初中数学应用题复习专题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

初中应用题大全及答案

初中应用题大全及答案

初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。

所以小明的爸爸实际支付了400元。

2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。

男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。

女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。

因此,需要选出2名男生和1名女生。

3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。

4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。

所以合格的零件数为100个 - 2个 = 98个。

5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。

5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。

原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。

6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。

八年级数学应用题

八年级数学应用题

八年级数学应用题一、一元一次方程应用题。

1. 某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,求购买甲、乙两种票各多少张?解析:设购买甲种票x张,则购买乙种票(40 x)张。

根据总价 = 单价×数量,可列方程10x+8(40 x)=370。

展开方程得10x + 320-8x=370。

移项合并同类项得2x = 370 320,即2x=50,解得x = 25。

那么40 x=40 25 = 15(张)。

答案:购买甲种票25张,购买乙种票15张。

2. 一个工人加工一批零件,限期完成,若他每小时做10个,到期可超额完成3个;若每小时做11个,则可提前1小时完成任务,问他共要加工多少个零件,限期多少小时?解析:设限期x小时。

根据零件总数不变列方程,10x-3 = 11(x 1)。

展开方程得10x-3=11x 11。

移项得11x 10x=11 3,解得x = 8。

零件数为10x-3=10×8 3=77(个)。

答案:共要加工77个零件,限期8小时。

二、二元一次方程组应用题。

3. 有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨。

求3辆大货车与5辆小货车一次可以运货多少吨?解析:设每辆大货车装货x吨,每辆小货车装货y吨。

根据题意得方程组2x + 3y=15.5 5x+6y = 35。

由第一个方程2x+3y = 15.5可得4x + 6y=31。

用5x + 6y=35减去4x + 6y = 31,得x = 4。

把x = 4代入2x+3y = 15.5,得2×4+3y = 15.5,解得y = 2.5。

则3x+5y=3×4 + 5×2.5=12+12.5 = 24.5(吨)。

答案:3辆大货车与5辆小货车一次可以运货24.5吨。

4. 某中学拟组织九年级师生去韶山举行毕业联欢活动。

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题

备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。

初中数学应用题目大全

初中数学应用题目大全

初中数学应用题目大全
一、整数运算
1. 某车间今年共生产了-1200辆汽车,明年计划生产2400辆汽车,问两年内共生产了多少辆汽车?
-1200 + 2400 = 1200
2. 甲数温度计的度数比乙数温度计的度数少45℃,已知乙数温度计的度数是-8℃,问甲数温度计的度数是多少?
-8 + 45 = 37
二、百分数
1. 某项商品原价为200元,现在打8折出售,问现价为多少?
200 × 0.8 = 160
2. 小明考试得了85分,班级总分为400分,班级平均分为80分,问小明的成绩相对于平均分高几个百分点?
85 - 80 = 5
三、利率问题
1. 某银行存款年利率为5%,小明存了2000元,请问3年后小明将获得多少利息?
2000 × 0.05 × 3 = 300
2. 甲行存款年利率为3%,乙行存款年利率为2%,小刚同时在两家银行存了5000元,问一年后他能获得多少利息?
(5000 × 0.03) + (5000 × 0.02) = 250
四、几何问题
1. 一个直角三角形的直角边长分别为3cm和4cm,求斜边长。

斜边长= √(3^2 + 4^2) = 5
2. 某房子的地面是一个长方形,长为8m,宽为6m,求地面的面积。

面积 = 8 × 6 = 48
以上是初中数学应用题目大全,希望能帮到你!。

初中数学应用题试题

初中数学应用题试题

初中数学应用题试题题目1:购物计算小明去商场购买了一件T恤,原价为100元,商场正在进行九折促销活动。

同时,商场还提供了满200元减30元的优惠活动。

请帮助小明计算最终需要支付的金额。

解答:首先,计算T恤的九折价格:100元 × 0.9 = 90元。

然后,判断是否满足满减优惠条件。

由于小明购买的商品总价为90元,未满足满减条件,所以没有享受该优惠。

最终,小明需要支付的金额为90元。

题目2:旅行费用计算小红和小明要一起去旅行,他们计划乘坐火车和公交车到达目的地。

火车票价为20元,公交车票价为5元。

小红决定乘坐火车,而小明则选择乘坐公交车。

请帮助他们计算两人总共需要支付的费用。

解答:小红乘坐火车需要支付的费用为20元。

小明乘坐公交车需要支付的费用为5元。

总共需要支付的费用为20元 + 5元 = 25元。

题目3:运动会奖牌计算某校举行运动会,共有三个班级参加比赛。

每个班级按照接力赛、跳远赛和铅球赛三个项目进行比拼。

根据每个班级在各项目中获得的名次,决定最终的奖牌归属。

请根据以下表格帮助计算各个班级获得的金牌、银牌和铜牌的数量。

班级接力赛跳远赛铅球赛班级1 一等奖二等奖三等奖班级2 二等奖一等奖二等奖班级3 三等奖三等奖一等奖解答:班级1获得了一枚金牌(接力赛)、一枚银牌(跳远赛)、一枚铜牌(铅球赛)。

