人教版|七年级数学上册必考的定义、定理、公式、方法都全了
七年级数学定理概念公式
一、基础概念:1.有理数:是整数和分数的统称,包括正有理数、负有理数和零。
有理数的运算规律包括加法、减法、乘法和除法。
2.整数:包括正整数、负整数和零。
整数的加法、减法、乘法运算规律和有理数一致。
3.分数:由一个整数作分子和一个不等于0的整数作分母所构成的数。
4.百分数:以百为基数的分数,如60%,表示为0.65.小数:有限小数和无限循环小数。
6.平方根:如果一个非负数a,使得a²=b,那么称b是a的平方,记作√b=a。
7.解方程:找出能使方程等式成立的未知数的值。
二、基本定理:1.任何一个正的实数都有正的平方根。
2.两个正有理数的平方和不可能再为一个正的有理数的平方。
3.不完全平方数,两个并不相等的质数相乘得到的数。
4.一个质数除以另一个质数的商不是整数,或者说,一个质数不是另一个质数的倍数。
三、常用公式:1.圆的周长C和面积S的公式:C=2πrS=πr²2.矩形的周长C和面积S的公式:C=2(a+b)S = ab其中,a和b为矩形的两条边的长度。
3.三角形的面积公式:S=1/2×底×高S = 1/2 × ab × sinC其中,a和b为三角形两边的长度,C为夹角。
4.直角三角形的勾股定理:a²+b²=c²其中,a、b为直角三角形两个直角边的长度,c为斜边的长度。
以上是七年级数学的一些基础定理、概念和公式,只是其中的一部分,数学是一个广阔的学科,还有很多其他的定理和公式需要学习和掌握。
希望以上内容对您有所帮助。
七年级上册人教版数学知识点
七年级上册人教版数学知识点七年级上册人教版数学知识点概述一、数与代数1. 有理数的运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小- 绝对值的概念和性质- 有理数的近似和有效数字2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的概念和方程的解- 解一元一次方程的基本步骤- 应用题的解决方法二、几何1. 图形的初步认识- 点、线、面、体的概念- 直线、射线、线段的特点- 角的概念和分类(如:锐角、直角、钝角)2. 相交线与平行线- 相交线的性质- 平行线的定义和性质- 平行公理及其推论3. 平面图形的认识- 四边形的种类和特点(如:正方形、长方形、平行四边形)- 面积的计算方法(长方形、正方形、三角形)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形统计图和折线统计图2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件发生的可能性计算四、解题方法和策略1. 逻辑思维的培养- 理解问题,分析条件- 明确目标,制定解题步骤- 检查和验证答案的正确性2. 题目类型的识别- 应用题、证明题、计算题的解题技巧- 常见题型的解题模板和方法以上是七年级上册人教版数学的主要知识点概述。
这些知识点构成了学生数学学习的基础,对于培养学生的逻辑思维能力、解决实际问题的能力以及为后续学习打下坚实的基础至关重要。
教师和家长应引导学生通过练习和实际应用来巩固和深化这些知识点,从而提高学生的数学素养。
人教七年级数学上知识点
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
七年级上册数学几何公式及定理
七年级上册数学几何的公式及定理主要包括以下内容:一、线的性质及定理:1.过两点有且只有一条直线。
2.两点之间,线段最短。
3.经过直线外一点,有且只有一条直线与这条直线平行。
4.如果两条直线都和第三条直线平行,这两条直线也互相平行。
二、角的性质及定理:1.同角或等角的补角相等。
2.同角或等角的余角相等。
3.同位角相等,两直线平行4.内错角相等,两直线平行。
5.同旁内角互补,两直线平行。
6.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
三、三角形的性质及定理:1.三角形两边的和大于第三边,三角形两边的差小于第三边。
2.三角形内角和定理:三角形三个内角的和等于180°。
3.直角三角形的两个锐角互余。
4.三角形的一个外角等于和它不相邻的两个内角的和。
5.三角形的一个外角大于任何一个和它不相邻的内角。
四、几何公式:1.长方形的周长= (长+ 宽) × 2,即C = (a + b) × 22.正方形的周长= 边长× 4,即C = 4a3.长方形的面积= 长× 宽,即S = ab4.正方形的面积= 边长× 边长,即S = a^25.三角形的面积= 底× 高÷ 2,即S = ah ÷ 26.平行四边形的面积= 底× 高,即S = ah7.梯形的面积= (上底+ 下底) × 高÷ 2,即S = (a + b)h ÷ 28.圆的周长= 圆周率× 直径,即C = πd9.圆的面积= 圆周率× 半径× 半径,即S = πr^2。
