湘教版八年级数学期末试卷五张
湘教版八年级数学下册期末考试题及完整答案
湘教版八年级数学下册期末考试题及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.关于▱ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则▱ABCD 是菱形B .若AC ⊥BD ,则▱ABCD 是正方形 C .若AC=BD ,则▱ABCD 是矩形 D .若AB=AD ,则▱ABCD 是正方形9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.计算:()()201820195-252+的结果是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、A5、D6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、72、22()1y x =-+324、﹣2<x <25、:略6、132三、解答题(本大题共6小题,共72分)1、2x =2、11a -,1.3、(1)a ≥2;(2)-5<x <14、(1)略;(2)4.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
湘教版八年级下学期期末数学试卷 - 含答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=42.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.524.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是.12.若正多边形的一个外角是45°,则该正多边形的边数是.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是.(结果保留两位小数)14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有.(填写正确的序号)三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<160范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=4【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A=∠B=∠C=60°,不是直角三角形,不符合题意;B、∠A=40°,∠B=50°,∠C=90°,是直角三角形,符合题意;C、AB=AC,是等腰三角形,不一定是直角三角形,不符合题意;D、22+32≠42,不是直角三角形,不符合题意;故选:B.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.52【分析】根据频率公式:频率=即可求解.【解答】解:根据题意,得=0.2,解得m=50.故选:C.4.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD【分析】由平行四边形的性质可求解.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD,∠BAD=∠BCD,AD=BC,AD∥BC,∴S△AOB=S△COB,∴不能得到AC=BD,故选:D.5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等【分析】由矩形的判定定理和平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A、测量对角线是否互相平分,能判定平行四边形,不能判定矩形,故选项A不符合题意;B、测量两组对边是否相等,能判定平行四边形,不能判定矩形,故选项B不符合题意;C、测量对角线是否相等,不能判定平行四边形,更不能判定矩形,故选项C不符合题意;D、测量对角线是否平分且相等,能判定矩形;故选:D.6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数的图象经过哪几个象限,本题得以解决.【解答】解:∵一次函数y=(k+3)x+b(k>0,b<0),∴k+3>0,∴该函数图象经过第一、三、四象限,故选:C.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【分析】先根据直线y=﹣3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣4<2,∴y1>y2.故选:A.8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.【分析】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'===4,设CE=C'E=x,在Rt△ABE中,BE=5﹣x,AE=x+4,由勾股定理得:(5﹣x)2+32=(x+4)2,解得:x=1,故选:B.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5【分析】由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h),继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),可得私家车的速度为96÷(2.8﹣1.2)=60(km/h),求出大巴车在桐子坳停留后继续行驶和私家车的解析式,可得两车相遇的时间和当两车相距6km时的时间.【解答】解:由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h)=36分钟,②正确;私家车的速度为96÷(2.8﹣1.2)=60(km/h),①正确;大巴车继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),3﹣2.8=0.2(h)=12分钟,③正确;设大巴车在桐子坳停留后继续行驶时离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=kt+b,,解得:,∴s=40t﹣24,设离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=k′t+b′,,解得:,∴s=60t﹣72,60t﹣72=40t﹣24,解得:t=2.4,∴家车与大巴车相遇时离景区还有(2.8﹣2.4)×60=24(km),④错误;当两车相距6km时:有一下几种情况a:40t=6,解得:t=0.15,b:60t﹣72﹣(40t﹣24)=6,解得:t=2.7,c:40t﹣24﹣(60t﹣72)=6,解得:t=2.1,∴当两车相距6km时,t=0.15或2.1或2.7h.⑤错误.