5.2 图形的全等 同步练习及答案

合集下载

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

华师大版数学七年级下册_《图形的全等》拓展练习1

华师大版数学七年级下册_《图形的全等》拓展练习1

《图形的全等》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°2.(5分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.3.(5分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°4.(5分)下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )5.(5分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°二、填空题(本大题共5小题,共25.0分)6.(5分)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是.7.(5分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.8.(5分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.9.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=°.10.(5分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.三、解答题(本大题共5小题,共50.0分)11.(10分)你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?12.(10分)找出全等图形.13.(10分)判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.14.(10分)如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?15.(10分)找出七巧板中(如图)全等的图形.《图形的全等》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°【分析】根据全等三角形的判定定理可得出△BCA≌△BDE,从而有∠3=∠CAB,这样可得∠1+∠3=90°,根据图形可得出∠2=45°,这样即可求出∠1+∠2+∠3的度数.【解答】解:在△ABC与△BDE中,∴△BCA≌△BDE(SAS),∴∠3=∠CAB,在RT△ABC中可得∠1+∠3=90°,由图可知,∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:D.【点评】此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定△BCA≌△BDE,这要求学生熟练掌握全等三角形的判定定理.2.(5分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.【点评】此题考查全等图形问题,关键根据全等图形的定义判断.3.(5分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°【分析】由图易得∠2=45°,∠1+∠3=90°,据此求三角之和即可.【解答】解:∵∠2=45°,∠1+∠3=90°,∴∠1+∠2+∠3=135度.故选:D.【点评】此题是对角进行度的加法计算,相对比较简单,但要准确求出各角大小是本题的难点.4.(5分)下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解答】解:(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.【点评】本题主要考查了全等三角形的性质,解题时注意:能够完全重合的两个图形叫做全等形.5.(5分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°【分析】标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.【点评】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是丙.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【解答】解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;丙:符合AAS定理,能推出两三角形全等;故答案为:丙.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.(5分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于225°.【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,然后可得∠1+∠2+∠3+∠4+∠5的值.【解答】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.【点评】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等.8.(5分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=27cm.【分析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.【点评】此题主要考查了全等图形的性质,得出CD的长是解题关键.9.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据网格结构以∠1的顶点为顶点作出与∠2所在的直角三角形全等的三角形,再连接另两个顶点得到等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:如图,∠2、∠3为两个全等三角形的对应角,所以,∠2=∠3,△ABC是等腰直角三角形,所以,∠1+∠3=45°,所以,∠1+∠2=45°.故答案为:45.【点评】本题考查了全等三角形,熟练掌握网格结构,作出与∠2所在的直角三角形全等的三角形是解题的关键.10.(5分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【分析】标注字母,根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?【分析】根据长方形的性质以及全等图形的概念,作出一条对角线即可分成两个全等三角形;根据等边三角形的轴对称性,中心与三个顶点的连线将三角形分成三个全等三角形;先将长方形分成两个全等长方形,再分别作出一条对角线即可分成四个全等三角形.【解答】解:如图所示.【点评】本题考查了全等图形的概念,长方形的性质以及等边三角形的性质,熟练掌握各图形的性质以及全等图形的概念是解题的关键.12.(10分)找出全等图形.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:由图形可得出:(1)和(8);(2)和(6);(3)和(9);(5)和(7);(13)和(14)是全等图形.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.13.(10分)判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.【分析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60°,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【点评】本题考查了全等图形,利用全等图形的识别方法(定义)解答,关键在于熟记概念.14.(10分)如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【分析】一共有20棵果树把它们平均分给四个小组去种植,每一个小组平均5棵,再根据条件“分得的果树组成的图形、形状大小要相同”进行分割即可.【解答】解:如图所示:.【点评】此题主要考查了全等形,关键是掌握全等形的概念:能够完全重合的两个图形叫做全等形.15.(10分)找出七巧板中(如图)全等的图形.【分析】能够完全重合的两个图形叫做全等形,做题时认真观察图形,根据是否重合去判断.【解答】解:由图知:△ADE与△DEC,△EHK与△CJF,△ADC与△ABC,四边形AGKE 与四边形CFKE,四边形AGKD与四边形CFKD是重合的,即是全等的图形.【点评】本题考查的是全等形的概念;熟练掌握七巧板中各图形的特点是解答本题的关键.。

