高中数学思想专题讲座-整体的思想方法

合集下载

中学数学思想方法之整体思想-2019年精选文档

中学数学思想方法之整体思想-2019年精选文档

中学数学思想方法之整体思想1p 中学数学思想方法之整体思想山东省邹平一中王宏东李王梅所谓整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后,得出结论。

整体思想的应用,主要根据整体的集合性,相对性几统一性等特殊性,做到观察全局、整体代入、整体换元、局部补全、整体构造、化零为整等。

一,整体观察,化繁为简例1:(1)已知,求:的值(99年高考题)(2)已知函数则【思路点拔】(1)先将结论因式分解,然后将和都看作整体进行运算,分别令或,易得到结果为1。

(2)如果注意到,就易发现此题的结果为。

【点评】(1)题主要考察学生的整体观察能力,即不能将割裂来求,否则加大了运算难度;(2)题与(1)有类似情况,其关键是将作为一个整体运算,从问题的结构中也易发现这层关系,利用整体运算带来轻松的快感。

二,整体构造(式或形),化难为易例2:已知是等比数列的前n项的和,且,求。

【思路点拔】此题若考虑用求和公式,不仅计算量较大,而且对公比还要考虑进行分类讨论,若注意到,,依次相差n项,以此构造三个整体:,通过分析可知这三个数构成等比数列。

从而得【点评】在解决问题中,有时将局部的问题通过适当的增减,使之成为一个完整的有联系的整体,让问题中的局部与整体的关系有机地联系起来,显露出问题的本质,从而使问题的解决找到捷径。

不妨再看一例。

例3:已知三棱锥P ? ABC的三条侧棱PA、PB、PC两两相互垂直,其外接球的半径为R。

(1)求证:为定值;(2)求三棱锥P ? ABC体积的最大值。

【思路点拔】(1)首先此问题的定值只能与R发生关系,但碰到的棘手问题是球心O的位置难以确定,条件乍看也难以联系、利用。

如果联想到此三棱锥是长方体的一部分(三条侧棱两两相互垂直作为一个整体考虑),且长方体的外接球与此三棱锥有相同的外接球(即唯一性),于是尝试将此三棱锥的三条侧棱PA、PB、PC 作为长方体的棱补成长方体,这样就避开了球心位置的确定,而直接确定球的直径为长方体的对角线,从而得到:(定值)(2)由(1)得当。

数学中的整体思想

数学中的整体思想
昌黎县第三中学 张丽艳
整体思想概述:
整体思想方法是指用“集成”的眼光,把某些式 子或图形看成一个整体,把握已知和所求之间的关联, 进行有目的、有意识的整体处理来解决问题的方法. 从整体出发的处理方法,体现了一种着眼全局、通盘 考虑的整体观念. 中学数学中,整体思想的应用广泛. 运用整体思想方法的三部曲:(1)从整体出发,高 瞻远瞩地统帅局部;(2)通过对局部的研究,酝酿 总体解决的方案;(3)回到整体,实现解决整个问 题的总目标. 整体思想方法在代数式的化简与求值、解方程 (组)、几何解证等方面都有广泛的应用,整体代入、 整体运算、整体设元、整体处理、几何中的补形等都 是整体思想方法在解数学问题中的具体运用。
第二十八章一元二次方程
解一元二次方程的方法中的因式 分解法运用的是整体思想。 教材九年级上39页例5:
(1) 3( x 1)2 2( x 1) (2) ( x 5)2 49
分析:把(x-1)与(x+5)当做整体,移项 后,方程(1)可用提公因式法,方程 (2)可用平方差公式。
第二十九章 相似形
1、如图,∠DBC=2∠ABD,∠DCB= 2∠ACD,试说明∠A与∠D之间的关系.
评注:本例应用整体思想得到∠A与∠D之间的 关系,主要应用三角形的内角,三角形内角和 定理结合整体思想进行说理.
第十四章
分式
整体代入在分式化简求值中的妙用
1、已知 x 2 3x 1 0 求下列各式的值: ⑴ x 1 x
2 2 2 2
2
2
四、整体合并法
计算4(x+y)+3(x+y)+2(x-y)-3(x-y). [思路分析]本题按照常规解法是先去括号,再 合并同类项.但这样做比较麻烦,若把x+y,x- y各看作一个“整体”先行合并,再去括号,就 方便快捷多了. 解:原式=(4+3)(x+y)+(2-3)(x-y)=7(x+ y)-(x-y)=7x+7y-x+y=6x+8y. [规律总结]括号内所含内容相同的多项式运算, 可将括号看作一个“整体”先行合并,再去括 号,可简化运算.

