完整word版,高等数学考研辅导练习题不定积分定积分及常微分方程
考研数学高等数学强化习题-不定积分
![考研数学高等数学强化习题-不定积分](https://img.taocdn.com/s3/m/44ea428ec850ad02df80410a.png)
考研数学高等数学强化习题-不定积分-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN模块五 不定积分Ⅰ经典习题一.原函数与不定积分1、设,0(),0x e x f x x x ⎧≥=⎨<⎩,1sin ,0()0,0x x g x xx ⎧≠⎪=⎨⎪=⎩下述命题成立的是( ) (A )()f x 在[1,1]-上存在原函数 (B )(0)g '存在(C )()g x 在[1,1]-上存在原函数 (D )1()()xF x f t dt -=⎰,则(0)F '存在2、若()f x 的导函数是sin x ,则()f x 有一个原函数为 ( )(A) 1sin x + (B) 1sin x - (C) 1cos x + (D) 1cos x -3、在下列等式中,正确的结果是 ( )(A) ()()df x dx f x dx =⎰ (B) ()()f x dx f x '=⎰(C) ()()df x f x =⎰ (D) ()()d f x dx f x =⎰ 4、已知()F x 是()f x 的一个原函数,则()--=⎰x x e f e dx _____.二.有理函数积分5、计算下列不定积分(1)32211++-⎰x x dx x (2)()()222311x dx x x +-+⎰ (3)25613x dx x x +-+⎰ (4)2100(1)-⎰x dx x (5)21(21)(1)++⎰dx x x (6)21(1)-⎰dx x x(7)()7711x dx x x -+⎰ (8)226114(1)-+-⎰x x dx x x (9)()()22121---⎰dx xx x (10)()()3222412+++++⎰x x xdx xx x(11)241x dx x -⎰ (12)()2311x dx x x +-⎰ (13)33156x dx x x ++-⎰ (14)421dxx x ++⎰三.可化为有理函数的积分1.三角有理式6、计算下列不定积分 (1)()1sin sin 1cos ++⎰xdx x x (2)3sin cos ⎰dx x x(3)3sin 2cos +⎰x dx x (4)211cos +⎰dx x (5)sin 1sin +⎰x dx x (6)22221sin cos +⎰dx a x b x(7)()()210sin cos ≠+⎰dx ab a x b x (8)()12cos sin dx x x+⎰(9)64tan cos sin ⎰x x dx x(10)41sin ⎰dx x 2.指数有理式的积分7、计算下列不定积分(1)311++⎰x xe dx e (2)211+⎰x dx e (3)1x x dx e e --⎰(4)()211x dx e +⎰ 四.根式的处理8、计算下列不定积分 (1) (2)(3)3(4)⎰(5) (6)dx x⎰(7) (8)9、计算下列不定积分(1)()0>a (2)(3)(4)dx (5) (6)五.分部积分法的使用10、计算下列不定积分 (1)2ln sin sin ⎰x dx x (2)()2ln 1-⎰xdx x (3)2sin ⎰x xdx (4)22arctan 1+⎰x xdx x (5)()2ln 1+-⎰x x dx x (6)2arctan ⎰xxe dx e (7)()2arcsin ⎰x dx (8)2ln 1-⎰x dx x11、计算下列不定积分(1)(2ln x dx⎰ (2)2xdx(3)⎰(4)(5)()22arctan 1x xdx x +⎰(6)⎰ (7)2cos sin cos xx xedx x +⎰ (8)22sec tan x x x dx x -⎰ 12、若()f x 的一个原函数为2ln x ,则()'=⎰xf x dx ( ) (A) 2ln ln -+x x C (B) 22ln ln ++x x C (C) 22ln ln -+x x C (D) 2ln ln ++x x C13、已知sin xx是()f x 的原函数,求()3'⎰x f x dx . 14、已知曲线()y f x =过点1(0,)2-,且其上任一点(,)x y 处的切线斜率为2ln(1)x x +,求()f x .15、求积分()sin ln ⎰x dx .16、已知()f x 有二阶连续导数,证明:()()()121212124x xf x dx f x f x C '''-=---+⎰. 六.其他考查形式17、设231,0()1,012,1x f x x x x x <⎧⎪=+<≤⎨⎪>⎩求 ()f x dx ⎰.18、设22(sin )cos 2tan (01),f x x x x '=+<<则()___f x =Ⅱ参考答案一.原函数与不定积分1、【答案】:(C )【解析】:()g x 在[1,1]-上连续,故存在原函数(A )不正确,()f x 在点0x =处具有跳跃间断点,故在包含此点的区间内不存在原函数2、【答案】:(B)【解析】:由()f x 的导函数是sin x ,即()sin f x x '=,得()()sin cos f x f x dx xdx x C '===-+⎰⎰, 其中C 为任意常数.所以()f x 的原函数12()()(cos )sin F x f x dx x C dx x C x C ==-+=-++⎰⎰,其中12,C C 为任意常数.令10C =,21C =得()1sin F x x =-.故选(B). 3、【答案】:(A)【解析】:由不定积分的概念和性质可知,()()()()df x dx f x dx f x .dx'==⎰⎰()()()f x dx df x f x C '==+⎰⎰,C 为常数.()()d f x dx f x dx.=⎰故应选(A).4、【答案】:()--+x F e C【解析】:因为()F x 是()f x 的一个原函数,故()()'=F x f x .令-=x u e ,则()()()()()-----=-=-=-+=-+⎰⎰⎰x x x x x e f e dx f e de f u du F u C F e C . 二.有理函数积分5、(1)【答案】:()3211ln221-++++x x x C x【解析】:()()322223212131111221111ln 221+++⎡⎤⎛⎫=++=++- ⎪⎢⎥---+⎣⎦⎝⎭-=++++⎰⎰⎰x x x x dx x dx x dx x x x x x x x Cx(2)【答案】: ()21513ln 1ln 1ln +1arctan 4422x x x x C -++---+(3)【解析】:通过变换,将积分转化为常见积分,即222538613613613x x dx dx dx x x x x x x +-=+-+-+-+⎰⎰⎰2221(613)82613(34d x x dx x x x -+=+-+-+⎰⎰) 223(1ln(613)432(1x d x x x -=-++-+⎰)2)2213ln(613)4arctan 22x x x C -=-+++(4)【解析】:原式=1001111()()()x x dx x +-+-⎰99100111()()x dxdx x x +=+--⎰⎰ 98991002111()()()dx dx dxx x x =++---⎰⎰⎰979899111974999()()()x x x C ------=---+ (5)【解析】:设221(21)(1)211+=+++++A Bx Cx x x x ,计算得421;;555==-=A B C .()()2222224211211211555(21)(1)2115215151211ln 21ln 1arctan 555⎛⎫-++ ⎪+=+=-+ ⎪+++++++ ⎪⎝⎭=+-+++⎰⎰⎰⎰⎰x d x d x dx dx dx x x x x x x x x x x C(6)【解析】:22221111111(1)(1)(1)(1)1(1)--=-=-+=-+------x x x x x x x x x x x x22221111111ln (1)(1)(1)1(1)11⎡⎤--==-=-+=-+⎢⎥-------⎣⎦⎰⎰x x x dx dx C x x x x x x x x x x x (7)【解析】:72ln ln 17x x C -++(8)【解析】:2226114421(1)1(1)-+=+----x x x x x x x222611442114ln 2ln 1(1)1(1)1⎛⎫-+=+-=+-++ ⎪----⎝⎭⎰⎰x x dx dx x x C x x x x x x (9)【解析】:()()()()()()222211211212111==+++-+-----+--A B C Dx x x xx x x x x x 其中1111;;;31242==-=-=-A B C D .故()()()()()22222111111312422112121111111ln 2ln 1ln 1312421⎛⎫--- ⎪==+++ ⎪-+-------- ⎪⎝⎭=--+--++-⎰⎰dx dx x x x x x x x x x x x x x C x (10)【解析】:()()()322222421122+++=+++++++++x x xA B Cx Dx x x xx x x 其中1;2;0;1====-A B C D .()()()3222222412121ln 22121122⎛⎫++=+-=+-- ⎪ ⎪++++++++++⎝⎭⎰⎰⎰x x xdx dx x dx x x x x x x x x xx 2221121122⎛⎫+ ⎪⎝⎭==+++⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭⎰⎰d x dx C x x x , 故()()322242ln 2212++=+-++++⎰x x xdx x C x x x x (11)【解析】:111lnarctan 412x x C x +-+-(12)【解析】:()221ln ln 1ln 136x x x x C -+-++++(13)【答案】:【解析】:(14)【答案】:2211ln 41x x C x x ++++-+ 【解析】:()()42222222111122221111111ln 41x x dx dx dx x x x x x x x x x x x x C x x ⎡⎤+-⎢⎥==-⎢⎥++++-+++-+⎢⎥⎣⎦++=+-+⎰⎰⎰6、(1)【解析】:利用万能公式:22212cos ,sin ,(tan )112t t xx x t t t -===++,令2arctan x t =,则221=+dx dt t()2211ln 86x x C x x -++++333222111117544215656161211123422411114ln 14282321231224⎛⎫+ ⎪+-⎛⎫=+=+- ⎪ ⎪+-+--++⎝⎭ ⎪⎝⎭⎡⎤⎛⎫+ ⎪⎢⎥⎡⎤⎛⎫⋅++⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦⎣⎦=+----⋅⋅ ⎪⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰x x x dx