初中数学全等图形练习题

初中数学全等图形练习题

初中数学全等图形练习题1. 下列图形是全等图形的是( )A.B.C.D.2. 如图,在△ABC中,D,E分别为BC,AC边上的中点,AD,BE相交于点G,若S△BDE=1,S△ABC=( )A.1B.2C.3D.43. 如图,O是等边△ABC内的一点,OA=1,OC=3,∠AOC=150∘,则OB的长为()A.3B.4C.2√2D.√104. 下列说法中,正确的个数为()①用一张像底片冲出来的10张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A.1个B.2个C.3个D.4个5. 如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同6. 如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60∘,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.7. 下列说法正确的是()A.所有正方形都是全等图形B.所有长方形都是全等图形C.所有半径相等的圆都是全等图形D.面积相等的两个三角形是全等图形8. 如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________.9. 用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是________(填序号)10. 如图,有6个条形方格图,图上由实线围成的图形是全等形的有________.11. 请在下图中把正方形分成2个、4个、8个全等的图形:________.12. 下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=________.13. 全等图形的形状和大小都相同.________ (判断对错).14. 如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.15. 判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.16. 沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.17. 我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.18. 如图,在Rt△ABC中,∠ACB=90∘,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)19. 如图,△ABC中,∠B=∠C,点D、E、分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,求证:ED=EF.参考答案与试题解析初中数学全等图形练习题一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】全等图形【解析】全等图形应形状相同,大小一致.【解答】解:全等图形应形状相同,大小一致.只有B符合题意.故选B.2.【答案】D【考点】三角形的面积【解析】此题暂无解析【解答】解:由题意得:△BDE和△CDE等底同高,所以S△CDE=S△BDE=1.所以S△BCE=2S△BDE=2.因为△BCE和△BAE等底同高,所以S△ABC=2S△BCE=4.故选D.3.【答案】D【考点】旋转的性质等边三角形的性质【解析】此题暂无解析【解答】解:将△AOC绕A点顺时针旋转60∘到△AO′B的位置,由旋转的性质,得AO=AO′,所以△AOO′是等边三角形,由旋转的性质可知∠AOC=∠AO′B=150∘,所以∠BO′O=150∘−60∘=90∘.因为OO′=OA=1,BO′=OC=3,所以OB=√12+32=√10.故选D.4.【答案】B【考点】全等图形【解析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解.【解答】解:①用一张像底片冲出来的10张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2个.故选B.5.【答案】B【考点】全等图形【解析】根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.【解答】解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.6.【答案】B【考点】菱形的性质等边三角形的性质与判定相似多边形的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】全等图形【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、所有正方形都是全等图形,说法错误;B、所有长方形都是全等图形,说法错误;C、所有半径相等的圆都是全等图形,说法正确;D、面积相等的两个三角形是全等图形,说法错误;故选:C.二、填空题(本题共计 6 小题,每题 5 分,共计30分)8.【答案】21cm【考点】规律型:图形的变化类全等图形【解析】观察图形,发现:以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图的时候,需要再往右用3个格,画第四个图的时候,需要再往右走1个格,以此类推,则画10个图,需要4+1+3+1+3+1+3+1+3+1=21个.【解答】解:∵后面画出的图形与第一个图形完全一样,∴以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图形的时候,需要再往右用3个格,画第四个图形的时候,需要再往右用1个格,以此类推,则画10个图形,需要4+(1+3+1+3+1+3+1+3+1)=21个.故答案为:21cm.9.【答案】①②⑤【考点】全等图形【解析】解:拿两个“90∘60∘30∘的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故答案为:①②⑤.【解答】此题暂无解答10.【答案】①和⑥,②③⑤【考点】全等图形【解析】设每个小方格的边长为1,分别表示出第个图形的各边长,再根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,①与⑥的的三条边对应相等,②,③,⑤的四条边对应相等,故①⑥是全等形,②③⑤是全等形.故答案为:①和⑥,②③⑤.11.【答案】分法可分别如下所示:【考点】全等图形【解析】(1)选择对边的两个中点连接即可;(2)分别连接对边的两个中点即可;(3)分别连接对边的两个中点及不相邻的两个顶点即可.【解答】解:所作图形如下所示:.12.【答案】27cm【考点】全等图形【解析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:∵AB=3cm,∴CD=2AB=6cm,∴AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm13.【答案】正确【考点】全等图形【解析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.【解答】解:全等图形的形状和大小都相同,正确.故答案为:正确.三、解答题(本题共计 6 小题,每题 5 分,共计30分)14.【答案】解:如图所示:.【考点】全等图形【解析】利用网格图形的特征和全等图形的性质即可求解.【解答】此题暂无解答15.【答案】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【考点】全等图形【解析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.16.【答案】解:如下图所示:【考点】作图—应用与设计作图全等图形【解析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,且必须保证分割后的两个图形相同.【解答】解:如下图所示:17.【答案】解:(1)所画图形如上.(2)能,所画图形如上所示.【考点】全等图形【解析】(1)根据题意画出图形即可,注意所得的图形不应全等.(2)作长为1,宽分别为1,2,3,4,5的图形即可.【解答】解:(1)所画图形如上.(2)能,所画图形如上所示.18.【答案】,△ACD和△CDB即为所求【考点】作图—应用与设计作图【解析】作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边AD=DB.的一半,可得CD=12【解答】解19.【答案】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.【考点】全等三角形的性质【解析】此题暂无解析【解答】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.。

北师大七年级数学下4.2《图形的全等》习题含详细答案

北师大七年级数学下4.2《图形的全等》习题含详细答案

《图形的全等》习题一、选择题1.下列说法正确的是( )A.周长相等的矩形是全等形B.所有的五角星都是全等形C.面积相等的三角形是全等形D.周长相等的正方形是全等形2.下列判断正确的是( )A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形3.下列各组图形中,一定是全等图形的是( )A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个斜边相等的直角三角形D.两个周长相等的圆4.如果△ABC与△DEF是全等形,则有( )(1)它们的周长相等;(2)它们的面积相等;(3)它们的每个对应角都相等;(4)它们的每条对应边都相等.A.(1)(2)(3)(4)B.(1)(2)(3)C.(1)(2)D.(1)5.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D6.如图,△ABC≌△CDA,AB=4,BC=6,则AD等于( )A.4B.5C.6D.不确定二、填空题7.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=_____度.8.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).9.下列图形中全等图形是_____(填标号).10.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=_____度.三、解答题11.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.12.找出图中全等的图形.13.周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?14.如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?15.判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.参考答案一、选择题1.答案:D解析:【解答】A周长相等的矩形不一定重合,错;B所有的五角星不一定重合,错;C面积相等的三角形也不一定重合,错;D周长相等的正方形边长一定相等,则周长相等的正方形一定是形状大小都相同的图形,一定重合,正确.故选D.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形,两个条件要同时具备,按定义逐个验证可得答案.2.答案:D解析:【解答】A、如果形状相同而面积不同,则不是全等形,错误;B、如果面积相等,而形状不同,则不是全等形,错误;C、根据全等形概念,强调是完全重合,错误.D、正确.故选D.【分析】要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.3.答案:D解析:【解答】A、两个周长相等的等腰三角形,不一定全等,故此选项错误;B、两个面积相等的长方形,不一定全等,故此选项错误;C、两个斜边相等的直角三角形,不一定全等,故此选项错误;D、两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.故选:D.【分析】根据全等图形的性质分别判断得出即可.4.答案:A解析:【解答】根据全等形的概念可以判定:(1)(2)(3)(4)都成立.故选A.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形.则它们的周长、面积、对应角、对应边一定都对应相等.5.答案:C解析:【解答】∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选C.【分析】两三角形全等,根据全等三角形的性质判断.6.答案:C解析:【解答】∵△ABC≌△CDA,∴AD=BC=6.故选C.【分析】根据全等三角形的性质,全等三角形的对应边相等,找到对应边即可解答.二、填空题7.答案:90°解析:【解答】在△ACM和△BAN中,AN=CM,∠AMC=∠BNA,CM=AN∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.【分析】根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.8.答案:不是解析:【解答】由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.【分析】能够完全重合的两个图形叫做全等形,图形重合的是全等形,不重合的不是全等形.9.答案:⑤和⑦解析:【解答】由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.10.答案:135°解析:【解答】如图所示:∠2=45°,在△ACB和△DCE中,AB=DE,∠A=∠D,AC=DC∴△ACB≌Rt△DCE(SAS),∴∠ABE=∠3,∴∠1+∠2+∠3=(∠1+∠3)+45°=90°+45°=135°【分析】首先利用全等三角形的判定和性质得出∠1+∠3的值,即可得出答案.三、解答题11.答案:见解答过程.解析:【解答】设计方案如下:【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.12.答案:见解答过程.解析:【解答】如图所示:1和2全等,3和4全等.【分析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.13.答案:不一定全等.解析:【解答】不一定全等,例如,两个三角形的周长均为10,一个三角形的三边长为4,3,3,而另一个三角形的三边长为4,4,2,这两个三角形显然不全等,但当两个三角形为正三角形时,这两个三角形全等.【分析】能够完全重合的两个三角形叫做全等三角形,周长相等的两个三角形,构成三角形的三条边不一定全部相等,可得周长相等的两个三角形不一定全等.14.答案:见解答过程.解析:【解答】如图所示:【分析】一共有20棵果树把它们平均分给四个小组去种植,每一个小组平均5棵,再根据条件“分得的果树组成的图形、形状大小要相同”进行分割即可.15.答案:(1)全等(2)不一定全等(3)不一定全等(4)不一定全等.解析:【解答】(1)全等.理由:等边三角形各角都是60°,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【分析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.。

