+1)+lnm.(Ⅰ)若f(x)在x=0处取到极值,求m的值及函数f(x)的单调区间;(Ⅱ)若f(x)≥1,求m的取值范围.解:(Ⅰ)函数f(x)的定义域是(﹣1,+∞),f′(x)=me x﹣,∵f(x)在x=0处取到极值,∴f′(0)=m﹣1=0,解得:m=1,m=1时,f′(x)=e x﹣,f″(x)=e x+>0,故f′(x)在(﹣1,+∞)递增,而f′(0)=0,故x<0时,f′(x)<0,x>0时,f′(x)>0,f(x)在(﹣1,0)递减,在(0,+∞)递增,故x=0是f(x)的极小值点,符合题意;(Ⅱ)f(x)=me x﹣ln(x+1)+lnm=e x+lnm﹣ln(x+1)+lnm≥1,⇔e x+lnm+x+lnm≥ln(x+1)+x+1①,设g(x)=e x+x,则g(x+lnm)=e x+lnm+x+lnm,g(ln(x+1))=x+1+ln(x+1),故①式等价于g(x+lnm)≥g(ln(x+1)),∵g′(x)=e x+1>0,∴g(x)递增,故只需证明x+lnm≥ln(x+1),即证明lnm≥ln(x+1)﹣x=h(x),而h′(x)=﹣1<0,h(x)递减,故h(x)<h(0)=0,故lnm≥0,m≥1,即m的取值范围是[1,+∞).选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标下,曲线C1的方程是ρ⋅cosθ﹣3=0,曲线C2的参数方程是(α为参数),点P是曲线C2上的动点.(1)求点P到曲线C1的距离的最大值;(2)若曲线交曲线C2于A、B两点,求△ABC2的面积.解:(1)由曲线C1的方程是ρ⋅cosθ﹣3=0,因为x=ρcosθ,所以曲线C1的平面直角坐标方程:x=3,由曲线C2的参数方程是(α为参数),即(α为参数),平方相加,可得(x+2)2+(y+1)2=1,即曲线C2的平面直角坐标方程:(x+2)2+(y+1)2=1,则C2的圆心(﹣2,﹣1)到直线x=3的距离d=3﹣(﹣2)=5,则d max=5+r=6.(2)由曲线,可得C3的直角坐标方程为x﹣y=0,可得C2的圆心(﹣2,﹣1)到直线C3的距离,则,所以△ABC2的面积为.[选修4-5:不等式选讲]23.已知函数f(x)=k﹣|x﹣4|,x∈R,且f(x+4)≥0的解集为[﹣1,1].(1)求k的值;(2)若a,b,c是正实数,且,求证:.【解答】(本小题满分10分)选修4﹣5:不等式选讲(1)解:因为f(x)=k﹣|x﹣4|,所以f(x+4)≥0等价于|x|≤k,由|x|≤k有解,得k≥0,且其解集为{x|﹣k≤x≤k}.又f(x+4)≥0的解集为[﹣1,1],故k=1.…(2)证明:由(1)知=1,又a,b,c是正实数,由均值不等式得:a+2b+3c=(a+2b+3c)()=3+≥3+2+2+2=9,当且仅当a=2b=3c时取等号,所以≥1.…。
江西临川一中七年级数学上册第一单元《有理数》-填空题专项测试卷(培优提高)
一、填空题1.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减.2.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.3.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 4.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm 即1cm 表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.6.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.7.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.8.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,11.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.13.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来14.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.16.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.17.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.18.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.19.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.20.一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.21.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 22.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m .483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m 故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m .故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.23.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则 221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.24.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12) =1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 25.数轴上A 、B 两点所表示的有理数的和是 ________.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1 解析:-1【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2,∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.26.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 27.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,-故答案为: 5.【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.28.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.29.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.30.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.。
江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷
卷面满分:150江西省临川一中2022—2023学年上学期期末考试高三年级数学理科试卷分考试试卷:120分钟命题人:黄维京审题人:上官学辉一、单选题(每题5分,共60分)1.设集合2{|230}A x Z x x =∈-- ,{0,1}B =,则A B =ð()A.{3,2,1}--- B.{1,2,3}- C.{1,0,1,2,3}- D.{0,1}2.在复平面内,复数z 1,z 2对应的向量分别是OA =(1,−2),OB =(−3,1),则复数z 1z 2对应的点位于()A .第一象限B .第二象限C.第三象限D.第四象限3.对于实数,条件G +1≠52,条件G ≠2且≠12,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a >0,b >0,且2a +b =1,则1a +2aa+b ()A.有最小值为4B.有最小值为22+1B.C.有最小值为14D.无最小值5.设a =57,b =c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a6.已知(0,)4πα∈,4cos 25α=,则2sin (4πα+=()A.15B.25C.35 D.457.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2−c 2)⋅(acosB +bcosA)=abc ,则角C =()A.30°B.45°C.60°D.90°8.已知函数=l 2−B +3在0,1上是减函数,则实数的取值范围是()A.0,1B.1,4C.0,1∪1,4D.2,49.已知圆:(−3)2+(−4)2=4和两点o −3s 0),o 3s 0)(>0).若圆上存在点,使得∠B =90°,则的最小值为()A.6B .5 C.2 D.310.