班级2获得了一枚金牌(跳远赛)、二枚银牌(接力赛和铅球赛)。

班级3获得了一枚金牌(铅球赛)、二枚银牌(接力赛和跳远赛)。

题目4:赛车比赛圈数计算一辆赛车参加了一场比赛,比赛规定赛车必须完成4圈才能计算成绩。

该赛车的速度稳定在每小时200公里,每圈的长度为2.5公里。

请帮助计算该赛车完成比赛所需的时间。

解答:该赛车每小时可行驶200公里,而每圈的长度为2.5公里。

因此,完成一圈所需的时间为2.5公里 / 200公里/小时 = 0.0125小时,换算为分钟为0.0125 × 60 = 0.75分钟。

初中数学二次函数应用题(面积+利润)专题

初中数学二次函数应用题(面积+利润)专题

二次函数的应用一、面积问题1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1)若苗圃园的面积为100平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.2.一个矩形苗圃,一边靠墙,另外三边用长为30米的篱笆围成,墙长为14米,设这个苗圃园垂直于墙的一边的长为x米.求:(1)求面积y与x之间的函数关系式及其自变量x的取值范围;(2)x为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,求x的取值范围.3.用60m的篱笆围成一个一边靠墙、中间用篱笆隔开的矩形养鸡场.(1)如果中间只有一道篱笆,如图1,并设矩形一边的长为xm,那么当x为何值时,养鸡场的面积最大?(2)如果养鸡场中间有6道篱笆,如图2,并设矩形一边的长为xm,那么当x为何值时,养鸡场的面积最大?4.学校要围一个矩形花圃,其一边利用足够长的墙,另三边用篱笆围成,由于园艺需要,还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示),总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD),矩形花圃ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积最大,AB边的长应为多少米?5.有一个面积为30平方米的长方形ABCD的鸡场,鸡场的一边靠墙(墙长8米),墙的对面有一个1米宽的门,另三边用竹篱笆围成,篱笆总长15米,求鸡场的宽AB是多少米?6.如图,星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙(墙的长度为20m),其余部分用篱笆围成,且中间用一段篱笆把它分隔成了两个矩形,两个矩形各留一道1m宽的门,已知篱笆的总长度为34m.(1)设图中AB(与墙垂直的边)的长为x m,请用含x的代数式表示AD的长.(2)若整个苗圃园的总面积为96m2,求AB的长.7.李爷爷借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园,想在里面种些花草,篱笆只围AB、BC两边.(1)若花园的面积为252m2,求AB的长度;(2)若在P处有一棵树,与墙CD、AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.8.如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?9.广雅中学课外活动小组准备建一个矩形花房,其中一边靠墙,另外三边用长为50米的篱笆围成.已知墙长30米(如图所示),设这个花房垂直于墙的一边AB=x米,花房中间修筑两条互相垂直的宽为2m的小路,剩余部分种植花卉,仅在BC边的小路处留有2米宽的门.(1)若平行于墙的一边长为y米,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)设花房中种植花卉部分的面积为S,求S与x的函数关系;(3)垂直于墙的一边长为多少米时,面积S有最大值.求这个最大值.10.如图,在矩形ABCD中,AB=6,BC=8,点E、F、G、H分别在边AB、BC、CD、AD 上,且AE=AH=CF=CG,设AE的长为x,四边形EFGH的面积为S.(1)求S与x的函数表达式;(2)当x为何值时,S的值最大?求出最大值.11.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【利润问题】12.某公司经销一种绿茶,每千克成本为60元,市场调查发现,在一段时间内,销售量w (千克)随着销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+280,设这种绿茶在这段时间的销售利润为y(元).(1)求y和x的关系式;(2)当销售单价为多少元时,该公司获取的销售利润最大?最大利润是多少?13.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)求商场降价后每天盈利y(元)与降价x(元)的函数关系式;(2)当降价多少元时,每天盈利最大,最大盈利多少元?14.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?15.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?16.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?17.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?18.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?19.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元时,则每个月少卖5件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰为3200元?根据以上结论,请你直接写出售价在什么范围内,每个月的利润不低于3200元?20.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【作业】21.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分(1(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?参考答案与试题解析一.解答题(共23小题)1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1)若苗圃园的面积为100平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据矩形的面积公式列出关于x的方程,解方程可得答案;(2)列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:(1)由题意,得:平行于墙的一边长为(30﹣2x),根据题意,得:x(30﹣2x)=100,解得:x=5或x=15,∵∴6≤x<15.