七年级数学定理概念公式
我很高兴为您提供七年级数学的定理、概念和公式。
以下是一个
1200字以上的总结:
1.定理
1.1平行线定理:如果两条直线被一条截线分成两个内角相等的部分,则这两条直线是平行的。
1.2直角三角形定理:在一个直角三角形中,两条直角边的平方和等
于斜边的平方。
1.3必要条件与充分条件定理:对于一个陈述,必要条件是指该陈述
成立时的条件,而充分条件是指该条件成立时的陈述。
1.4等腰三角形定理:在一个等腰三角形中,底边上的两个角相等。
2.概念
2.1平行线:在同一个平面上,永远不会相交的直线。
2.2垂直线:相互交于直角的两条直线。
2.3三角形:由三条线段构成的图形。
2.4直角三角形:一个角为直角的三角形。
2.5等腰三角形:具有两边相等的三角形。
3.公式
3.1平行线的性质:
-同位角:对于一对平行线与截线,同位角相等。
-内错角:对于一对平行线和截线,内错角相等。
-外错角:对于一对平行线和截线,外错角相等。
3.2三角形的性质:
-三角形的内角和:任何三角形的内角和都等于180°。
-直角三角形的特殊比例关系:
-边长关系:直角三角形的斜边平方等于两个直角边平方的和。
-角度关系:直角三角形的非直角角的正弦、余弦和正切值可以通过边长比例得到。
3.3等腰三角形的性质:
-边长关系:等腰三角形的两边相等。
-角度关系:等腰三角形的两个底角相等。
部编人教版七年级上册数学公式汇总
部编人教版七年级上册数学公式汇总一、基本公式1. 加法公式:- $a + b = b + a$:加法交换律- $(a + b) + c = a + (b + c)$:加法结合律- $a + 0 = a$:加法零元素- $a + (-a) = 0$:加法逆元素2. 减法公式:- $a - b = a + (-b)$:减法转化为加法3. 乘法公式:- $a \cdot b = b \cdot a$:乘法交换律- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$:乘法结合律- $a \cdot 1 = a$:乘法单位元素- $a \cdot 0 = 0$:乘法零元素4. 除法公式:- $a \div b = \frac{a}{b}$:除法转化为乘法二、整数运算公式1. 整数加减乘除法公式:- $a + b = b + a$:整数加法交换律- $(a + b) + c = a + (b + c)$:整数加法结合律- $a + 0 = a$:整数加法零元素- $a + (-a) = 0$:整数加法逆元素- $a - b = a + (-b)$:整数减法转化为加法- $a \cdot b = b \cdot a$:整数乘法交换律- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$:整数乘法结合律- $a \cdot 1 = a$:整数乘法单位元素- $a \cdot 0 = 0$:整数乘法零元素- $a \div b = \frac{a}{b}$:整数除法转化为乘法2. 整数绝对值:- $|a|$:整数a的绝对值三、平方公式1. 平方公式:- $(a + b)^2 = a^2 + 2ab + b^2$:完全平方公式- $(a - b)^2 = a^2 - 2ab + b^2$:完全平方公式- $(a + b)(a - b) = a^2 - b^2$:平方差公式2. 平方根公式:- $\sqrt{a^2} = |a|$:平方根定义- $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$:平方根乘法公式- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$:平方根除法公式这些是部编人教版七年级上册数学公式的汇总。
初一年级上册数学公式与定义
初一年级上册数学公式与定义【一、数学公式】1. 加法公式:a + b = c。
加法公式是指两个或多个数相加得到一个和的规则。
其中,a和b分别是被加数,c是和。
2. 减法公式:a - b = c。
减法公式是指两个数相减得到一个差的规则。
其中,a是被减数,b是减数,c是差。
3. 乘法公式:a × b = c。
乘法公式是指两个数相乘得到一个积的规则。
其中,a和b是被乘数,c是积。
4. 除法公式:a ÷ b = c。
除法公式是指一个数被另一个数除得到一个商的规则。
其中,a是被除数,b是除数,c是商。
【二、数学定义】1. 数字:是指表示数量、度量和序数的符号。
我们平时所用的0、1、2、3、4、5、6、7、8、9等都是数字。
2. 数轴:是一种将所有实数按大小顺序排列的一条直线。
数轴上的每个点都代表一个实数。
3. 整数:包括正整数、零和负整数。