已知双曲线22−22=1>0,>0的左、右焦点分别为1,2,点的坐标为−2,0,点是双曲线在第二象限的部分上一点,且∠1B 2=2∠1B ,B 1⊥12,则双曲线的离心率为()A.3B.2C.32D.211.在△B 中,B =4,B =3,B =5,点在该三角形的内切圆上运动,若B =B+B (s 为实数),则+的最小值为()A.12B.13C.16D.1712.若函数的定义域为,且2+1偶函数,3−1关于点1,3成中心对称,则下列说法正确的个数为()①的一个周期为2②2x =2−2x③的一个对称中心为6,3④J119=57 A.1B.2C.3D.4二、填空题(每题5分,共20分)13.已知2100+236=1上一点,1,2分别是椭圆的左、右焦点,若∠1B 2=60°,则△B 12的面积为________.14.若(1−3x)n 展开式中第6项的二项式系数与系数分别为p 、q ,则pq =_________.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体BB 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体BB 棱长为26,则模型中九个球的表面积和为__________.16.若函数op=3−o3+lnp的极小值点只有一个,则的取值范围是_________.三、解答题17.(12分)已知数列{}满足数列{r1−}为等比数列,1=1,2=2,且对任意的∈∗,r2=3r1−2.(1)求{}的通项公式;(2)=∙,求数列{}的前n项和S.18.(12分)如图,在直三棱柱B−111中,,,分别为线段11,1及B的中点,为线段1上的点,B=12B,B=8,B=6,三棱柱B−111的体积为240.(1)求点到平面1B的距离;(2)试确定动点的位置,使直线B与平面1B1所成角的正弦值最大.19.(12分)在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.20(12分)已知抛物线:2=2B,抛物线上两动点A x1,y1,B x2,y2,x1≠x2且x1+x2=6(1)若线段AB过抛物线焦点,且B=10,求抛物线C的方程.(2)若线段AB的中垂线与X轴交于点C,求∆ABC面积的最大值.21(12分)已知op =e+2−s op =2−B −,s ∈(1)若op 与op 在x=1处的切线重合,分别求,的值.(2)若∀∈s op −op ≥op −op 恒成立,求的取值范围.四、选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题计分)22.(10分)在平面直角坐标系xOy 中,已知直线312:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :(3sin x C y θθθ=+⎧⎨=⎩为参数)相交于A,B 两点.(1)求直线及圆C 的普通方程;(2)已知(1,0)F ,求||||FA FB +的值.23.(10分)已知0a >,0.b >(1)求证:3+3≥2+B 2;(2)若3a b +=,求14a b+的最小值.。
江西省临川一中
江西省临川一中、师大附中高三(理)科数学联考试卷命题人:严新泉曾冬平一、选择题(本大题共10小题,每小题5分,共50分,每小题只有一个选项是正确)1.已知集合M={0,1,2,3},N={x| <2x<4},则集合M∩(C R N)等于()A.{0,1,2} B.{2,3} C.¢ D.{0,1,2,3}2.已知命题p:lnx>0,命题q:e x>1则命题p是命题q的()条件A.充分不必要B.必要不充分C.充要 D.既不充分也不必要3.方程1-x-xlnx=0的根的个数为()个A.3 B.2 C.1 D.04.等差数列{an}中,前n项的和为Sn,若a7=1,a9=5,那么S15等于()A.90 B.45 C.30 D. 45/25.四张卡片上分别标有数字“2”、“0”、“0”、“9”,其中“9”可当6使用,则由这四张卡片可组成不同的四位数的个数为()A.24 B.18 C.12 D.66.若函数f(x)是定义在R上的偶函数,且对任意x∈R,总有f(x+2)=-f(x)成立,则f(19)等于()A.0 B.1 C.18 D.197.如果直线L,m与平面α、β、γ满足β∩γ=L,,m α,m⊥γ,那么必有()A.m//β且L⊥m B.α//β且α⊥γ C.α⊥β且m//γ D.α⊥γ且L⊥m8.在平面直角坐标系中,若不等式组x+y≥0,x-y+2≥0,x≤k(k为常数)表示的平面区域为面积为16,那么z=2x-y的最大值与最小值的差为()A.8 B.10 C.12 D.169.在△ABC中,角A、B、C所对的边分别为a、b、c,且m=( b-c,cosC),n=(a,cosA),m//n 则cosA的值等于()A. B.- C. D.-10.已知P、Q是椭圆3X2+5Y2=1上满足∠POQ=900的两个动点,则|OP|2+|OQ|2=()A.8 B. C. D.无法确定二、填空题(本大题共5小题,每小题5分,共20分)11.关于x的不等式|log2x|>4的解集为___________.12.一空间几何体的三视图如图所示,则该几何体的体积为___________.13.二项式(2x- )7展开式中x3的系数为___________.14.由曲线f(x)=与y轴及直线y=m(m>0)围成的图形正(主)视图侧(左)视图面积为,则m的值为__________.15.已知函数f(x)=为奇函数,f(1)<f(3),且不等式0≤f(x)≤的解集为[-2,-1]∪[2,4],则f(x)的第12题解析式为______________.俯视图三、解答题(本大题共6小题,共75分,要有适当的答过程)16.(本小题共12分)已知函数f(x)=Asin(ωx+ )(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个点为M(,-2).(1)求f(x)的解析式;(2)若x∈[0,]求函数f(x)的值域;(3)求函数y=f(x)的图象左移个单位后得到的函数解析式.17.(本小题共12分)如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2 ,∠ACB=900,M是AA1的中点,N是BC1的中点.(1)求证:MN//平面A1B1C1;(2)求二面角B-C1M-C的平面角余弦值的大小.18.(本小题共12分)有一种摸奖游戏,一个不透明的袋中装有大小相同的红球5个,白球10个,摸奖者每次随机地从袋中摸出5个球查看后再全部放回,若这5个球中有3个红球则中三等奖,有4个红球则中二等奖,有5个红球则中一等奖.(1)某人摸奖一次,问他中奖的概率有多大?(2)某人摸奖一次,若已知他中奖了,问他中二等奖的概率有多大?19.(本小题共12分)已知数列{an}为等差数列,它的前n项和为Sn,且a3=5,S6=36 .(1)求数列{an}的通项公式;(2)数列{bn}满足bn=(-3)n·a n,求数列{bn}的前n项和T n.20.(本小题共13分)已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).21.(本小题共14分)设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.(1)若直线m与x轴正半轴的交点为T,且A1P·A2Q=1,求点T的坐标;(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;(3)过点F(1,0)作直线L与(2)中的轨迹E交于不同的两点A、B,设FA=λ·FB,若λ∈[-2,-1],求|TA+TB|(T为(1)中的点)的取值范围.。
临川一中数学八年级试卷
一、选择题(每题5分,共50分)1. 若a=2,b=3,则a²+b²=()A. 13B. 11C. 9D. 72. 下列各数中,属于有理数的是()A. √2B. πC. 1/3D. 无理数3. 若a,b是方程2x²+3x-5=0的两根,则a+b的值为()A. -5B. 5C. -1D. 14. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形5. 若x=2是方程2x²-3x+1=0的根,则x²-2x+1=()A. 1B. 0C. -1D. 36. 若a、b、c成等差数列,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 107. 下列函数中,有最小值的是()A. y=x²B. y=x³C. y=x²-1D. y=x²+18. 若sin∠A=3/5,∠A是锐角,则cos∠A的值为()A. 4/5B. 3/5C. 2/5D. 1/59. 若a、b、c是等差数列,且a+b+c=12,则b+c的值为()A. 6B. 9C. 12D. 1810. 下列各式中,正确的是()A. 3x²=3xB. (a+b)²=a²+b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²二、填空题(每题5分,共50分)11. 若a=2,b=3,则a²-b²=______。
12. 下列各数中,属于无理数的是______。
13. 若x=2是方程2x²-3x+1=0的根,则x²-2x+1=______。
14. 下列图形中,不是轴对称图形的是______。
15. 若sin∠A=3/5,∠A是锐角,则cos∠A的值为______。
16. 若a、b、c成等差数列,且a+b+c=12,则b的值为______。
江西省五校2015届高三第一次联考数学(理)试题