dx x dx x x x x x x x x dd x x x dx x x ()222111ln 86+-=++++⎰dx x x C x x()22222222211sin 1111112ln sin 1cos 2422111111tan ln tan tan 42222⎛⎫+ ⎪+++⎛⎫⎝⎭==++=+++ ⎪+⎛⎫-⎝⎭+ ⎪++⎝⎭=+++⎰⎰⎰t x t t dx dt t dt t t t C x x t t t t t x x x C (2)【答案】:21tan ln tan 2x x C ++【解析】:先作恒等变形,凑微分得2241tan 1tan tan ln tan tan cos tan 2dx x I d x x x C x x x +===++⎰⎰ (3)【解析】:()231cos sin cos 2cos 2cos -=-++⎰⎰x x dx d x x x,令cos =t x ,故322222sin 1143322cos 22221123ln 2cos 2cos 3ln cos 222---+⎛⎫=-===-+ ⎪+++++⎝⎭=-+++=-+++⎰⎰⎰⎰⎰x t t t dx dt dt dt t dt x t t t t t t t C x x x C(4)【解析】:()222211tan 1cos 2tan cos 1sec ===++++⎰⎰⎰d x dx dx C x x x x (5)【解析】:()()2222sin 1sin sin sin tan tan sec sec 11sin cos cos sec tan -==-=--+=-++⎰⎰⎰⎰⎰⎰x x x x dx dx dx xdx x xdx x dx x x x x x x C (6)【解析】:()22222222222tan 1sec 11arctan tan sin cos tan tan ⎛⎫===+ ⎪+++⎝⎭⎰⎰⎰d a x x a dx dx x C a x b x a x b a a x b abb(7)【解析】:()()()()22222tan 1sec 111tan sin cos tan tan cos sin cos +===-⋅+++++=-++⎰⎰⎰d a x b xdx dx C a a a x ba xb x a x b a x b xC a x ab x(8)【解析】:()()()231cos 2cos 1ln 61cos -+++x x C x (()()()111ln 2cos ln 1cos ln 1cos 326+-++-+x x x C ) (9)【解析】:()22654331sin tan cos cos sin sin sin sin -==⎰⎰⎰x x x xdx dx d x xx x 令sin =t x 则原式为()226243321tan cos 21112ln sin 22-⎛⎫==-+=--+ ⎪⎝⎭⎰⎰⎰t x xdx dt t dt t t C x t t t t即662442tan cos tan cos 11sin 2ln sin sin sin 22sin ==--+⎰⎰x x x x dx dx x x C x x x(10)【解析】:()22222224431sin cos csc 1cot csc csc cot sin sin 1cot cot 3+==+=+=--+⎰⎰⎰⎰⎰x x dx dx x x dx xdx x xdx x x x x C 7、(1)【解析】: 方法一:()()333221*********ln ln 22=+++⎛⎫===+-⎪+++⎝⎭=+-+=+-+⎰⎰⎰⎰xx x t e xx x x x x x e e t dx de dt t dt e t t t e e t t t C e e e C方法二:令1=+x t e ,则()11,ln 1,1=-=-=-x e t x t dx t . 则原式为()332111133111-++-+=⋅=+--⎰⎰⎰x x t e t t dx dt dt e t t t (2)【解析】:()()()()222222*********ln ln 1ln 122=-⎛⎫===+⎪++++⎝⎭=-++=-++⎰⎰⎰⎰xxt e x x x x e t dx dx dt dt e t t e e t t t t C x e C(3)【解析】:11ln 21x xe C e -++(4)【解析】:()1ln 11x xx e C e+-+++ 四.根式的处理8、(1)【解析】:)4ln 1C +(2)【解析】:=⎰令4=t ()324414,11-==--t x dx dt t t .()()324242244144111211111ln2arctan 2arctan 1-⎛⎫=--⋅⋅=-=- ⎪--+⎝⎭-+=-+=--⎰⎰⎰t t t dt dt dt t t t t t tt C Ct(3)【解析】:令12=t 1211,12==x t dx t dt.()6411141283513315139412421121224244424451335133--=⋅=--=--+=--+⎰⎰t t t dt t t t dt t t t t C x x x C(4)【答案】:)1C+【解析】:令21,2t t x dx tdt +===于是 t t t te dt te e dt ==-⎰⎰⎰())11.t t e C C =-+=+(5)【答案】:C -+【解析】:⎰1x t=21dt t ⎫-=-⎪⎭ln1t C C=-=--++=-+(6)33arccos Cx+(7)()3223113x Cx++(8)C9、(1)【答案】:1(ln arcsin)2++xCa【解析】:令tax sin=,则原式1cos sin1cos sin2sin cos2sin cost t t tdt dtt t t t-+=+++⎰⎰111ln sin cos(ln arcsin)222=+++=++xt t t C Ca(2)=令12secθ-=x,则2sec tanθθθ=dx d,原式为()2sec tan sec2sec12tan2sec12cosθθθθθθθθθθ====+++⎰⎰⎰d d d利用万能公式:22212cos,sin,(tan)112t t xx x tt t-===++222cos3θθ==+++⎰⎰ddt Ct再将变量还原即可。
常微分方程辅导Word版
![常微分方程辅导Word版](https://img.taocdn.com/s3/m/4c3c67e0a32d7375a41780f1.png)
常微分方程辅导(填空题、选择题和解答题----比例是2:3:5。
)第一章 初等积分法 一.基本类型:曲线的切线。
例1. 曲线使其上每一点的切线斜率是该点的横坐标的m 倍,且通过点),2(n p 。
分析:(1)这是一个具有基本应用型的一阶方程,它通过已知斜率与坐标之间的相关概念求解一阶方程。
(2)它考核的知识点是一阶微分方程的概念、解的几何形式,它的求解,这又是重点。
解:(1)设所求曲线的任意点坐标是),(y x ,依题意,,mx dx dy =积分有C x my +=22, (2)该曲线过点),2(n p ,有C mn +=4*2从而有,,2m n C -=故,所求曲线方程是22x my =+),2(m n -二.基本类型的求解(一)可分离变量方程、齐次方程、一阶线性方程、全微分方程。
(一阶线性方程是重点)1.(1)可分离变量方程)()(x g x f dxdy= 分离变量有,)()()()(0C dx x f x g dy or dx x f x g dy yy x x ⎰⎰⎰⎰+==(2)求解对称式,0)()()()(=+dy y Q x P dx y N x M由0)()(≠x P y N ,得,0)()()()(=+dy y N y Q dx x P x M 从而.)()()()(C dy y N y Q dx x P x M =+⎰⎰例2。
求解方程2211x y dx dy ++=。
分析: 1) 这是一个一阶可分离变量方程,通过积分可求未知函数y(x)的通解;2)它考核的是求解一阶可分离变量方程这一知识点。
解:方程的通积分为,11122C x dxy dy ++=+⎰⎰即:如arctany=arctanx+C 1.解出y 得到通解y=tan(arctanx+C1)。
例3. 求方程y xy dxdyx -=的通解. 分析:1)这是一个一阶可分离变量方程,通过积分可求未知函数y(x)的通解。
考研高数检测题五不定积分
![考研高数检测题五不定积分](https://img.taocdn.com/s3/m/143036818bd63186bdebbc3c.png)
练习五不定积分基础练习1、求⎰xdx 2sin .2、求⎰xdx 3sin .3、求⎰xdx tan .4、求⎰xdx 2tan .5、求⎰xdx 3tan .6、求⎰xdx sec .7、求⎰xdx 2sec .8、求⎰xdx 3sec .9、求⎰xdx arccos .101112+x sin 1sin 13、求⎰+dx x 2sin 31.16、求⎰xy21.17、求⎰++dx x x 2221.18192021、求⎰+dx x 313.25、求⎰+dx x x )4(6.26272829、求⎰+dx xx 4.33、求⎰+dx x x 241.34353637、求⎰+dx e x 2)1(.41、已知xx sin 是)(x f 的一个原函数,求⎰'dx x f x )(3.4243真题演练注:积分积不出来的函数(原函数存在但不是初等函数,无法求出原函数):①⎰dx e x 2,②⎰dx x x sin ,③⎰dx x ln 1,④⎰+dxx 41144、(1990数二)求⎰-dx x x 2)1(ln .454647、(1995数二)设2ln )1(222-=-x x x f 且x x f ln ))((=ϕ,求⎰dx x )(ϕ.48、(1996数二)求⎰+dx xxx) 1(arctan22.49505152、(2006)求⎰dx ee x xarcsin .5354练习五不定积分(答案)基础练习1.C x x +-42sin 2.提示:倍角公式降次.2.C x x ++-3cos 31cos .提示:凑微分法.3.C x +-cos ln .提示:凑微分法.14.C x+22tan arctan 21.提示:倍角公式后再分子分母同除以余弦的平方.15.C x ++312tan2arctan 32.提示:倍角公式后分子分母同除以余弦的平方.16.y x .提示:积分变量为x ,其他字母视为常数.17.C x ++)1arctan(.提示:不能分解因式,凑成反正切的导数.18.C x x +++21ln .提示:分母可以分解因式,用有理函数的积分方法.30.C x ++66)1(ln .提示:t x =6.31.C x x xx x x ++-+++-+--11arctan 21111ln 或C x x x +---arcsin 11ln 2.提示:令t xx =+-11或被积函数分子分母同乘x -1再令t x sin =.32.C x x +-+-31123.提示:原式dx x x x ⎰-+-=321111,令t x x =-+11.33.C xx x x ++++-333213)1(.提示:令t x tan =.34.C x x x +++arctan 21)1(22.提示:令t x tan =.45.C e e e x x x x +-+---1arctan 41412.提示:令t e x =-1,再分部积分.46.C x x x ++++-)cos 1(41cos 1cos 1ln 81.提示:凑微分.或C x x ++2tan ln 412tan 812.提示:倍角公式.47.C x x ++-1ln 2.提示:先求出11)(-+=x x x ϕ.48.C x x x x x +++--2221ln 21)(arctan 21arctan 1.提示:有理函数的积分,分部积分.或C xx x x x +++--221ln )(arctan 21arctan .提示:令t x =arctan .49.C e e x x x +++--)1ln()1(.提示:令t x =ln 再分部积分.。