∴x=10.(2)∵矩形的面积y=x(30﹣2x)=﹣2(x﹣)2+,且30﹣2x≥8,即x≤11,∴当x=7.5时,y取得最大值,最大值为;当x=11时,y取得最小值,最小值为88.2.一个矩形苗圃,一边靠墙,另外三边用长为30米的篱笆围成,墙长为14米,设这个苗圃园垂直于墙的一边的长为x米.求:(1)求面积y与x之间的函数关系式及其自变量x的取值范围;(2)x为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,求x的取值范围.【考点】HE:二次函数的应用.【分析】(1)根据矩形的周长和面积即可求得y与x的函数关系式以及自变量x 的取值范围;(2)由y与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值;(3)根据题意得﹣2(x﹣7.5)2+112.5=88,即可求得x的取值范围.【解答】解:(1)苗圃园垂直于墙的一边的长为x米则平行于墙的一边长为:30﹣2x.则y=x(30﹣2x)=﹣2x2+30x(8≤x<15).(2)y=﹣2(x﹣7.5)2+112.5,由(1)知,8≤x<15,∴当x=8时,S最大值=112,即当矩形苗圃园垂直于墙的一边的长为8米时,这个苗圃园的面积最大,这个最大值为112.(3)∵这个苗圃园的面积不小于88平方米,即﹣2(x﹣7.5)2+112.5=88,解得x1=4,x2=11∴4≤x≤11,由(1)可知8≤x<15,∴x的取值范围为8≤x≤113.用60m的篱笆围成一个一边靠墙、中间用篱笆隔开的矩形养鸡场.(1)如果中间只有一道篱笆,如图1,并设矩形一边的长为xm,那么当x为何值时,养鸡场的面积最大?(2)如果养鸡场中间有6道篱笆,如图2,并设矩形一边的长为xm,那么当x 为何值时,养鸡场的面积最大?【考点】HE:二次函数的应用.【分析】(1)当养鸡场的中间有一道篱笆时,利用鸡场的长x表示出鸡场的宽,列出鸡场面积y关于x的二次函数式,利用函数知识即可解决问题;(2)类似于(1),当养鸡场的中间有6道篱笆时,利用鸡场的长x表示出鸡场的宽,列出鸡场面积y关于x的二次函数式,利用函数知识即可解决问题.【解答】解:(1)设养鸡场的面积为y.∵当养鸡场的长为x米时,宽为,∴面积y==﹣∴当x=30时,y取得最大值300,即当x=30时,养鸡场的面积最大.(2)∵当养鸡场的长为x米时,宽为米,∴面积y==﹣∴当x=30时,y取得最大值,即当x=30时,养鸡场的面积最大.4.学校要围一个矩形花圃,其一边利用足够长的墙,另三边用篱笆围成,由于园艺需要,还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示),总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD),矩形花圃ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积最大,AB边的长应为多少米?【考点】HE:二次函数的应用.【分析】(1)由题意得出AB=x,BC=36﹣3x,由矩形的面积公式即可得出S与x 之间的函数关系式;(2)把函数关系式化成顶点式,由二次根式的性质即可得出结果.【解答】解:(1)由题意得:AB=x,BC=36﹣3x,S=AB•BC=x(36﹣3x)=﹣3x2+36x,即S与x之间的函数关系式为:S=﹣3x2+36x(0<x<9);(2)∵S=﹣3x2+36x=﹣3(x﹣6)2+108,0<6<9∴x=6时,S取得最大值108,答:要想使矩形花圃ABCD的面积最大,AB边的长应为6米.5.有一个面积为30平方米的长方形ABCD的鸡场,鸡场的一边靠墙(墙长8米),墙的对面有一个1米宽的门,另三边用竹篱笆围成,篱笆总长15米,求鸡场的宽AB是多少米?【考点】AD:一元二次方程的应用.【分析】设AB长为x米,则根据图可知一共有三面用到了篱笆,BC=(15﹣2x+1)米,长×宽为面积30米2,根据这两个式子可解出AB的值.【解答】解:设AB长为x米,依题意得:(15﹣2x+1)x=30,解得x=3或x=5.当x=3时,BC=15﹣2x+1=15﹣6+10>8,不合题意,舍去.故x=5符合题意.答:鸡场的宽AB是5米.6.如图,星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙(墙的长度为20m),其余部分用篱笆围成,且中间用一段篱笆把它分隔成了两个矩形,两个矩形各留一道1m宽的门,已知篱笆的总长度为34m.(1)设图中AB(与墙垂直的边)的长为x m,请用含x的代数式表示AD的长.(2)若整个苗圃园的总面积为96m2,求AB的长.【考点】AD:一元二次方程的应用.【分析】(1)根据矩形的周长公式进行解答;(2)根据矩形的面积公式得到方程x(36﹣3x)=96,通过解方程求得x的值即AB的长度即可.【解答】解:(1)AD=36﹣3x;(2)x(36﹣3x)=96,解之得:x1=4 x2=8.当x=4时,AD=24>20 (舍去),当x=8时,AD=12<20符合题意.答:当AB=8米时,可使总面积为96m2.7.李爷爷借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园,想在里面种些花草,篱笆只围AB、BC两边.(1)若花园的面积为252m2,求AB的长度;(2)若在P处有一棵树,与墙CD、AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【考点】HE:二次函数的应用.【分析】(1)根据AB=x米可知BC=(32﹣x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论;【解答】解:(1)设AB=x米可知BC=(32﹣x)米,根据题意得:x(32﹣x)=252.解这个方程得:x1=18,x2=14,答:AB的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32﹣x)=﹣(x﹣16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和8米,∴8≤x≤15.∴当x=15时,S=﹣(15﹣16)2+256=255(平方米).最大答:花园面积的最大值是255平方米.8.如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?【考点】HE:二次函数的应用.【分析】设窗户的长为xcm,面积为y,则窗户的宽为(200﹣x)cm,根据题意得:y=(x﹣10)(200﹣x﹣10)=﹣(x﹣100)2+8100后求得当x=100时有最大面积.