江西省五校2015届高三第一次联考数学(理)试题江西师大附中、临川一中、鹰潭一中、宜春中学、新余四中一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 是z 的共轭复数,若1z i =+(是虚数单位),则z z ⋅=( ) A .2- B .1- C .0 D .22.已知集合2{|20}A x x x =--…,{|ln(1)}B x y x ==-,则A B =( ) A .(1,2) B .(1,2] C .[1,1)- D .(1,1)-3.已知命题p :存在x R ∈,使得10lg x x ->;命题q :对任意x R ∈,都有20x >,则( )A .命题“p 或q ”是假命题B .命题“p 且q ”是真命题C .命题“非q ”是假命题D .命题“p 且…非q ‟”是真命题4.已知α为第二象限角,sin cos αα+=,则cos 2α=( )A B C . D .5.一只蚂蚁从正方体1111ABCD A B C D -的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①②B .①③C .③④D .②④6.某教研机构随机抽取某校20个班级,调查各班关注汉字听 写大赛的学生人数,根据所得数据的茎叶图,以组距为5 将数据分组成[)5,0,[)10,5,[)15,10,[)20,15,[)25,20,[)30,25, [)35,30,[]40,35时,所作的频率分布直方图如图所示,则 原始茎叶图可能是( )7.若如下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是( )A. 7=kB. 6k …C. 6<kD. 6>k8.已知定义在区间[3,3]-上的函数()y f x =满足()()0f x f x -+=,对于函数()y f x =的图像上任意两点1122(,()),(,())x f x x f x 都有1212()[()()]0x x f x f x -⋅-<.若实数,a b 满足22(2)(2)0f a a f b b -+-…,则点(,)a b 所在区域的面积为( ) A .8 B . 4 C . 2 D .9.已知直线0x y k +-=(0)k >与圆224x y +=交于不同的两点A 、B ,O 是坐标原点,且有3||||OA OB AB +≥,那么k 的取值范围是( )A. )+∞B.C. )+∞D.10.如图,半径为2的圆内有两条圆弧,一质点M 自点A 开始沿弧A B C O A D C ------做匀速运动,则其在水平方向(向右为正)的速度()v v t =的图象大致为( )二、选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分,本题共5分. 11. (1) (不等式选做题)如果存在实数x 使不等式2315x x a a +---…成立,则实数a 的取值范围为____________.(2) (坐标系与参数方程选做题)在极坐标系中,曲线2cos 4sin ρθθ=的焦点的极坐标___________.(规定:0,02ρθπ<厔)三.填空题:本大题共4小题,每小题5分,共20分. 12.设矩形区域Ω是由直线2x π=±和1y =±所围成的平面图形,区域D 是由余弦函数cos y x =、2x π=±和1y =-所围成的平面图形.在区域Ω内随机的抛掷一粒豆子,则该豆子落在区域D 内的概率是___________.13.已知曲线1()()n f x xn N +*=∈与直线1x =交于点P ,若设曲线()y f x =在点P 处的切线与x 轴交点的横坐标为n x ,则201412014220142013log log log x x x +++的值为___________.14.已知平面向量,()αβαβ≠满足2α=,且α与βα-的夹角为120︒,t R∈,则(1)t t αβ-+的最小值是________________.15.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是12,C C 在第一象限的公共点.若121F F F A =,则2C 的离心率是________.四、解答题:本大题共6个题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2()2sin ()2,,442f x x x x πππ⎡⎤=+∈⎢⎥⎣⎦.设x α=时()f x 取到最大值. (1)求()f x 的最大值及α的值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,12A πα=-,且2sin sin sin B C A =,求b c -的值.17.(本小题满分12分)某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛,其中一道题是连线题,要求将4种不同的工具与它们的4种不同的用途一对一连线,规定:每连对一条得5分,连错一条得-2分.某参赛者随机用4条线把消防工具与用途一对一全部连接起来. (1)求该参赛者恰好连对一条的概率;(2)设X 为该参赛者此题的得分,求X 的分布列与数学期望.18.(本小题满分12分)已知三棱柱ABC —A 1B 1C 1,A 1在底面ABC 上的射影恰为 AC 的中点O ,∠BCA=90°,AC=BC=2,又知BA 1⊥AC 1。
江西省临川第一中学2024-2025学年高一上学期开学考试数学试题
江西省临川第一中学2024-2025学年高一上学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有菱形,第③个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是(A.20B.21C.23.如图,AB是Oe于点C,点D是ee的弦,OC AB^交OÐ的度数为()Ð=o,则OAB28D16.如图,在ABC V 中,//,DE BC EDF C Ð=Ð.(1)求证:BDF A Ð=Ð;(2)若45,A DF Ð=o 平分BDE Ð,请直接写出ABC V 的形状.17.小明的书桌上有一个L型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9o 时(图1),灯带的直射宽DE(BD ⊥BC ,CE ⊥BC )为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30o 时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)()sin90.16,cos90.99,tan90.16»»»o o o18.如图,已知AB 是O e 的直径,AC 是O e 的弦,点D 在O e 外,延长,DC AB 相交于点E ,过点D 作DF AB ^于点F ,交AC 于点,G DG DC =.(1)求证:DE是Oe的切线;(2)若OCE=,求DF的长.e的半径为6,点F为线段OA的中点,819.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).图2学生体质健康条形统计图(1)图1中a=__________,b=__________(2)请补全图2的条形统计图,并估总人数;(3)为听取测试建议,学校选出了3抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.20.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.21.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表则()´+=(人),60045%32%462所以估计该校学生体质健康测试结果为(3)解:设3名“良好”分别用A B C、、表示,1名“优秀”,用D表示,列表如下:答案第221页,共22页。
2023届江西省临川一中百校联盟高三下学期4月信息卷(三)数学(理)试题(PDF版)
A. 113 9
B. 20 9
C. 2 113 9
8.方程 x2 2y2 4 x 0 表示的曲线是( )
D. 19 9
A.一个椭圆和一个点
B.一个双曲线的右支和一条直线
C.一个椭圆的一部分和一条直线
D.一个椭圆
9.钝角 ABC 的内角 A,B,C 的对边分别是 a,b, c ,若 A ,a 7, c 3 ,则 ABC 的 3
P1
9 10
( 9 )2 10
729 1000
;
(2)甲乙都不中二等奖的概率为: 9 ( 1 1 9 9 ) 369 , 10 10 10 10 10 500
答案第 2 页,共 8 页
甲、乙两人中至少有一人获二等奖的概率为
P2
1
369 500
131 500
.
20.(1)标准方程:
x2 4
D.方差
4.已知命题
p :“x
0 ,都有 3x
1”的否定是“ x
0
,使 3x
1”,命题
q:若
x
y
,则
1 x
1 y
,
在命题① p q ;② p q ;③ p (q) ;④ (p) q 中,真命题是( )
A.①③
B.①④
C.②③
D.②④
5.已知命题 p : x R ,sin x 1;命题 q : x, y R,sin x y sin x sin y ,则下列命
(1)写出 C1 的普通方程与 C2 的极坐标方程;
(2)若 C1 与 C2 有公共点,求 a 的取值范围. 23.已知函数 f (x) 2 | x 1| | x a | (a R) .
