永磁同步发电机转子初始位置预测

合集下载

转子位置估算算法

转子位置估算算法

永磁同步电机(PMSM)转子位置估算算法是控制系统中至关重要的一个环节,因为它直接影响到系统的稳定性和性能。

在实际应用中,常用的转子位置估算方法可以分为以下几类:
1. 基于基波模型和磁场定向控制(FOC)的方法:这种方法通过分析定子电流的基波分量,可以间接估算出转子位置。

首先需要通过反Park变换和反Clark变换将定子电流转换为dq轴电流,然后通过积分计算出dq轴电角度,最后根据电角度与转子位置角的关系求出转子位置。

2. 基于滑模观测器(Sliding Mode Observer, SMO)的方法:滑模观测器是一种非线性观测器,可以通过对定子电流和电压进行积分,估算出转子位置和速度。

这种方法具有较好的动态性能和鲁棒性,但对系统噪声敏感。

3. 基于扩展卡尔曼滤波(Extended Kalman Filter, EKF)的方法:扩展卡尔曼滤波是一种基于递推的估计方法,可以通过对系统模型和噪声协方差进行估计,实现对转子位置和速度的高精度估算。

这种方法具有较强的鲁棒性和抗噪声能力,但计算复杂度较高。

4. 基于高频信号注入的方法:这种方法通过在定子电流中注入一定频率的信号,然后检测转子位置敏感器输出的相位变化,从而估算出转子位置。

这种方法具有较好的实时性和准确性,但对硬件要求较高。

5. 基于单神经元自适应PID控制的方法:单神经元自适应PID控制器可以实现对转子位置和速度的自适应调节,从而实现对转子位置的估算。

这种方法具有较强的鲁棒性和自适应性,但计算复杂度较高。

永磁同步电机转子初始位置检测方法

永磁同步电机转子初始位置检测方法

有传感器位置检测技术
有传感器位置检测技术
转子位置检测技术分有传感器检测技术和无传感器检测技术。有传感器位置检测技术主要指通过在系统中加 装位置检测传感器来检测转子位置的方法。有传感器位置检测技术根据所添加位置传感器的不同又可分为旋转变 压器检测技术、光电编码盘检测技术、解算器检测技术等,其中旋转变压器检测技术、光电编码盘检测技术最为 常用 。
旋转变压器检测技术
旋转变压器检测技术
旋转变压器是电机常用检测元件之一,旋转变压器分正余弦旋转变压器、线性旋转变压器、比例式旋转变压 器等。
正余弦旋转变压器原理图正余弦二对极无刷式旋转变压器原理如《正余弦旋转变压器原理图》所示,R1R2为 励磁绕组,S1 S3, S2 S4为定子输出绕组。工作时若在R1、2两端输入高频交流电压信号,产生脉振磁场,当转 子随电机旋转时,脉振磁场随之旋转,从而在定子绕组感应出与转子位置有关的脉振电动势。因为S1 S3, S2 S4 两套绕组互相垂直,输出信号相位差90°,形成随转子位置变化的正余弦信号,其输入输出关系为旋转变压器在 性能上可靠性高,有较强的抵抗外界恶劣环境的能力,但需要设计复杂的信号处理电路。这些信号处理电路的可 靠性和精度对转子位置检测有很大影响,并且造价昂贵导致成本大幅增加,限制了旋转变压器的应用范围 。
永磁同步电机转子初始位置检 测方法
位置传感器调速系统中的环节
01 简介
目录
复合式光电编码器检
02 测转子初始位置的方 法
03
有传感器位置检测技 术
04 旋转变压器检测技术
05 光电编码器检测技术
06
无传感器位置检测技 术
目录
07 高频信号注入检测技 术
09 总结
08 智能检测技术

内置式永磁同步电机转子初始位置估计方法

内置式永磁同步电机转子初始位置估计方法
r o t o r p o s i t i o n f r o m t he r e s p o ns e c u r r e n t ,a n d t he n o n l i n e a r c h a r a c t e is r t i c o f ma g n e t i c s a t u r a t i o n wa s u t i ・ l i z e d t o i d e n t i f y t h e r o t o r po l e p o l a r i t y .Fi na ll y t he i n i t i a l r o t o r p o s i t i o n wa s d e t e m i r ne d b y s y n t h e s i z i ng t h e
s i t i o n e s t i ma t i o n m e t h o d f o r i n t e i r o r p e r ma n e n t ma g n e t s y n c h r o n o u s m o t o r( I P MS M) , a n i m p r o v e d i n i t i a l
第 1 7卷
第 3期
电 机 与 控 制 学 报
ELECTRI C MACHI NES AND CONTROL

V0 1 . 1 7 No . 3 Ma r .2 01 3
2 0 1 3年 3月
内 置 式 永 磁 同步 电机 转 子 初 始 位 置 估 计 方 法
何栋 炜 , 彭侠夫 , 蒋 学程 , 周 结华
( 1 . 厦 门大学 信息科学与技术学 院 , 福建 厦 门 3 6 1 0 0 5 ; 2 . 闽江学 院 电子 系 , 福建 福州 3 5 0 1 0 8 )