三角形全等的判定 同步练习及答案3

三角形全等的判定 同步练习及答案3

三角形全等的判定同步练习基础巩固一、填空题1.能够________的两个图形叫做全等形。

两个三角形重合时,互相_______的顶点叫做对应顶点。

记两个三角形全等时,通常把________•顶点的字母写在_____的位置上.2。

如图1,AB ∥EF ∥DC,∠ABC =900,AB =DC ,那么图中有全等三角形 对.图13.如图2,△ABC ≌△ADE,若∠D=∠B ,∠C=∠AED,则∠DAE= ,∠DAB= .DCB E A图24。

如图3,△ABD ≌△CDB,若AB=4,AD=5,BD=6,则BC=______,CD=______。

DC B A图35.观察下列图形的特点:图4有几组全等图形?请一一指出: 。

6。

如图5所示, 已知△AOB ≌△COD , △COE ≌△AOF , 则图中所有全等三角形中, 对应角共有______对,共有______组对应线段相等。

二、选择题7。

下列说法正确的个数有( )①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC ≌△DEF, △DEF ≌△MNP, 则△ABC ≌△MNP 。

A.0个B.1个C.2个D.3个8。

下列说法中不正确的是( )A.一个直角三角形与一个锐角三角形一定不会全等B 。

两个等边三角形是全等三角形C 。

斜边相等的两个等腰直角三角形是全等三角形D 。

若两个钝角三角形全等, 则钝角所对的边是对应边9.如图6所示,若B 、E 、F 、C 在同一条直线上, AB ∥CD , AE ∥FD, 若△ABE 与△CDF 全等, 指出图中相等的线段和相等的角.10。

如图7所示, 已知△ABE ≌△ACD , 指出它们的对应边和对应角。

11.下列图形中, ①平行四边形; ②正方 D C B A E F 图6 A D BE C图7D E C OA F B图5形; ③等边三角形; ④等腰三角形. 能用两个全等的直角三角形拼成的图形是( )A 。

(北师大版)七年级数学下:4.2《图形的全等》同步练习及答案

(北师大版)七年级数学下:4.2《图形的全等》同步练习及答案

初中数学试卷
4.2图形的全等
1.观察如图5—34所示的各个图形,指出其中的全等图形.
2.如图5—35所示,判断各组中的两个图形是否是全等图形.
3.如图5—36所示,试判断图中的两个图形是否全等;若不全等,请说明理由;若全等,请说明怎样做才能使它们重合,
4.画一个三角形,再画一个与其全等的图形.
5.画一个长方形,再用尺规作一个图形,使它们成为全等图形.
6.在一个梯形上画出你喜爱的图形,然后复制6个并拼成一个较大的图案.
7.用相同的长方形(长与宽的比为2:1)尽量拼成几种不同的图案.8.如图5—37所示,把梯形分割成两对全等的图形.
9.按下列步骤设计图案.
①画一个ΔABC,其中AB=AC;
②去掉两个全等的等边三角形l,2,并且BD=CD′;
③将三角形1,2分别放在3,4的位置,其中AE=BD=AE′.
参考答案
1.解:①和⑥,②和⑤,③和⑧分别为全等的图形.
2.解:甲不是,乙是.
3.解:两个图形全等;折叠能使它们重合.4.略.5.略.6.略.7.略.
8.解;如图5—38所示.
9.解:如图54—39所示.。

2022年北师七下《图形的全等》同步练习(附答案)

2022年北师七下《图形的全等》同步练习(附答案)

图形的全等一、单项选择题1.以下说法正确的选项是〔〕A. 所有的等边三角形都是全等三角形B. 全等三角形是指面积相等的三角形C. 周长相等的三角形是全等三角形D. 全等三角形是指形状相同大小相等的三角形2.以下说法中,错误的选项是〔〕A. 全等三角形对应角相等B. 全等三角形对应边相等C. 全等三角形的面积相等D. 面积相等的两个三角形一定全等3.以下命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为〔〕个个个个4.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等〔合同〕三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形如图,假设运动方向相反,那么称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°如图,以下各组合同三角形中,是镜面合同三角形的是〔〕A. B. C. D.5.以下说法正确的选项是〔〕A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形6.以下说法正确的选项是〔〕A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等7.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,以下结论不正确的选项是〔〕A. EF⊥ACB. AD=4AGC. 四边形ADEF为菱形D. FH=BD8.以下说法正确的选项是〔〕A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等9.如图为6个边长相等的正方形的组合图形,那么∠1+∠2+∠3=〔〕A. 90°B. 120°C. 135°D. 150°10.以下说法正确的选项是〔〕A. 面积相等的两个图形全等B. 周长相等的两个图形全等C. 形状相同的两个图形全等D. 全等图形的形状和大小相同二、填空题11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=________度。

三角形全等的判定 同步练习及答案1

三角形全等的判定 同步练习及答案1

《三角形全等的判定》同步练习及答案A等级1、指出下图中的全等三角形各有几对,分别是哪些三角形。

△ABC中,AB=AC,D为BC中点,DE⊥AB,DF⊥AC2、指出下图中的全等三角形各有几对,分别是哪些三角形。

OA=OB,OC=OD3、指出下图中的全等三角形各有几对,分别是哪些三角形。

△ABC中,AB=AC,AE=AF,AD⊥BC于D4、判断( )1.三个角对应相等的两个三角形全等.( )2.顶角及腰上的高相等的两个等腰三角形全等.( )3.全等三角形对应的中线相等.( )4.有一边相等的两个等腰直角三角形全等.5、△ABC和△A′B′C′中,已知∠A=∠B′,AB=B′C′,增加条件可使△ABC≌△B′C′A′(ASA).6、△ABC中∠C=90°,BC>AC,E在BC上,且BE=EA. ∠CAE∶∠B=4∶7,则∠CEA=_____.7、△ABC中,∠C=90°,BE为角平分线,ED⊥AB于D,若AE+ED=5cm,则AC=_______.8、四边形ABCD中,边AB=DC,AD=BC,∠B=40°,则∠C= .9、△ABC中,AB=AC,两中线BE,CF交于O,则按条件所作图形中共有对全等三角形.10、如图,AC⊥BE,AC=CE,CB=CF,把△EFC绕点C逆时针旋转90°,E落在______点上,F落在点上.B等级11、判断( )1.全等三角形的对应角相等,反之也成立.( )2.周长为16,一边长为5的两个等腰三角形全等.( )3.有两个角及一条边相等的两个三角形全等.( )4.有锐角及斜边对应相等的两个直角三角形全等.12、BP为∠ABC平分线,D在BP上,PA⊥BA于A,PC⊥BC于C,若∠ADP=35°,则∠BDC= 。