【解答】解:设窗户的长为xcm,面积为y,则窗户的宽为(200﹣x)cm,根据题意得:y=(x﹣10)(200﹣x﹣10)=﹣(x﹣100)2+8100,∴当x=100时有最大面积,∴200﹣x=200﹣100=100cm,∴窗户的两边长分别是100cm,100cm9.广雅中学课外活动小组准备建一个矩形花房,其中一边靠墙,另外三边用长为50米的篱笆围成.已知墙长30米(如图所示),设这个花房垂直于墙的一边AB=x米,花房中间修筑两条互相垂直的宽为2m的小路,剩余部分种植花卉,仅在BC边的小路处留有2米宽的门.(1)若平行于墙的一边长为y米,直接写出y与x之间的函数关系式及自变量x 的取值范围;(2)设花房中种植花卉部分的面积为S,求S与x的函数关系;(3)垂直于墙的一边长为多少米时,面积S有最大值.求这个最大值.【考点】HE:二次函数的应用.【分析】(1)根据题意列出函数表达式,注意在BC边的小路处留有2米宽的门这一要求;(2)根据长方形的面积减去小路的面积,列出S与x的函数关系式;(3)运用二次函数的性质解决最值.【解答】解:(1)y=52﹣2x(10≤x≤);(2)S=(x﹣2)(52﹣2x﹣2)=(x﹣2)(50﹣2x)=﹣2x2+54x﹣100;(3)S=﹣2x2+54x﹣100=﹣2(x﹣13.5)2+264.5,当垂直于墙的一边长为13.5米时,面积S有最大值,最大值是264.5平方米.10.如图,在矩形ABCD中,AB=6,BC=8,点E、F、G、H分别在边AB、BC、CD、AD上,且AE=AH=CF=CG,设AE的长为x,四边形EFGH的面积为S.(1)求S与x的函数表达式;(2)当x为何值时,S的值最大?求出最大值.【考点】HE:二次函数的应用.【分析】(1)利用四边形的面积等于矩形的面积减去四个直角三角形的面积,得到y与x的函数关系.(2)通过对函数配方,求出函数的对称轴,对称轴在定义域内,在对称轴处取得最值.【解答】解:(1)因为△AEH≌△CFG,△EBF≌△HDG,﹣2S△AEH﹣2S△EFB=6×8﹣2×x2﹣2×(8﹣x)(6﹣x)=﹣2x2+14x 所以y=S矩形ABCD(0<x≤6).(2)y=﹣2x2+3x=﹣2(x﹣)2+.所以当x=时,y max=.11.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【考点】AD:一元二次方程的应用.【分析】(1)等量关系为:(原来长方形的长﹣2正方形的边长)×(原来长方形的宽﹣2正方形的边长)=48,把相关数值代入即可求解;(2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值范围来得出侧面积的最大值.【解答】解:(1)设正方形的边长为xcm.则(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0,解得x1=8(不合题意,舍去),x2=1.答:剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为xcm,盒子的侧面积为ycm2,则y与x的函数关系式为:y=2(10﹣2x)x+2(8﹣2x)x,即y=﹣8x2+36x.(0<x<4)改写为y=﹣8(x﹣)2+,∴当x=2.25时,y最大=40.5.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.12.某公司经销一种绿茶,每千克成本为60元,市场调查发现,在一段时间内,销售量w(千克)随着销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+280,设这种绿茶在这段时间的销售利润为y(元).(1)求y和x的关系式;(2)当销售单价为多少元时,该公司获取的销售利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)根据销售利润=每千克利润×总销量,因为y=(x﹣60)w,w=﹣2x+280,进而求出即可.(2)用配方法化简函数式求出y的最大值即可.【解答】解:(1)∵w=(x﹣60)•w=(x﹣60)•(﹣2x+280)=﹣2x2+400x﹣16800,∴y与x的关系式为:y=﹣2x2+400x﹣16800.(2)y=﹣2x2+400x﹣16800=﹣2(x﹣100)2+3200,故当x=100时,y的值最大值是3200.13.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)求商场降价后每天盈利y(元)与降价x(元)的函数关系式;(2)当降价多少元时,每天盈利最大,最大盈利多少元?【考点】HE:二次函数的应用.【分析】认真阅读明确题意,抓住命题中给出的关键信息;(1)准确表示出每天降价x元后售出的数量,第一小问即可解决;(2)运用二次函数的性质即可解决第二小问.【解答】解:(1)∵当每件衬衫降价x元时,每天可出售(2x+20)件,此时每件可盈利(40﹣x)元∴y=(40﹣x)(2x+20)=﹣2x2+60x+800(2)∵a=﹣2<0,所以上述抛物线开口向下,函数有最大值当x=﹣时,y取得最大值,此时y=元14.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数y (件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)设出解析式,把(5,300),(6,200)代入求出系数即可;(2)根据题意列出二次函数解析式,根据二次函数的性质求出最值即可.【解答】解:(1)由题意,可设y=kx+b,把(5,300),(6,200)代入得:,解得:,所以y与x之间的关系式为:y=﹣100x+800;(2)设利润为W,则W=(x﹣4)(﹣100x+800)=﹣100 (x﹣4)(x﹣8)=﹣100 (x2﹣12x+32)=﹣100[(x﹣6)2﹣4]=﹣100 (x﹣6)2+400所以当x=6时,W取得最大值,最大值为400元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为400元.15.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【考点】HE:二次函数的应用.【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,∵a=﹣5<0,∴w的最大值是60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.16.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.17.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?。