永磁同步电机初始位置检测及启动方法

永磁同步电机初始位置检测及启动方法

永磁同步电机初始位置检测及启动方法
永磁同步电机是一种高效、高性能的电机,广泛应用于工业生产和家用电器中。

在永磁同步电机的启动过程中,初始位置检测是非常重要的一步,它能够确保电机的正常启动和运行。

本文将介绍永磁同步电机初始位置检测及启动方法。

永磁同步电机的初始位置检测方法有多种,其中比较常用的是霍尔传感器检测法和反电动势检测法。

霍尔传感器检测法是通过在电机转子上安装多个霍尔传感器,检测转子位置,从而确定电机的初始位置。

反电动势检测法是利用电机在启动过程中产生的反电动势信号,通过对信号进行处理,确定电机的初始位置。

在确定了电机的初始位置后,接下来就是启动电机。

永磁同步电机的启动方法有直接启动法和间接启动法。

直接启动法是将电机直接连接到电源上,通过控制电源电压和频率,使电机转子旋转。

间接启动法是通过变频器控制电机的转速和转向,从而实现电机的启动。

在实际应用中,永磁同步电机的启动过程中还需要注意一些问题。

首先是电机的负载问题,如果电机负载过大,可能会导致电机启动失败或者启动时间过长。

其次是电机的控制问题,需要根据实际情况选择合适的控制方法和控制参数,以确保电机的正常启动和运行。

最后是电机的保护问题,需要安装过流、过载等保护装置,以保护电机的安全运行。

永磁同步电机的初始位置检测及启动方法是电机启动过程中非常重要的一步。

通过选择合适的检测方法和启动方法,以及注意电机的负载、控制和保护问题,可以确保电机的正常启动和运行,提高电机的效率和性能。

永磁同步伺服电机转子初始位置检测

永磁同步伺服电机转子初始位置检测
收稿日期 :2002 - 08 - 12 定稿日期 :2002 - 11 - 12 作者简介 :李 宁 (1962 - ) ,男 ,副教授 ,研究方向为交
流伺服系统 ,步进电机控制 ,开关电源技术 。
66
采用增量式光电脉冲编码器作为正弦波永磁同步电 机的转子位置检测元件 ,国外已出现了这样的产品 。
简单地说 ,测量转子初始位置的过程就是定子 电流矢量渐近地靠近转子 ,直至与其重合的过程 。 此过程初始 ,定子电流矢量的相位角是任意取定的 , 但最终定子电流矢量将趋向转子的位置 。
如前所述 ,正弦波电机在连续运行时 ,为了得到 最大的电磁转矩 ,定子电流矢量与转子是正交的 ,而 在初始定位的过程中 ,二者要趋于重合 。在这一点 上 ,初始定位过程和连续运行过程确实有很大的不 同 。对于电流环来说 ,在连续正常运行时 , d 轴的给
第 37 卷第 2003 年 4
2期 月
电力电子技术 Power Electronics
Vol. 37 ,No. 2 April ,2003
交流伺服电动机转子初始位置的精确测定
李 宁 , 刘启新 , 张丽华
(南京工程学院 , 南京 210013)
The Precise Measurement of the Rotor of AC Servo Motor L I Ning , L IU Qi2xin , ZHAN G Li2hua
( N anji ng Instit ute of Technology , N anji ng 210013 , Chi na) Abstract :In t he digital servo system applying increment p hotoelectricity pulse coder as feedback element , precise measurement of initial position of motor rotor is an important problem , its principle and realizing met hod are presented in t his paper , t he measurement results are also given. Keywords :AC servo motor ; position measurement ; digital system

永磁同步电机转子初始位置估计

永磁同步电机转子初始位置估计

工学硕士学位论文永磁同步电机转子初始位置估计 INITIAL ROTOR POSITION ESTIMATION FOR PMSM胡任之哈尔滨工业大学2008年7月国内图书分类号:TM351国际图书分类号:470.40工学硕士学位论文永磁同步电机转子初始位置估计硕士研究生:胡任之导师:邹继斌 教授申请学位:工学硕士学科、专业:电机与电器所在单位:电气工程系答辩日期:2008年7月授予学位单位:哈尔滨工业大学Classified Index:TM351U.D.C.: 470.40Dissertation for the Master Degree in Engineering INITIAL ROTOR POSITION ESTIMATIONFOR PMSMCandidate:Hu RenzhiSupervisor:Prof. Zou JibinAcademic Degree Applied for:Master of Engineering Specialty:Electrical Machine and Apparatus Affiliation:Dept. of Electrical Engineering Date of Defence:July, 2008Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学工学硕士学位论文摘要永磁同步电机(PMSM)具有高效率、高功率密度、控制性能好、启动特性好等优点。

然而转子初始位置的准确检测是PMSM可靠启动的必要保证。

转子初始位置偏差将引起电机启动电流过大,甚至会造成电机过流或发生反转,负载较大时情况更加严重。

本文针对PMSM的转子初始位置估计的问题进行了深入的研究。

基于转子预定位的PMSM初始位置估计是一种常用的方法。

本文分析了转子预定位法的原理和初始位置估计精度的影响因素,采用了电流闭环的转子预定位方法,并提出平均值法来克服摩擦力引起的初始位置估计误差。

永磁同步电机转子初始位置检测

永磁同步电机转子初始位置检测

上式中,转子角速度由ω指代,当它的取值为
因高频电压信号从电机绕组中通过,故而,可对定子电阻压降进行忽略,进一步得出定子电压方程和电流响应信号等[1]。

将高频旋转电压信号持续注入定子绕组中,即可得出三相静止坐标系中的电压,分别用U和ωh对高频电压信号幅值和角频率进行表示,继而依托3/2将其变换至两相
由上式可知,三相高频电流响应信号都是两个同频率正弦信号差,同频率正弦交流电压相加其性质不变,而幅值影响因素则是两个信号各自的幅值和相位差。

已知电机参数和高频注入信号的情况下,θ能调制三相高频电流响应信号幅值。

三相高频电流响应信号幅值与θ角变化规律相关,与正弦规律类似。

三相高频电流响应信号幅值变化幅度与电机凸性成正比。

倘若提取位置信息时使用查表方法,无论是注入高频电压信号幅值,还是角频率都会对该操作产生干扰,反之,
轴电感会随之减小,
图1定子磁势影响d轴磁路
由上述已知条件,对电机d轴电流表达式予以确定:
得出结论:i d与L sd成反比,L sd越大,i d越小。