高中数学思想方法

高中数学思想方法

高中数学思想方法高中数学思想方法是指在解决数学问题时,运用的一种思维方式和解题方法。

下面我将从几个方面来谈谈高中数学思想方法。

首先,高中数学思想方法强调理性思维。

在解决数学问题时,我们要运用逻辑推理、分析问题的能力,通过归纳、演绎等方法,合理地运用数学知识,从而得出正确的结论。

其次,高中数学思想方法注重抽象思维。

数学是一门高度抽象、概念性强的学科,通过抽象思维,我们可以将具体问题进行抽象化,找出问题的本质,进而运用数学规律进行求解。

例如,在解决几何问题时,通过将实际问题进行几何化,我们可以运用几何定理、图形相似等概念解决问题。

再次,高中数学思想方法强调创造性思维。

数学问题的解决通常有多种方法和路径,我们需要灵活运用数学知识和技巧,创造性地寻找问题的解决方法。

有时候,我们可以通过构造、推断、类比等方法,发现问题解决的新思路,从而解决数学问题。

同时,高中数学思想方法也强调综合思维。

数学知识是相互联系的,不同知识之间有时存在内在联系。

在解决问题时,我们需要将不同的数学知识进行整合,并综合运用,从而解决问题。

例如,在解决函数问题时,我们需要将函数的性质、图像、方程等知识进行综合运用,才能解决问题。

最后,高中数学思想方法还强调实践思维。

数学是一门实践性很强的学科,解题过程中需要进行实际的计算、绘图等操作。

通过实践,我们可以对抽象的数学概念进行实际的应用,从而更好地理解和掌握数学知识。

总之,高中数学思想方法是一种运用理性思维、抽象思维、创造性思维、综合思维和实践思维的方式和方法。

通过运用这些思维方法,我们能更好地解决数学问题,提高数学学习的效果。

高中数学思想的方法与运用

高中数学思想的方法与运用

谈高中数学思想的方法与运用一、数学思想方法的几种形式1、数学化归的思想方法。

数学化归的实质是把未知转化成已知的问题来解决,把复杂问题转变为简单问题来解决,这是处理数学问题时的一种基本思路。

在基本运算中,将减法化成加法,除法化成乘法;在方程中,化未知为已知、化复杂为简单是解方程和方程组的基本思想,具体表现为把“多元”变成“一元” ,“高次”变为“低次”,把复杂图形转变为基本图形,把立体几何问题转变为平面几何问题等等。

2、数形结合的思想方法。

数形结合是从感知向思维过渡的中间环节,是帮助学生理解掌握教材的重要手段。

集中体现为两个方面,一是对直观图形赋予代数意义,要求学生能根据直观图形将实际问题抽象为数学问题;二是对抽象的数学问题赋予直观图形的意义,以形帮数。

3、概括归纳的思想方法。

概括是在思维中将同一种类型的对象共同的本质属性集中起来,结合为一般类型的属性。

归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性。

一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用、定积分在经济生活中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等。

4、演绎的思想方法。

演绎推理是培养学生逻辑思维能力的主要内容。

数学问题不仅要解决“是什么”的问题,更重要的是要解决“是怎样想到的”。

要进一步引导学生对概念定义的结构特征加以分析,在此基础上再启发诱导学生演绎推理出其基本性质、应用范围,利用定义解题、证题,进而发展学生的思维能力。

二、掌握渗透数学思想方法的途径,提高数学素养1、在知识的形成过程中渗透。

课程标准明确指出:“数学教学不仅要教给学生数学知识,而且还要揭示获取知识的思维过程。

”这一思维过程就是科学家对数学知识和方法形成的规律性的理性认识的过程。

任何一个概念,都经历着由感性到理性的抽象概括过程;任何一个规律,都经历着由特殊到一般的归纳过程。

备战高考数学专题讲义 第7讲:数学思想方法之整体思想探讨

备战高考数学专题讲义 第7讲:数学思想方法之整体思想探讨

【备战2013高考数学专题讲座】 第7讲:数学思想方法之整体思想探讨数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。

通常混称为“数学思想方法”。

常见的数学思想有:建模思想、归纳思想,分类思想、化归思想、整体思想、数形结合思想等。

整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。

整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

结合2012年全国各地高考的实例,我们从下面四方面探讨整体思想的应用:(1)整体运算;(2)整体代换;(3)整体设元;(4)整体变形、补形。

一、整体运算:整体运算是着眼结构的整体性,根据问题的条件进行运算(包括整体配方、求导等),达到简化解题思路,确定解题的突破口或者总体思路。

典型例题:例1. (2012年全国课标卷理5分)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为【 】()A 1ln 2- ()Bln 2)- ()C 1ln 2+ ()D ln 2)+【答案】B 。