(1)若 f x 的最小值为 1,求 a 的值;
(全优试卷)江西师范大学附属中学高三10月月考数学(理)试题Word版含答案
江西师大附中高三年级数学(理)月考试卷命题人:蔡卫强 审题人:郑永盛 2017年10月第Ⅰ卷(选择题部分,共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12|>=xx A ,{}2log 0B x x =<,则A C B =( ) A.()0,1B.(]0,1C. [)1,+∞D.()1,+∞ 2.若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+<B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥D. 存在x R ∈,使得3210x x -+≥ 3.已知角θ的终边经过点()(),30P x x <且cos 10x θ=,则x 等于( ) A .1-B .13-C .3-D.3-4. 为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A. 向左平移512π个单位 B. 向右平移512π个单位 C. 向右平移6π个单位 D. 向左平移6π个单位 5.已知()()()()1231ln 1a x ax f x xx -+<⎧⎪=⎨≥⎪⎩ 的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)6. 已知函数()2tan 2(0,1)1xxa f xb x x a a a =++>≠+,若()12f =,则()1f -等于( )A. 3B. 3-C. 0D. 1-7.函数2ln x x y x=的图象大致是( )AB C D8.已知3tan 44πα⎛⎫+= ⎪⎝⎭,则2cos 4πα⎛⎫-= ⎪⎝⎭( ) A.725B.925 C. 1625D.24259.已知偶函数2f x π⎛⎫+ ⎪⎝⎭,当,22x ππ⎛⎫∈- ⎪⎝⎭时, ()13sin f x x x =+. 设()1a f =,()2b f =, ()3c f =,则( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<10.已知三角形ABC 内的一点D 满足2D A D B D B D C D C D A ===-,且|||||D A D B D C ==,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .494B .434C.D 11. 已知函数()2sin(2)(||)f x x ϕϕπ=-+<,若5(,)58ππ是()f x 的一个单调递增区间,则ϕ的取值范围是( ) A. 93[,]1010ππ-- B. 29[,]510ππ C. [,]104ππD. [,](,)104ππππ--U12.已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,则实数a 的取值范围为( )A. [)1,0- B.[]1,0- C. 3,2⎡⎫-+∞⎪⎢⎣⎭D. 3,2⎛⎤-∞- ⎥⎝⎦第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答. 第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.平行四边形ABCD 中,M 为BC 的中点,若AB AM DB λμ=+,则λμ-=______. 14.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭,其中0ω>.若()12f x f π⎛⎫≤⎪⎝⎭对x R ∈恒成立,则ω的最小值为____.15.设锐角ABC 的三内角,,A B C 所对边的边长分别为,,a b c ,且1,2a B A ==,则b 的取值范围为 . 16. 给出下列命题中①非零向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② ⋅>0是 a b 、的夹角为锐角的充要条件; ③若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则ABC ∆必定是直角三角形;④△ABC 的外接圆的圆心为O ,半径为1,若2AB AC AO +=,且OA CA =,则向量BA 在向量BC 方向上的投影为32. 以上命题正确的是 (注:把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a , b ,c 分别是角A ,B ,C 的对边,且2cos A cos C (1-tan A tan C )=1. (1)求B 的大小;(2)若b =3,求△ABC 面积的最大值. 18.(本小题满分12分)已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)若关于x 的方程()10f x a -+=在x ∈⎣⎡⎦⎤0,π2上有两个不同的实根,求实数a 的取值范围. 19.(本小题满分12分)如图所示的几何体是由棱台111ABC A B C -和棱锥11D AA C C -拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且60BAD ∠=︒,1BB ⊥平面ABCD ,11122BB A B ==.(1)求证:平面1AB C ⊥平面1BB D ; (2)求二面角11A BD C --的余弦值. 20.(本小题满分12分)设离心率为 的椭圆2222:1x y E a b+= 的左、右焦点为12F F 、,点P 是E 上一点,12PF PF ⊥ , 12PF F ∆内切圆的半径为1 .(1)求E 的方程;(2)矩形ABCD 的两顶点C 、D 在直线2y x =+上,A 、B 在椭圆E 上,若矩形ABCD 的周长为 , 求直线AB 的方程.21.(本小题满分12分) 已知函数()22ln f x x x ax =--.(1)若曲线()y f x =在点()()1,1f 处的切线方程为30x y b ++=,求a ,b 的值; (2)如果()1212,x x x x <是函数()f x 的两个零点,()'f x 为函数()f x 的导数, 证明:122'03x x f +⎛⎫< ⎪⎝⎭请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xoy 中,已知圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩()θ为参数,直线l 的参数方程为523x ty t =-⎧⎨=-⎩()t 为参数,定点()1,1P .(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于,A B 两点,求PA PB -的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()1()0f x x a x a a=+++>.(1)当2a =时,求不等式()3f x >的解集; (2)求证:1()()4f m f m+-≥.江西师大附中高三年级数学(理)月考试卷命题人:蔡卫强 审题人:郑永盛 2017年10月第Ⅰ卷(选择题部分,共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12|>=xx A ,{}2log 0B x x =<,则A C B =( ) A.()0,1B.(]0,1C. [)1,+∞D.()1,+∞ 【答案】C2.若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+<B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥D. 存在x R ∈,使得3210x x -+≥ 【答案】D3.已知角θ的终边经过点()(),30P x x <且cos x θ=,则x 等于( ) A .1- B .13-C .3-D.3-【答案】A4. 为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A. 向左平移512π个单位 B. 向右平移512π个单位C. 向右平移6π个单位D. 向左平移6π个单位 【答案】B5.已知()()()()1231ln 1a x a x f x xx -+<⎧⎪=⎨≥⎪⎩ 的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)【答案】C6. 已知函数()2tan 2(0,1)1xxa f xb x x a a a =++>≠+,若()12f =,则()1f -等于( )A. 3B. 3-C. 0D. 1-【答案】A7.函数2ln x xy x=的图象大致是( )AB C D【答案】D8.已知3tan 44πα⎛⎫+= ⎪⎝⎭,则2cos 4πα⎛⎫-= ⎪⎝⎭( ) A.725B. 925C. 1625D.2425【答案】B9.已知偶函数2f x π⎛⎫+ ⎪⎝⎭,当,22x ππ⎛⎫∈- ⎪⎝⎭时, ()13sin f x x x =+. 设()1a f =,()2b f =, ()3c f =,则( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<【答案】D10.已知三角形ABC 内的一点D 满足2D A D B D B D C D C D A ===-,且|||||D A D B D C ==,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( ) A .494B .434C. 3763+D 37233+ 【答案】A11. 已知函数()2sin(2)(||)f x x ϕϕπ=-+<,若5(,)58ππ是()f x 的一个单调递增区间,则ϕ 的取值范围是( ) A. 93[,]1010ππ-- B. 29[,]510ππ C. [,]104ππD. [,](,)104ππππ--U【答案】C12.