(完整版)常微分方程试题及答案
![(完整版)常微分方程试题及答案](https://img.taocdn.com/s3/m/614f4689a98271fe900ef922.png)
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
(X )2.微分方程的通解中包含了它所有的解。
15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。
② xy 2x dx y x 2y dy 0是可分离变量微分方程。
③ x? y 4是齐次方程。
y 2y 0是二阶常系数齐次线性微分方程。
6. ysiny 是一阶线性微分方程。
(X)7. y 3 3x yxy 不是一阶线性微分方程。
(O )8. y 2y 5y 0的特征方程为r 22r 5 0。
(9. dy 1 xy 2 xy 2是可分离变量的微分方程。
dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。
3. 1 e 2x 的通解是-e 2x C 1x C 2。
42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。
45. xy 2x 2yx 41是二 ______ 阶微分方程。
3.函数y 3sinx 4cosx 是微分方程y y 0的解。
(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。
(X )C (C 为任意常数)。
(0 )④xyy x 2 sinx 是一阶线性微分方程。
6 .微分方程y y阶微分方程。
1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。
A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。
9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。
高等数学题库常微分方程
![高等数学题库常微分方程](https://img.taocdn.com/s3/m/8ce54b834128915f804d2b160b4e767f5bcf8070.png)
高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
(完整版)不定积分测验题
![(完整版)不定积分测验题](https://img.taocdn.com/s3/m/878debe9783e0912a3162a34.png)
不定积分练习题211sin )_________2xdx -=⎰一、选择题、填空题:、( 22()(ln )_______x e f x x f x dx =⎰、若是的原函数,则:3sin(ln )______x dx =⎰、2224()(tan )sec _________;5(1,1)________;6'()(),'()_________;1()7(),_________;18()arcsin ,______()x x xe f x f x xdx y F x f x f ax b dx f e f x dx c dx x exf x dx x c dx f x --===+==+==+=⎰⎰⎰⎰⎰⎰、已知是的一个原函数,则、在积分曲线族点的积分曲线是、则、设则、设则____;9'(ln )1,()________;10()(,)(,)()______;()()()()11()sin sin ,()______;12'()(),'()(),()_____()()()()()(f x x f x f x a b a b f x A B C D xf x dx x x xdx f x F x f x x f x f x dx A F x B x C x κϕϕ=+==-====⎰⎰⎰、则、若在内连续,则在内必有导函数必有原函数必有界必有极限、若则、若则)()()()c D F x x cϕ+++13()[()]()()[()]()()()()()()()dA d f x dx f xB f x dx f x dx dxC df x f xD df x f x c====+⎰⎰⎰⎰、下列各式中正确的是: (ln )14(),_______11()()ln ()()ln x f x f x e dx xA cB x cC cD x cxx-==++-+-+⎰、设则:15______1()()()2arcsin(21)2()arcsin(21)A c B cC x cD x c =+-+-+16()[,][,]()()()()()()()()'()f x a b a b A f x B f x C f x D f x f x 、若在上的某原函数为零,则在上必有____的原函数恒等于零;的不定积分恒等于零;恒等于零;不恒等于零,但导函数恒为零。
(完整版)常微分方程习题及解答
![(完整版)常微分方程习题及解答](https://img.taocdn.com/s3/m/a3a52d8076c66137ee0619e0.png)
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
(完整word)高等数学:常微分方程的基础知识和典型例题
![(完整word)高等数学:常微分方程的基础知识和典型例题](https://img.taocdn.com/s3/m/6a4181b39b6648d7c0c7466c.png)
常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
《高等数学》第五章不定积分练习题
![《高等数学》第五章不定积分练习题](https://img.taocdn.com/s3/m/db7e992ffbd6195f312b3169a45177232f60e4ed.png)
第五章不定积分班级专业:姓名:学号:第一节不定积分的概念第二节不定积分的性质第三节基本积分公式一、判断1.一个已知函数的原函数有无穷多个.()2.如果()F x ,()G x 都是()f x 的原函数,则()()F x G x C -=.()3.()()d f x x f x '⎡⎤=⎣⎦⎰()4.()()d f x dx f x dx =⎰()5.()()F x dx F x C '=+⎰()6.()()d F x F x C =+⎰()二、选择1.若()22x f x dx x e C =+⎰,则()f x =()22xA xe ()24xB xe ()222xC x e ()22(1)x D xe x +2.已知2y x '=,且1x =时2y =,则y =()2A x ()2B xC +()21C x +()22D x +3.sin darc =⎰()arcsin A ()arcsin B C ()C ()D C+4.若2ln cos 23x 是()tan f x k x =的一个原函数,则k =()23A ()23B -()43C ()43D -5.设()f x 的导数为sin x ,则下列选项中是()f x 的原函数的是()1sin A x +()1sin B x -()1cos C x+()1cos D x-6.下列函数中有一个不是()1f x x=的原函数,它是()()ln ||A F x x =()()ln ||B F x Cx =(C 是不为零且不为1的常数)()()ln ||C F x C x =(C 是不为零且不为1的常数)()()ln ||D F x x C=+(C 是不为零的常数)7.设()f x '存在,则()df x '=⎡⎤⎣⎦()()A f x ()()B f x '()()C f x C +()()D f x C'+三、求不定积分1.421x dx x +⎰2.221x dxx +⎰3.211t t e dte --⎰第四节换元积分法(第一换元积分法)1.21x dx x +⎰ 2.2(ln )x dx x⎰3.12xe dx x⎰4.⎰5.⎰6.2⎰7.2213x dx x x --+⎰8.ln dt t t⎰9.1xxe dx e +⎰10.211x dxx -+⎰11.sin3xdx⎰12.2cos 3xdx⎰13.2sin 3xdx⎰14.sin cos xe xdx⎰15.cos x xe e dx ⎰16.3sin xdx⎰17.dx⎰18.2ln x x dxx+⎰19.22(arctan )1x dx x+⎰20.xdx⎰第二换元积分法1.⎰2.⎰3.4.dx⎰5.⎰第五节分部积分法1.x xe dx ⎰ 2.sin x xdx⎰3.arctan xdx⎰ 4.2ln(1)x dx +⎰5.cos x xdx⎰ 6.arctan x xdx⎰第六节综合杂例22156x dxx x --+⎰。
高等数学微积分练习题集完整版(含答案)
![高等数学微积分练习题集完整版(含答案)](https://img.taocdn.com/s3/m/8758dd31ae45b307e87101f69e3143323968f510.png)
高等数学微积分练习题集2(含答案)1.求抛物线2x y =与直线02=--y x 之间的最短距离。
2.求点)8,2(到抛物线x y 42=的最短距离。
3.求过点31,1,2(的平面,使它与三个坐标面在第一卦限内所围成的立体体积最小。
4.计算二重积分dxdy xy I D ⎰⎰=2,其中D 是由直线2,==x x y 及双曲线1=xy 所围成的区域。
5.计算二重积分dxdy e I D y ⎰⎰-=2,其中区域D 由y 轴,直线x y y ==,1所围成。
6.求dxdy y xy I D ⎰⎰+=31,其中D 由2,1,0x y y x ===所围成。
7.求dy e dx x I x y ⎰⎰-=11022。
8.求dxdy y x I D ⎰⎰+=)(,其中D 为224,x y xy ==及1=y 所围成的区域。
9.求σd y x I D⎰⎰+=)|(|,其中D 为:1||||≤+y x 。
10.求dxdy y x I D⎰⎰--=221,其中D :y y x ≤+22。
11.求dxdy y x x I D ⎰⎰--=)2(22,其中D :1)1(22≤+-y x 。
12.设{}x y x y x D ≤+=22),(,求dxdy x D ⎰⎰。
13.计算二重积分dxdy yx y x D ⎰⎰++--222211,其中D 是由圆周122=+y x 及坐标轴所围成的在第一卦限内的闭区域。
14.求ds y x c ⎰+)(,其中c 是以)0,0(O ,)0,1(A ,)1,0(B 为顶点的三角形边界。
15.设L 是半圆周24y x -=上由点)2,0(A 到点)2,0(-B 之间的一段弧。
计算⎰++L ds y x )1(。
16.计算ds y x L ⎰+22,其中L 为圆周222a y x =+(0>a )。