该背景下,分别将同等时间和幅值的脉冲电压注入到不同的位置和(θ+π),继而对两次响应电流幅值进行检测和比较,得出转子位置角[3]。

3实验结果分析
采用一台内嵌式永磁同步电机,对永磁同步电机转子初始位置检测方法进行验证,分别将其额定电压和额定功。

永磁同步电机转子位置估算专题

永磁同步电机转子位置估算专题

永磁同步电机转子位置估算专题
研究内容
随着新能源汽车行业及智能化进程的加速,电动汽车和智能机器对永磁同步电机的要求越来越高,从而使它成为研究的热点。

在100%电力驱动的汽车中,永磁同步电机的出色性能把其定位为电动汽车的首选。

然而,由于永磁同步电汽车的缺乏表达性和位置测量装置的线分离,这意味着永磁同步电机的位置参数估算是研究的重要内容之一。

本研究将针对定子励磁永磁同步电机,重点从电流、转矩信号中估算出转子位置信息,同时应用机器学习算法,以改善转子位置准确度和効率。

首先使用传统的有限定状控制方法获取转子位置信息,然后引入机器学习算法,有效的解决位置参数的不准确问题,并提出可靠的解决方案。

本研究将从两个方面来实现转子位置估算,一是传统有限定状控制;二是机器学习方法。

首先,采用有限定状控制,使用定子电流、转矩等测量信号,用相关最小二乘估计算法,来实现对转子位置信息的估计。

然后,将机器学习方法引入到转子位置估算中,采用人工神经网络等机器学习算法,在定子电流、转矩的条件下,优化转子定位参数的准确度。

基于磁定位原理的永磁同步电机转子初始位置定位研究

基于磁定位原理的永磁同步电机转子初始位置定位研究

复摄动,直到当电机转子不转动时,施加的电流 矢量方向和转子磁极一致重合,完成电机转子的 初始定位。 设转子位置如图 3 所示,检测转子初始位置 (即 )步骤如下: 第一步: 按照 0-7 的顺序分别给电机定子施加 相同大小不同方向的电流矢量。首先施加电流矢 量 id 0 、 iq is 、 e = 0 ,一旦检测到编码器有
电磁转矩方程为
。通常取
s Te 1.5 pis sin(e ) TL Bps Jp
因为 p 、 、is( is 0 ) 固定, 如果忽略 TL ,
e 90 使转子转到 d 轴、A 轴、 轴三轴重合
的位置。
Te 0 , 则当 e 0 时, 电机逆时针转动;
Tab.1 the number of encoder after the first step( = 180 )

is
1
2
4
N S
e
0
电流矢量 脉冲数 Q1 幅角 0 1 2 3 4 0 23998 23990 23976 23972 0 23996 23978 23972 23972 脉冲数 Q2 转动方向 不转 顺时针 顺时针 顺时针 不转
Ld 、 Lq 为 d、q 轴上的电感量, id 、 iq 为 d、q 轴
上的电流, B 阻尼系数, s 机械角速度, TL 为负 载转矩。 对于表面式 PMSM, L 矩方程为: Te 1.5 piq 。
d