初中数学代数问题应用题复习

初中数学代数问题应用题复习

初中数学代数问题应用题复习
初中数学代数是数学的一个重要分支,也是应用广泛的数学工
具之一。

掌握代数问题的解题方法,对于学生在数学研究中具有重
要的意义。

本文档将为初中生提供一些代数问题应用题的复,帮助
他们巩固和加深对代数问题的理解和应用。

1. 一元一次方程
问题1
某商店进行促销活动,打折后一本书的价格是原来的三分之一。

如果原价格是18元,现在的价格是多少?
问题2
某电子游戏市场价格为每部游戏50元,某次折扣活动中,每
部游戏降价10元出售。

小明购买了5部游戏,他支付的总金额是
多少?
2. 一元二次方程
问题1
某运动场地的长方形场地的长是宽的3倍,周长为28米。


场地的面积和长、宽分别是多少?
问题2
一架火箭在空中以初速度40米/秒竖直向上发射,经过多少秒后,火箭的高度达到最高点?
以上是一些代数问题应用题的复内容,通过解答这些问题,学
生们可以巩固对代数概念和解题方法的理解,并运用到实际问题中。

希望这些复题能够帮助大家提高数学能力,取得更好的成绩。

如果您还有其他问题或需要更多的复习题,请随时告知。

初中数学应用题复习专题

初中数学应用题复习专题

初中数学应用题复习专题〖知识点〗列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型内容分析列出方程(组)解应用题的一般步骤是:(i)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个(或几个)未知数;(ii)找出能够表示应用题全部含义的一个(或几个)相等关系;(iii)根据找出的相等关系列出需要的代数式,从而列出方程(或方程组);(iv)解这个方程(或方程组),求出未知数的值;(v)写出答案(包括单位名称).〖考查重点与常见题型〗考查列方程(组)解应用题的能力,其中重点是列一元二次方程或列分式方程解应用题,习题以工程问题、行程问题为主,近几年出现了一些经济问题,应引起注意一、填空题1.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是2.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为元和元3.某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇万美元4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为5.在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?解:设需要加水x千克根据题意,列方程为,解这个方程,得答: .6.某电视机厂1994年向国家上缴利税400万元,1996年增加到484万元,则该厂两年上缴的利税平均每年增长的百分率7.某种商品的进货价每件为x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%(相对于进价),则x = 元8.一个批发与零售兼营的文具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王来购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m 2-1)元(m 为正整数,且m 2-1>100);如果多买60支,则可以按批发价付款,同样需用(m 2-1)元.(1)设这个学校初三年级共有x 名学生,则(a)x 的取值范围应为(b)铅笔的零售价每支应为 元,批发价每支应为 元(用含x ,m 的代数式表示)(2)若按批发价每购15支比按零售价每购15少付款1元,试求这个学校初三年级共有多少名学生,并确定m 的值。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

初中数学复习专题——应用题

初中数学复习专题——应用题

4 图表型应用题 这类试题的特点是由图象或表格提供一组数据,要求从图表中获取 有效信息并加以处理,因而寻找数据间的相等关系是解答这类问题 的突破口, 例4.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间 的函数图象如图所示,试根据图象,回答下列问题:
(1)慢车比快车早出发_____小时,快车追上慢车行使了_____千 米,快车比慢车早____小时达到B地; y(千米) (快车)(慢车) (B) (2)在下列3个问题中任选一题求解 ①快车追上慢车需几个小时?
②求慢车、快车的速度。 ③求A、B之间的路程。 276 (A) 2 14 18
x(小时)
5
创新型应用题
现在有一 块直径为2m的圆形铁片,若将它做成一个有盖的油桶, 并尽可能的用好这块铁片,工人师傅在圆形铁片上截取两个圆 (即两底)和一个矩形(侧面),如图所示: (1)若把BC作油桶高时,则油桶的底面半径R1等于多少? (2)当把AB作油桶高时,油桶的底面半径R2 与(1)中的R 1
一个月内每天买进该报纸的份数 当月利润(单位:元) 100 150
(2)设每天从报社买进该种晚报x份(120≤x≤200)时,月利润为y元。 试求出y与x的函数关系式,并求出当月利润的最大值。
3 方程型应用题 这类问题一般要通过列方程或方程组求解,首先要理解题意,找出 已知量与未知量,并分析各量之间的关系,在此基础上寻找相等的 数量关系列出方程式或方程组。必须注意,在求得方程的解之后, 要根据应用题的实际意义,检查求得的结果是否合理,一要检验所 求出的解是否为所列方程的解,二是检验方程的解是否符合应用题 的题意,最终写出答案。
例3.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每 天可以售出20件,每件盈利40元。为迎接“六一”国际儿童节, 商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库 存,经市场调查发现:如果每件降价1元,那么平均每天就可多售 出2件。要想平均每天在销售这种套装上盈利1200元,那么每件童 装应降价多少元?

初中数学方案选择类应用题复习专题

初中数学方案选择类应用题复习专题

初中数学应用题复习专题一、方程型例1、(长沙市)“5·12”汶川大地震后.灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线.工厂决定转产.计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线.一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线.一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产.是否可以如期完成任务?练习:中考关键分P15 第20题例2、某市剧院举办大型文艺演出.其门票价格为:一等席300元/人,二等席200元/人.三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

练习:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机.出厂价分别为A种每台1500元.B种每台2100元.C种每台2500元。

(1)若家电商场同时购进两种不同型号的电视机共50台.用去9万元.请你研究一下商场的进货方案。

(2)若商场销售一台A种电视机可获利150元.销售一台B种电视机可获利200元.销售一台C种电视机可获利250元.在同时购进两种不同型号的电视机方案中.为了使销售时获利最多.你选择哪种方案?二、不等式型例3、(青岛市)2008年8月.北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张.B种船票120元/张.某旅行社要为一个旅行团代购部分船票.在购票费不超过5000元的情况下.购买A、B两种船票共15张.要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张.请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?练习:中考关键分P17 第10题三、一次函数型例4、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台.现在运往甲、乙两地支援建设.其中甲地需要15台.乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机.运这批挖掘机的总费用为y元.运往甲地的费用运往乙地的费用从A地500元/台400元/台从B地300元/台600元/台(1)写出y与x之间的函数关系式;(2)公司应设计怎样的方案.能使运这批挖掘机的总费用最省?练习:(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机.其中甲型20台.乙型30台.现将这50台联合收割机派往A、B两地收割小麦.其中30•台派往A地.20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机.租赁公司这50台联合收割机一天获得的租金为y(元).请用x表示y.并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元.说明有多少种分派方案.并将各种方案写出.四、二次函数型例4、(2013•咸宁)为鼓励大学毕业生自主创业.某市政府出台了相关政策:由政府协调.本市企业按成本价提供产品给大学毕业生自主销售.成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元.出厂价为每件12元.每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元.那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元).当销售单价定为多少元时.每月可获得最大利润?(3)物价部门规定.这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元.那么政府为他承担的总差价最少为多少元?练习:(13年山东青岛、22)某商场要经营一种新上市的文具.进价为20元.试营销阶段发现:当销售单价是25元时.每天的销售量为250件.销售单价每上涨1元.每天的销售量就减少10件(1)写出商场销售这种文具.每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时.该文具每天的销售利润最大;(3)商场的营销部结合上述情况.提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件.且每件文具的利润至少为25元请比较哪种方案的最大利润更高.并说明理由。