已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为( )A. [)1,0-B. []1,0-C. 3,2⎡⎫-+∞⎪⎢⎣⎭D. 3,2⎛⎤-∞-⎥⎝⎦【答案】B解:()()12f x g x ≤Q 恒成立 ∴只需()()1min f x g x ≤由()1xg x e x =--得:()'1xg x e =-,令()'0g x >解得:0x >()g x ∴在(),0-∞单调递减,在()0,+∞单调递增 ()()min 00g x g ∴==()10,x ∴∀∈+∞,()211121ln 0ax a x x -++≤恒成立 即只需()max 0f x ≤()()()()2'22112111221ax a x ax x f x ax a x x x-++--=--+== 当0a >时,令21a x a += 则21211ln ln 20a a f a a a ++⎛⎫⎛⎫⎛⎫==+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,与()0f x ≤矛盾当0a ≤时,210ax -< ()'0f x ∴>解得1x < ()f x ∴在()0,1单调递增,在()1,+∞单调递减()()()max 1211f x f a a a ∴==-+=-- 101a a ∴--≤⇒≥-综上所述:[]1,0a ∈-第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分,共20分.13.平行四边形ABCD 中,M 为BC 的中点,若AB AM DB λμ=+,则λμ-=__________.【答案】1314.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭,其中0ω>.若()12f x f π⎛⎫≤⎪⎝⎭对x R ∈恒成立,则ω的最小值为____.【答案】415.设锐角ABC 的三内角,,A B C 所对边的边长分别为,,a b c ,且1,2a B A ==,则b 的取值范围为____.【答案】16. 给出下列命题中① 非零向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② a ⋅b >0是 a b 、的夹角为锐角的充要条件; ③若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则ABC ∆必定是直角三角形;④△ABC 的外接圆的圆心为O ,半径为1,若2AB AC AO +=,且OA CA =,则向量BA在向量BC 方向上的投影为32. 以上命题正确的是 (注:把你认为正确的命题的序号都填上) 【答案】①③④三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2cos A cos C (1-tan A tan C )=1. (1)求B 的大小;(2)若b =3,求△ABC 面积的最大值.解:(1)由2cos A cos C (1-tan A tan C )=1, 得sin sin 2cos cos 11cos cos A C A C A C ⎛⎫-= ⎪⎝⎭.∴()2cos cos sin sin 1A C A C -=. ∴()1cos 2A C +=. ∴ 1cos 2B =-. 又 0B <<π, ∴23B π=. (2)222222cos 3,b a c ac B a c ac ac =+-=++≥又b =3, ∴ 3ac ≤. 1s i n 2ABC S ac B ∆∴=≤所以当且仅当a c ==ABC S有最大值为418.(本小题满分12分)已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)若关于x 的方程()10f x a -+=在x ∈⎣⎡⎦⎤0,π2上有两个不同的实根,求实数a 的取值范围.解析:(1)f (x )=2cos x cos(x -π6)-3sin 2x +sin x cos x =3cos 2x +sin x cos x -3sin 2x +sin x cos x =3cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π3, ∴T =π. (2)()()101f x a a f x -+=⇔-=画出函数()f x 在x ∈⎣⎡⎦⎤0,π212a <-<或01a <-<故a 的取值范围为1)()31,3+.19.(本小题满分12分)如图所示的几何体是由棱台111ABC A B C -和棱锥11D AA C C -拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且60BAD ∠=︒,1BB ⊥平面ABCD ,11122BB A B ==.(1)求证:平面1AB C ⊥平面1BB D ; (2)求二面角11A BD C --的余弦值. 解:(1)∵1BB ⊥平面ABCD ∴1BB ⊥AC在菱形ABCD 中,BD ⊥AC 又1BD BB B ⋂=∴AC ⊥平面1BB D ∵AC ⊂平面1AB C ∴平面1AB C ⊥平面1BB D(2)连接BD 、AC 交于点O ,以O 为坐标原点,以OA以OD 为y 轴,如图建立空间直角坐标系.1(0,1,0),(0,1,0),(0,1,2),B D B A --11111,2)22B A BA A =⇒-,同理11(2C -131(,2)2BA =,(0,2,0)BD =,11(,2BC =-设平面1A BD 的法向量),,(z y x n =∴100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩,则(n =- 设平面DCF 的法向量),,(z y x =10BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩,则m = 设二面角11A BD C --为θ,13cos 19m n m nθ⋅==20.(本小题满分12分)设离心率为 2的椭圆2222:1x y E a b+= 的左、右焦点为12F F 、, 点P 是E 上一点,12PF PF ⊥ , 12PF F ∆内切圆的半径为 1 .(1)求E 的方程;(2)矩形ABCD 的两顶点C 、D 在直线2y x =+上,A 、B 在椭圆E 上,若矩形ABCD 的周长为, 求直线AB 的方程. 解:(1)直角三角形12PF F 内切圆的半径12121(||||||)2r PF PF F F a c =+-=- 依题意有1a c -=又2c a =,由此解得1a c ==,从而1b =故椭圆E 的方程为2212x y += (2)设直线AB 的方程为y x m =+,代入椭圆E 的方程,整理得2234220x mx m ++-=,由0∆>得m <<设1122(,),(,)A x y B x y ,则21212422,33m m x x x x -+=-=21|||AB x x =-=而||AC =m <<知||AC =所以由已知可得||||6AB AC +=,即36=, 整理得24130710m m +-=,解得1m =或()7141m =-增根,舍去 所以直线AB 的方程为1y x =+.21.(本小题满分12分) 已知函数()22ln f x x x ax =--.(1)若曲线()y f x =在点()()1,1f 处的切线方程为30x y b ++=,求a ,b 的值; (2)如果()1212,x x x x <是函数()f x 的两个零点,()'f x 为函数()f x 的导数, 证明:122'03x x f +⎛⎫<⎪⎝⎭解:(1)a =3,b =1 (2)()121212262'2323x x f x x a x x +⎛⎫=-+-⎪+⎝⎭ ()1212,x x x x <是函数()f x 的两个零点()()21111222222ln 02ln 0fx x x ax fx x x ax ⎧=--=⎪∴⇒⎨=--=⎪⎩()2121212lnx x a x x x x =-+- ()()212112211212212ln26261'232323x x x x f x x a x x x x x x x x +⎛⎫∴=-+-=--- ⎪++-⎝⎭()221103x x --< ∴只需证()2212112211212ln6602ln 022x x x x x x x x x x x x --<⇔-<+-+21221131ln 012x x x x x x ⎛⎫- ⎪⎝⎭⇔-<+ ,令()21,1,x t t x =∈+∞则设()()31ln 12t h t t t -=-+ 下面证()0h t < ()10,h =()()()()2141'21t t h t t t --=-+ ()1,'0t h t >∴<恒成立 ()h t ∴在()1,+∞单调递减,()()10h t h ∴<= 即122'03x x f +⎛⎫< ⎪⎝⎭请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,已知圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩()θ为参数,直线l 的参数方程为523x t y t =-⎧⎨=-⎩()t 为参数,定点()1,1P . (1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程; (2)已知直线l 与圆C 相交于,A B 两点,求PA PB -的值.解:(1)依题意得圆C 的一般方程为()2214x y -+=,将cos ,sin x y ρθρθ==代入上式得22cos 30ρρθ--=,所以圆C 的极坐标方程为22cos 30ρρθ--=;(2)依题意得点()1,1P 在直线l 上,所以直线l 的参数方程又可以表示为121x t y t=-⎧⎨=-⎩()t 为参数,代入圆C 的一般方程为()2214x y -+=得25230t t --=, 设点,A B 分别对应的参数为12,t t ,则1212230,055t t t t +=>=-<, 所以12,t t 异号,不妨设120,0t t ><,所以2,PA PB ==,所以)125PA PB t t -=+=.23.(本小题满分10分)选修4-5:不等式选讲已知函数()1()0f x x a x a a=+++>. (1)当2a =时,求不等式()3f x >的解集;(2)求证:1()()4f m f m+-≥.解:(1)当a =2时,1()|2|||,2f x x x =+++原不等式等价于 112222111232323222x x x x x x x x x ⎧⎧<--≤≤->-⎧⎪⎪⎪⎪⎪⎨⎨⎨---->⎪⎪⎪+-->+++>⎩⎪⎪⎩⎩或或 解得11144x x <-∅>或或故不等式()3f x >的解集是111{|},(5)44x x x <->或分 (2)证明:11111(m)()||||||||f f m a m a m a m m a +-=++++-++-+ 1111||||||||m a a m m a m a =++-++++-+ 112|m |2(||)4||m m m ≥+=+≥ 当且仅当1,1m a =±=时等号成立。