17.计算曲线积分⎰+L ds y x 22,其中L 为圆周x y x =+22。
18.计算曲线积分:dy y x dx y x I L )653()42(-++--=⎰,其中L 是从点)0,0(O 到点)2,3(A 再到点)0,4(B 的折线段。
不定积分的考研题库
![不定积分的考研题库](https://img.taocdn.com/s3/m/245ea5afafaad1f34693daef5ef7ba0d4a736d9e.png)
不定积分的考研题库不定积分的考研题库在数学考研中,不定积分是一个重要的考点。
解不定积分的题目需要运用到一系列的技巧和方法,同时也需要对基本的积分公式和性质有一定的了解。
下面将通过一些例题来探讨不定积分的相关知识。
例题一:计算不定积分∫(x^2 + 3x - 2) dx。
解析:对于这个题目,我们可以直接按照积分的线性性质进行计算。
即将不定积分分解为每一项的不定积分之和。
所以,我们有:∫(x^2 + 3x - 2) dx = ∫x^2 dx + ∫3x dx - ∫2 dx。
根据不定积分的基本公式,我们可以得到:= (1/3)x^3 + (3/2)x^2 - 2x + C。
其中,C为任意常数。
例题二:计算不定积分∫(sin^2 x + cos^2 x) dx。
解析:对于这个题目,我们可以利用三角恒等式来化简。
根据三角恒等式sin^2 x + cos^2 x = 1,我们可以将被积函数化简为 1。
所以,我们有:∫(sin^2 x + cos^2 x) dx = ∫1 dx = x + C。
其中,C为任意常数。
例题三:计算不定积分∫(x^3 + x^2 + x + 1)/(x + 1) dx。
解析:对于这个题目,我们可以利用多项式除法来进行分解。
将被积函数进行分解,我们有:(x^3 + x^2 + x + 1)/(x + 1) = x^2 - x + 2 + (1/(x + 1))。
所以,我们有:∫(x^3 + x^2 + x + 1)/(x + 1) dx = ∫(x^2 - x + 2) dx + ∫(1/(x + 1)) dx。
根据不定积分的基本公式,我们可以得到:= (1/3)x^3 - (1/2)x^2 + 2x + ln|x + 1| + C。
其中,C为任意常数。
通过以上例题,我们可以看出不定积分的计算需要掌握一些基本的积分公式和性质。
在解题过程中,我们还可以利用一些技巧,如分解、化简等,来简化计算的过程。
定积分(历年考研真题)
![定积分(历年考研真题)](https://img.taocdn.com/s3/m/444de3c385254b35eefdc8d376eeaeaad1f31604.png)
定积分(历年考研真题)第六章定积分(历年考研真题)1、222d 2x x x x-+=+?。
2、设函数()f x 在闭区间[,]a b 上连续,且()0f x >,则⽅程1()d d 0()x x abf t t t f t +=?在开区间(,)a b 内的根有()(A)0个. (B)1个. (C)2个. (D)⽆穷多个. 3、设函数()f x 有导数,且1(0)0,()()d x n n nf F x tf x t t -==-?。
证明:20()1lim(0)2nx F x f xn→'=。
4、已知曲线(0)y a =>与曲线lny =00(,)x y 处有公切线,求(1)常数a 及切点00(,)x y ;(2)两曲线与x 轴围成的平⾯图形的⾯积。
5、设1lim d ax a tx x te t x -∞→∞+??,则常数a = 。
6、下列⼴义积分发散的是() (A)111d sin x x-?. (B)1x -?. (C)2ed xx +∞-?. (D)221d ln x x x+∞?.7、设(),()f x g x 在区间[,](0)a a a ->上连续,且()f x 满⾜条件()()f x f x A +-=(A 为常数),()g x 为偶函数。
(1)证明0()()d ()d a aaf xg x x A g x x -=?;(2)利⽤(1)的结论计算定积分22sin arctan e d xx x ππ-8、计算2ed (1e )x xx x -+∞-+?。
9、设()f x 在[,]a b 上连续,在(,)a b 内可导,且1()d ()b af x x f b b a=-?。
求证:在(,)a b 内⾄少存在⼀点ξ,使()0f ξ'=。
10、设1321()()d 1f x xf x x x=++?,则1()d f x x =? 。
11、设(),()f x x ?在点0x =的某邻域内连续,且当0x →时,()f x 是()x ?的⾼阶⽆穷⼩。
定积分不定积考研题库
![定积分不定积考研题库](https://img.taocdn.com/s3/m/a72ee55cbfd5b9f3f90f76c66137ee06eff94ec1.png)
定积分不定积考研题库定积分是数学分析中的一个重要概念,它在物理学、工程学、经济学等多个领域都有着广泛的应用。
不定积分则是求定积分的逆过程,即求原函数的过程。
以下是一些关于定积分和不定积分的考研题目,供同学们练习和参考。
# 定积分与不定积分考研题库一、基础概念题1. 定义理解:请解释什么是定积分,并给出其数学表达式。
2. 原函数:描述不定积分与原函数之间的关系,并给出一个具体函数的不定积分。
二、计算题1. 简单函数的不定积分:- 求函数 \( f(x) = x^2 \) 在区间 \( [1, 2] \) 上的定积分。
- 求函数 \( g(x) = 3x - 2 \) 的不定积分。
2. 三角函数的积分:- 计算 \( \int \sin(x) \, dx \) 和 \( \int \cos(x) \, dx \)。
3. 指数和对数函数的积分:- 求 \( \int e^x \, dx \) 和 \( \int \ln(x) \, dx \)。
4. 有理函数的积分:- 计算 \( \int \frac{1}{x} \, dx \) 和 \( \int\frac{x}{x^2 + 1} \, dx \)。
三、应用题1. 面积问题:求由曲线 \( y = x^2 \) 与直线 \( y = 4 \) 以及\( x \) 轴所围成的图形的面积。
2. 物理问题:如果一个物体的位移函数是 \( s(t) = 2t^3 - 3t^2 \),求在 \( t \in [0, 2] \) 内物体的平均速度。
四、综合题1. 变换技巧:使用换元积分法和分部积分法解决以下问题:- 求 \( \int x^2 e^x \, dx \) 和 \( \int e^x \sin(x) \, dx \)。
2. 参数方程的积分:如果曲线由参数方程 \( x = t^2 \) 和 \( y = t^3 \) 确定,求在 \( t \in [1, 2] \) 内曲线下的面积。
(word完整版)考研专项练习高等数学--习题集
![(word完整版)考研专项练习高等数学--习题集](https://img.taocdn.com/s3/m/8fa4ee3d1a37f111f0855b48.png)
第一章 函数·极限·连续一. 填空题1. 已知,__________)(,1)]([,sin )(2=-==x x x f x x f ϕϕ则 定义域为___________.2.设⎰∞-∞→=⎪⎭⎫ ⎝⎛+a t ax x dt te x x 1lim , 则a = ________. 3.⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =________.4. 已知函数⎩⎨⎧=01)(x f 1||1||>≤x x , 则f[f(x)] _______. 5.)3(lim n n n n n --+∞→=_______.6. 设当x bx ax e x f xx 为时++-=→11)(,0的3阶无穷小, 则.___________,==b a 7. ⎪⎭⎫ ⎝⎛-→x x x x 1sin 1cot lim 0=______. 8. 已知A n n n kk n =--∞→)1(lim 1990(≠ 0 ≠ ∞), 则A = ______, k = _______.二. 选择题1. 设f (x )和ϕ(x )在(-∞, +∞)内有定义, f (x )为连续函数, 且f (x ) ≠ 0, ϕ(x )有间断点, 则(a) ϕ[f (x )]必有间断点 (b) [ ϕ(x )]2必有间断点 (c) f [ϕ(x )]必有间断点 (d) )()(x f x ϕ必有间断点 2. 设函数x e x x x f sin tan )(⋅⋅=, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数3. 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界(a) (-1, 0) (b) (0, 1) (c ) (1, 2) (d) (2, 3)4. 当11211,1---→x e x x x 函数时的极限5. 极限⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n 的值是 (a) 0 (b) 1 (c) 2 (d) 不存在6. 设8)1()1()1(lim 502595=+++∞→x ax x x , 则a 的值为 (a) 1 (b) 2 (c)58 (d) 均不对7. 设βα=------∞→)23()5)(4)(3)(2)(1(lim x x x x x x x , 则α, β的数值为(a) α = 1, β =31 (b) α = 5, β = 31 (c) α = 5, β = 531 (d) 均不对8. 设232)(-+=x x x f , 则当x →0时(a) f(x)是x 的等价无穷小 (b) f(x)是x 的同阶但非等价无穷小(c) f(x)比x 较低价无穷小 (d) f(x)比x 较高价无穷小9. 设6)31)(21)(1(lim 0=++++→xa x x x x , 则a 的值为 (a) -1 (b) 1 (c) 2 (d) 310. 设02)1()21ln()cos 1(tan lim 2202≠+=-+--+-→c a e d x c x b x a x x ,其中, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c三. 计算题1. 求下列极限 (1)x x x e x 1)(lim ++∞→(2)x x xx )1cos 2(sin lim +∞→ (3)310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→2. 求下列极限 (1) 23)11ln(lim -+x(2)⎪⎭⎫ ⎝⎛-→x x x 220cot 1lim 3. 求下列极限 (1))1(ln lim -∞→n n n nn (2)nx nxn e e --∞→+-11lim(3) n n n n b a ⎪⎪⎭⎫ ⎝⎛+∞→2lim , 其中a > 0, b > 04. 设⎪⎪⎩⎪⎪⎨⎧>=<-=⎰0cos 1010)cos 1(2)(022x dt t x x x x x x f x试讨论)(x f 在0=x 处的连续性与可导性.5. 求下列函数的间断点并判别类型 (1) 1212)(11+-=x x x f(2) ⎪⎪⎩⎪⎪⎨⎧-+=11sin cos 2)2()(2x x x x x f π 00>≤x x 6. 