13、若△ABC≌△A′B′C′,且AB=10cm,BC=6cm,则A′C′的取值范围为 .14、在△ABC和△DEF中,∠C=∠D,∠B=∠E,要使两三角形全等,需增加条件( )A.AB=EDB.AB=FD C,AC=FD D. ∠A=∠F15、下列条件能判断△ABC≌△DEF的是( )A. ∠A=∠D, ∠C=∠F, ∠B=∠EB. ∠A=∠D,AB+AC=DE+DFB. ∠A=∠D, ∠B=∠E,AC=DF D. ∠A=∠D,AC=DF,BC=EF16、△ABC中,∠C=90°,AD为角平分线,BC=32,BD∶DC=9∶7,则点D到AB的距离为( )A.18cmB.16cmC.14cmD.12cm17、∠MON的边OM上有两点A、C,ON上有两点B、D,且OA=OB,OC=OD,AD,BC交于E,则①△OAD≌△OBC,②△ACE≌△BDE,③连OE.则OE平分∠AOB,以上结论( )A.只有一个正确B.只有一个不正确C.都正确D.都不正确18、△ABC中,∠C=90°,AC=BC,AD为角平分线,DE⊥AB于E,且AB=6cm,则△DEB的周长为( )A.4cmB.6cmC.8cmD.10cm19、B为AC上一点,在AC同侧作等边△EAB及等边△DBC,那么下列式子错误的是( )A.△ABD≌△EBCB. ∠BDA=∠BCEC.△ABE≌△BC DD.若BE交AD于M,CE交BD于N,那么△NBC≌△MBD20、线段OD=DC,A在OC上,B在OD上,且OA=OB,OC=OD,∠COD=60°,∠C=25,AC,BC交于E,则∠BED的度数是( )A.60°B.70°C.80°D.50°C等级21、已知:△ABC中,D、E、F分别是AB、AC、BC上的点,连结DE、EF,∠ADE=∠EFC,∠AED=∠ACB,DE=FC。

北师大版七年级数学下册 4.2 图形的全等同步练习(无答案)

北师大版七年级数学下册           4.2 图形的全等同步练习(无答案)

北师大版七年级数学下册 4.2 图形的全等同步练习(无答案)一.选择题1.在下列每组图形中,是全等图形的是( )图4-2-12.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形全等;④全等三角形的周长相等;其中正确的说法为()A.①②③④ B.①②③ C.②③④ D.①②④5.下列图形与如图所示的图形全等的是()A.B.C.D.6.全等形是指()A.形状相同的两个图形 B.面积相同的两个图形C.两张中国地形图,两个等腰三角形都是全等形 D.能够完全重合的两个平面图形7.全等形是指A. 形状相同的两个图形B. 面积相同的两个图形C. 两张中国地形图,两个等腰三角形都是全等形D. 能够完全重合的两个平面图形8若△ABC≌△DEF,则下列说法不正确的是()A. 和是对应角B. AB和DE是对应边C. 点C和点F是对应顶点D. 和是对应角9如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,若测得∠A=∠D=90°,AB=3,DG=1,AG=2,则梯形CFDG的面积是()A. 5B. 6C. 7D. 810.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B. 120°C. 135°D. 150°二.填空题11两个能够完全重合的图形称为 .12全等图形的和完全相同.13由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).14如图,△EFG≌△NMH,△EFG的周长为15cm,HN=6cm,EF=4cm,FH=1cm,则HG= ______ .15如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3,若这两个三角形全等,则x= ______ .16.各边长度都是整数.最大边长为8的三角形共有________个.三、解答题17. 如图,已知△ABC≌△DCB.(1)分别写出对应角和对应边;(2)请说明∠1=∠2的理由.18. 如图所示,已知△ABC≌△FED,试说明AB∥EF.19. 如图,若点A、D、E、B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°,则CD⊥AB,为什么?你能求出∠B的度数吗?20.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.。