【考点】反函数的性质,导数的应用。

【解析】∵函数12xy e =与函数ln(2)y x =互为反函数,∴它们的图象关于y x =对称。

∴函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数1()2x g x e x =-,则1()12x g x e '=-,∴min ()1ln 2g x =-。

∴min d =。

∴由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-。

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27- 分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解. 解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+ 说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx ++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b c d ++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+ 例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化.二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<< 例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y m x y n +=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩ 说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+ 分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解. 说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以第10题654321IHGF E D C B A 目标明确,直奔主题,收到了事半功倍的效果.三.函数与图象中的整体思想例8.已知y m +和x n-成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()() 解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即22200a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <,所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法在之一,在数学教学中应当引起足够的重视.四.几何与图形中的整体思想例10.如图,第11题OP F E D C B A123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三角形外角定理,得360DAB IBA GCB ∠+∠+∠=°,所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形,从而△OAF 的面积等于△OAE 的面积,故图中阴影部分的面积等于△ABC 的面积,又因为12ABC ABCD S S ∆=Y 1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1 C.﹣52. (2011,台湾省,26,5分)计算(250+++)2﹣(250﹣﹣﹣)2之值为何( )A 、B 、C 、1200D 、2400 3. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a ---的值为( )C.﹣1二、填空题 1. (2011•德州,14,4分)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x12+x22= .3. (2011四川达州,15,3分)2210b b ++=,则22a b a +-= .三、解答题 1. (2011•江苏宿迁,21,8)已知实数a 、b 满足ab=1,a+b=2,求代数式a 2b+ab 2的值.2. (2010重庆,21,10分)先化简,再求值:22122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2-x -1=0.答案:ADD ;3,(4-x+y )2,6;2,1。

专题——高中数学思想方法

专题——高中数学思想方法

专题——高中数学思想方法发布时间:2022-05-09T05:59:47.712Z 来源:《教学与研究》2022年1月第2期作者:张桂敏[导读] 本专题主要对四种高中常用且重点的思想方法做逐一说明.张桂敏长春吉大附中实验学校高中数学作为数学学习过程中的基础教育,学生应掌握基本的数学思想与方法,不仅对于优质且学有余力的学生而言,是增强其对数学奥秘探索的最佳钥匙,对于普通的学生而言,掌握一定的数学思想与方法,对其个体思维严谨性培养亦尤为重要. 数学来源于实践,数学思想方法是人们在生产实践的基础上,对数学的感性认识积累到一定程度之后产生的正确而科学的理性认识,与哲学有一定的联系. 学好数学思想方法,对于哲学思维意识的培养有很好的促进作用. 高中数学思想方法涉猎内容也较多,本专题主要对四种高中常用且重点的思想方法做逐一说明.例题分析(一)数形结合思想所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究代数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽象问题具体化,开拓解题的新思路,以便最终找到解决问题的带有数形信息转换的数学方法.例1 (2019北京)数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图).给出下列三个结论:①曲线恰好经过6个整点(即横、纵坐标均为整数的点);②曲线上任意一点到原点的距离都不超过;③曲线所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是(A)①(B)②(C)①②(D)①②③所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.,所以曲线上任意一点到原点的距离都不超过. 结论②正确.如图所示,易知,四边形很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法③错误. 故选C.评注:有些向量问题直接计算较复杂,但利用向量加法或减法的几何意义画图解决更直接方便.(二)分类讨论思想分类讨论是数学解题中的一种重要思想方法,它一般是在原问题不能统一解决的情况下,将其分解成相互独立的若干子问题来处理,最后综合这些子问题的解答,得到对整个原问题的解答. 也就是说,如果被研究的问题包含多种情况,不能一概而论时,那么将确定的同一标准所研究的问题划分成若干不同的情形,并把每一种情形毫无遗漏地划分到某一类中去,再进一步讨论每一种情形的特性,得出每类情形下相应的结论,即所谓的分类讨论思想.这种思想体现了一种由大化小,由整体化为部分,由一般化为特殊的解决问题的方法. 分类讨论的根源是在解题过程中运算不能进行下去,必须要进行分类处理,分类时要注意分类标准要统一,且不重不漏,要掌握分类原则、方法和技巧,做到“确定对象的全体、明确分类的标准”.例6为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则()A.最少需要16次调动,有2种可行方案B.最少需要15次调动,有1种可行方案C.最少需要16次调动,有1种可行方案D.最少需要15次调动,有2种可行方案解析:根据题意A,B两处共需向C,D两处调15个商品,这15个商品应给D处11个商品,C处4个商品,按照调动次数最少的原则,有以下两种方案:方案一:A调动11个给D,B调动1个给A,B调动4个给C,共调动16次;方案二:A调动10个给D,B调动5个给C,C调动1个给D,共调动16次;故选:A(三)函数与方程思想函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题. 方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来是问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证明)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.(四)化归与转化思想化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B 达到解决问题A的方法. 该思想方法的本质就是将不会的转化为会的,将不熟悉的转化为熟悉的,当遇到复杂的或陌生的条件时,往往能通过一步转化,就能将问题简单化,从而按照常规模式进行解题了.。