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。

已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。

2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。

因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。

求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。

求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。

已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。

求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。

八年级数学应用题30道

八年级数学应用题30道

八年级数学应用题30道一、行程问题1. 甲、乙两人相距30千米,甲的速度是每小时5千米,乙的速度是每小时4千米,两人同时相向而行,几小时后两人相遇?解析:设x小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为5x千米,乙走的路程为4x千米,两人相向而行,总路程为30千米,可列方程5x +4x=30,即9x = 30,解得x=(10)/(3)小时。

2. 一艘轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度为每小时2千米,求轮船在静水中的速度。

解析:设轮船在静水中的速度为x千米/小时。

顺水速度 = 静水速度+水流速度,即(x + 2)千米/小时;逆水速度=静水速度水流速度,即(x-2)千米/小时。

根据两个码头之间的距离相等,可列方程4(x + 2)=5(x 2),展开得4x+8 = 5x-10,移项得5x-4x=8 + 10,解得x = 18千米/小时。

二、工程问题3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率为(1)/(10),乙的工作效率为(1)/(15),两人合作的工作效率为((1)/(10)+(1)/(15)),根据工作量=工作效率×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3 + 2)/(30))x=1,即(1)/(6)x = 1,解得x = 6天。

4. 某工程队修一条路,原计划每天修400米,25天完成,实际20天就完成了任务,实际每天修多少米?解析:这条路的总长度为400×25 = 10000米。

设实际每天修x米,根据实际工作总量 = 实际工作效率×实际工作时间,可列方程20x=10000,解得x = 500米。

三、利润问题5. 某商品的进价为每件20元,售价为每件30元,每月可卖出180件;如果售价每上涨1元,那么每月就少卖10件,售价定为多少元时,每月的利润最大?解析:设售价定为x元(x≥30),则每件的利润为(x 20)元,销售量为180-10(x 30)=180 10x+300=480 10x件。

初中数学应用题

初中数学应用题

初中数学应用题应用题一:小明乘公交车上学小明每天乘坐公交车上学,公交车每隔20分钟一班,小明家离学校有7公里,他每小时步行4公里的速度。

如果他下午5点放学,问他能否赶上5点40分的公交车?解答:小明步行4公里每小时,那么他步行7公里需要多长时间?7公里 ÷ 4公里/小时 = 1.75小时小明放学后5点,他需要1.75小时才能到达公交车站。

而公交车每隔20分钟一班,5点40分就是40分钟后,共有40 ÷ 20 = 2班公交车经过。

由此可知,小明可以赶上5点40分的公交车。

应用题二:图书馆还书小华上图书馆借了一本书,借期为21天。

他决定在借期结束前的最后一天还书。

假设小华从借期的第2天开始每天读书8小时,那么借期结束前他一共读了多少小时?解答:借期为21天,借期的第一天小华没有读书。

所以小华从借期的第2天开始读书,可以读21 - 1 = 20天。

每天读书8小时,那么小华一共读了 20天 × 8小时/天 = 160小时。

借期结束前,小华一共读了160小时。

应用题三:水果比例在一个篮子里有3个苹果、5个梨和2个桃子。

如果从篮子中任意取出一个水果,求取到的是桃子的概率。

解答:篮子中共有10个水果(3个苹果 + 5个梨 + 2个桃子)。

取到桃子的可能性为取到桃子数(2个桃子)除以篮子中总水果数(10个水果)。

所以取到桃子的概率为2/10 = 1/5。

因此,取到的是桃子的概率为1/5。

应用题四:汽车行程小明驾驶一辆汽车从A市到B市,全程320公里,中间经过了2个加油站。

第一个加油站离出发地A市80公里,第二个加油站离出发地160公里。

小明的汽车油箱容量为40升。

假设汽车每升油可行驶8公里,问小明是否需要在第一个加油站加油?解答:全程320公里,小明的汽车油箱容量为40升,每升油可行驶8公里。

那么汽车一次加满油最多可行驶 40升 × 8公里/升 = 320公里。

第一个加油站离出发地80公里,小明到达第一个加油站时,已经行驶了80公里,剩下的行程为 320公里 - 80公里 = 240公里。

初中数学应用题试卷题库

初中数学应用题试卷题库

一、选择题1. 一个长方形的长是12cm,宽是8cm,它的周长是多少cm?A. 40cmB. 48cmC. 56cmD. 64cm2. 小明去图书馆借了5本书,每本书的价格是5元,他一共花了多少元?A. 15元B. 25元C. 30元D. 40元3. 一辆汽车从甲地到乙地,速度是60km/h,用了2小时到达。