d

is

Lq ,于是电磁转
e 90
N O S N


S
A
iq
图 1 dq 坐标系下电流关系
d q 坐标系相位为 e 的电流矢量 is , is 所产生的

永磁同步电机转子初始位置

永磁同步电机转子初始位置

永磁同步电机转子初始位置
一天,我来到了一家电机制造厂,目睹了一个令人惊叹的场景。

在这个巨大的车间里,数十台永磁同步电机正在忙碌地运转着,为各种设备提供动力。

我被一台正在运转的电机吸引住了,它的转子以一种平滑而有力的方式旋转着。

我好奇地询问工作人员,这台电机的转子是如何得以启动的。

工作人员微笑着解释道:“在每次启动电机之前,我们需要确保转子的初始位置是正确的。

这是为了保证电机的正常运行。


他继续解释说,为了确定转子的初始位置,他们使用了一种称为“霍尔效应”的技术。

这个技术利用了磁场对电流的影响,通过在电机转子上安装几个霍尔传感器,可以检测到转子的位置。

通过与控制器的通信,电机可以精确地确定转子的初始位置。

工作人员还告诉我,一旦确定了转子的初始位置,电机就可以按照设定的程序运行了。

转子会根据所需的转速和方向旋转,为设备提供所需的动力。

而且,由于永磁同步电机具有高效率和高功率因数的特点,它们在实际应用中被广泛使用。

在听完工作人员的解释后,我对永磁同步电机的转子初始位置有了更深入的了解。

我想,这个过程就像是我们在生活中确定自己的方向一样。

只有当我们清楚自己的初始位置,并有一个明确的目标时,我们才能朝着正确的方向前进,实现自己的梦想。

我离开了电机制造厂,心中充满了对永磁同步电机的敬畏和对技术的向往。

我深深地明白,现代科技的发展给我们带来了许多便利和机遇,而永磁同步电机作为其中的一部分,将继续为人类创造更美好的未来。

内置式永磁同步电机转子初始位置估计方法

内置式永磁同步电机转子初始位置估计方法

内置式永磁同步电机转子初始位置估计方法1 简介内置式永磁同步电机作为一种高效的电机,广泛应用于各个领域中。

然而,在实际运行过程中,确定初始位置成为影响电机性能的重要因素。

在本文中,我们将会介绍内置式永磁同步电机转子初始位置估计方法,以帮助读者更好地理解这一技术。

2 内置式永磁同步电机初始位置问题内置式永磁同步电机的工作原理是基于永磁体和电枢之间的相互作用。

由于永磁体和电枢之间的初始相位差会影响电机的性能,所以准确地确定初始位置很重要。

在传统的控制方法中,通常使用编码器来确定初始位置。

但是,编码器受到机械误差和精度限制的影响,所以对于高精度控制要求的应用,编码器显然无法满足需求。

3 内置式永磁同步电机初始位置估计方法由于编码器限制,人们开始研究替代方案。

目前,有两种方法用于确定内置式永磁同步电机的初始位置,即基于电动势(EMF)测量的方法和基于扩展卡尔曼滤波(EKF)的方法。

在EMF方法中,通过测量电动势来确定转子位置,这种方法无需安装编码器,可以减少成本和增加可靠性。

但是,EMF测量会受到电流和电压变化的影响,在低速和低负载运行情况下,精度会受到很大挑战。

相对而言,EKF算法通过估计状态向量的协方差矩阵,能够准确地估计位置,提供了较高的控制精度。

同时,这种方法增加了计算量,需要合理的硬件支持。

4 总结总体而言,内置式永磁同步电机转子初始位置估计方法是一个十分重要的研究领域。

EMF和EKF是两种主要的方法,各有优缺点。

因此,在实际应用中,应该结合具体的应用场景和技术需求,综合考虑选取合适的方法。

未来,随着相关技术和硬件的不断发展,更加高效和精确的方法将不断出现,让我们拭目以待。

永磁同步电机初始位置辨识 脉冲电压法

永磁同步电机初始位置辨识 脉冲电压法

永磁同步电机初始位置辨识脉冲电压法
《永磁同步电机初始位置辨识脉冲电压法》
永磁同步电机作为一种高效、节能的电机,在现代工业中得到了广泛的应用。

而在使用永磁同步电机时,初始位置辨识是一个非常重要的问题。

初始位置辨识的准确性直接影响到电机的性能和控制效果。

在永磁同步电机的初始位置辨识中,脉冲电压法是一种常用的方法。

该方法利用定子和转子之间的空气隙,在转子没有运动时,对定子施加一次性的脉冲电压,然后通过检测旋转过程中的电压、电流、位置信息,来确定转子的初始位置。

脉冲电压法的优点是简单易行、成本低廉。

它不需要额外的传感器或装置,只需要在电路控制系统中稍作调整即可实现初始位置辨识。

另外,该方法还可以在低速或停滞状态下进行初始位置辨识,适用范围广泛。

但是,脉冲电压法也存在一些局限性。

由于定子和转子之间的空气隙不是完全均匀的,因此在某些情况下可能会导致初始位置辨识的误差。

此外,该方法需要较高的电压和电流,可能会对电机和控制系统造成一定的影响。

为了提高脉冲电压法的准确性和稳定性,可以结合其他方法,比如加入自适应滤波、数字信号处理等技术,来对检测到的信号进行处理和优化,从而提高初始位置辨识的精度和稳定性。

总的来说,《永磁同步电机初始位置辨识脉冲电压法》是一种简单且有效的方法,适用于大多数永磁同步电机的初始位置辨识。

在实际应用中,需要根据具体情况加以调整和改进,以确保初始位置辨识的准确性和稳定性。

隐极式永磁同步电机转子初始位置估计

隐极式永磁同步电机转子初始位置估计
WU X i a n g L i a n ,Q I N G u o d o n g ,T A N G P u h o n g ,Z H A N G Z h e n g y u ( J i a x i n g V o c a t i o n a l T e c h n i c a l C o l l e g e , J i a x i n g Z h e j i a n g 3 1 4 0 3 6 ,C h i n a )
2 0 1 4年
2月
隐极 式 永磁 同步 电机 转 子初 始 位 置 估 计
吴湘莲 ,秦 国栋 ,唐普 洪 ,张征 宇
( 嘉兴职业技 术学院 机电与汽车分院 ,浙江 嘉兴 3 1 4 0 3 6 )

要 :本文 提出了一 种无位 置传感 器的隐极 式永 磁同步电机转子初始位置估算 的方法 ,这种估算方 法是利用 由于
0 引 言
隐极式 永 磁 同 步 电 机( P MS M) 具 有结 构坚 固、
断 的角度 细分 进 行 判 断 ,且不 依 赖 电机 参 数 ,最后
以D S P控 制 的永 磁 同步 电机 系统 为 实 验 平 台 ,对所 提 出的方法 进 行 了实 验验 证及 实验 结 果 分 析 ,结 果 证 明 了理论 分 析正确 。
转子永磁 铁而产生铁心的非 线性 磁化 特性 ,该 方法 中给 电枢绕 组施加 幅值相 同 、方 向不 同的一系 列电压空 间矢量 , 并判 断各 矢量 下对 于响应电流的大小 ,来 确定 转子初始位置角度 。在整个 检测 的过 程 中,保持转子 的静止 。以 D S P 控制的永磁同步电机系统为实验平台 ,对所提出的方法进行 了实验验证及实验结果分析 ,结果表明理论分析正确。 关键词 :磁饱 和 ;转子初始位置 ;隐极永 磁同步电机

一种永磁同步电机转子初始位置的判断方法

一种永磁同步电机转子初始位置的判断方法

一种永磁同步电机转子初始位置的判断方法1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤:(1)在ˆˆdq -估计同步旋转坐标系的ˆd 轴上注入高频电压信号ˆcos()d mh h uU t ω=,给定ˆq 轴电压ˆ0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到ˆˆdq -估计同步旋转坐标系的ˆq轴电流ˆq i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的ˆq轴电流ˆq i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到ˆq轴电流ˆq i 的幅值信号()f θ∆;最后,对该幅值信号()f θ∆进行PI 调节,得到估计转速ˆω,对估计转速ˆω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计的转子位置ˆfirstθ; (4)在ˆˆdq -估计同步旋转坐标系的ˆd 轴上注入高频电压信号ˆcos()d mh h uU t ω=,在ˆq 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>;(5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收敛的磁极极性为N 极,转子初始位置ˆˆ=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置ˆˆ=initial firstθθπ+。

2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特征在于:所述步骤(1)中,采用转子的估计位置ˆθ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值ˆuα和ˆu β。

一种永磁同步电机转子初始位置的判断方法技术领域本发明属于永磁电机控制领域,特别涉及一种永磁同步电机转子初始位置的判断方法。

背景技术永磁同步电机无论是采用直接转矩控制还是矢量控制,都需要精确地获取转子的位置。

传统的检测电机转子位置和转速的方法中,多采用机械传感器,如光电编码器或者旋转变压器等,使得永磁同步电动机系统不能在一些环境恶劣的特殊场合里可靠地工作,如航天、水下及空调压缩机等领域。

永磁同步电动机DTC的初始转子位置估计方法

永磁同步电动机DTC的初始转子位置估计方法
O( =kr h ) T k=0 12, , …

( 1 1)
角速度 ; 为转子永磁体磁链。
转 子角位 移 和所 施 加 高 频 电压 所 产 生 的角 位 移 计 算 :

在式 (1 的基础 上 , 虑 电机 注 入 高频 电压 的 1) 考 起 始过 程 , t l l ) 的第 一个 最大值 必 在 ( ) ( 1 :0 +
化, 因此为 了 区分 在 叮 ~ 盯之 间 的角度 , 要 利 T 2 就
注入高频电压信号的频率。
+ ) f
向静 止 时的 电机 注 入 高频 电压 信 号 , 通过 检 测
() 1
, 】
高频 电流信号的每一个极值时刻及其所对应的高频
电压 产 生 的角 位移 , 可 以实 现 电机 的初 始转 子 位 就
d = c s h=尺 d + } ho l 0 I d l
一t L o g r