《同步学案》北师七年级(下册)4.2 图形的全等

《同步学案》北师七年级(下册)4.2 图形的全等

4.2 图形的全等1.了解全等图形的定义;2.掌握全等图形的特征,并能利用这些特征解决相关问题;3.重难点:了解图形的全等与全等图形的特征;能识别全等图形及通过实践活动得出全等形.知识导入试着找出下列各组图形间的特点是什么?知识点一:全等图形的概念例1 指出下列图形中的全等图形.分析根据全等图形的定义,进行识别判断即可.主要看它们的形状和大小是否相同.解析⑴和⑺,⑶和⑹,⑷和⑽都是全等图形.点拨解决本题的关键是抓住全等图形的定义,两个图形全等,只和它们的形状和大小有关,和它们的位置没有关系.知识点二:全等图形的性质例2 下列说法中,错误的个数是()⑴只有两个三角形才能完全重合;⑵两个全等的图形的周长一定相等;⑶如果两个图形全等,它们的形状和大小一定都相同;⑷两个全等的图形的边数一定相同.A.1个B.2个C.3个D.4个分析不是只有三角形才可以完全重合,只要两个图形全等,其他的图形也可以,所以⑴错误;两个全等的图形,它们的形状和大小都相等,所以边数和周长也一定相同,所以⑵⑶⑷都是正确的.解析 A点拨两个图形全等,那么它们的形状和大小也都相同,进而还可以判断出全等的两个图形的周长和面积以及边数都是相等的.知识点三:分割一个图形为几个全等图形例3 如图,把一个正方形割去四分之一,将余下的部分分成3个全等的图形(图①);将余下的部分分成4个全等的图形(图②).仿照示例,请你将一个正三角形割去四分之一后余下的部分(1)分成3个全等的图形(在图③中画出示意图).(2)分成4个全等的图形(在图④中画出示意图).(3)你还能利用所得的4个全等的图形拼成一个平行四边形吗?若能,画出大致的示意图.分析(1)由③中图形按其面积分成三个面积相等图形而画得;(2)在其中间找到一横线平行于与底边,尺度合适而画得;(3)结合(1)(2)利用平行,面积分别相等而画得.解析(1)如图一;(2)如图二;(3)答案不唯一,如图③④⑤.点拨本题主要考查利用全等图形的性质,根据图形的特点,把图形分割为形状相同的几个图形.知识探究1.判断两个图形是否全等的方法判断两个图形是否全等只需要判断两个图形的形状和大小是否完全相同,只有形状和大小都相同的两个图形才是全等的.2.利用图形全等的性质解决问题图形全等的性质:⑴形状相同;⑵大小相同;这里包含了两个全等图形的对应边相等,对应角相等,周长相等和面积相等.例一块田地里有四棵树,如图所示,你能不能给它们在这块地上用篱笆分成形状和大小都相同的四块?分析图中有16个小方格,平均分成4份后,每份应有4个小方格,且每份中应有一棵树,因此必须经过正方形的中心点,中间4个小方格应分开.解析如图所示,能分成大小、形状完全相同的四块地.点拨解决本题的关键是分析出四份的分界线经过正方形的中心点,且每个地块应该有四个小方块,被分成的四块地一定要全等,另外每块地里还要有一棵树.易错辨析题下列语句正确的是()A.所有的正方形都全等B.所有的长方形都全等C.所有的圆都全等D.同一底片洗出的两张一寸的照片是全等的图形错解 A辨析本题错解错在只考虑的图形的形状,而忽略了图形的大小.A中的两个正方形如果边长不相等的话,也不是全等图形,B中的长宽各不相同的两个长方形也不是全等图形,C中的圆如果半径不相等,两个图形也不是全等图形,而D中的同一底片洗出的两张一寸的照片,形状和大小都是一样的,所以是全等图形,故D正确.正解 D1. (1)两个形状相同的图形称为全等图形;(2)两个圆是全等图形;(3)两个正方形是全等图形;(4)全等图形形状大小都相同;(5)面积相等的两个三角形是全等图形.下列说法中正确的是().A.(1)(2)(3)B. (1)(2)(5)C. (1)(4)(5)D. 只有(4)正确.2. 下列四个图形中用两条线段不能分成四个全等图形的是()3.如下图所示,已知正方形的边长为4cm,则图中阴影部分的面积为 cm2.4. 如图,是用4个全等的等腰梯形镶嵌成的图形,则这个图形中等腰梯形上下两底边比是 .5. 如图,把大小为4×4正方形方格分割成两个全等图形,例如图1、请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形图形方格分割成两个全等图形.如图所示的一个长为40cm,宽为30cm的矩形钢板的左上角被截去了一块长为20cm,宽为10cm的矩形后,剩下的一块下脚料.工人师傅要将它做适当的切割,重新拼接后焊接成一个面积和原下脚料的面积相等且接缝尽量短的正方形工件.请根据上述要求,设计出将这块下脚料适当分割成四块或四块以上的两种不同的拼接方案,在图(2)和图(3)中分别画出切割时所沿的虚线,以及接缝后所得到的正方形,保留拼接的痕迹.分析根据题目中的要求,最后拼接成一个正方形,这个正方形的边长正好是以30cm和10cm 为两直角边的直角三角形的斜边长,为此设法在原钢板上构造直角边长为30cm和10cm的直角三角形即可.解析答案不唯一,如图所示,原钢板下脚料被切割成四块和五块的不同图案.点拨解决本题的关键是利用全等图形的特点,对原下脚料的各个边长分析得出所拼得的正方形的边长是是以30cm和10cm为两直角边的直角三角形的斜边长.练习如图所示,直角梯形ABCD是由一个正方形ABED和一个腰长与正方形边长相等的等腰直角三角形BEC拼成的,请你将它分成4个全等的直角梯形(保留作图痕迹,不必写出画法).参考答案课堂检测1. D 2. B 3.. 8 4. 1: 2 解析根据已知图形得出AE=CE,AB∥CE,BC∥AD,推出等边△AED,和平行四边形ABCD,推出AB=2CE,即可求出答案.5. 解析:四种不同的分法:方法①:竖着从中间做对称轴如图一所示.方法②:横着从中间做对称轴如图二所示.方法③:做互补图形,翻过来可以保持全等,如图三所示.方法④:做互补图形,翻过来可以保持全等,如图四所示.综合提升练习分析设正方形的面积为2,则△BEC的面积为1,根据题意,分成的每一个直角梯形的面积为34 ,然后找出正方形的中心O,过中心O分别作OF∥AD交AB于点F、作OG ∥CD交BE于点H,交BC边于点G,连接OD、HE,即可作出.解析如图所示,①②③④部分就是全等的直角梯形.。

最新苏教版八年级上册《图形的全等》测试卷(含答案) (6)

最新苏教版八年级上册《图形的全等》测试卷(含答案) (6)

最新苏教版八年级上册图形的全等测试卷一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①A S=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?最新苏教版八年级上册图形的全等测试卷参考答案与试题解析一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【考点】全等三角形的判定.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【考点】角平分线的性质;全等三角形的判定与性质.【专题】压轴题.【分析】判定线段相等的方法可以由全等三角形对应边相等得出;判定两条直线平行,可以由“同位角相等,两直线平行”或“内错角相等,两直线平行”或“同旁内角互补,两直线平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR ≌△QSP故本题仅①和②正确.故选B.【点评】本题涉及到全等三角形的判定和角平分线的判定,需要结合已知条件,求出全等三角形或角平分线,从而判定三个选项的正确与否.5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD【考点】轴对称的性质;全等三角形的判定;等边三角形的判定.【分析】先根据轴对称的性质得出AB=BC,AD=CD,OA=OC,BD⊥AC,再根据全等三角形的判定定理即可得出结论.【解答】解:∵主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,∴AB=BC,AD=CD,OA=OC,BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD,故A正确;在△AOB与△COB中,,∴△AOB≌△COB,故C正确;在△AOD与△COD中,,∴△AOD≌△COD,故D正确;△ABC是等腰三角形,故B错误.故选B.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等【考点】全等三角形的判定.【专题】证明题.【分析】根据全等三角形的判定定理:SAS,SSS,AAS,ASA对各个选项逐一分析即可【解答】解:A、∵各有一个角为95°,这个角只能是顶角,∴这两个等腰三角形全等,本选项正确;B、∵不知这个角是顶角还是底角,∴这两个等腰三角形不一定全等,故本选项错误;C、∵各有一个角为40°,∴此直角三角形各个角相等,再加上且其所对的直角边相等,∴两个直角三角形全等,本选项正确,D、∵各有一个角为40°,∴此直角三角形各个角相等,再加上有斜边相等,∴两个直角三角形全等,本选项正确,【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 5cm或10cm 时,才能使△ABC和△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是①②④.【考点】全等三角形的判定与性质;角平分线的性质.【分析】由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AE>AD,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.【解答】解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,①正确,∴AD平分∠BAC,②正确,∵在Rt△ADE中,AE是斜边,∴AE>AD,③不正确,∵Rt△BDE≌Rt△CDF,∴BE=CF,AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;正确的是①②④.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为75°.【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由等腰直角三角形的性质求出∠ACB的度数,进而求出∠1+∠ACB的度数,再利用两直线平行内错角相等即可求出∠2的度数.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=30°,∴∠1+∠ACB=75°,∵a∥b,∴∠2=∠1+∠ACB=75°,故答案为:75°【点评】此题考查了平行线的性质,以及等腰直角三角形的性质,熟练掌握性质是解本题的关键.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP;连接RS,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.12.(2014秋•马鞍山期末)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.13.(2015秋•无锡校级月考)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS);(2)由(1)知△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∴∠PBQ=90°﹣∠BPQ=30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握这两个性质是解决问题的关键.14.(2013秋•仪征市期末)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定;等腰三角形的性质.【专题】几何图形问题;动点型;分类讨论.【分析】(1)求出BP=3t,即可求出答案;(2)求出BP、CQ、CP,根据全等三角形的判定推出即可;(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,求出BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,根据全等三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵点P在线段BC上以3厘米/秒的速度由B点向C点运动,∴BP=3t厘米,∵BC=8厘米,∴CP=(8﹣3t)厘米;(2)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,用了分类讨论思想.。