讨论函数⎪⎩⎪⎨⎧+=βαx e xx x f 1sin )( 00≤>x x 在x = 0处的连续性.7. 设f(x)在[a, b]上连续, 且 a < x 1 < x 2 < … < x n < b, c i (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个ξ, 使 n n c c c c x f c x f c f ++++++=212211)()()(ξ.8. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个ξ, 使f(ξ) = ξ.9. 设f(x)在[0, 1]上连续, 且0 ≤ f(x) ≤ 1, 试证在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ.10. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个ξ, 使f(ξ) = g(ξ).11. 证明方程x 5-3x -2 = 0在(1, 2)内至少有一个实根.12. 设f(x)在x = 0的某领域内二阶可导, 且0)(3sin lim 230=⎪⎭⎫ ⎝⎛+→x x f xx x , 求)0(''),0('),0(f f f 及203)(lim x x f x +→.第二章 导数与微分一. 填空题1 . 设)('31)()(lim 0000x f x x f x k x f x =∆-∆+→∆, 则k = ________.2. 设函数y = y(x)由方程0)cos(=++xy ey x 确定, 则=dx dy ______.3. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ______.4. 设f(x)可导, 则=∆∆--∆+→∆x x n x f x m x f x )()(lim 000_______. 5.x x x f +-=11)(, 则)()(x f n = _______.6. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫ ⎝⎛21'f _______.7. 设f 为可导函数,)]}([sin sin{x f f y =, 则=dx dy _______.8. 设y = f(x)由方程1)cos(2-=-+e xy ey x 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.二. 选择题1. 已知函数f(x)具有任意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的正整数时, f(x)的n 阶导数是 (a)1)]([!+n x f n (b) 1)]([+n x f n (c) n x f 2)]([ (d) n x f n 2)]([!2. 设函数对任意x 均满足f(1 + x) = af(x), 且=)0('f b, 其中a, b 为非零常数, 则(a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且=)1('f a (c) f(x)在x = 1处可导, 且=)1('f b (d) f(x)在x = 1处可导, 且=)1('f ab3. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为(a) 0 (b) 1 (c) 2 (d) 34. 设函数y = f(x)在点x 0处可导, 当自变量x 由x 0增加到x 0 + ∆x 时, 记∆y 为f(x)的增量, dy 为f(x)的微分, x dy y x ∆-∆→∆0lim等于5. 设⎪⎩⎪⎨⎧+=bax x x x f 1sin )(2 00≤>x x 在x = 0处可导, 则 (a) a = 1, b = 0 (b) a = 0, b 为任意常数 (c) a = 0, b = 0 (d) a = 1, b 为任意常数三. 计算题1.')]310ln[cos(2y x y ,求+=2. 已知f(u)可导,')][ln(2y x a x f y ,求++=3. 已知200sin cos 22y tdt dt e x y t +=⎰⎰, 求'y .4. 设y 为x 的函数是由方程x y y x arctan ln22=+确定的, 求'y .四. 已知当x ≤ 0时, f (x )有定义且二阶可导, 问a, b, c 为何值时⎩⎨⎧++=c bx ax x f x F 2)()( 00>≤x x 二阶可导.五. 已知)0(1)()(22n f x x x f ,求-=.六. 设x x y ln =, 求)1()(n f .第三章 一元函数积分学(不定积分)一. 求下列不定积分: 1.⎰-+-dx x x x 11ln 1122. c x x x x d x x dx x x x +⎪⎭⎫ ⎝⎛-+=-+-+=-++⎰⎰2211arctan 2111arctan 11arctan 11arctan 11 3.⎰++⋅+++dx x x x x x cos 1sin 1)cos 1(1sin cos 2 4.⎰+)1(8x x dx 5.dx xx x x x x dx x x x ⎰⎰+++-+++=+++cos sin 121)cos (sin 21)cos sin 1(21cos sin 1sin 1二. 求下列不定积分: 1. ⎰+++22)1(22x x x dx 2. ⎰+241x x dx 3. ⎰++221)12(x xdx 4. ⎰-222x a dx x (a > 0) 5.⎰-dx x 32)1(6.⎰-dx x x 4217. ⎰-+dx x x x 1122三. 求下列不定积分: 1.⎰+-+dx e e e e x x x x 1243 2.⎰+)41(2x x dx四. 求下列不定积分: 1.⎰-dx x x 1005)2( 2. ⎰+41x x dx五. 求下列不定积分:1.⎰xdx x 2cos2.⎰xdx 3sec 3.⎰dx x x 23)(ln4.⎰dx x )cos(ln5. ⎰⎰⎰⎰---+-=-==dx x x x x xd dx x x x x dx x x x 2sin 812sin 812sin 812cos 2sin 2cos 81sin 2cos 22233434c x x x xd x x x +--=+-=---⎰2cot 412sin 8122sin 412sin 81222六. 求下列不定积分: 1.⎰-++dx x x x x 222)1()1ln(2. ⎰+dx x xx 21arctan3.⎰dx e e x x 2arctan七. 设⎩⎨⎧-+-+=-x e x x x x x f )32(3)1ln()(22 00<≥x x , 求⎰dx x f )(.八. 设x b x a e f x cos sin )('+=, (a, b 为不同时为零的常数), 求f(x).九. 求下列不定积分:1.⎰++dx x x x )32(332 2.⎰-+-dx x x x )13()523(232 3.dx x x x ⎰+++221)1ln( 4. ⎰+++++)11ln()11(222x x x xdx十. 求下列不定积分: 1. ⎰+dx x x x )1(arctan 22.⎰+dx x x 1arcsin 3.⎰-+⋅dx x x x x 22211arcsin4. dx x x x⎰+)1(arctan 22十一. 求下列不定积分: 1. ⎰-dx x x 234 2. ⎰-x a x 223. dx e e e x x x ⎰-+21)1(4. ⎰-dx x a xx 2 (a > 0)十二. 求下列不定积分: 1. ⎰+x x dxcos 1sin 2. ⎰+-dx x xcos 2sin 2 3. ⎰+dx x x xx cos sin cos sin十三. 求下列不定积分: 1. dx x x x⎰-1 2. ⎰+-dx e e x x 113. dxx x x ⎰--1arctan 1第三章 一元函数积分学(定积分)一.若f(x)在[a ,b]上连续, 证明: 对于任意选定的连续函数Φ(x), 均有0)()(=Φ⎰badx x x f , 则f(x) ≡ 0.二. 设λ为任意实数, 证明: ⎰+=20)(tan 11πλdx x I =4)(cot 1120ππλ=+⎰dx x .三.已知f(x)在[0,1]上连续, 对任意x, y 都有|f(x)-f(y)| < M |x -y|, 证明 n Mn k f n dx x f n k 21)(110≤⎪⎭⎫ ⎝⎛-∑⎰=四. 设⎰=40tan πxdx I n n , n 为大于1的正整数, 证明:)1(21)1(21-<<+n I n n .五. 设f(x)在[0, 1]连续, 且单调减少, f(x) > 0, 证明: 对于满足0 < α < β < 1的任何 α, β, 有 ⎰⎰>βαααβdx x f dx x f )()(0六. 设f(x)在[a, b]上二阶可导, 且)(''x f < 0, 证明:⎪⎭⎫⎝⎛+-≤⎰2)()(b a f a b dx x f ba七. 设f(x)在[0, 1]上连续, 且单调不增, 证明: 任给α ∈ (0, 1), 有 ⎰⎰≥1)()(dx x f dx x f αα八. 设f(x)在[a, b]上连续,)('x f 在[a, b]内存在而且可积, f(a) = f(b) = 0, 试证: ⎰≤ba dx x f x f |)('|21|)(|, (a < x < b)九. 设f(x)在[0, 1]上具有二阶连续导数)(''x f , 且0)(0)1()0(≠==x f f f ,, 试证:4)()(''1>⎰dx x f x f十. 设f(x)在[0, 1]上有一阶连续导数, 且f(1)-f(0) = 1, 试证: 1)]('[12≥⎰dx x f十一. 设函数f(x)在[0, 2]上连续, 且⎰2)(dx x f = 0,⎰2)(dx x xf = a > 0. 证明: ∃ ξ ∈ [0, 2], 使|f(ξ)| ≥ a.第三章 一元函数积分学(广义积分)一. 计算下列广义积分: (1)⎰-231)1(dx e e xx(2) ⎰+∞++022)4)(1(1dx x x(3)⎰∞+∞-+232)1(x dx(4) ⎰1)sin(ln dx x(5)⎰---12211dx x x(6)dx x x ⎰+∞+0232)1(arctan第四章 微分中值定理一. 设函数f(x)在闭区间[0, 1]上可微, 对于[0, 1]上每一个x, 函数f(x)的值都在开区间(0, 1)内, 且1)('≠x f , 证明: 在(0, 1)内有且仅有一个x, 使f(x) = x.二. 设函数f(x)在[0, 1]上连续, (0, 1)内可导, 且)0()(3132f dx x f =⎰. 证明: 在(0, 1)内存在一个ξ, 使0)('=ξf .三.设函数f(x)在[1, 2]上有二阶导数, 且f(1) = f(2) = 0, 又F(x) =(x -1)2f(x), 证明: 在(1, 2)内至少存在一个ξ, 使 0)(''=ξF .四. 设f (x )在[0, x ](x > 0)上连续, 在(0, x )内可导, 且f (0) = 0, 试证: 在(0, x )内存在一个ξ, 使 )(')1ln()1()(ξξf x x f ++=.五. 