06整体的思想方法

06整体的思想方法

高中数学思想方法专题(六)——整体的思想方法一、知识要点概述人们在研究某些数学问题时,往往不是着眼于问题的各个组成部分,而是有意识地放大考察问题的“视角”,将需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体功能、或作种种处理以后,达到顺利而简捷地解决问题的目的,像这种从整体观点出发研究问题的思维活动过程,我们称之为“整体的思想方法”。

整体的思想方法在中学数学里体现是很充分的。

众所周知,数学概念是对一客观现象经过整体性思考。

抽象、概括而形成的;数学运算法则是从同一类运算实践的的整体中,经过归纳、概括建立起来的;解答数学问题是纵观条件和结论的整体情境之后,通过对数学方法的运用环节调节而求得结果的;数学的各个分支之间、空间形成与数量关系之间,又表现出高度的协调一致,呈现着和谐的数学美,这一切说明数学是一个有机的整体。

高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。

二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。

2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。

3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。

三、范例剖析例 1 一个项数为奇数的等差数列{a n },其奇数项之和为51,偶数项之和为 1,求其通项公式。

例2直线交曲线 及渐近线于A 、B 、C 、D 四点, 如图,求证:|AB|=|CD|.例3 已知sinx+siny=1,求cosx+cosy 的取值范围.例4 有5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法有_______种。

高中数学专题思想讲义:03整体思想

高中数学专题思想讲义:03整体思想

1 1 xyz 4(m 3 ) 3 2
2 2
10. 【解】设两切点为 A( x1 , y1 ), B ( x2 , y2 ) 。两切线方程为 x1 x y1 y r , x2 x y2 y r 又两切线均过 P ( a, b) ,则 x1a y1b r , x2 a y2b r
卓越个性化教案
第 讲 整体思想
学生姓名 授课教师 核心内容 学生年级 上课日期 整体思想 学科 时段 课型 数学
精准诊查
【课首沟通】
询问学生的复习进度及目前遇到的困难。
【知识导图】
研究问题若能有意识地放大考察问题的“视角” ,将需要解决的问题看作一个整体,通过研究 问题的整体形式、整体结构,并注意已知条件及待求结论在这个“整体”中的地位和作用,然后通 过对整体结构的调节和转化使问题获解。把这种从整体观点出发研究问题的心理活动过程,叫做整 体思维或整体思想。
2 6 12 11 2
2. 若 log 7 2 2 1 log 2



2 1 a ,求 log 7 2 2 1 log 2




2 1 的值。

3. 已知:方程 ax bx c 0 的两根之和为 S1 ,两根的平方和为 S 2 ,两根的立方和为 S 3 。证明:
k
k k 2Cn 0;

1 2 n 1 1 k C 。 n n 1 k 0 k 1
2 / 14
卓越个性化教案
【导学二】整体代入 在求解有此问题时,不能(或不必)分别求出各个量的具体值,常考虑求出这些量所构成的某代数式 的整体值,继而达到解题的目的。 【例 3】长方体的全面积为 11,十二条棱长度之和为 24,则这个长方体的一条对角线长为( A. 2 3 B. )