正整数是大于0的整数,负整数是小于0的整数,零表示没有数量。
4. 分数:是指一个整体被分成若干等分之后的一部分。
分数由一个分子和一个分母组成,分子表示被分的那部分,分母表示整体被分成的等分数。
5. 平行线:是指在同一个平面上,永远不相交的两条直线。
平行线的特点是它们的方向相同,但距离始终保持相等。
这些数学公式和定义是初一年级上册数学知识的基础,掌握它们对于日后的数学学习非常重要。
通过对这些公式和定义的学习,可以帮助我们更好地理解和应用数学知识,解决数学问题。
【三、数学公式与定义的应用】数学公式和定义在日常生活和实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 商品打折:假设一件商品原价为100元,打9折后的价格应该是多少?这里的打折公式就是乘法公式的应用,原价100元乘以0.9,即100 ×0.9 = 90元。
所以打9折后的价格是90元。
2. 货币兑换:假设1美元可以兑换6.5人民币,如果要换100美元,需要多少人民币?这里的兑换公式就是乘法公式的应用,100美元乘以6.5,即100 × 6.5 = 650人民币。
初中数学七年级上册知识点及公式总结大全(人教版)
初中数学七年级上册知识点及公式总结大全(人教版)第一章有理数一.知识框架注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,互为相反数,即a和-a互为相反数;0的相反数还是0;(2)a+b=0Ûa、b互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离;正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数>0,小数-大数<0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;14.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n或(a-b)n=(b-a)n.15.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一.知识框架二.知识概念1.单项式:数字或字母的乘积叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
七年级数学定理概念公式
在七年级数学中,有很多重要的定理、概念和公式。
下面是一些关于七年级数学的重要定理、概念和公式的介绍。
一、定理1.1平行线定理:如果两条直线与一条平行线相交,则它们之间的对应角相等。
1.2同位角定理:在两条平行线上,对应的同位角相等。
1.3内错角定理:在两条平行线上,相交的两条线所夹的角互为内错角,内错角互补。
1.4垂直角定理:两条直线相交,所成的四个角中,相互垂直的两个角互为垂直角,垂直角互为对顶角。
1.5全等三角形定理:当两个三角形的所有对应角相等且对应边的长度相等时,这两个三角形全等。
1.6直角三角形定理:在一个直角三角形中,两条直角边的平方和等于斜边的平方。
1.7三角形的内角和定理:一个三角形的三个内角的和等于180度。
1.8三角形的外角和定理:一个三角形的三个外角的和等于360度。
二、概念2.1线段:就是由两点确定的一段直线。
2.2角:由两条位于同一平面的射线共享一个端点组成。
2.3直角:一个角度为90度的角。
2.4锐角:角度小于90度的角。
2.5钝角:角度大于90度但小于180度的角。
2.6等角:角度相等的两个角。
2.7对顶角:互不相邻但有一个公共边的两个角。
2.8夹角:由两条相交的射线组成的角。
三、公式3.1周长公式:矩形的周长等于长和宽的两倍之和,即周长=2(长+宽)。
3.2面积公式:矩形的面积等于长乘宽,即面积=长×宽。
3.3三角形面积公式:三角形的面积等于底乘以高的一半,即面积=底×高÷23.4两点间距离公式:设两点A(x1,y1)和B(x2,y2)的坐标,它们之间的距离等于√((x2-x1)²+(y2-y1)²)。
3.5等差数列求和公式:等差数列的前n项和等于首项与末项的和乘以项数的一半,即Sn=(a1+an)×n÷2,其中Sn表示前n项的和,a1表示首项,an表示末项。
这里只是列举了一些七年级数学中的重要定理、概念和公式,当然还有很多其他的定理、概念和公式需要学习和掌握。
人教版七年级上册数学必背知识点归纳总结
人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。
七年级数学定理定义总结大全
七年级数学定理定义总结大全
以下是七年级数学常见的定理和定义总结:
1. 定理:平行线定理
两条直线如果被一条平行线分成两组,那么这两条直线对应的内角是相等的。
2. 定理:等腰三角形定理