甲地到乙地的距离是多少千米?A. 60kmB. 120kmC. 180kmD. 240km4. 一个梯形的上底是4cm,下底是6cm,高是3cm,它的面积是多少平方厘米?A. 12cm²B. 15cm²C. 18cm²D. 21cm²5. 一个正方形的边长是10cm,它的对角线长度是多少cm?A. 10cmB. 20cmC. 30cmD. 40cm二、填空题6. 一个等腰三角形的底边长是8cm,腰长是10cm,它的面积是多少平方厘米?7. 一辆自行车每分钟行驶300米,行驶了5分钟,它行驶了多少千米?8. 一个圆柱的高是10cm,底面半径是5cm,它的体积是多少立方厘米?9. 一个长方体的长是12cm,宽是8cm,高是6cm,它的体积是多少立方厘米?10. 一个圆的半径是7cm,它的面积是多少平方厘米?三、解答题11. 一辆汽车从甲地到乙地,速度是80km/h,用了3小时到达。

甲地到乙地的距离是多少千米?12. 一个梯形的上底是5cm,下底是10cm,高是6cm,它的面积是多少平方厘米?13. 一个圆锥的底面半径是3cm,高是4cm,它的体积是多少立方厘米?14. 一个长方体的长是15cm,宽是10cm,高是8cm,它的表面积是多少平方厘米?15. 一个圆的半径是5cm,它的周长是多少厘米?四、应用题16. 一块长方形的地,长是20米,宽是10米,围成这个长方形的篱笆长多少米?17. 小明骑自行车去图书馆,速度是每小时15km,他用了1小时到达。

图书馆距离小明家多少千米?18. 一个圆锥的底面半径是4cm,高是6cm,它的体积是多少立方厘米?19. 一个长方体的长是18cm,宽是12cm,高是8cm,它的体积是多少立方厘米?20. 一个圆的半径是8cm,它的面积是多少平方厘米?。

初一数学重难点应用题专题(附答案)家长可下载打印

初一数学重难点应用题专题(附答案)家长可下载打印

一元一次方程与分段计费问题,市场销售问题初一数学重难点题型:分段计费应用专题1.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?2.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份用水量?3.供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?4.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?5.为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?6..公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?7..某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400 400≤a<500 500≤a<700 700≤a<900 …获奖券金额(元)30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?8. “水是生命之源”,某市自来水公司为鼓励企业节结用水,按以下规定收取水费:若每户每月用水不超过40吨,则每吨水按1元收费,若每户用水超过40吨,则超过部分按每吨1.5元收费.另外,每吨用水加收0.2元的城市污水处理费.自来水公司收费处规定用户每两个月交一次用水费用(注:用水费用=水费+城市污水处理费).某企业每月用水都超过40吨,已知今年三、四两个月一共交水费640元,问:(1)该企业三、四两个月共用水多少吨?(2)这两个月平均用水费用每吨多少元?9.某市居民生活用电基本价格为每度0.40元,若每月用电量超过a度,超过部分按基本电价的70%收费.(1)某户5月份用电84度,共交电费30.72元,求a的值.(2)若该户6月份的电费平均每度为0.36元,求6月份共用电多少度应该交电费多少元?10..赣州市出租车收费标准是起步价为5元,3千米后的价格为1.5元/千米,不足1千米的以1千米计算.(1)若行驶x千米(x>3),试用式子表示应收多少的车费?(2)我乘坐出租车行驶5.8千米,应付多少元?(3)如果我付12.5元,那么出租车行驶了大约多少路程?11..阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表:顾客乘车路程(单位:千米)1 1.5 2.5 3.5需支付的金额(单位:元)“5.1”前 4.4“5.1”后 4(2)小方从家里坐出租车到A地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A地路程大约_________.(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.12..《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过1600元的部分不纳税,超过1600元的部分为全月纳税所得税,此项税款按小表分段累计计算:若某人1月份应交纳此项税款为115元,则他的当月工资、薪金为多少?全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%超过5000元至20000元的部分20%……13..某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?14..为了合理利用电力资源,缓解用电紧张状况,某市电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?用电时间段收费标准峰电08:00~22:00 0.56元/度谷电22:00~08:00 0.28元/度15.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?16..2006年“五•一”节,小华、小颖、小明相约到“心连心”超市调查“农夫山泉”矿泉水的日销售情况.下图是调查后三位同学进行交流的情景.请你根据上述对话,解答下列问题:(1)该超市的每瓶“农夫山泉”矿泉水的标价为多少元;(2)该超市今天销售了多少瓶“农夫山泉”矿泉水.(温馨提示:利润=售价﹣进价,利润率=利润÷进价×100%)17..某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?18..甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?19..某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该产品每件的成本价应降低多少元?20..某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?22.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.23..在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)24.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?25..某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?26.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?27..某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为_________元;(2)定价的85%出售时销售单价是_________元,出售8件该产品所能获得的利润是_________元;(3)按定价每件减价35元出售时销售单价是_________元,出售12件该产品所获利润是_________元;(4)现在列方程解应用题.28..某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)29.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出. (1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少参考答案与试题解析一.解答题(共30小题) 1.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下: 第一档电量 第二档电量 第三档电量 月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量; (2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?考点: 一元一次方程的应用;分段函数。

初中数学一元一次方程常见应用题

初中数学一元一次方程常见应用题

初中数学一元一次方程常见应用题
1. 题目:小明去购物,他买了3本数学书和5本英语书,共花费了45元。

如果数学书的单价比英语书贵5元,求数学书和英语书的单价分别是多少?
解题思路:
设数学书的单价为x元,英语书的单价为(x-5)元。

根据题目信息,我们可以列出一元一次方程:
3x + 5(x-5) = 45
解方程:
3x + 5x - 25 = 45
8x = 70
x = 8.75
答案:
数学书的单价为8.75元,英语书的单价为3.75元。