堕堕 … 皇 苎
…… … ……… …… ……… …
…j
永磁 同步 电动机 D C 的初 始 转 子 位 置 估 计 方 法 T
徐 艳平 张 , 艳 王毅 兰 钟 彦儒 , ,
(. 1 西安理工大学 , 陕西西安 7 0 4 ;. 10 8 2 同济大学 , 上海 2 10 ) 0 8 4
的实现基 础 。
压正弦信号 ¨ 。这种方法通常利用电机的凸极效 电 动 应来 获 得转子 位置 信息 , 电机参 数不敏感 , 对 能够实 机 现电机在低速时对转子位置的准确估计。 本文针对永磁 同步 电动机直接转矩控制, 详细 叙述 了一种基于高频电压信号注入的永磁 同步 电动 机初始转子位置检测原理 , 并对该方法进行了仿真 研究 。仿真结果表明这种方法能够实现直接转矩控 制下对永磁同步电动机初始转子位置的准确估计 ,

一种永磁同步电机转子位置估算方法及系统

一种永磁同步电机转子位置估算方法及系统

专利名称:一种永磁同步电机转子位置估算方法及系统专利类型:发明专利
发明人:魏海峰,闫春幸,陈椒娇
申请号:CN202111283728.6
申请日:20211101
公开号:CN113972875A
公开日:
20220125
专利内容由知识产权出版社提供
摘要:一种永磁同步电机转子位置估算方法及系统,包括:PI控制器模块、PWM发生器模块、换相控制模块、电流检测模块、矢量控制模块、转速计算模块、相位补偿模块、永磁同步电机模块;PI 控制器模块与PWM发生器模块、电流检测模块、永磁同步电机模块连接,用于将转速经PI调节得到期望的电流值,从而得到PWM的占空比;永磁同步电机模块与线电压模块、矢量控制模块、转速计算模块、相位补偿模块依次连接,用于计算低通滤波器产生的相位延迟角度,并转换为所需延迟时间,再对线反电动势信号进行延迟,根据线反电动势求出转子角度,从而完成转子位置估算。

采用线电压的方法进行永磁同步电机转子位置估算,使电机在零低速运行时也能准确的估算出转子位置。

申请人:江苏科技大学
地址:212003 江苏省镇江市梦溪路2号
国籍:CN
代理机构:南京正联知识产权代理有限公司
代理人:杭行
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

38IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 1, JANUARY/FEBRUARY 2005Initial Rotor Position Estimation of an Interior Permanent-Magnet Synchronous Machine Using Carrier-Frequency Injection MethodsYu-seok Jeong, Student Member, IEEE, Robert D. Lorenz, Fellow, IEEE, Thomas M. Jahns, Fellow, IEEE, and Seung-Ki Sul, Fellow, IEEEAbstract—This paper presents a method using carrier-frequency injection to estimate the initial rotor position and magnetic polarity for an interior permanent-magnet synchronous machine. A nonsaturating inductance model of the machine provides no information about the polarity of the rotor magnet because the position observer based on this model is locally stable at both poles. To distinguish the polarity of the rotor magnet, the magnetic saturation effect can be used. The Taylor series can be used to describe the nonlinear magnetic saturation relationship between the current and the flux linkage in the -axis rotor reference frame. The second-order term produces the second harmonic component of the carrier frequency, and the sign of its coefficient identifies the polarity of the rotor magnet being tracked. Both simulation and experimental results show good response of the position observer at several rotor electrical positions using either a rotating vector in the stationary reference frame or a oscillating vector in the estimated rotor reference frame. Index Terms—Carrier-frequency injection, initial rotor position, magnetic polarity, second harmonic component.I. INTRODUCTIONINTERIOR permanent-magnet (IPM) synchronous machines are attractive candidates for high-performance applications because of their high efficiency and suitability for wide speed ranges of constant power operation [1]. In recent years, several papers have been published describing methods for the elimination of position sensors in both induction and permanent-magnet synchronous machines using signal injection, saliency-tracking techniques. The methods suitable for zero and very low speed operation are primarily based on injectingPaper IPCSD-04-062, presented at the 2003 IEEE International Electric Machines and Drives Conference, Madison, WI, June 1–4, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Industrial Drives Committee of the IEEE Industry Applications Society. Manuscript submitted for review March 1, 2004 and released for publication August 30, 2004. This work was supported in part by the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), University of Wisconsin, Madison. Y. Jeong and S.-K. Sul are with the School of Electrical Engineering and Computer Sciences, Seoul National University, Seoul 151-744, Korea (e-mail: yu-seok@eepel.snu.ac.kr; sulsk@plaza.snu.ac.kr). R. D. Lorenz is with the Department of Mechanical Engineering and the Department of Electrical and Computer Engineering, University of Wisconsin, Madsion, WI 53706 USA (e-mail: lorenz@). T. M. Jahns is with the Department of Electrical and Computer Engineering, University of Wisconsin, Madsion, WI 53706 USA (e-mail: jahns@). Digital Object Identifier 10.1109/TIA.2004.840978a carrier-frequency signal with small amplitude using either a rotating vector in the stationary reference frame [2], [3] or an oscillating vector in the estimated rotor reference frame [4], [5] to track a spatial saliency. The IPM synchronous machine is well suited for these techniques because the inductance difference between the - and -axes in the rotor reference frame provides a large spatial saliency that is inherent to this type of machine. Unfortunately, the carrier signal derived from the stator inductance model with linear relationship between the flux linkage and the corresponding axis current in the rotor reference frame provides ambiguous information about the polarity of the rotor magnet because the inductances in this model vary periodically as a second spatial harmonic. The saturation effect of the rotor magnet flux path has been used to estimate the initial rotor position and polarity. Square waves [6] and short pulses [7] have been applied to identify the difference in inductance between the north and the south poles due to the effect of saturation. A rotating current vector in the stationary reference frame [8] and an oscillating current vector in the estimated rotor reference frame [9] were also used to distinguish the magnetic polarity. Nonetheless, a sinusoidal voltage is typically used as the carrier signal in most self-sensing control implementations, making it very desirable to develop a polarity identification method that uses a sinusoidal voltage signal [10]. This paper describes a scheme to distinguish the polarity of the rotor magnet using either a rotating voltage vector in the stationary reference frame or an oscillating vector in the estimated frame by modeling the saturation effect of the -axis flux linkage in the rotor reference frame. The heterodyning process to extract the position information as well as the polarity and the Luenberger-style observer to estimate the rotor position are also discussed. II. SATURATED FLUX LINKAGE MODEL The magnetization curve of an IPM synchronous machine is shown in Fig. 1. The variables are -axis components in the denotes the flux linkage of the rotor reference frame and rotor magnet without stator current. A positive -axis current increases the stator iron saturation, resulting in a decreased -axis inductance, and vise versa. This effect can be used to track the north pole of the rotor magnet.0093-9994/$20.00 © 2005 IEEEAuthorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.JEONG et al.: INITIAL ROTOR POSITION ESTIMATION OF AN IPM SYNCHRONOUS MACHINE39and thus has no even-order terms when expressed by the Taylor series with center of the origin. III. IPM MACHINE MODEL FOR CARRIER INJECTION The stator voltage model for an IPM synchronous machine in the stationary reference frame can be written in complex space vector form as follows: (5) Since the resistive voltage drop is small relative to the induced voltage at the injected carrier frequency, the carrier components of the - and -axes currents in the rotor reference frame can be approximated byFig. 1. Flux linkage versus applied current in the rotor reference frame.For the case of current injection, the -axis flux linkage can be approximated with respect to the injected -axis current by the Taylor series dropping higher order terms than the second order (1) where and . When a high-frequency current is injected at standstill, the stator resistive voltage drop can be neglected. Thus the -axis voltages at both poles are(2) (6)where the subscript and denote the north pole and the south pole, respectively. The sum of any variable at both axes should be zero. For the case of voltage injection, it is better to describe the -axis current as a function of the -axis flux linkage by the Taylor serieswhere the asterisk in the superscript denotes complex conjugate. This yields the carrier current vector in the stationary reference frame in terms of the carrier voltage vector as follows:(3)where . When a high-frequency voltage is injected at standstill, the -axis currents at both poles are (7)(4)IV. SIGNAL INJECTION AND PROCESSING A. Rotating Voltage Vector in the Stationary Reference FrameIn both cases, the coefficient signs of the second terms in (2) and (4) can be used to distinguish the polarity of the rotor magnet at the estimated position. It should be noted that the saturation effect in -axis is not available for the polarity detection if the center of the operating point at the axis is zero because the -axis flux linkage is an odd function of the -axis currentThe rotating vector injection method in the stationary reference frame superimposes a continuously rotating, balanced three-phase carrier-frequency voltage vector onto the fundamental component voltage vector as shown in Fig. 2(a). The interaction between the carrier-frequency voltage vector and the magnetic saliency in the IPM synchronous machine produces aAuthorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.40IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 1, JANUARY/FEBRUARY 2005Fig. 2. Carrier voltage vectors. (a) Rotating vector in the stationary reference frame. (b) Oscillating vector in the estimated rotor reference frame.Fig. 3. Heterodyning process to extract the information about the polarity error and the position error. (a) Rotating vector in the stationary reference frame. (b) Oscillating vector in the estimated rotor reference frame.carrier-frequency current signal that contains information about the position of the saliency as follows:(8)Fig. 4. Trajectory of the current error vector in the rotor reference frame.The carrier-frequency current can be seen to consist of both positive and negative components relative to the carrier-frequency voltage excitation signal. The positive-sequence component contains no spatial information, but the negative-sequence component contains the desired information about the inductance saliency in its phase. It is noted that the amplitude of the third term containing the magnet polarity information is very small compared to the negative-sequence term that contains the spatial information associated with the IPM machine saliency. The heterodyning and synchronous frame filtering process depicted in Fig. 3(a) extracts the negative-sequence term to obtain the position error and the saturation term to distinguish the magnetic polarity. The output currents of the signal process contain the polarity information and the position information, respectively, as follows:TABLE I MOTOR PARAMETERS(9)A high-pass filter in the carrier reference frame [3] is used to remove the positive-sequence term and to extract the desired position information that yields negligible distortion with the least spectral separation in the input signals. In general, the high-pass break frequency is chosen to be sufficiently low so that negligible distortion occurs in the desired content. The position error can be obtained by using a demodulator [2]. With regards to the saturation term, a demodulator in the estimated rotor reference frame is used and the sign of its output depends on the tracked polarity.Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.JEONG et al.: INITIAL ROTOR POSITION ESTIMATION OF AN IPM SYNCHRONOUS MACHINE41Fig. 5.Rotating vector injection at multiples of 0:25 rad (simulation). (a) 0 rad. (b) 0:25 rad. (c) 0:5 rad. (d)0 rad. (e) 00:75 rad. (f) 00:5 rad.B. Oscillating Voltage Vector in the Estimated Rotor Reference Frame The oscillating vector injection method superimposes a -axis sinusoidal carrier signal in the estimated rotor reference frame onto the fundamental component voltage vector as shown in Fig. 2(b). This signal can be interpreted as the sum of two vectors rotating simultaneously with the same amplitude but in the opposite direction. Assuming that the carrier frequency is sufficiently high compared with the estimated rotor speed, the voltage and current in the estimated rotor reference frame can be expressed as follows:formation is in the phase of the carrier-frequency current for the rotating vector injection in the stationary reference frame. The -axis current component is more suitable than the -axis one to extract the desired information about the inductance saliency. The second harmonic component of the -axis current provides the magnet polarity information. The heterodyning process in Fig. 3(b) extracts the polarity information and the position information as follows:(11) The -axis component at the carrier frequency is used to obtain the position error and the -axis component at the second harmonic frequency is used to identify the magnet polarity. It should be noted that the break frequency of the low-pass filter for the position error term should be chosen to be sufficiently high, otherwise, the observer performance can be deteriorated. V. POSITION OBSERVER The observer design shown in Fig. 4 reflects several important considerations for achieving high-performance position(10) The carrier-frequency current for this oscillating vector injection in the estimated rotor reference frame has the desired inductance saliency information in its amplitude, while the same in-Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.42IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 1, JANUARY/FEBRUARY 2005Fig. 6. Oscillating vector injection at multiples of 0:25 rad (simulation). (a) 0 rad. (b) 0:25 rad. (c) 0:5 rad. (d)0 rad. (e) 00:75 rad. (f) 00:5 rad.estimation, e.g., the electromagnetic torque command is used as the natural feedforward input and this observer also inherently produces an estimate of the load torque as the form of a state filter [11]. The bandwidth of the load torque estimate depends on the observer gains which are typically selected by balancing noise attenuation and estimation bandwidth. This signal enables implementation of disturbance input decoupling to further improve the disturbance rejection performance of the system. To analyze the observer, a properly formed operating point model is used. If the position error is small enough to yield acceptable linearity, the estimation accuracy can be expressed as follows:ertia variation is only significant at high frequencies where the torque feedforward input is dominant. It is important to note that the observer will have more than one stable point, because its actual input is periodic function of the position error. Using the operating point model developed from the observer in Fig. 4, it is possible to develop the expression of the corresponding multiple positions where zero tracking error can occur. (13) The angles given by odd values of are angles where the error signal is zero but the observer will not be locally stable. The angles given by even values of are angles where the error signal is zero and the observer is locally stable. In particular, values of that are multiples of 4 identify the angles where a north pole is located. When the estimated rotor position is a north pole of the rotor magnet, the polarity term of the position observer found in the upper block of Fig. 4 is negative, and the resulting estimated angle does not change. If the estimated angle corresponds to a south pole, the polarity term becomes positive, adding rad in electrical angle to the estimated rotor position.(12) where stands for the inertia of the IPM synchronous machine and denotes pole pairs and the circumflex denotes the estimated quantity. From (12), it can be seen that the effect of in-Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.JEONG et al.: INITIAL ROTOR POSITION ESTIMATION OF AN IPM SYNCHRONOUS MACHINE43Fig. 7.Rotating vector injection at multiples of 0:25 rad (experiment). (a) 0 rad. (b) 0:25 rad. (c) 0:5 rad. (d)0 rad. (e) 00:75 rad. (f) 00:5 rad.VI. SIMULATION AND EXPERIMENT The initial rotor position estimation scheme has been investigated using computer simulation and lab experiments. Matlab/Simulink was used for the simulation. The IPM synchronous machine used in this simulation and the experiment is an integrated starter/alternator for automotive applications [12]. The machine parameters are shown in Table I. The carrier voltage for both methods has the amplitude of 5 V and the frequency of 500 Hz. The amplitude of the second harmonic term is set to 1% of the carrier frequency component in the simulation. Position estimation by injecting a rotating vector in the stationary reference frame and that by injecting an oscillating vector in the estimated rotor reference frame at the several positions are depicted Figs. 5 and 6, respectively. The loci of the current vectors in the stationary reference frame are shown in – plots which are followed by the current component that contains the polarity information and the last channel shows the estimated rotor position. The loci of the current vector in steady state are either the same ellipse by the rotating voltage vector in the stationary reference frame or the same line by the oscillating voltage vector in the estimated rotor reference frame at both of the initial rotor positions rad apart from eachother but the polarity components have the opposite sign, i.e., negative at a north pole and positive at a south pole. The characteristics of the position observer were also verified by experiments using a digital-signal-processor (DSP)-based control system. The switching frequency for the FETs is 10 kHz, and the dc-link voltage is 42 V. The carrier voltage is the same as that of the simulation. It should be noted that the delay-time compensation for the accurate heterodyning process is crucial due to the high carrier frequency [13]. Experimental estimation characteristics at the same initial position as the simulation by both of the high-frequency injection methods are depicted in Figs. 7 and 8. The fundamental component currents are separated from the carrier signals and controlled in the estimated rotor reference frame, which was not considered in the simulation. The results in the experiments match well with those of the simulation. VII. CONCLUSION This paper has introduced a technique using a sinusoidal voltage as is typically used as the carrier signal in self-sensing control implementation for estimating the rotor position of an IPM synchronous machine that is appropriate at standstill, including magnetic polarity identification. The approach utilizesAuthorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.44IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 1, JANUARY/FEBRUARY 2005Fig. 8. Oscillating vector injection at multiples of 0:25 rad (experiment). (a) 0 rad. (b) 0:25 rad. (c) 0:5 rad. (d)0 rad. (e) 00:75 rad. (f) 00:5 rad.magnetic saturation that is modeled using the second harmonic component of the carrier frequency in order to distinguish the polarity of the rotor magnet. The simulation and the experimental results have demonstrated that this technique is effective using either a rotating vector in the stationary reference frame or an oscillating vector in the estimated rotor reference frame. The magnitude of the carrier voltage for magnetic polarity detection depends on the saturation level due to the rotor magnet. Therefore, it should be applied with large enough magnitude to detect the magnet polarity at standstill, and once the polarity detected, it can be reduced for the normal sensorless operation.REFERENCES[1] T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior permanentmagnet synchronous motors for adjustable-speed drives,” IEEE Trans. Ind. Appl., vol. 22, no. 4, pp. 738–747, July/Aug. 1986. [2] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240–247, Mar./Apr. 1995. [3] M. W. Degner and R. D. Lorenz, “Using multiple saliencies for the estimation of flux, position and velocity in AC machines,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1097–1104, Sep./Oct. 1998.