高中数学思想方法

高中数学思想方法

高中数学思想方法高中数学是学生学习数学的重要阶段,也是培养学生数学思维和方法的关键时期。

在高中数学教学中,不仅要注重知识的传授,更要注重培养学生的数学思想方法,使他们具备良好的数学素养和解决问题的能力。

下面,我们将从几个方面来谈谈高中数学的思想方法。

首先,高中数学的思想方法应该是逻辑严谨的。

数学是一门严谨的科学,它要求学生在学习和解题过程中要有严谨的逻辑思维。

在解题时,要善于分析问题,理清思路,严密推理,不放过任何一个细节,确保解题过程无漏洞。

只有这样,才能得出正确的结论,提高解决问题的能力。

其次,高中数学的思想方法应该是抽象思维的。

数学是一门抽象的科学,它要求学生具备良好的抽象思维能力。

在学习数学时,要善于从具体问题中抽象出一般规律,找到问题的本质,抓住问题的主要矛盾,不被表面现象所迷惑。

只有这样,才能深入理解数学知识,灵活运用数学方法,解决各种复杂的实际问题。

再次,高中数学的思想方法应该是创新意识的。

数学是一门创造性的科学,它要求学生具备良好的创新意识。

在学习数学时,要善于发现问题,提出问题,解决问题,不断地进行探索和实践,不断地进行思考和总结,勇于尝试新的方法和新的思路。

只有这样,才能不断地拓展数学的领域,不断地推动数学的发展,为人类的科学进步作出贡献。

最后,高中数学的思想方法应该是应用意识的。

数学是一门应用广泛的科学,它要求学生具备良好的应用意识。

在学习数学时,要善于将数学知识和方法运用到实际生活中,解决实际问题,服务于社会发展。

只有这样,才能真正地发挥数学的作用,提高人们的生活质量,促进社会的进步。

总之,高中数学的思想方法是非常重要的,它直接关系到学生的数学学习和发展。

因此,我们要注重培养学生的逻辑思维能力、抽象思维能力、创新意识和应用意识,使他们具备良好的数学素养和解决问题的能力,为将来的学习和工作打下坚实的基础。

高中数学 整体思想

高中数学 整体思想

整体意识的运用江苏省昆山中学 缪林整体意识是在全局的观点上看问题,整体把握条件和结论之间的联系,或将条件中的某一部分、几何图形中的某一部分视作整体用于问题的研究,或将所要研究的结论视作一个整体,或问题的处理过程中,用整体的意识探寻解题策略,它与分解意识相互联系也相互转化。

例1 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 .分析:记6παβ+= ,则22124ππαβ+=-。

由α为锐角,可得263ππβ<<。

由4cos()cos 65παβ+==,可得3sin 5β==。

从而2247sin 22sin cos ,cos 212sin 2525βββββ===-=,sin(2)sin(2)sin 2cos cos 2sin 1244450ππππαβββ+=-=-= 注:通过将题中的部分“式子”看成一个整体,实现问题的转化。

例2 求函数22(1)3sin ()1x x f x x ++=+的最大值和最小值之和.分析:若直接求最值是非常困难的,结论不是分别求最大值和最小值,而求整体探求最大值和最小值之和,故而可尝试研究函数f(x)的对称性,再从整体角度探究两最值之和 由于22222(1)sin 213sin 23sin ()1111x x x x x x x f x x x x ++++++===++++,记223sin ()1x xg x x +=+,则易证g(x)为奇函数,从而max min ()()0g x g x +=, 因此max min max min max min ()()[1()][1()]2()()2f x f x g x g x g x g x +=+++=++=, 即M+m=2。

注:将所求结论看成一个整体,例3 已知一个长方体的表面积为48cm 2,所有棱长之和为36cm ,试求该长方体体积的取值范围.分析:设长方体的长、宽、高分别为a,b,c ,则有,,0,24,9.a b c ab bc ca a b c >⎧⎪++=⎨⎪++=⎩从而 29,24()924.a b c ab c a b c c +=-=-+=-+故a,b 是方程22(9)(924)0t c t c c --+-+=两正实根。

数学中的整体思想PPT教学课件

数学中的整体思想PPT教学课件
2
知识点中的整体思想
• • • • • • • • • • 第五章 数量与数量之间的关系 第六章 整式的加减 第九章 二元一次方程组 第十章 整式乘法与因式分解 第十一章 三角形 第十四章 分式 第十五章 轴对称 第十六章 勾股定理 第十七章 实数 第二十二章 四边形 第二十五章 一次函数 第二十八章 一元二次方程 第二十九章 相似形
12
第九章 二元一次方程组
一、巧用“整体思想”妙解方程组---整体代 入或整体加减 x 1 例1、解方程组 : 3 2 y
2( x 1) y 11
11
五、整体去括号
化简
2x y 2xy 3x y 2(3x y 2xy) 4xy
2 2 2