三角形的两个底边相等,那么这个三角形是等腰三角形,而且等腰三角形的顶角是相等的。
3. 定义:垂直线
两条直线如果相交,且互相垂直,则称这两条直线为垂直线。
4. 定理:垂直平分线定理
如果一个线段的两条垂直平分线相交于一点,那么这个点就是线段的中点。
5. 定义:相似三角形
如果两个三角形的对应角度相等,而且对应边的比值相等,则称这两个三角形为相似三角形。
6. 定理:勾股定理
直角三角形的两个直角边的平方和等于斜边的平方。
7. 定理:等边三角形定理
三条边相等的三角形叫做等边三角形,而且它的内角都是
60度。
8. 定义:全等三角形
如果两个三角形的对应边和对应角度都相等,则称这两个三角形为全等三角形。
9. 定义:异面直线
不在同一个平面上的两条直线叫做异面直线。
10. 定理:同位角定理
平行线与两条相交线所构成的内外同位角相等。
这些定理和定义是七年级数学中的基本知识,对于学习和解决相关问题非常有帮助。
七年级上册所有定义定理枯质归纳
七年级上册所有定义定理枯质归纳今天颜老师给大家分享一下七年级数学上册必考的知识点汇总,转发给新一年级的小朋友!七年级上册所有定义定理枯质归纳 2第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a 的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2.将两个绝对值不同的数相加,取绝对值较大的加数的符号,从绝对值较大的数中减去绝对值较小的数。
将两个相反的数字相加得到0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
人教版初一数学上册知识点总结
人教版初一数学上册知识点总结
一、数与代数
1. 有理数的加法和减法
- 有理数的定义
- 加法运算规则
- 减法运算规则
- 有理数的加减混合运算
2. 有理数的乘法和除法
- 乘法运算规则
- 除法运算规则
- 有理数的乘除混合运算
- 有理数的乘方
3. 代数表达式
- 字母表示数
- 单项式
- 多项式
- 代数式的简化和变形
4. 一元一次方程
- 方程的概念
- 解方程的基本方法
- 方程的应用问题
二、几何
1. 线段、射线、直线
- 线段的性质
- 射线的定义
- 直线的性质
2. 角
- 角的定义
- 角的分类
- 角的度量
3. 三角形
- 三角形的基本性质
- 等边三角形、等腰三角形的性质 - 三角形的内角和外角
4. 四边形
- 四边形的基本性质
- 平行四边形的性质
- 矩形、菱形、正方形的性质
三、统计与概率
1. 统计
- 数据的收集和整理
- 频数和频率
- 统计图表的绘制和解读
2. 概率
- 随机事件的概率
- 简单事件的概率计算
- 概率的直观理解
四、应用题
1. 利用数学知识解决实际问题
- 列方程解应用题
- 利用几何知识解决实际问题
- 统计与概率在实际问题中的应用
请注意,以上内容仅为人教版初一数学上册知识点的概要总结,具体每个知识点的详细解释和例题解析需要根据教材内容进行深入学习和理解。
教师和学生可以根据这个框架来组织教学和复习计划,确保对每个知识点都有充分的掌握。
初一上册数学必背公式12个
初一上册数学必背公式12个1. 二次根式公式二次根式的定义为:设a是任意实数,且a≥0,b是任意正实数,那么这样的代数式√a称为二次根式,其中a叫做二次根式的被开方数,开方号√叫做二次根式的符号。
2. 一元一次方程一元一次方程是指只含有一个未知数,并且这个未知数的最高次数是1的方程。
它的一般形式为:ax + b = 0。
3. 相似三角形比例定理相似三角形比例定理即相似三角形中对应边的比例相等。
若有两个相似的三角形ABC和DEF,则有等式AB/DE = AC/DF =BC/EF。
4. 平行线的性质平行线是指在同一个平面内,永不相交的直线。
平行线具有以下性质:- 对于一条直线和一组平行线,直线和这组平行线中的任意一条线的交角相等。
- 平行线之间的距离保持不变。
5. 一次函数一次函数是指函数的值和自变量的关系可以用一次多项式表示的函数。
它的一般形式为:y = kx + b,其中k是斜率,b是与y轴的交点。
6. 直角三角形的勾股定理直角三角形的勾股定理表达了直角三角形中三条边之间的关系。
对于一个直角三角形,设直角边为a、b,斜边为c,那么有等式a^2 + b^2 = c^2。
7. 园的周长和面积公式圆是一个平面内与一个确定点距离相等的点的轨迹。
圆的周长公式为C = 2πr,圆的面积公式为A = πr^2,其中r为圆的半径。
8. 并集和交集并集是指集合A和集合B中所有元素的总集合,用符号表示为A∪B。
交集是指集合A和集合B中共有的元素的集合,用符号表示为A∩B。
9. 平行四边形的性质平行四边形是指具有两组平行边的四边形。
平行四边形具有以下性质:- 对角线互相平分。
- 对边平行且相等。