2015届江西省五校高三上学期第二次联考数学(理)试题(PDF版)
B. 2sin1 B.0 )
C. 2cos1 C.锐角
D.2 ) D.钝角
cos x ,则此函数图像在点(1,f(1))处的切线的倾斜角为(
6.下列命题正确的个数有(
(1)命题“ p q 为真”是命题“ p q 为真”的必要不充分条件 (2)命题“ x R ,使得 x2 x 1 0 ”的否定是:“对 x R , 均有 x2 x 1 0 ” (3)经过两个不同的点 P 1 ( x1 , y1 ) 、 P 2 ( x2 , y2 ) 的直线都可以用方程 ( y y1 )( x2 x1 )
( x x1 )( y2 y1 ) 来表示
(4)在数列 a n 中, a1 1 , S n 是其前 n 项和,且满足 S n 1
3 2 2
1 S n 2 ,则 a n 是等比数列 2
D.4 个
(5)若函数 f ( x) x ax - bx a 在 x 1 处有极值 10,则 a 4,b 11 A.1 个 B.2 个 C .3 个
__________. 高三理科数学试卷 第2页 共 8 页
) 在 ( , ) 上单调递减,则 ________. 4 6 3 16. 定义函数 y f ( x), x I ,若存在常数 M ,对于任意 x1 I ,存在唯一的 x2 I ,
15. 已知 N ,函数 f ( x) sin(x 使得
________.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或 演算步骤.
17.(本小题满分 12 分)已知 a, b, c 分别是 ABC 的三个内角 A, B, C 的对边,
AD=4,AB=2 3 ,则该球的表面积为(
江西师大附中
性等,推理等相关知识,属中等题. 【解析】 ,①②⑤正确 9.过双曲线 的左焦点F作圆 的切线,设切点为M,延长FM交双曲线于点N,若点M为线段FN的中 点,则双曲线C1的离心率为( ) A. B. C. +1 D.
【答案】A【命题立意】本题考查圆锥曲线离心率,属中等题. 【解析】则. 10.已知过球面上三点A、B、C的截面到球心距离等于球半径的一半, 且,,则球面面积为( ) A. B. C. D. 【答案】C【命题立意】本题考查立体几何中的球的切接和球的表面积 问题,属中等偏难题. 【解析】外接圆的半径,. 11.已知点C为线段 上一点, 为直线 外一点,PC是角的平分线, 为PC上一点,满足
可得h(x)在有最小值,而,所以⑤不具有“反比点” 三、解答题(本大题共8小题,共70分.解答应写出文字说明、证明过程 或演算步骤.) 17.(本小题满分12分) 在中,角A、B、C所对的边为a、b、c,已 知,. (1)求的值; (2)若,D为的中点,求CD的长. 【命题立意】本题考查诱导公式;同角三角函数关系;正弦定理;余弦 定理.属中等题. 【解析】(1)且,∴.---------2分 ---------------- 3分 .--------------6分 (2)由(1)可得.--------------8分 由正弦定理得,即,解得.------------10分
时三角形的面积最大,把代入得. 于是椭圆的方程为.-------------------12分 注:其他书写酌情给分, 原则上每一问6分. 21.(本小题满分12分)已知函数,. (1)(i)求证:; (ii)设,当,时,求实数的取值范围; (2)当时,过原点分别作曲线与的切线,,已知两切线的斜率互为倒 数,证明:. 【命题立意】本题考查用导数求证不等式、求参数范围、含参讨论等, 属难题。 【解析】(1)(i)令,则时,时,所以,即;-----------------2分 (ii),. ①当时,由(1)知, 所以, 在上递增,恒成立,符合题意.------------------4分 ②当时,因为,所以在上递增,且,则存在,使得. 所以在上递减,在上递增,又,所以不恒成立,不合题意. 综合①②可知,所求实数的取值范围是.------------------6分 (2)设切线的方程为,切点为,则, ,所以,,则. 由题意知,切线的斜率为,的方程为. 设与曲线的切点为,则,所以,. 又因为,消去和后,整理得-------9分令,则,在上单调递减,在上 单调递增. 若,因为,,所以, 而在上单调递减,所以. 若,因为在上单调递增,且,则, 所以(舍去).综上可知,.------------------12分
江西临川一中七年级数学上册第一单元《有理数》-选择题专项测试卷(培优提高)
一、选择题1.下列各组数中,不相等的一组是()A.-(+7),-|-7| B.-(+7),-|+7|C.+(-7),-(+7)D.+(+7),-|-7|D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7)=−7,故符合题意,故选D.2.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.3.下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.4.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)1912209最低气温(℃)43-45其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.5.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m-n>0C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.6.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B 【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可. 解:∵|-6|=6,6的相反数是-6, ∴|-6|的相反数是-6. 故选B .7.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9m B .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】28nm =28×10﹣9m = 2.8×10﹣8m , 所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 8.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数 D .a -可以表示任何有理数D解析:D 【分析】直接根据有理数的概念逐项判断即可. 【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误; B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误; C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误; D. a -可以表示任何有理数,故该选项正确. 故选:D . 【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键. 9.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C 解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.12.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.13.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.14.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.15.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.16.按如图所示的运算程序,能使输出的结果为12的是()A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=0C解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;≥,故代入x2+2y,结果得16,故不选D;当x=4,y=0时,00故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;17.下列说法:①a④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.18.已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.19.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.20.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法. 21.下列各式中,不相等的是( ) A .(﹣5)2和52 B .(﹣5)2和﹣52 C .(﹣5)3和﹣53 D .|﹣5|3和|﹣53|B解析:B 【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解. 【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=- ∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=- ∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=- 故选B . 【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.22.