2[思路分析] 受一个“-”号影响,应变号; 受 两个“-”号影响,不变号;
[规律总结]在含有多重括号的运算式中,括号里的项 是否变号,只与该项以及该项所在的各层括号前面的 “-”号有关,而与其前面的“+”号无关.因此只 要从外向里逐层确定影响该项的“-”号的个数就 可整体去括号.当某项受奇数个“-”号影响时该项 变号,受偶数个“-”号影响时该项不变号.
[
当变形转化,再整体代入,是经常使用的一种方法.
规律总结]把计算式中的某部分看作整体或先作适
8
二、整体转化法
计算(3a+2b-c+5)(3a-2b+c+5) [思路分析]将(3a+5)看成相同的项,将(2b-c) 看成相反的项,问题就转化平方差公式,计算起 来就方便了. 2 2 2 2 2 ( 3 a 5 ) ( 2 b c ) 9 a 30 a 25 4 b 4 bc c 解:原式=
1
整体思想概述:
整体思想方法是指用“集成”的眼光,把某些式 子或图形看成一个整体,把握已知和所求之间的关联, 进行有目的、有意识的整体处理来解决问题的方法. 从整体出发的处理方法,体现了一种着眼全局、通盘 考虑的整体观念. 中学数学中,整体思想的应用广泛. 运用整体思想方法的三部曲:(1)从整体出发,高 瞻远瞩地统帅局部;(2)通过对局部的研究,酝酿 总体解决的方案;(3)回到整体,实现解决整个问 题的总目标. 整体思想方法在代数式的化简与求值、解方程 (组)、几何解证等方面都有广泛的应用,整体代入、 整体运算、整体设元、整体处理、几何中的补形等都 是整体思想方法在解数学问题中的具体运用。

数学解题思想——整体思想

数学解题思想——整体思想

数学解题思想—-整体思想杨相云整体思想就是从问题的整体性质出发,突出对问题整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子、图形或概念看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.一.整体代入在求代数式的值时,可先将条件或待求式变形,再整体代入求值,使问题化难为易。

例1 已知a 是方程210x x +-=的一个根,求代数式22211a a a a--+的值。

分析:由a 是方程210x x +-=的一个根,得210a a +-=,则21-a a -=,2=1a a +,再整体带入即可。

二.整体设元在解决某些比较复杂的式子时,也可以考虑将复杂的式子整体用字母代换,使问题化繁为简,巧妙获解。

例2 阅读材料:求2320141+2+2+2...2++的值。

解:设S=2320141+2+2+2...2++,则2S=234201420152+2+22...22++++,两式相减得 2S-S=201521-,即S=201521-;故2320141+2+2+2...2++=201521-。

请你仿照此方法计算:(1)23101+3+3+3...3++;(2)231+5+5+5...5n ++(其中n 为正整数).分析:(1)仿照阅读材料,设S=23101+3+3+3...3++,两边乘以3后得到关系式3S=2310113+3+3...33+++,再与已知等式相减,得2S=1131-,即可求出所求式子的值;(2)设S=231+5+5+5...5n ++,两边乘以3后得到关系式5S=2315+5+5...5+5n n +++,再与已知等式相减,得4S=151n +-,即可求出所求式子的值;三.整体构造就是对已知条件和所求联合研究,把问题作为一个整体来构造,从而解决问题.例3 甲、乙、丙三种商品,若买甲4件,乙5件、丙2件,共用69元;若买甲5件,乙6件、丙1件,共用84元。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解高中数学的七大基本思想方法是:分类讨论法、递推法、画图法、符号法、假设法、构造法和倒推法。