[4] M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 784–789, Jul./Aug. 1998. [5] J. Ha and S. Sul, “Sensorless field-orientation control of an induction machine by high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 45–51, Jan./Feb. 1999. [6] S. Kondo, A. Takahashi, and T. Nishida, “Armature current locus-based estimation method of rotor position of permanent magnet synchronous motor without mechanical sensor,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1995, pp. 55–60. [7] P. B. Schmidt, M. L. Gaspery, G. Ray, and A. H. Wijenayake, “Initial rotor angle detection of a nonsalient pole permanent magnet synchronous machine,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1997 , pp. 459–463. [8] J. Kim and S. Sul, “New standstill position detection strategy for PMSM drive without rotational transducers,” in Conf. Rec. IEEE APEC’94, 1994, pp. 363–369. [9] D. Chung, J. Kang, and S. Sul, “Initial rotor position detection of PMSM at standstill without rotational transducer,” in Conf. Rec. IEEE IEMDC’99, 1999 , pp. 785–787. [10] J. Ha, K. Ide, T. Sawa, and S. Sul, “Sensorless rotor position estimation of an interior permanent-magnet motor from initial states,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 761–767, May/Jun. 2003. [11] R. D. Lorenz, “Observers and state filters in drives and power electronics,” J. Elect. Eng., vol. 2, pp. 4–12, 2002. [12] W. L. Soong, N. Ertugrul, E. C. Lovelace, and T. M. Jahns, “Investigation of interior permanent magnet offset-coupled automotive integrated starter/alternator,” in Conf. Rec. IEEE-IAS Annu. Meeting, 2001, pp. 429–436. [13] B. Bae and S. Sul, “A compensation method for time-delay of full-digital synchronous frame current regulator of PWM AC drives,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 802–810, May/Jun. 2003.Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.JEONG et al.: INITIAL ROTOR POSITION ESTIMATION OF AN IPM SYNCHRONOUS MACHINE45Yu-seok Jeong (S’01) was born in Daegu, Korea, in 1971. He received the B.S. and M.S. degrees in electrical engineering in 1993 and 1995, respectively, from Seoul National University, Seoul, Korea, where he is currently working toward the Ph.D. degree, pursuing fault-tolerant control and robust adaptive control of interior permanent-magnet synchronous machine drives in collaboration with General Motors.. He joined the Kia Motors Technical Center, Seoul, Korea, as a Research Engineer in 1995. At Kia, he worked to develop ac motor drive systems for electric/hybrid vehicles. In 1999, he joined the Korea Electrical Engineering and Science Research Institute, Seoul, Korea, where he worked on single-converter–multi-inverter control design for crane applications. He spent a year as a Special Student at the University of Wisconsin, Madison. His interests include digital control of power electronics and energy conversion.Robert D. Lorenz (S’83–M’84–SM’91–F’98) received the B.S., M.S., and Ph.D. degrees from the University of Wisconsin, Madison, and the M.B.A. degree from the University of Rochester, Rochester, NY. Since 1984, he has been a member of the faculty of the University of Wisconsin, Madison, where he is the Mead Witter Foundation Consolidated Papers Professor of Controls Engineering in both the Department of Mechanical Engineering and the Department of Electrical and Computer Engineering. He is Co-Director of the Wisconsin Electric Machines and Power Electronics Consortium, which celebrated its 20th anniversary in 2001. It is the largest industrial research consortium on motor drives in the world. He is also the thrust leader for control and sensor integration in the Center for Power Electronic Systems, an NSF Engineering Research Center (ERC) which is a joint ERC with Virgina Polytechnic Institute and State University, Rensselaer Polytechnic Institute, University of Puerto Rico-Mayaguez, and North Carolina A&T. From 1972 to 1982, he was a member of the research staff at the Gleason Works, Rochester, NY, working principally on high-performance drives and synchronized motion control. He was a Visiting Research Professor in the Electrical Drives Group, Catholic University of Leuven, Leuven, Belgium, in the summer of 1989 and in the Power Electronics and Electrical Drives Institute, Technical University of Aachen, Aachen, Germany, in the summers of 1987, 1991, 1995, 1997, and 1999, where he also was the SEW Eurodrive Guest Professor from September 1, 2000 until July 7, 2001. In 1969–1970, he conducted Master thesis research in adaptive control of machine tools at the Technical University of Aachen. His current research interests include sensorless electromagnetic motor/actuator technologies, real-time signal processing and estimation techniques, precision multiaxis motion control, and ac/dc drive and high-precision machine control technologies. He has authored more than 160 published technical papers and is the holder of 16 patents, with two more pending. Dr. Lorenz was the IEEE Industry Applications Society (IAS) President for 2001, a Distinguished Lecturer of the IAS for 2000/2001, immediate past Chair of the IAS Awards Department, and past Chairman of the IAS Industrial Drives Committee, and is a member of the IAS Industrial Drives, Electric Machines, Industrial Power Converter, and Industrial Automation and Control Committees. He is also the current Chair of the Periodicals Committee for the IEEE Technical Activities Board. He is a member of the IEEE Sensor Council AdCom. He was awarded the 2003 IEEE IAS Outstanding Achievement award, which honors his outstanding contributions and technological developments in the application of electricity to industry. He has won 15 prize paper awards. He is a Member of the American Society of Mechanical Enginees, Instrument Society of America, and The International Society for Optical Engineers. He is a Registered Professional Engineer in the States of New York and Wisconsin.Thomas M. Jahns (S’73–M’79–SM’91–F’93) received the S.B. and S.M. degrees in 1974 and the Ph.D. degree in 1978 from Massachusetts Institute of Technology, Cambridge, all in electrical engineering. In 1998, he joined the faculty of the University of Wisconsin, Madison, as a Professor in the Department of Electrical and Computer Engineering, where he is also an Associate Director of the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC). Prior to joining the University of Wisconsin, he was with GE Corporate Research and Development, Schenectady, NY, for 15 years, where he pursued new power electronics and motor drive technology in a variety of research and management positions. His research interests include permanent-magnet synchronous machines for a variety of applications ranging from high-performance machine tools to low-cost appliance drives. During 1996–1998, he conducted a research sabbatical at Massachusetts Institute of Technology, where he directed research activities in the area of advanced automotive electrical systems and accessories as co-director of an industry-sponsored automotive consortium. Dr. Jahns was awarded the William E. Newell Award by the IEEE Power Electronics Society (PELS) in 1999. He has been recognized as a Distinguished Lecturer by the IEEE Industry Applications Society (IAS) during 1994–1995 and by PELS during 1998–2000. He has served as President of PELS (1995–1996) and as a Member of the IAS Executive Board between 1992–2001. He was elected Director/Delegate of IEEE Division II, serving during 2002–2003 on the IEEE Board of Directors.Seung-Ki Sul (S’78–M’80–SM’98–F’00) was born in Korea in 1958. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from Seoul National University, Seoul, Korea, in 1980, 1983, and 1986, respectively. From 1986 to 1988, he was an Associate Researcher with the Department of Electrical and Computer Engineering, University of Wisconsin, Madison. From 1988 to 1990, he was a Principal Research Engineer with Gold-Star Industrial Systems Company. Since 1991, he has been a member of the faculty of the School of Electrical Engineering, Seoul National University, where he is currently a Professor. His current research interests are power-electronic control of electric machines, electric/hybrid vehicle drives, and power-converter circuits.Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on July 3, 2009 at 07:26 from IEEE Xplore. Restrictions apply.。

相关文档
最新文档