设f (x )在[a , b ]上可导, 且ab > 0, 试证: 存在一个ξ ∈ (a , b ), 使 1)](')([)()(1-+=-n nn f nf b f a f a b a b ξξξξ六. 设函数f (x ), g (x ), h (x )在[a , b ]上连续, 在(a , b )内可导, 证明:存在一个ξ ∈ (a , b ), 使0)(')(')(')()()()()()(=ξξξh g f b h b g b f a h a g a f七. 设f (x )在[x 1, x 2]上二阶可导, 且0 < x 1 < x 2, 证明:在(x 1, x 2)内至少存在一个ξ, 使 )(')()()(1212121ξξf f x f x f e e e e x xx x -=-八. 若x 1x 2 > 0, 证明: 存在一个ξ ∈ (x 1, x 2)或(x 2, x 1), 使 )()1(212112x x e e x e x x x --=-ξξ九. 设f (x ), g (x )在[a , b ]上连续, 在(a , b )内可导, 且f (a ) = f (b ) = 0, g (x ) ≠ 0, 试证: 至少存在一个ξ ∈ (a , b ), 使)()(')()('ξξξξf g g f =十. 设f (x ) 在[a , b ]上连续)0(b a <<,在(a , b )内可导, 证明在(a , b ) 存在abf f )(')(',2ηηξηξ=使.第五章 一元微积分的应用一. 选择题1. 设f(x)在(-∞, +∞)内可导, 且对任意x 1, x 2, x 1 > x 2时, 都有f(x 1) > f(x 2), 则 (a) 对任意x,0)('>x f (b) 对任意x, 0)('≤-x f(c) 函数f(-x)单调增加 (d) 函数-f(-x)单调增加2. 曲线)2)(1(1arctan212-+++=x x x x ey x 的渐近线有 (a) 1条 (b) 2条 (c) 3条 (d) 4条3. 设f(x)在[-π, +π]上连续, 当a 为何值时, ⎰--=ππdx nx a x f a F 2]cos )([)(的值为极小值.(a) ⎰-ππnxdx x f cos )( (b)⎰-πππnxdx x f cos )(1(c) ⎰-πππnxdx x f cos )(2(d)⎰-πππnxdx x f cos )(214. 函数y = f (x )具有下列特征: f(0) = 1;0)0('=f , 当x ≠ 0时, 0)('>x f ; ⎩⎨⎧><00)(''x f 00><x x , 则其图形(a) (b) (c) (d)15. 设三次函数d cx bx ax x f y +++==23)(, 若两个极值点及其对应的两个极值均为相反数, 则这个函数的图形是(a) 关于y 轴对称 (b) 关于原点对称 (c) 关于直线y = x 轴对称 (d) 以上均错 6. 曲线)2)(1(x x x y --=与x 轴所围图形面积可表示为(a) ⎰---20)2)(1(dx x x x (b)⎰--10)2)(1(dx x x x ⎰---21)2)(1(dx x x x(c) ⎰---1)2)(1(dx x x x ⎰--+21)2)(1(dx x x x (d) ⎰--2)2)(1(dx x x x二. 填空题 1. 函数⎰⎪⎭⎫ ⎝⎛-=xdt t x F 112)( (x > 0)的单调减少区间______. 2. 曲线x x y -=3与其在1=x 处的切线所围成的部分被y 轴分成两部分, 这两部分面积之比是________.3. 二椭圆12222=+b y a x , 12222=+ay b x ( a > b > 0)之间的图形的面积______.4. x 2 + y 2 = a 2绕x =-b (b > a > 0)旋转所成旋转体体积_______.(5) 求心脏线ρ = 4(1+cos θ)和直线θ = 0, θ =2π围成图形绕极轴旋转所成旋转体体积_____.三. 证明题1. 设f(x)为连续正值函数, 证明当x ≥ 0时函数⎰⎰=x xdtt f dtt tf x 00)()()(φ单调增加.2. 设f (x )在[a , b ]上连续, 在(a , b )内0)(''>x f , 证明ax a f x f x --=)()()(φ在(a , b )内单增.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且0)('≤x f , 求证:⎰-=x adt t f a x x F )(1)( 在(a , b )内也0)('≤x F .4. 设f (x )在[a , b ]上连续, 且f (x ) > 0, 又⎰⎰+=xbx adt t f dt t f x F )(1)()(. 证明: i. ,2)('≥x F ii. F(x) = 0在(a , b )内有唯一实根.5. 证明方程x x -=1tan 在(0, 1)内有唯一实根.6. 设a 1, a 2, …, a n 为n 个实数, 并满足012)1(3121=--++--n a a a n n . 证明: 方程 0)12cos(3cos cos 21=-++x n a x a x a n 在(0, 2π)内至少有一实根.四. 计算题1. 在直线x -y + 1=0与抛物线542+-=x x y 的交点上引抛物线的法线, 试求由两法线及连接两交点的弦所围成的三角形的面积.2. 求通过点(1, 1)的直线y = f (x )中, 使得⎰-222)]([dx x f x为最小的直线方程.3. 求函数⎰--=2)2()(x t dt e t x f 的最大值与最小值.4. 已知圆(x -b )2 + y 2 = a 2, 其中b > a > 0, 求此圆绕y 轴旋转所构成的旋转体体积和表面积.第六章 多元函数微分学一. 考虑二元函数的下面4条性质 ( I ) ),(y x f 在点),(00y x 处连续; ( II ) ),(y x f 在点),(00y x 处的两个偏导数连续; ( I II) ),(y x f 在点),(00y x 处可微; ( IV ) ),(y x f 在点),(00y x 处的两个偏导数存在; 若用Q P ⇒表示可由性质P 推出性质Q, 则有( A ) )I ()III ()II (⇒⇒ ( B ) )I ()II ()III (⇒⇒ ( C ) )I ()IV ()III (⇒⇒ ( D ) )V I ()I ()III (⇒⇒二. 二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x yx xyy x f 在点(0, 0) 处( A ) 连续, 偏导数存在; ( B ) 连续, 偏导数不存在; ( C ) 不连续, 偏导数存在; ( D ) 不连续, 偏导数不存在.三. 设f , g 为连续可微函数, )(),(xy x g v xy x f u +==,, 求xv x u ∂∂⋅∂∂.四. 设⎪⎪⎭⎫⎝⎛=+y z y z x ϕ22, 其中ϕ为可微函数, 求y z ∂∂. 五. 设xuz x t t x y z y x f u ∂∂===,求,,又),(),(),,(ψϕ.六. 求下列方程所确定函数的全微分: 1. dz x z z y y x f ,求0),,(=+++;2. dz y z xz f z ,求,)(-=.七. 设),sin (22y x y e f z x+=, 其中f 具有二阶连续偏导数, 求yx z∂∂∂2.八. 已知''''),2(yy xx z z yxx f z ,,求=.九. 已知'','',''),ln (yy xy xx z z z y x y x f z ,求-=.十. 设⎩⎨⎧=+++=+++==00)()(322z z y x z z y x x z z x y y ,由,确定, 求dx dzdx dy ,.十一. 设22222222)()(y z y y x z xy x z x x y x y xf z ∂∂+∂∂∂+∂∂+=,求ϕ十二. 设)](,[2xy y x f z ϕ-=, 其中f (u , v )具有二阶连续偏导数, )(u ϕ二阶可导, 求yx z∂∂∂2.十三. 设)())(,())(,())(),(,(x z x y x Q x y x P x z x y x F +=, 其中出现的函数都是连续可微的, 试计算⎪⎭⎫⎝⎛∂∂-∂∂z F dx d y F .第七章 二重积分一. 比较积分值的大小: 1. 设,41⎰⎰+=Ddxdy yx I ,42⎰⎰+=Ddxdy y x I ⎰⎰+=Ddxdy yx I 334其中}2)1()1(|),{(22≤-+-=y x y x D , 则下列结论正确的是 ( A ) 321I I I << ( B ) 132I I I << ( C ) 231I I I << ( D ) 123I I I <<2. 设32,1,)(22,==⎰⎰+-i dxdy e I iD y xi , 其中:}|),{(2221r y x y x D ≤+=,}2|),{(2222r y x y x D ≤+=,}||,|||),{(3r y r x y x D ≤≤=则下列结论正确的是( A ) 321I I I << ( B ) 132I I I << ( C ) 231I I I << ( D ) 123I I I <<3.设,cos 221⎰⎰+=Dy x I σ,)cos(222⎰⎰+=Dy x I σ⎰⎰+=Dy x I σ2223)cos(其中}1|),{(22≤+=y x y x D, 则下列结论正确的是 ( A ) 321I I I << ( B ) 132I I I << ( C ) 231I I I << ( D ) 123I I I <<二. 将二重积分⎰⎰=Dd y x f Iσ),(化为累次积分(两种形式), 其中D 给定如下:1. D: 由x y 82=与y x 82=所围之区域.2. D: 由x = 3, x = 5, x -2y + 1 = 0及x -2y + 7 = 0所围之区域.3. D: 由122≤+y x , y ≥ x 及x > 0所围之区域.4. D: 由|x| + |y| ≤ 1所围之区域.1.⎰⎰--ax a ax a dy y x f dx 022222),(2. ⎰⎰⎰⎰-+312301),(),(2x x dy y x f dx dy y x f dx3. ⎰⎰⎰⎰----+2221201),(),(x xx xdy y x f dx dy y x f dx四. 将二重积分⎰⎰=Dd y x f Iσ),(化为极坐标形式的累次积分, 其中:1. D: a 2 ≤ x 2 +y 2 ≤ b 2, y ≥ 0, (b > a > 0)2. D: x 2 +y 2 ≤y, x ≥ 03. D: 0 ≤ x +y ≤ 1, 0 ≤ x ≤ 1五. 求解下列二重积分: 1. ⎰⎰⎰⎰+422212sin2sinxxxdy yxdx dy yxdx ππ2. ⎰⎰-xy dy edx 021023.⎰⎰Ddxdy xy6, D: 由y = x 4-x 3的上凸弧段部分与x 轴所形成的曲边梯形 4.⎰⎰+Ddxdy yx xy22, D: y ≥ x 及1 ≤ x 2 + y 2 ≤ 21. ⎰⎰⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-Ddxdy b y a x 221, D: 12222≤+b y a x .2. ⎰⎰+Ddxdy y x)ln(22, D: 1222≤+≤y x ε, 并求上述二重积分当+→0ε时的极限.3.