2. 题目:小明买了一些苹果和橙子,共20个水果,花费了27元。

已知每个苹果的价格是1.5元,每个橙子的价格是2元,求小明买了几个苹果和几个橙子?
解题思路:
假设小明买了x个苹果和y个橙子。

根据题目信息,我们可以列出一元一次方程:
1.5x + 2y = 27
还知道小明共买了20个水果,所以又可以列出一个方程:
x + y = 20
解方程:
1.5x + 2y = 27 (式子1)
x + y = 20 (式子2)
利用式子2,可得到x = 20 - y。

将x = 20 - y 代入式子1:
1.5(20 - y) + 2y = 27
30 - 1.5y + 2y = 27
0.5y = -3
y = -6
代入式子2:
x + (-6) = 20
x = 26
答案:
小明买了26个苹果和-6个橙子,但由于橙子的数量不能是负数,所以此题无解。

初一上下册初中数学应用题100题练习与答案

初一上下册初中数学应用题100题练习与答案

列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。

解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。

解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。

解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。

解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。

解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -•=+大小 999-1000x x •=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学应用题复习专题
1、列代数式
1.a克的水中加入b克盐,搅拌成盐水,则盐水中含盐的百分比为
2.如果某商品降价x%后的售价为a元,那么该商品的原价为元
3.有一件工作,甲单独完成需要a天,乙单独完成需b天,若甲、乙两人合作,完成这件工作,完成这件工作所需天数是
4.为鼓励节约用电,某地对用户用电收费标准做如下规定:如果每月每户用电不超过100度,那么每度按a元收费;如果超过100度,那么超过的部分每度加倍收费。

某户居民在一个月内用电180度,他这个月应缴纳电费元
2、只列方程(组)不解
1.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则得方程为
2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用作购物,剩下的1000元和应得利息又全部按一年定期存入银行,若存款的利息不变,到期后得本金和利息共1320元,若设这种存款方式的年利率为x,则得方程
3.有一间长20米,宽15米的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,若四周未铺地毯的留空宽度都为x米,则所列方程为
4.某工厂计划在x天内制造1000台机床,后来在实际生产时,每天比原计划多生产25台,结果提前两天完成,则有方程
5.A、B两地相距60千米,甲、乙两人骑自行车分别从A,B两地相向而行;若甲比乙先出发30分钟,甲每小时比乙少行2千米,那么它们相遇时所行的路程正好相等。

若设甲骑车速度是每小时x千米,则得方程
3、列不等式
某自行车厂今年生产销售一种新型自行车,现向你提供以下有关信息:
(1)该厂去年已备这种自行车的车轮1000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只车轮;
(2)该厂装配车间(自行车最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;
(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;
(4)这种自行车出厂销售单价为500元/辆。

设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的范围4、列方程解应用题:
1.某商品原售价50元,因销售不畅,10月份降价10%,从11月开始涨价,12月份的售价为64.8元。

求:(1)10月份这种商品的售价是多少元?
(2)11、12月份两个月的平均涨价率是多少?
2.甲、乙两车队各运送150吨货物,已知甲队比乙队多5辆车,而乙队比甲队平均每辆车多装1吨货,两队都一次装完,问甲、乙两个车队各有多少辆车?
3.甲、乙两人共同工作6天可以完成某项任务,甲单独完成要比乙单独完成多用9天,乙单独完成需多少天?
4.A、B两地相距30千米,甲比乙每小时多走1千米,从A到B所需时间甲比乙少1小时,甲、乙两人每小时各走多少千米?
5.某校师生到离学校28千米的地方游览,开始一段路步行,速度是4千米/小时,余下路程乘汽车,速度为36千米/小时,全程共用了1小时,求步行所用时间?
5、应用题:
1.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车的某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用时间为5秒.
第2/4页(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;
(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?
2.某工程由甲、乙两队合做6天完成,厂家需付甲、乙迈队共8700元,乙、丙两队合做10天完成,厂家需付乙丙两队共9500元,甲、丙两队合做5天完成全部工程的2/3,厂家需付甲、丙两队共5500元.
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)某工程要求不超过15天完成全部工程,问可由哪队单独完成此项工程
花钱最少?请说明埋由
.
6、函数应用题:
1.汽车由广州驶往相距300公里的湖南,它的平均速度是80公里/小时,则汽车距湖南的路程s(公里)与行驶时间t(小时)的函数关系式是
2.某工厂每月计划用煤Q吨,每天平均耗煤a吨,如果每天节约用煤x吨,那么Q吨煤可以多用y天,写出y与x的函数关系式为
5.某水果批发市场规定:批发苹果不少于100千克时,批发价为每千克2.5元。

小王携带现金3000元到这个市场采购苹果,并以批发价买进,如果购买的苹果为x千克,小王付款后的剩余现金y元,试写出y与x之间的函数关系式,并指出自变量x的取值范围。

6.A市与B市分别有库存某种机器12台和6台,现决定支缓给C市10台和D市8台,已知从A市调运到C市、D市的运费分别为每台400元和800元,从B市调运到C市、D市每台300元和500元。

(1)设B市运往C市机器x台,求运费W关于x的函数关系式;
第3/4页
(2)若总运费不超过9千元,问有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
7.某商人开始将进货单价为8元的商品按每件10元售出,每天可销售100件。

现在他想采用提高售出价格的方法来增加利润,已知这种商品每件提价1元,每天销售就要减少10件。

(1)写出售出价格x元与每元所得的毛利润y元之间的函数关系式;
(2)问每天售出价为多少时,才能使每天获得利润最大?
8.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品共50件.已知生产一件A种产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需甲种原料4千克,乙种原料10千克,可获利润120元。

(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产两种产品获总利润为y元,其中一种产品件数为x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案总利润最大?最大利润是多少?。

相关文档
最新文档