《图形的全等》习题精选及参考答案

《图形的全等》习题精选及参考答案

《图形的全等》习题精选及参考答案一、选择题1.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个 B.45个 C.50个 D.55个2.如图,ΔABC≌ΔADE,∠B = 70º,∠C = 26º,∠DAC = 30º,则∠EAC = ( )A.27ºB.54ºC.30ºD.55º3.下列命题中,不正确的命题是( )①全等形的面积相等;②形状相同的两个三角形是全等三角形;③全等三角形的对应边,对应角相等;④若两个三角形全等,则其中一个三角形一定是由另一个三角形旋转得到的A.①与② B.③与④ C.①与③ D.②与④二、填空题1.如图6所示,△OCA≌△OBD,∠C和∠B、∠A和∠D是对应角,则另一组对应角是______和______,对应边是______和______,_______和_______,______ 和____2.如图7所示,△ABC≌△EFC,BC=FC,AC⊥BE,则AB=____,AC=____,∠B= _____,∠A=____3.如图9所示,△ABC≌△ADE,∠B=30°,∠EAD=24°,∠C=32°,则∠D=____,∠DAC=______4.在△ABC中,∠A=90°,CD是∠C的平分线,交AB于D点,DA=7,则D点到BC的距离是_______5.如图14所示,把△ABC绕点A按逆时针旋转就得△ADE,则AB=______,BC= ____,AC=_______,∠B=_____,∠C=______,∠BAC=______6.如图,ΔABD≌ΔACE,且AB<AD<BD,则在ΔACE中,有 ________ > ________ > ________.解答题:1.如图,ΔABE≌ΔDCF,∠1 =∠2,∠B =∠C,指出其余的对应角和对应边.2.如图,AB//DE,AC = CF,DF = CF,∠1 =∠2,又ΔABC≌ΔDEF,写出它们的对应边和对应角.答案:一、1.B 解:第四条直线最多和前三条直线都相交而增加3个交点,第五条直线最多和前四条直线都相交而增加4个交点……第十条直线最多和前9条直线都相交而增加9个交点,这样,10条直线相交、最多交点的个数为:1+2+3+……+9=45点拨:随着直线数的增加,最多交点数也随着增加;每增加一条直线,最多交点的增加数与原有直线数相同,应注意观察总结2.B 说明:由ΔABC≌ΔADE可得∠DAE =∠BAC,又∠B = 70º,∠C = 26º,则有∠BAC = 180º−70º−26º = 84º,所以∠DAE = 84º,而∠EAC =∠DAE−∠DAC = 84º−30º = 54º,因此,答案为B.3.D 解:①正确,∵全等形指的是两个能够完全重合的图形,∴它们的面积一定相等;②错误,∵把一个三角形放大得到另一个三角形,这两个三角形的形状是一样的,但大小不同,它们不全等;③正确,根据全等三角形的性质可知③正确;④错误,两个三角形全等可以是其中一个三角形由另一个三角形平移或翻折得到的,并不一定是由另一个三角形旋转而得到的二、1.∠AOC和∠DOB;OA和OD;OC和OB;AC和DB2.EF;EC;∠CFE;∠CEF3.36°;24°4.7 点拨:由角平分线的性质即可得到5.AD;DE;AE;∠D;∠E;∠DAE6.CE>AE>AC 解析:∵ΔABD≌ΔACE,∴AB = AC,AD = AE,BD = CE又AB<AD<BD,∴AC<AE<CE,即CE>AE>AC三、1.解:∠E与∠F是对应角,∠E =∠F;AB与DC,AE与DF,BE与CF是对应边;AB = CD,AE = DF,BE = CF2.解:∠1与∠2是对应角;由AB//DE可得,∠A =∠D,故∠A与∠D是对应角,余下的第三对角∠B、∠E也是对应角;∵AC = CF,DF = CF,∴AC = DF,AC与DF是对应边∵∠1与∠2是对应角,AC与DF是对应边∴BC是EF也是对应边余下的第三对边AB与DE是对应边;综上知,∠1与∠2,∠A与∠D,∠B与∠E是对应角, AC与DF,BC与EF,AB与DE是对应边.。

《全等图形》同步测试题含答案

《全等图形》同步测试题含答案

1.1全等图形一、选择题1. 如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同2. 下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3. 如图,与左边正方形图案属于全等的图案是()A. B. C. D.4. 在下列各组图形中,是全等的图形是()A. B. C. D.5. 下列四个图形中用两条线段不能分成四个全等图形的是()A. B. C. D.二、填空题6. 能够完全重合的两个图形叫做.7. 下列图形中全等图形是(填标号).8. 如图是淮口工业集中发展区中某厂房的平面图,请你指出,其中全等的有组.9. 下列图形不一定能分成两个全等图形的是.(填序号即可)①三角形②正方形③长方形④半圆.10. 如图,将标号为A,B方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.三、解答题11. 如图,试沿着虚线把图形分成两个全等图形.12. 如图,某校有一块正方形它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.参考答案1.1全等图形一、选择题1.B2.C3.C4.C5.D二、填空题6. 全等图形7.⑤和⑦8.39. ①10. M,N,Q,P三、解答题11.如图.12.设计方案如下:。

北师大版2019-2020年七年级数学下册同步分层练 2 图形的全等(含答案)

北师大版2019-2020年七年级数学下册同步分层练 2 图形的全等(含答案)

2图形的全等1.下列各组的两个图形属于全等图形的是 (D)2.下列图形与如图所示的图形全等的是(D)3.下列说法正确的有(C)①用一张底片冲洗出来的10张1寸相片是全等图形;②我国国旗上的4颗小五角星是全等图形;③所有的长方形是全等图形;④全等图形的面积一定相等.A.1个 B.2个 C.3个 D.4个4.如图,四边形ABCD≌四边形A′B′C′D′,则∠D′=120°,∠A= 70°,B′C′= 12 ,A′B′= 10 .5.如图所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点、对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.解:对应顶点:A和G,E和F,D和J,C和I,B和H;对应边:AB和GH,AE和GF,ED和FJ,CD和IJ,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F.因为两个五边形全等,所以a=12,b=10,c=8,e=11,α=90°.6.如图,△ABC≌△DEF,则EF= 5 .7.表示全等的符号“≌”是由“∽”和“=”两部分组成的,其中“=”表示两个全等图形的大小相等,那么“∽”表示两个全等图形的形状相同.8.下列说法正确的是(C)A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120° .10.如图,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2.(1)求AC的长度;(2)试说明CE∥BF.解:(1)因为△ACE≌△DBF,所以AC=BD,所以AB=DC.因为BC=2,所以2AB+2=8,解得AB=3.所以AC=AB+BC=3+2=5.(2)因为△ACE≌△DBF,所以∠ECA=∠FBD.所以CE∥BF.易错点有公共边时容易找不准对应顶点11.如图1,两个三角形全等可表示为△ABC≌△CDA;如图2,两个三角形全等可表示为△ABD≌△ACD.12.如图所示,已知△ABC≌△DEF,则图中相等的线段有(D)A.1组 B.2组 C.3组 D.4组13.如图,△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是(C)A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D14.下列说法错误的是(B)A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等15.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为(C)A.45° B.60° C.90° D.100°16.已知△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3.若这两个三角形全等,则x= 3 .17.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.解:如图所示(答案不唯一).18.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,求∠2的度数.解:因为∠CMD=70°,所以∠AME=70°.又因为∠E=90°,所以∠1=180°-∠E-∠AME=180°-90°-70°=20°.因为△ABE≌△ACF,所以∠BAE=∠CAF,即∠1+∠BAC=∠2+∠BAC,所以∠1=∠2,所以∠2=20°.19.如图,A,D,E三点在同一条直线上,且△BAD≌△ACE.(1)你能说明BD,DE,CE之间的数量关系吗?(2)请你猜想△ABD满足什么条件时,BD∥EC?解:(1)BD=DE+CE.理由如下:因为△BAD≌△ACE,所以BD=AE,AD=CE,所以BD=AE=AD+DE=CE+DE.即BD=DE+CE.(2)当△ABD满足∠ADB=90°时,BD∥EC.因为△BAD≌△ACE,所以∠ADB=∠E.因为∠ADB=90°,所以∠BDE=∠E=90°,所以BD∥EC.。