第一,分类讨论法。

分类讨论法是指将问题中的条件按照具有共同特征的情况分别讨论,从而对问题进行全面深入的解析。

通过逐个分类讨论,找出各个情况的共性和特点,以及不同情况下的不同解决方法。

这种方法可以将复杂的问题变得简单明了,易于理解与解答。

举个例子,假设有一道题目要求求解方程2x+3=5的解集。

我们可以将其分为两类:当x为正数时,方程有且仅有一个解;当x为负数时,方程无解。

通过将问题进行分类讨论,我们可以得到方程的解集为{x,x=1}。

第二,递推法。

递推法是指通过已知的初始值或者关系式来推导出未知项的计算方法。

这一方法常常用于求解数列中的其中一项或一些项,以及解决一些逻辑推理问题。

在递推的过程中,可以发现规律,从而推导出一般项、通项、边界条件等重要信息。

以求解斐波那契数列为例,斐波那契数列的前两项为1,从第三项开始,每一项都是前两项的和。

我们可以利用这个关系式进行递推:F(n)=F(n-1)+F(n-2)。

通过递推,我们可以得到斐波那契数列的通项公式。

第三,画图法。

画图法是通过绘制几何图形的方法,对问题进行可视化的处理。

它可以使抽象的数学问题变得具体明了,通过观察图形的性质和特点,可以得到问题的解。

举个例子,假设要求解一个三角形的内角和。

我们可以通过画一个三角形,并在其中一点做垂线,将三角形划分为若干个小三角形。

通过观察这些小三角形,我们可以发现它们的内角和等于一个直角。

然后,我们可以用这个结论推导出原始三角形的内角和。

第四,符号法。

符号法是指通过引入合适的符号和代数运算,将实际问题抽象成为可以用代数式描述的数学问题。

通过对符号及其运算规则的运用,可以更加简洁地表达数学问题,进而进行求解。

比如,假设有一道题目要求求两个数的和,可以用符号法表示为a+b=x。

通过引入符号a、b和运算符号+,我们将实际问题抽象成了一个代数问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学思想专题讲座---整体的思想方法一、知识要点概述解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法.在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。

二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。

2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。

3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。

三、整体的思想方法主要表现形式1、整体补形)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都【例1】甲烷分子(CH4相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a ,求碳原子到各个氢原子的距离.思路:透过局部→整体补形→构建方程解:显然,四面体的四个顶点在以中心(碳原子)为球心,中心到各顶点(氢原子)的距离为半径的球面上.如图,将此四面体ABCD 补成正方体BD’,其中A’,B’,D’也在球面上.设碳原子到每个氢原子的距离为x ,则2x= BD’,BD’、AB (a )、AA’之间的关系是a=AB=2AA’,2x=BD’=3AA’,因此,2x=,23a ⋅a x 46=∴.即碳原子到各个氢原子的距离为a 46.评注:这里,我们将一个正四面体补成一个正方体,则正四面体的中心与各顶点的距离与正四面体棱长通过正方体的棱长搭桥立即建立联系,局部问题便在正方体这个整体内快速获解,体现了整体补形较高的思维价值.在立几中,我们常常将四面体补成正四面体或平行六四面体、正四面体补成正方体、过同一个顶点的三条棱两两垂直的三棱锥(或四面体)补成长方体、四棱锥补成平行六面体,等等.近几年的高考题或高考模拟题中,经常出现这类问题,试题常常以选择题、填空题的形式出现,具有一定的创新性.复习中大家要注意总结这种问题的补形规律,力争在高考中速战速决.【例2】、如图2,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======,则三棱锥子P —ABC的体积为( )。

4080160240A B C D分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶点到底面的高无法作出,自然无法求出。

若能换个角度来思考,注意到三棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不难解决。

解析:如图3所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易知三棱锥P —ABC 的各边分别是长方体的面对角线。

PE=x,EB=y,EA=z 不妨令,则由已知有:2222221001366,8,10164x y x z x y z y z ⎧+=⎪+=⇒===⎨⎪+=⎩,从而知 416810468101606P ABC AEBG FPDC P AEB C AB G B PDC A FPC AEBG FPDC P AEB V V V V V V V V--------=----=-=⨯⨯-⨯⨯⨯⨯=2、整体展开【例3】有一个各条棱长均为a 的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,求包装纸的最小边长.1S 2SA BCS D 图4 思路:整体展开→化归平几→面积覆盖解:将图4中的正四棱锥整体展开,变为图5中的平面图形,问题则转化为求一个最小的正方形将图5完全覆盖.顺次连结图5中的S 1,S 2,S 3,S 4,易证S 1S 2S 3S 4,为正方形,且为将图5完全包住的最小的正方形.于是其边长为: aa a a a a 26223132150cos 20222+=⋅+=⋅+=-+. 故包装纸的最小边长为a 262+.评注:为研究立体图形的某些特性,如表面积问题、沿表面行走路径最短问题、包装问题、剪裁问题、制作问题等等,我们常常视立体图图5形为一个整体,将其展开,变为平面图形,通过对平面图形的研究达到解决立几问题的目的.近几年的高考,加大了对这种解题思想方法的考查力度,试题常常以现实生活为背景,设计新颖,能有效考查学生的空间想象能力和综合能力.对此大家应引起重视.3、整体补式【例4】、求sin 2200+cos 2500+sin200cos500的解。

解:令A= sin 2200+cos 2500+sin200cos500 B= cos 2200+ sin 2500+ cos 200 sin 500 则A+B=2+sin700………① A-B= -070sin 21- ………② ①+②得A=43,故原式=434、整体构形【例5】、已知 x,y,z ),1,0(∈求证:x(1-y)+y(1-z)+z(1-x)<1分析:观察到:x+(1-x)=y+(1-y)=z+(1-z)=1及乘积式,联想到用面积公式。