⎰⎰--xady y x x a y f dx 0))(()('4. ⎰⎰++--Ddxdy yx y x 222211, D: x 2 + y 2 ≤ 1, x ≥ 0, y ≥ 0.七. 求证:⎰⎰⎰=21)(2ln )(du u f dxdy xy f D, 其中D 是由xy = 1, xy = 2, y = x 及y = 4x(x > 0, y > 0)所围成之区域.八. 求证:⎰⎰⎰-≤+-=+2221)(2)(22du u f u dxdy y x f y x九. 设f (t )是半径为t 的圆周长, 试证:⎰⎰⎰-≤++-=at a y x y x dt et f dy dx e22222222)(2121ππ十. 设m , n 均为正整数, 其中至少有一个是奇数, 证明0222=⎰⎰≤+dy dx y xa y x n m十一. 设平面区域}11,1|),{(3≤≤-≤≤=x y x y x D ,)(x f 是定义在)1(],[≥-a a a 上的任意连续函数试求:⎰⎰--++=Ddxdy x f x x f x y I )]()1()()1[(2第八章 无穷级数一. 填空题(1) 设有级数∑∞=⎪⎭⎫⎝⎛+121n nn x a , 若31lim1=+∞→n n n a a , 则该级数的收敛半径为______.(2) 幂级数∑∞=--+112)3(2n n nnx n 的收敛半径为______.(3) 幂级数∑∞=+11n nn x 的收敛区间为______.(4) 幂级数∑∞=-112n nn n x 的收敛区间为______.(5) 幂级数∑∞=-1)1(n nxn 的和函数为______.二. 单项选择题 (1) 设∑∞==>1),2,1(0n n na n a ,且 收敛, 常数)2,0(πλ∈, 则级数∑∞=-12)tan ()1(n nn a n n λ(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关 (2) 设)11ln()1(nu n n+-=, 则 (A)∑∞=1n nu与∑∞=12n nu都收敛. (B)∑∞=1n nu与∑∞=12n nu都发散. (C)∑∞=1n nu收敛, 而∑∞=12n nu发散. (D)∑∞=1n nu发散,∑∞=12n nu收敛.(3) 下列各选项正确的是 (A) 若∑∞=12n nu与∑∞=12n nv都收敛, 则∑∞=+12)(n n nv u收敛(B) 若||1nn n vu ∑∞=收敛, 则∑∞=12n nu与∑∞=12n nv都收敛(C) 若正项级数∑∞=1n n u 发散,则nu n 1≥(D) 若级数∑∞nu收敛, 且),2,1( =≥n v u n n, 则级数∑∞nv 收敛.(4) 设α为常数, 则级数∑∞=⎥⎦⎤⎢⎣⎡-121sin n n n n α(A) 绝对收敛. (B) 发散. (C) 条件收敛. (D) 敛散性与α取值有关.三. 判断下列级数的敛散性:(1)∑∞=+11sin )2ln(1n n n(2))0()1)()(1(11≠+++-+∑∞=a n a n a n a n(3)∑∞=1!3n n n n n(4)∑∞=+12)/1(n n n n n(5)∑∞=12)!2()!(n n n(6)∑∞=-1)ln 1(n nnn四. 判断下列级数的敛散性(1) ∑∞=⎪⎭⎫ ⎝⎛++-11312)1(n nn n n(2)∑∞=-+++-111)1(1)1(n nn n n(3)∑∞=+1)sin(n nn ππ(4)∑∞=--111tan)1(n n nn五. 求下列级数的收敛域:(1)∑∞=+++12)1()1(n n n n x x(2)∑∞=++-11212)1(n n nn x(3)∑∞=--112212n n nx n(4)∑∞=⋅-129)1(n n nn x六. 求下列级数的和:(1) ∑∞=----112112)1(n n n n x(2) ∑∞=+1)1(n nxn n(3) ∑∞=+12)1(n n n n x七. 把下列级数展成x 的幂级数:(1)x x x x f arctan 2111ln 21)(+-+=(2) ⎰+=xdx xx x f 0)1ln()(第九章 常微分方程及差分方程简介一. 填空题 1. 微分方程x x y y cos tan '=+的通解为_________.2. 微分方程0)4(2=-+dy x x ydx 的通解为________.3. 微分方程x y y 2''-=+的通解为________.4. 微分方程x e y y y =+-2'2''的通解为________.5. 已知曲线)(x f y =过点(0, 21-), 且其上任一点(x , y )处的切线斜率为)1ln(2x x +, 则)(x f =_______.二. 单项选择题 1. 若函数)(x f 满足关系式 ⎰+=xdt tf x f 202ln )2()(, 则)(x f 等于 (A) 2ln x e (B) 2ln 2x e (C) 2ln +x e (D) 2ln 2+x e2. 微分方程1''+=-x e y y 的一个特解应具有形式(式中a 、b 为常数)(A) b ae x + (B) b axe x + (C) bx ae x + (D) bx axe x +三. 解下列微分方程:1.⎪⎩⎪⎨⎧=+-==1)1()1(30|22x y y x dxdy2. 0)1()1(2=+-+ydy x x dx y3. 11+-=yx dx dy四. 解下列微分方程:1. xy e y xy +=' 2. dx y x ydx xdy 22+=-3. 0cos )cos (=-+dy xyx dx x y y x五. 解下列微分方程: 1. x e x y y sin cos '-=+2. xx ex y y x 122'-=-3. )1(ln ln '+=+x ax y x xy4. 0sin cos sin '3=--x y x x y六. 解下列微分方程:1. 0)0(sec tan '==-y x x y y ,2. 1)0(cos sin cos '==+y x x x y y ,3. 4)0(cos 2sin '22π==+-y y xe y x y x ,七. 解下列方程: 1. 02'22''=++y y y2. 03'2''=++y y y3. 03'2''=--y y y八. 解下列方程:1. xe x x y y y 223)1(4'4''+++=+-2. x y y y 2cos 2'3''=+-3. x xe y y y 5'2''=+-4. 123'2''22-+=++x x y y y5. 1'''2+=+x y y第十章 函数方程与不等式证明一. 证明不等式21111211ln )1(n a a a a n a nn n n <-<+++. (a > 1, n ≥ 1)二. 若a ≥ 0, b ≥ 0, 0 < p < 1, 证明 p p p b a b a +≤+)(三. 设函数f(x)在[0, 1]上有连续导数, 满足0)0(1)('0=<<f x f 且. 求证⎰⎰≥⎥⎦⎤⎢⎣⎡103210)()(dx x f dx x f四. 求证 p p p p b a b a |)||(|2||||1+≤+-, (0 < p < 1).五. 求证: 若x + y + z = 6, 则12222≥++z y x , (x ≥ 0, y ≥ 0, z ≥ 0).六. 证明: 1︒ 若f(x)在[a, b]上是增加的,且在其上0)(''>x f ,则2)()()()()()(b f a f a b dx x f a f a b ba +-<<-⎰ 2︒ 若f(x)在[a, b]上是增加的,且在其上0)(''<x f ,则2)()()()()()(b f a f a b dx x f b f a b b a +->>-⎰七. 证明: 1︒ n x x x n x x x nn 2222121+++≤+++2︒ n n nx x x n x x x 2121≥+++八. 设],[)(''b a c x f ∈, 且0)()(==b f a f , 求证 |)(''|max 12)()(3x f a b dx x f b x a b a ≤≤-≤⎰九. 若)('x f 在[0, 2π]上连续, 且)('x f ≥ 0, ∀n(正整数)有 nf f nxdx x f )]0()2([2sin )(20-≤⎰ππ十. 设在[a, b]上0)(''>x f , a < x 1 < x 2 < b, 0 < α < 1, 试证: ])1([)()1()(2121x x f x f x f αααα-+>-+第十一章 微积分在经济中的应用一.生产某产品的固定成本为10, 而当产量为x 时的边际成本函数为232040'x x C +-=, 边际收益为x R 1032'-=, 试求: ( 1 )总利润函数; ( 2 ) 使总利润最大的产量.二. 设某商品的需求量Q 是单价P(单位: 元)的函数: Q = 12000-80P; 商品的总成本C 是需求量Q 的函数: C = 25000 + 50Q; 每单位商品需要纳税2元, 试求使销售利润最大的商品单价和最大利润额.三. 一商家销售某种商品的价格满足关系 P = 7-0.2x(万元/吨), x 为销售量(单位:吨), 商品的成本函数13+=x C(万元). (1) 若每销售一吨商品政府要征税t (万元), 求该商家获最大利润时的销售量; (2) t 为何值时, 政府税收总额最大.四. 设某企业每月需要使用某种零件2400件, 每件成本为150元, 每年库存费为成本的6%, 每次订货费为100元, 试求每批订货量为多少时, 方使每月的库存费与订货费之和最少, 并求出这个最少费用(假设零件是均匀使用).。
(完整版)常微分方程试题及答案2023年修改整理
![(完整版)常微分方程试题及答案2023年修改整理](https://img.taocdn.com/s3/m/811d7f56f4335a8102d276a20029bd64783e6233.png)
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
积分微分知识点及习题和答案(仅供参考)
![积分微分知识点及习题和答案(仅供参考)](https://img.taocdn.com/s3/m/7435ad4d02020740be1e9b61.png)