10. 三角形的内角和三角形的内角和定理表达了三角形的内角和和180°的关系。
对于任意三角形ABC,设其内角分别为∠A、∠B、∠C,那么有等式∠A + ∠B + ∠C = 180°。
11. 两点之间的距离公式两点之间的距离公式表达了平面上两个点之间的距离。
人教版数学七年级上册定义汇总
数学七年级上册定义第一章有理数1.正数:像3、1.8、2%这样大于0的数叫做正数。
2.负数:像-3、-2、-1.3%这样,在正数前面加上负号的数叫做负数。
3.有理数:整数可以看做分母为1的分数,正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
4.数轴:通常用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点。
(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向。
(3)任取适当的长度或单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1、2、3、4、5……;从原点向左,用类似的方法表示-1、-2、-3……。
5.正数可以用原点右边的点表示,反过来原点右边的点都表示正数;负数可以用原点左边的点表示,反过来原点左边的点都表示负数;0用原点表示,反过来原点表示0.6.相反数:像2和-2、3和-3、95和-95这样,只有符号不同的两个相等的数叫做互为相反数。
7.绝对值:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.9.有理数加法法则:1)同号两数相加,取相同的符号并把绝对值相加.2)绝对值不相等的异号两数相加取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3)一个数同0相加,仍得这个数。
10.有理数减法法则:减去一个数,等于加上这个数的相反数。
11.有理数乘法法则:1)两数相乘,同号得正,异号得负,并把绝对值相乘,2)任何数同0相乘都得0.12.乘积是1的两个数互为倒数. 13.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.14.乘法交换律:一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
七年级所有的数学公式和定理
七年级数学主要内容包括数的性质、整数与有理数、几何图形的认识、比例与百分数、方程与不等式等等。
下面是七年级数学中常见的公式和定理:1.数的性质-互质的定义:若两个数的最大公因数为1,则称这两个数互质。
-因数与倍数的定义:若整数a除以整数b,商可整数,则称b是a的因数,a是b的倍数。
- 最大公因数和最小公倍数的性质:若a和b是任意两个正整数,则有ab = (最大公因数) × (最小公倍数)。
-分数的定义:分数通常写成两个整数a和b的比较,a叫分子,b叫分母。
2.整数与有理数-整数的按位数加减法、乘除法:按位数对齐后进行运算,根据正负数规则确定结果的符号。
-有理数的四则运算:有理数的加减法可根据正负数规则实施运算,乘除法按分数的乘积和商求解。
3.几何图形的认识-直线与线段:直线是具有相同方向和无限延伸的线段;线段是直线的有限部分。
-平行线与垂直线:平行线是在同一个平面内永不相交的线;垂直线是相交成直角的两条相交线。
-等边三角形:三条边相等的三角形。
-直角三角形和勾股定理:直角三角形是其中一条边是直角的三角形;勾股定理是指直角三角形的两条直角边平方和等于斜边平方的定理。
-三角形周长和面积公式:三角形的周长是指三边的和,面积是底边长×高÷2-平行四边形和矩形的性质:平行四边形的对边相等且平行;矩形的对边相等且平行,且四个角都是直角。
-二维图形的旋转轴对称图形和中心对称图形。
4.比例与百分数-比例与比例的性质:两个有理数的对等比例叫比例;比例式写作a:b=c:d,称a、d为比例的两个极限项,b、c为比例的两个中项;比例的性质有误差没有、保持比例相等等。
-百分数与百分比:百分数是指分母为100的分数;百分比指其中一事物与总体之间数量关系的百分数。
5.方程与不等式-解一元一次方程:根据等式的运算性质,将未知数移到一边,已知数移到另一边,得到等式的解。
-解一元一次不等式:根据不等式的性质,可以用移项法、合并同类项的方式求解。
初中必考知识随身记全套初中数理化公式卡片及考点人教版数学物
初中必考知识随身记全套初中数理化公式卡片及考点人
教版数学物
初中数理化公式卡片及考点人教版
一、数学
1、绝对值:
x,=
x,x≥0
-x,x<0
}
2、立方根的性质:
若a≠0,则有:
a³=
a·a·a
3、三角函数的性质:
三角形ABC中
若锐角A的对边长为a,邻边长为b,对角线长为c
则有:
a²=b²+c²-2bc·cosA
4、叉乘:
a,b,sin