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D 【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可. 【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确. 故选:D . 【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.23.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.24.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.25.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.26.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.27.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.28.13-的倒数的绝对值()A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.29.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.30.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.。
2015届江西省五校试题参考答案
பைடு நூலகம்
2 y2 0 n BC 0 又 ,即 , x 2 y 3 z 0 n SC 0 2 2 2 n 令 x2 3 ,则 z2 1 ,于是 ( 3, 0,1) ………………………………….…10 分 mn 7 cos m, n .………………………………….…………………….11 分 | m || n | 7
x1 0 m DC 0 ,即 , x 2 y 3 z 0 m SC 0 1 1 1 令 y1 3 ,则 z1 2 ,于是 m (0, 3, 2)
设平面 SDC 的法向量 m ( x1 , y1 , z1 ) ,平面 SBC 的法向量 n ( x2 , y2 , z2 ) ,
当且仅当 b c 2 时, a 的最小值为 2 3 , b c 的最小值为 4 , 所以周长 a b c 的最小值为 4 2 3 .…………………………………………………….12 分 , 18.解: (1)设等差数列{an}的公差为 d(d≠0) ∵a2,a5,a14 构成等比数列, 2 ∴a2 5=a2a14,即(1+4d) =(1+d)(1+13d),……………………………………………………1 分 解得 d=0(舍去) ,或 d=2.…………………………………………………………………..……..3 分 ∴an=1+(n-1)×2=2n-1.………………………………………………………………………….5 分
4 , n为奇数 (2)由(Ⅰ)得 bn n ( n 2) 2 n 3 ,n为偶数 15 2 4 1 1 当 n 为奇数时, bn 2( ) ……………………………………………………….……6 分 n (n 2) n n2 1 1 1 1 1 所以 T2 n 2(1 ) 15(21 2 5 2 4 n 3 ) ……………10 分 3 3 5 2n 1 2n 1 n 2 2(1 16 ) 2 ………………………………………………….…12 分 2 15 2 4 n 1 2n 1 1 16 2n 1
师大附中、临川一中2013届高三联考数学(理科)答案
xy O K ML 江西师大附中、临川一中2013 届高三联考理科数学参考答案一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中有且只 有一项是符合题目要求的,把答案填在答题卡的相应位置.) 1.设全集为R ,集合 { } 2 | || £ = x x A , } 0 11| { > - = x x B ,则 = B A I ( C ) A . ] 2 , 2 [- B . )1 ,2 [- C . ] 2 , 1 ( D . ), 2 [ +¥ - 2.如果mi i + = - 1 1 2( R m Î ,i 表示虚数单位),那么 = m ( A ) A .1 B . 1 - C .2 D .03.若 0.52 a = , log3 b p = , 2 2 log sin 5c p = ,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a>> 4.已知双曲线 2222 1 x y a b-= 的一个焦点与抛物线 2 4 y x = 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( D )A . 22 4 51 5 x y -= B . 22 1 54 x y -= C . 22 1 54 y x -= D . 22 5 514x y -= 5.在等差数列{} n a 中,首项 1 0, a = 公差 0 d ¹ ,若 1237 k a a a a a =++++ L ,则k =( A ) A .22 B .23 C .24 D .256.已知直线 , l m ,平面 , a b ,且 , l m a b ^Ì ,给出四个命题: ①若a ∥b ,则l m ^ ; ②若l m ^ ,则a ∥b ;③若a b ^ ,则 l ∥m ;④若 l ∥m ,则a b ^ .其中真命题的个数是( C ) A .4 B .3 C .2 D .1 7.已知偶函数 ) sin( ) ( j w + = x A x f ( , 0 > A ) 0 , 0 p j w < < > 的部分图像如图所示.若△KLM 为等腰直角三角形,且||1 KL = uuu r ,则 1()6f 的值为(D )A . 43-B . 1 4 -C . 1 2 -D .43 8.已知x 、y 满足约束条件 ï îïí ì £ - - ³ - ³ + 2 2 1 1 y x y x y x ,若目标函数 (0,0) z ax by a b =+>> 的最大值为7,则 ba 4 3 + 的最小值为(B ) A .14B .7C .18D .139.已知函数 ( ) 6(3)3 (7) (7) x a x x f x a x - --£ ì = í> î,若数列{} n a 满足 () () n a f n n N + =Î ,且对任意的正整数 , () m n m n ¹ 都有()(0 ) m nm n a a -> - 成立,那么实数a 的取值范围是( C ) A . 9[,3)4B . 9(,3)4C .( )2,3 D .(1,3)10.已知函数 3 1,0 () 3,0x x f x x x x ì +> ï = í ï +£ î ,则关于x 的方程 2(2) f x x a += ( 2 a > )的根的个数不可能为( A )A .3B . 4C . 5D . 6二、填空题:本大题共 5 小题,每小题5 分,共25分.把答案填在答题卡的相应位置. 11.圆 22:4 C x y += 被直线 :10 l x y -+= 所截得的弦长为 14.12. 已知四点 (1,2),(3,4),(2,2),(3,5) A B C D -- , 则向量AB uuu r 在向量CD uuu r方向上的射影为 2105 . 13.某三棱锥的三视图如右(尺寸的长度单位为m ).则该三棱锥的体积为 4 3m .14.有这样一道题: “在D ABC 中,已知 3 a = ,, 2 2cos ()(21)cos 2 A C B + =- ,求 角 A . ”已知该题的答案是 60 A = o, 若横线处的条件为三角形中某一边的长度,则此条件 应为 622c + =. 15.已知函数 22cos (), (1)(45)xf x x R x x x p =Î +-+ ,给出下列四个命题: ①函数 () f x 是周期函数; ②函数 () f x 既有最大值又有最小值; ③函数 () f x 的图像有对称轴;④对于任意 (1,0) x Î- ,函数 ) (x f 的导函数 '()0 f x < . 其中真命题的序号是 ②③ .(请写出所有真命题的序号)主视图 3 1 俯视图22左视图32xyO 解析:①函数 f (x )是周期函数不正确,因为分母随着自变量的远离原点,趋向于无穷大, 函数图像无限靠近于X 轴,即当x ®¥时, 0 y ® ,故不是周期函数;②由 221|()|1 |1||45|f x x x x £< +×-+ 及①的判 断知,函数有界且极限为 0, 故存在最大值与最小 值,此命题正确;(不必求出最值,也勿需向学生交 代极限的概念,只须定性说明“有界” 、 “无限趋近”即可)③可以验证 (2)() f x f x -= 恒成立,故 f (x )的图像有对称轴 1 x = ,此命题正确; ④由 11(1)0,(0)0 205f f -=-<=> 易知此命题错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷
1.已知集合{|014}A x N x =∈<-<,2{|560}B x Z x x =∈-+=,则下列结论中不正确的是( )
A .R R C A C
B ⊆ B .A B B =
C .()R A C B =∅
D .()R C A B =∅
2.已知数列{}n a 的通项为38n a n =+,下列各选项中的数为数列{}n a 中的项的是( ) A .8 B .16 C .32 D .36
3.函数x
xa y x
=(01)a <<的图象的大致形状是( )
4.设函数3()3f x x x =+()x R ∈,若02
π
θ≤≤时,(sin )(1)f m f m θ+->0恒成立,则实数
m 的取值范围是( )
A .(0,1)
B .(-∞,0)
C .(-∞,1
2) D .(-∞
,1)
5.如图,△ABC 中,GA GB GC O ++= ,CA a =
,
CB b = . 若CP ma = ,CQ nb =
.CG PQ H = ,
2CG CH = ,则11
m n
+=( )
A .2
B .4
C .6
D .8
6.数列{}n a 满足121
1,,2
a a ==并且1111()2(2)n n n n n a a a a a n -++-+=≥,则数列的第2010项为
( )