2022年北师七下《图形的全等2》同步练习(附答案)

2022年北师七下《图形的全等2》同步练习(附答案)

《图形的全等》练习一、选择——根底知识运用1.以下说法正确的选项是〔〕A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是等边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等2.如图,△ABC≌△CDE,其中AB=CD,那么以下结论中,不正确的选项是〔〕A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D3.图中的两个三角形全等,那么∠α的度数是〔〕A.72°B.60°C.58°D.50°4.以下命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为〔〕A.1个B.2个C.3个D.4个5.:如图△ABC≌△DCB,其中点A与点D,点B与点C分别是对应顶点,如果AB=2,AC=3,CB=4,那么DC的长为〔〕A.2 B.3 C.4 D.不确定6.以下四个图形中,全等的图形是〔〕A.①和②B.①和③C.②和③D.③和④二、解答——知识提高运用7.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3= 度。

8.找出七巧板中〔如图〕全等的图形。

9.请看以下图,并答复下面的问题:〔1〕在图〔1〕中,两个足球的形状相同吗?它们的大小呢?〔2〕在图〔2〕中,两个正方形物体的形状相同吗?10.如下图的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,那么AF的长度为多少?11.如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,假设AB=6cm,AC=4cm,BC=5cm,那么AD的长为多少。

参考答案一、选择——根底知识运用1.【答案】BD【解析】全等三角形的三条对应边相等,三个对应角也相等,A不正确;判定两个三角形全等的条件中至少有一个是等边,B正确;面积相等的两个图形不一定是全等形,C不正确;全等三角形的面积和周长都相等,D正确,应选:B、D。

全等图形 苏科版八年级数学上册同步练习(含解析)

全等图形 苏科版八年级数学上册同步练习(含解析)

第1章全等三角形1.1全等图形基础过关全练知识点1全等图形的概念1.(教材P7变式题)观察图中各组图形,属于全等图形的是()A B C D2.如图所示,在网格图中画出与已知图形全等的图形.知识点2全等图形的性质3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个4.如图是两个全等的五边形,β=115°,d=5,指出它们的对应顶点、对应边、对应角,并说出图中标示的a,b,c,e,α各字母所表示的值.知识点3几何变换与全等图形5.(2022江苏南京建邺期中)在6×6的方格中,将图①中的图形甲平移后的位置如图②所示,则下列选项中,图形甲的平移方法正确的是()图①图②A.先向左平移1格,再向下平移2格B.先向右平移3格,再向下平移2格C.先向右平移1格,再向下平移3格D.先向右平移2格,再向下平移3格知识点4全等分割6.把下列各图分成若干个全等图形,请在原图上用虚线标出来.能力提升全练7.(2022江苏苏州虎丘期中,3,)如图所示,各选项中的两个图形属于全等图形的是()A B C D8.(2021江苏无锡梁溪期中,12,)如图,在方格(每个方格的边长均为1个单位)纸中,图形②可以看作是由图形①经过若干次图形变换(平移、轴对称、旋转)得到的,写出一种由图形①得到图形②的变换过程:.9.(2022江苏无锡滨湖月考,10,)如图,四边形EFGH与四边形ABCD是全等图形,若AD=5,∠B=70°,则 EH=,∠F=.10.(2019浙江衢州中考改编,19,)如图,在4×4的方格中,若△ABC的三个顶点都在格点上,则称△ABC为格点三角形.请在图中画一个格点△BEC,使△BEC与△BAC全等,其中点E在格点上.素养探究全练11.[直观想象]我们知道,两个能够互相重合的图形叫做全等图形.(1)如图,请你用四种方法把长和宽分别为5和3的长方形分成四个均不全等的小长方形或正方形,且小长方形或正方形的各边长均为整数;(2)能否将上述3×5的长方形分成五个均不全等的,且各边长均为整数的小长方形或正方形?若能,请在图中画出.答案全解全析基础过关全练1.B A中两个图形形状不同;C、D两组图中的两个图形形状相同,但大小不等;B中两个图形形状相同,大小相等,所以是全等图形.故选B.2.解析如图所示.3.A①周长相等的两个图形不一定重合,所以不一定全等;②面积相等的两个图形不一定重合,所以不一定全等;③周长相等且面积相等的两个图形不一定重合,所以不一定全等;④两个图形的形状相同且面积相等,则二者一定能重合,所以两个图形全等.所以只有④正确,故选A.4.解析对应顶点:A和G,E和F,D和J,C和I,B和H.对应边:AB和GH,AE和GF,ED和FJ,CD和IJ,BC和HI.对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F.∵题图中的两个五边形全等,∴a=12,b=10,c=8,e=11,α=90°.5.C6.解析(答案不唯一)如图所示:能力提升全练7.B A.两个图形不能完全重合,不是全等图形,故本选项不符合题意;B.两个图形能够完全重合,是全等图形,故本选项符合题意;C.两个图形不能完全重合,不是全等图形,故本选项不符合题意;D.两个图形不能完全重合,不是全等图形,故本选项不符合题意.故选B.8.答案将图形①先绕D点顺时针旋转90°,再向下平移3个单位得到图形②(答案不唯一)9.答案 5;70°解析∵四边形EFGH与四边形ABCD是全等图形,AD=5,∠B=70°,∴EH=AD=5,∠F=∠B=70°,故答案为5;70°.10.解析如图所示.素养探究全练11.解析(1)所画图形如图①~④所示.(答案不唯一)(2)能,所画图形如图⑤所示.(答案不唯一)图①图②图③图④图⑤。