证明:如图6,构造正三角形,则S △ABD +S △EFC +S △BDF =21x(1-y)sin600+21y(1-z) )sin600+21z(1-x) )sin600<S △ABC =21×1×1×sin600<1,故x(1-y)+y(1-z)+z(1-x)<1。

5、整体代换【例6】、已知22sin sin =+y x ,求cosx+cosy 的取值范围。

图6解:设u=cosx+cosy ,将已知式与待求式两边平方得:y y x x 22sinsin sin 2sin21++=,(1)y y x x u 222coscos cos 2cos ++=。

(2)(1)+(2)得:)cos(22212y x u -+=+,即23)cos(22-=-uy x ,因为2)cos(22≤-≤-y x ,所以22322≤-≤-u ,解得214214≤≤-u 。

所以214cos cos 214≤+≤-y x 。

点评:利用整体代换构建不等式也是求解此类问题的最基本的方法。

【例7】在数列{a n }中,S n 为其前n 项和,若a 1=23,a 2=2且S n+1-3S n +2S n -1+1=0(n ≥2),试判断{a n -1}(n ∈N*)是不是等比数列,为什么?思路:透过局部→重新组合→整体代换解:将已知等式重新组合,得(S n+1-S n )-2(S n -S n -1)+1=0 又因为a n+1=S n+1-Sn ,a n =S n -S n -1(n ≥2), ∴a n+1-2a n +1=0,即a n+1-1=2(a n -1), ∴111--+n n a a =2(n ≥2)(*)当n=1时,2123121112=--=--aa ,因此(*)式对n ∈N*成立.故{a n -1}(n ∈N*)是等比数列.评注:这里,如果将S n+1、S n 与S n -1均用求和公式代入,将会十分繁难,而从S n+1-3S n +2S n-1+1=0整体着眼,实施整体代换,解题过程十分简捷、明快.整体代换在解题中往往能起到化难为易、化繁为简的作用,高考中以简化数列、解几运算居多.6、整体换元【例8】、已知xy y x ,y x R y x ++=+∈+求1,,22的最大值 解析:由,y x R y x 1,,22=+∈+首先想到用三角换元即令)2,0(.......sin cos πθθθ∈⎩⎨⎧==y x ,则θθθθcos sin cos sin ++=++xy y x ,直接求解较困难,于是又令21cos sin cos sin 21)]2,1((cos sin 22-=⇒+=⇒∈=+t tt t θθθθθθ,从而有.2212221)1(21212121cos sin cos sin 222+++===∴-+=-+=-+=++=++的最大值为时即易知当xy y ,x y x t t t t t t xy y x θθθθ点评:本题利用整体换元成功地实现了二元函数问题一元化转化的目的,这是求解二元函数最值问题的最常用的思想方法。

7、整体设元【例9】、已知密码3∙BCPQR=4∙PQRABC 其中每个字母都表示一个十进制数字,试将这个密码译成数字形式。

解析:此题有6个未知数,若依次求解,无法达到目的确良,注意到ABCPQR 与PQRABC 之间的轮换关系,可将ABC 与PQR 视为两个整体,分别设ABC=x,PQR=y,则3(1000x+y )=4(1000y+x)∴428x=571y ∵x,y 为三位数且428与571互奇,∴x=571,y=428∴所求密码为3∙571428=4∙428571.【例10】已知tan αtan β=3, tan2βα-=2,求cos(α+β)的值.思路:转换思维→整体设元→构建方程解:∵tan2βα-=2, ∴cos(α-β)=2tan12tan122βαβα-+--=-53.设x ⋅=⋅βαβαsin sin ,cos cos )=53-=+y x ①又xy =3 ②, ①、②联立解得,于是cos(α+β)=x -y=103.评注:本题条件分散、联系隐蔽,企图由三角恒等变形求解难以达到目标.从待求cos(α+β)与能求cos (α-β)中发现cos αcos β和sin αsin β两个整体,而这两个整体又恰好含在tan αtan β中.因此,通过引进两个新元x , y ,迅速构建出以x , y 为未知数的方程组,使问题顺利获解.其中,整体换元是解题关键性的一步.整体换元是一种重要的解题方法,几乎每年的高考都要从不同的角度对其进行考查.8、整体运算【11】、椭圆内12322=+yx有一点P (1,1),一直线经过点P 与椭圆交于P 1,P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。

相关文档
最新文档