仅供参考积分和微分积分一般分为不定积分、定积分和微积分三种1、不定积分设F(x) 是函数f(x) 的一个原函数,我们把函数f(x) 的所有原函数F(x)+C (C 为任意常数)叫做函数f(x) 的不定积分. 记作∫f(x)dx其. 中∫叫做积分号, f(x) 叫做被积函数, x 叫做积量,f(x)dx 叫做被积式,C 叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x) 的不定积分,就是要求出f(x) 的所有的原函数,由原函数的性质可知,只要求出函数f(x) 的一个原函数,再加上任意的常数C,就得到函数f(x) 的不定积分.也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.2、定积分众所周知,微积分的两大部分是微分与积分.微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数.所以,微分与积分互为逆运算.实际上,积分还可以分为两部分.第一种,是单纯的积分,也就是已知导数求原函数,而若F(x) 的导数是f(x), 那么F(x)+C (C 是常数)的导数也是f(x), 也就是说,把f(x) 积分,不一定能得到F(x), 因为F(x)+C 的导数也是f(x),C 是无穷无尽的常数,所以f(x) 积分的结果有无数个, 是不确定的,我们一律用F(x)+C 代替,这就称为不定积分.而相对于不定积分,就是定积分.所谓定积分,其形式为∫f(x) dx 上(限 a 写在∫上面,下限 b 写在∫下面).之所以称其为定积分, 是因为它积分后得出的值是确定的,是一个数,而不是一个函数.定积分的正式名称是黎曼积分,详见黎曼积分.用自己的话来说,就是把直角坐标系上的函数的图象用平行于y 轴的直线把其分割成无数个矩形,然后把某个区间[a,b] 上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b] 的面积.实际上,定积分的上下限就是区间的两个端点a、b.我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数.它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系.把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论, 可以转化为计算积分.这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'(x)=f(x) 那么∫f(x) dx(上限 a 下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差.正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理.3、微积分积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此, 它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
(完整word版)高等数学第四章不定积分习题,DOC.docx
![(完整word版)高等数学第四章不定积分习题,DOC.docx](https://img.taocdn.com/s3/m/9f126f04e3bd960590c69ec3d5bbfd0a7856d579.png)
(完整word版)高等数学第四章不定积分习题,DOC.docx第四章不定积分§4–1 不定积分的概念与性质一.填空题1.若在区间上F ( x) f ( x),则 F(x)叫做f ( x)在该区间上的一个 , f ( x)的所有原函数叫做 f ( x) 在该区间上的__________。
2.F(x)是f ( x)的一个原函数,则y=F(x) 的图形为? (x) 的一条_________.3.因为1,所以 arcsinx 是______的一个原函数。
d (arcsin x)dx1x24.若曲线 y=? (x)上点(x,y)的切线斜率与x3成正比例,并且通过点A(1,6) 和B(2,-该曲线方程为 __________ 。
二.是非判断题1.若 f x的某个原函数为常数,则 f x 0.[]2.一切初等函数在其定义区间上都有原函数 .[]3. f x dx f x dx .[]4.若 f x在某一区间内不连续,则在这个区间内 f x必无原函数 .[]5. y ln ax 与 y ln x 是同一函数的原函数.[]三.单项选择题1.c 为任意常数,且 F ' (x) =f(x),下式成立的有。
(A) F '(x)dx f(x)+c; (B) f ( x)dx =F(x)+c;(C) F (x)dx F ' (x) +c;(D) f '(x)dx=F(x)+c.2.F(x) 和 G(x) 是函数 f(x) 的任意两个原函数, f(x)0,则下式成立的有。
( A )F(x)=cG(x); (B )F(x)=G(x)+c;(C )F(x)+G(x)=c;(D) F ( x) G( x) =c.3.下列各式中是 f ( x) sin | x |的原函数。
(A) y cos | x |;(B)y=-|cosx|;(c)y=cos x, x 0, (D)y= cos x c 1 ,x0,c 1 、 c 2 任意常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》考研辅导练习4 不定积分 1. 求()x
f x e
-=在R 上的一个原函数。
2. 已知2
2
2
(sin )cos tan f x x x '=+,求()01f x x <<。
3. 设
2
()f x dx x
C =+⎰,则2(1)xf x dx -=⎰ 。
4.
计算
3。
5。
计算。
6. 计算
71
(2)
dx x x +⎰。
7。
计算。
8. 计算
21
13sin dx x +⎰。
9。
计算172
2
1sin cos dx x x
⎰。
10. 计算
()
2
2
sin cos x dx x x x +⎰。
11. 计算
()()2
ln ()ln ()()()()f x f x f x f x f x dx ''''++⎰。
12. 设()arcsin xf x dx x C =+⎰
,则
1
()
dx f x =⎰。
13. 设2
2
2(1)ln 2
x f x x -=-,且(())ln f x x ϕ=,求()x dx ϕ⎰。
14. 计算arctan 23/2(1)x xe dx x +⎰。
15.
计算x。
16. 计算
1sin 22sin dx x x +⎰。
17. 计算ln t tdt α
⎰。
18. 计算()ln n x dx ⎰。
《高等数学》考研辅导练习5 定积分
1.设02
()2
l kx x f x l c x l ⎧
≤≤⎪⎪=⎨⎪<≤⎪⎩,求0
()()x x f t dt Φ=⎰。
2. 设1
()2()f x x f x dx =+⎰
,则()f x = 。
3. 计算
{}2
23
min 2,x dx -⎰。
4. 已知()f x 连续,且满足()()1f x f x -=,则
2
2cos 1()x
dx f x π
π-+⎰= 。
5. 计算
101020
sin cos 4sin cos x x dx x x
π
---⎰
,并求20sin cos sin cos m m
n n x x
dx a x x π---⎰,这里的a 为任意的常数,
,m n 为正整数。
6.
计算
2
⎰。
7. 计算2
(sin )
(cos )(sin )
f x dx f x f x π
+⎰。
8. 计算2008
2
200820080sin sin cos x
dx x x π+⎰。
9. 计算20
ln tan tdt π⎰。
10. 计算
2cos cos 33
()x x e e dx ππ
---⎰。
11. 计算131
1
x x
dx e e +∞
+-+⎰。
12. 已知()()f x g x '=,()g x 连续,()(0)2f f π==,求
()20
()()11g x f x dx x x π
⎛⎫
- ⎪ ⎪++⎝⎭
⎰。
13. 由
2(1)
()x x f t dt x +=⎰
,求连续函数()f x 在2x =处的值。
14. 设2
2
()x t F x e dt -=⎰
,则3
22()x F x dx -'=⎰ 。
15. 求定积分
2
2
sin arctan x x e dx π
π
-
⎰的值。
16. 计算2
sin 1cos x x
dx x
π+⎰。
17. 设()22
32102()011x x x x x f x xe x e ⎧+-≤<⎪⎪
=⎨≤≤⎪⎪+⎩
,求1
()()x x f t dt -Φ=⎰。
18. 已知()f x
满足方程1
20
()3()f x x f x dx =,求()f x 。
19. 设函数()f x 连续,满足()0
3()1()2x
f t dt f x +=+⎰,求(0)f '。
20. 计算
()
2
21x
dx x +∞
+⎰。
21.
4
20
32x x dx -+=⎰。
22. 设函数()f x 连续,证明
()
()()()x u
x
f t dt du x u f u du =-⎰⎰
⎰。
23. 计算
2
(1)f x dx -⎰
,1
01
()101x
x x f x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩。
24. 由
2
2
1y
x t e dt +=⎰
⎰
,确定y 为x 的函数,求y '。
25. 已知11()1()(0)x
f x f t dt x x
=+>⎰,求()f x 。
26. 设()f x 连续,0
()1cos x
tf x t dt x -=-⎰
,求20
()f x dx π
⎰的值。
27. 证明:(1)10
()()(())b
a
f x dx b a f a b a x dx =-+-⎰
⎰;
(2)
220
(cos )4(cos )f x dx f x dx π
π
=⎰
⎰;
(3)22
00
1
cos sin cos 2
n
n
n n
x xdx xdx ππ
=⎰⎰
,n 为正整数。
《高等数学》考研辅导练习6 常微分方程
1. 三个线性无关函数123(),(),()y x y x y x 均为方程()()()y p x y q x y f x '''++=的解,则方程的通解可表示为: 。
2. 方程()()y p x y Q x '+=有两个解12(),()y x y x ,则方程的通解为: 。
3. 212x x x
y C e C e xe -=++是二阶常系数线性微分方程 的通解。
4. 求2
1sin y y x x ''+=++的特解的估计表示形式可写为 。
5. ()y y x =由方程2
0()()ln(1)t x x t y y t u du =⎧
⎪
⎨==+⎪⎩
⎰确定,()x x t =是初值问题 020
|0x
t dx te dt
x -=⎧-=⎪⎨⎪=⎩
的解,求22d y dx 。
6. 求微分方程2
6(9)1y y a y ''''''+++=的通解(0)a >。
7. 已知0
()sin ()()x
f x x x t f t dt =-
-⎰
,求()f x 。
8. 求323x y y y e -'''+-=的通解。
9. f 具有二阶连续的导数,(0)1,(0)0f f '==,且
()()2()()()0xy x y f x y dx f x x y dy '+-++=
为一全微分方程,求()f x ,并求此方程的通解。
10. 求
3
1
dy dx x yx =+的通解。
11. 求微分方程2
()0yy y '''+=满足初始条件001
|1,|2
x x y y =='==
的特解。
12. 有一个平底容器,其内侧壁是由曲线()(0)x y y ϕ=≥绕y 轴旋转而成的旋转曲面。
容器的底面半径为2米,根据设计要求,当以每分3立方米的数率想容器内注入液体时,液面的面积将以每分π平方米的数率均匀扩大(假设注入液体前容器内无液体) (1) 根据t 时刻液面的面积写出t 与()y ϕ之间的关系式; (2) 求曲线()
(0)x y y ϕ=≥的方程。
13.22
2420(0)d y dy
x x y x dx dx
++=>的通解为 。
14. 解方程1
sin x y y xe x x
'''=
+。
15. 解方程2
12y y y
'+''=。
16. 解方程2
2
ln yy y y y '''-=。