北师大版七年级数学下册同步要点(含答案)4.2 图形的全等

北师大版七年级数学下册同步要点(含答案)4.2 图形的全等

4.2 图形的全等1.__________的两个图形称为全等图形,全等图形的形状和大小都__________.【答案】能够完全重合相同2.__________的两个三角形叫做全等三角形,全等三角形的对应边__________,对应角__________.【答案】能够完全重合相等相等3.下列各组图形中,是全等图形的为__________.(填序号)1()2()3()4()【答案】(3)4.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有__________对.【答案】两A基础训练达标区1.下列每组中的两个图形,是全等图形的为().A .B .C .D.【答案】A2.下列说法:①能够重合的图形一定是全等图形;②全等图形的面积一定相等;③两个面积相等的图形一定是全等图形;④两个周长相等的图形一定是全等图形.其中正确的个数是().A .1个B .2个C .3个D .4个【答案】B3.下列说法错误的是( ).A .全等三角形的对应边相等B .全等三角形的对应角相等C .若两个三角形全等且有公共点,则公共点就是它们的对应点D .若两个三角形全等,则对应边所对的角是对应角【答案】C4.如图,如果ABC △和CDA △是全等三角形,那么一定是一组对应边的是( ). DAB CA .AB 和CD B .AC 和AC C .AD 和CB D .AD 和DC【答案】B5.如图,ABC △≌BAD △,A 、C 的对应顶点分别为点B 、D ,若7c m AB =,12cm BC =,9cm AC =,则BD 的长为( ). DABC A .7cm B .9cm C .12cmD .不能确定【答案】B6.对于A 、B 两个图形,给出以下条件:①这两个图形形状相同;②这两个图形形状不同,但大小相同;③这两个图形形状、大小均相同;④这两个图形叠在一起能完全重合,其中不能推出这两个图形全等的条件是__________.(填序号)【答案】①②7.如图所示的图案是由全等的图形拼成的,其中0.5cm AD =,1cm BC =,则AF =__________. DA B C EF【答案】6cm8.如图所示,已知ABD △≌ACD △,且点B 、D 、C 在同一条直线上,那么AD 与BC 有怎样的位置关系?为什么? D AB【答案】见解析解:AD BC ⊥,理由如下:∵ABD △≌ACD △,∴ADB ADC ∠=∠,又∵180ADB ADC ∠+∠=︒,∴90ADB ∠=︒,∴AD BC ⊥.B 综合训练提升区9.如图,ABC △≌BAD △,A 、C 的对应点分别是B 、D ,若9AB =,8BC =,6AC =,则BD =(). DA BCA .6B .9C .8D .无法确定【答案】A10.如图,ABC △和DEF △全等,DE AB ∥,DF AC ∥,50A ∠=︒,55B ∠=︒,则D ∠等于(). DA BC E FA .30︒B .55︒C .50︒D .不能确定【答案】C11.如图,ABC △≌DEF △,4BE =,1AE =,则DE 的长是__________. DA B C EF【答案】512.如图,若ABC △≌DEF △,50A ∠=︒,30C ∠=︒,则D ∠=__________,F ∠=__________,E ∠=__________. DA BC E F【答案】50︒30︒ 100︒13.如图,AOC △≌BOD △,试判断AC 与BD 的位置关系,并说明理由. D ABCO【答案】见解析 解:AC BD ∥.理由如下:因为AOC △≌BOD △. 所以A B ∠=∠(全等三角形对应角相等), 所以AC BD ∥(内错角相等,两直线平行).14.(教材P95T2变式)如图,已知AOB △≌COD △,4BC CD +=,求AOB △的周长. ABC O【答案】4 解:因为AOB △≌COD △(已知),所以OA OC =,AB CD =(全等三角形的对应边相等). 又因为4BC CD +=(已知),所以4CD BC CD OC BO AB OA BO +=++=++=, 即AOB △的周长等于4.15.如图,A 、D 、E 三点在同一直线上,且BAD △≌ACE △,试说明: DABC(1)BD DE CE =+.(2)ABD △满足什么条件时,BD CE ∥?【答案】见解析解:(1)因为BAD △≌ACE △,所以BD AE =,AD CE =,所以BD AE AD DE CE DE ==+=+,即BE DE CE =+.(2)ABD △满足90ADB ∠=︒时,BD CE ∥,理由:因为BAD △≌ACE △,所以90E ADB ∠=∠=︒, 所以1809090BDE E ∠=︒-︒=︒=∠, 所以BD CE ∥.C 青岛特色拓展区16.如图所示,ADC △≌AFB △,20DAB ∠=︒,DA BF ∥,AC 、BF 交于E ,110FEC ∠=︒. FE DABC(1)求FAC ∠的度数. (2)试说明:AF DC ∥. (3)求BAC ∠的度数.【答案】见解析解:(1)20︒.(2)∵DA BF ∥,∴20DAB ABF ∠=∠=︒,又ADC △≌AFB △,∴ACD ABF ∠=∠,∴20ACD ∠=︒,又20FAC ∠=︒,∴ACD FAC ∠=∠,∴AF DC ∥.(3)50︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 图形的全等同步练习
本课导学
点击要点
___________是图形的全等.
学习策略
解决本节习题应把握全等的概念和特征.
中考展望
本节知识在中考中单独考查时可能以设计题形式出现.
随堂测评
基础巩固
一、训练平台(第1~3小题各8分,第4小题12分,共36分)
1.下列命题错误命题的个数是()
①只有两个三角形才有完全重合;
②如果两个图形全等,它们的形状和大小一定都相同;
③两个正方形一定是全等形;
④边数相同的图形一定能互相重合.
A.4个 B.3个 C.2个 D.1个
2.全等图形都相同的是()
A.形状 B.大小 C.边数和角度 D.形状和大小
3.把两个全等的三角形,两两拼在一起,所得的两个图形,一定还是()
A.三角形 B.四边形 C.六边形 D.不能确定
4.找出图5-36中的全等图形.
能力升级
二、提高训练(每小题16分,共32分)
1.观察下面的图案(如图所示),你能发现其中的全等图形吗?
2.随意散落在地上的几张相同规格的纸(如图所示),我们将它们放在一起,使它们完全重合.这说明了什么?
三、探索发现(共16分)
你能把图所示的圆分成两个全等的图形吗?能分成四个全等的图形吗?还能继续分下去吗?
四、拓展创新(共16分)
如图所示,请你把下列梯形分成四个全等的四边形.
中考演练
你能把一个等边三角形(如图所示)分成三个全等的图形吗?画图说明,画出三个图来.
答案:
本课导学
形状相同且大小相等
随堂测评
一、1.B 2.D 3.D
4.A与M,B与Q,C与Z,D与Y,E与N,F与P,G与R,H与X.
二、1.略
2.形状、大小相同的图形,经过运动后一定能完全重合,它们是全等形.
三、画任意一条直径,就可分为两个全等形,画出互相垂直的直径就可以分成四个全等形,
还可以继续分下去.
四、如图所示:
中考演练
可以有多种画法,围绕着等边三角形的中心来画,图略.。

相关文档
最新文档