A .100
1
2 B .
2010
12
C .
12010 D .1100
7.对于实数x ,符号[x ]表示不超过x 的最大整数,例如:[]3,[ 1.08]2π=-=-.如果定义函数
()[]f x x x =-,那么下列命题中正确的一个是( )
A .(5)1f =
B .方程1
()3
f x =有且仅有一个解 C .函数()f x 是周期函数 D .函数()f x 是减函数
8.一个正四面体在平面上的射影不可能是( )
A
C B
G H Q
P
A .正三角形
B .三边不全相等的等腰三角形
C .正方形
D .邻边不垂直的菱形
9.若直线3ax +5by +15=0到原点的距离为1
) A .[3,4]
B .[3,5]
C .[1,8]
D .(3,5]
10. 设
函数1(()2)0(2)
x f x x x ⎧≤=<≥⎪⎩
,则20101()f x dx -⎰的值为( ) A
.
3π
B
.2π+ C
.6π D
.2π
二、填空题(每小题5分,共25分)
11.已知命题p :|1-x -1
3|≤2,命题q :x 2-2x +1-m 2≤0(m >0),┒p 是┒q 的必要不充分条件,
则实数m 的取值范围是 .
12
.已知函数()lg(cos f x x x =++且(2010)f a -=,则(2010)f = . 13.在矩形ABCD 中,AB = 4,BC = 3,沿对角线AC 把矩形折成二面角D -AC -B ,并且D 点在
平面ABC 内的射影落在AB 上.若在四面体D -ABC 内有一球,当球的体积最大时,球的半径是 .
14.若直线1y kx =+和
124
x y
+=与两坐标轴围成的四边形有外接圆,则k = . 15.选做题(考生注意:请在A ,B 两题中,任选做一题作答,若多做,则按A 题记分)
A .若集合φ=--<+|}2||1||{k k x x ,则实数k 的取值范围是 ;
B .已知直线()142x t
t R y t =+⎧∈⎨
=-⎩与圆()2cos 2
[0,2]2sin x y θθπθ
=+⎧∈⎨
=⎩相交于AB,则以AB
为直径的圆的面积为 .
三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)
已知函数2()ln(2).f x x x bx c =+-++在点x=1处的切线与直线3720x y ++=垂直,且f (-1)=0,求函数f (x )在区间[0,3]上的最小值。
17.(本小题满分12分)
已知:)(1,cos 2x =,)
(x x 2sin 3,cos =, 函数x
x n m x f 2
2tan 12007
cot 12007)(++++
⋅=. (1)化简)(x f 的解析式,并求函数的单调递减区间;
(2)在△ABC 中,c b a ,,分别是角A,B,C 的对边,已知,2009)(=A f 1=b ,△ABC 的面积为
23,求C
A c a sin sin )(1005++的值.
18.(本小题满分12分)
如左图示,在四棱锥A -BHCD 中,AH ⊥面BHCD ,此棱锥的三视图如下: (1)求二面角B -AC -D 的大小;
(2)在线段AC 上是否存在一点E ,使ED 与面BCD 成45︒角?若存在,确定E 的位置;若
不存在,说明理由。
19.(本小题满分12分)
已知不等式组002009x y y nx n >⎧
⎪
>⎨⎪≤-+⎩
所表示的平面区域为D n ,记D n 内的整点个数为
()n a n N *∈(整点即横坐标和纵坐标均为整数的点).
(1)数列{}n a 的通项公式n a ; (2)若12n n S a a a =+++ ,记2017036
n n
T S =,求证:122n T T T ++< . 20.(本小题满分13分) (1)若210x bx -+=(
1
22
x ≤≤)
,试求实数b 的范围; (2)设实数[0,1]k ∉,
函数1()f x x x =+
-1[,2]2
x ∈ 试求函数()f x 的值域。
附加题1.已知α为锐角,且12tan -=α,函数)4
2sin(2tan 2)(παα++=x x f ,数列{n a }
的首项)(,111n n a f a a ==+.
(Ⅰ)求函数)(x f 的表达式;(Ⅱ)求数列}{n a 的前n 项和n S
2.如图,在底面为直角梯形的四棱锥P A B C D -中90A D B C A B C ∠=,∥°,P D ⊥平面
A B C D ,A D =1
,A
B 4B
C =.
(Ⅰ)求证:B D ⊥P C ;
(Ⅱ)求直线AB 与平面PDC 所成的角;
(Ⅲ)设点E 在棱P C 上,P E P C λ=
,若DE ∥平面PAB ,求λ的值.
3.现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第n 次传球球传回到甲的不同传球方式种数为n a . (1)试写出1a ,2a 并找出1n a -与n a (2n ≥)的关系式; (2)求数列{}n a 的通项公式; (3)证明:当2n ≥时,
23111n a a a ++ 2
3
<. 4.给定椭圆C :)0(12222>>=+b a b
y a x ,称圆心在原点O ,半径为2
2b a +的圆是椭圆C
的“准圆”。
若椭圆C 的一个焦点为)0,2(F ,其短轴上的一个端点到F 的距离为3.
(Ⅰ)求椭圆C 的方程和其“准圆”方程.
(Ⅱ)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线21,l l 使得21,l l 与椭圆C 都只有一个交点,且21,l l 分别交其“准圆”于点N M ,,求证:MN 为定值. 5.设函数2
1()ln .2f x x ax bx =-
- (Ⅰ)当1
2
a b ==时,求函数)(x f 的最大值;
(Ⅱ)令21()()2a
F x f x ax bx x
=+++,(03x <≤)其图象上任意一点00(,)P x y 处切线
的斜率k ≤2
1
恒成立,求实数a 的取值范围;
(Ⅲ)当0a =,1b =-,方程2
2()mf x x =有唯一实数解,求正数m 的值.。