θ为向量a、b的夹角
}
5、矢量点积:
a·b=
a,b,cosθ
6、余弦定理:
若△ABC中,a,b,c分别代表边长则有:
a²=b²+c²-2bc·cosA
7、勾股定理:
若△ABC中
则有:
a²+b²=c²
8、平行四边形面积公式:
若PQRS为平行四边形
PQ=a,RS=b
则面积为:
二、化学
1、酸酐的定义:
酸酐(糖酐)是一类以葡萄糖为原料,经过特定化学反应制得的甜味
物质,具有抗菌、稳定、自发溶解等特点,是食品中常用的添加剂。
2、两种氧化还原反应:
氧化反应:物质A受氧化而变成物质B,此时物质A的氧化态数增加。
还原反应:物质A受还原而变成物质B,此时物质A的氧化态数减少。
3、熔融和溶解的区别:
熔融:指物质在热能作用下变成无定形的液体。
溶解:指物质在液体中被充分分散。
人教版|七年级数学上册必考的定义、定理、公式、方法都全了
》人教版|七年级数学上册必考的定义、定理、公式、方法都全了第一章有理数正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)¥②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
《2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
【有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
,有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;…两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版|七年级数学上册必考的定义、定理、公式、方法都全了第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
第二章整式的加减2.1 整式1、单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.2、单项式的系数:是指单项式中的数字因数3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项第三章一元一次方程3.1 一元一次方程1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2 、3.3解一元一次方程在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。
不要分子、分母搞颠倒。
3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。
⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
二、思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、应用(常见等量关系)行程问题:s=v×t工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息第四章几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。
4.2 直线、射线、线段1、直线公理:经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:如图的直线可记作直线AB或记作直线m.(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.(2)如图,点O既在直线m上,又在直线n上,我们称直线m、n 相交,交点为O.7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.注意:射线有一个端点,向一方无限延伸.8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.注意:线段有两个端点.4.3 角1. 角的定义:有公共端点的两条射线组成的图形叫角。
这个公共端点是角的顶点,两条射线为角的两边。
如图,角的顶点是O,两边分别是射线OA、OB.2、角有以下的表示方法:①用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA.②用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠12、以度、分、秒为单位的角的度量制,叫做角度制。
角的度、分、秒是60进制的。
1度=60分1分=60秒1周角=360度1平角=180度3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。