其中正确的结论有①②③,故选:B.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是x≤5.【分析】根据二次根式的性质列出不等式,求出不等式的取值范围即可.【解答】解:若使函数y=有意义,∴5﹣x≥0,即x≤5.故答案为x≤5.12.若正多边形的一个外角是45°,则该正多边形的边数是8.【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【解答】解:∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是0.17.(结果保留两位小数)【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【解答】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是1.【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m,n的值.【解答】解:∵点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,∴,解得,∴m+n=2﹣1=1,故答案为:1.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是﹣1.【分析】根据函数y=mx+m+2的图象经过第一、二、四象限,可知k=m<0,b=m+2>0,从而可以求得m的取值范围,然后即可写出m的整数解.【解答】解:∵函数y=mx+m+2的图象经过第一、二、四象限,∴,解得﹣2<m<0,∴m的整数解是﹣1,故答案为:﹣1.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为9.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理解答即可.【解答】解:在Rt△ABC中,∠ACB=90°,点D为AB的中点,CD=9,∴AB=2CD=2×9=18,∵E,F分别为AC,BC的中点,∴EF是△ABC的中位线,∴EF=AB=9,故答案为:9.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有①②③④.(填写正确的序号)【分析】由正方形的性质及F,E以相同的速度运动,利用SAS证明△ABE≌△BCF,得到AE=BF,∠BAE=∠CBF,再根据∠CBF+∠ABP=90°,可得∠BAE+∠ABP=90°,进而得到AE⊥BF,根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB 为直径的弧,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,根据勾股定理,求出CH的长度,再求出PH的长度,即可求出线段CP的最小值,根据矩形对角线相等即可得到MN.【解答】解:∵动点F,E分别以相同的速度从D,C两点同时出发向C和B运动,∴DF=CE,∵四边形ABCD是正方形,∴AB=BC=CD=2,∠ABC=∠BCD=90°,∴CF=BE,∴△ABE≌△BCF(SAS),故①正确;∴AE=BF,∠BAE=∠CBF,故②正确;∵∠CBF+∠ABP=90°,∴∠BAE+∠ABP=90°,∴∠APB=90°,即AE⊥BF,故③正确;∵点P在运动中始终保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,如图,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,在Rt△BCH中,CH==,∵PH=AB=1,∴CP=CH﹣PH=﹣1,∵PM∥CD,PN∥BC,∴四边形PMCN是平行四边形,∵∠BCD=90°,∴四边形PMCN是矩形,∴MN=CP=﹣1,即线段MN的最小值为﹣1,故④正确.故答案为:①②③④.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.【分析】根据HL证明Rt△ABC≌△Rt△CDE,可得结论.【解答】证明:在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌△Rt△CDE(HL),∴∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<160范围的学生有39人,全班共有50人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【分析】(1)根据频数分布直方图中的数据,可以得到a的值,然后根据频数分布表中的数据,可知140≤x<160这一组的频数,然后即可将频数分布直方图补充完整;(2)根据频数分布表中的数据,可以得到组距和组数;(3)把第3组和第4组,第5组的频数相加可得到跳绳次数在100≤x<160范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)由直方图中的数据可知,a=2,由频数分布表可知,140≤x<160这一组的频数为8,补全的频数分布直方图如图所示,;(2)根据频数分布表得:表中组距是20次,组数是7组.故答案为:20,7;(3)跳绳次数在100≤x<160范围的学生有18+13+8=39(人),全班人数为2+4+18+13+8+4+1=50(人);故答案为:39,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.【分析】(1)依据点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称,即可得到A',B',C'的坐标;(2)依据割补法进行计算,即可得出△A'B'C'的面积.【解答】解:(1)如图所示,A'(5,﹣2),B'(1,5),C'(﹣1,1);(2)如图所示,△A'B'C'的面积=6×7﹣﹣﹣=42﹣4﹣9﹣14=15.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.【分析】(1)根据三角形的性质得到BF=CF,根据三角形中位线定理得到DE∥BC,DF∥AC,由平行四边形的判定定理即可得到四边形DFCE是平行四边形;(2)由三角形的中位线定理得到DE∥BC,DE=BC,求得DE=BF,根据直角三角形的性质得到OF=DF=2,由勾股定理得到OD,于是得到结论.【解答】(1)证明:∵AB=AC,AF⊥BC,∴BF=CF,∵D,E分别是边AB,AC的中点,∴DE和DF分别是△ABC的中位线,∴DE∥BC,DF∥AC,即DE∥CF,DF∥CE,∴四边形DFCE是平行四边形;(2)解:如图,设AF与DE交于O,∵D,E分别是边AB,AC的中点,∴DE∥BC,DE=BC,∵BF=CF=BC,∴DE=BF,∵AF⊥BC,∴DE⊥AF,∴∠DOF=90°,∵∠ADE=30°,DF=4,∴OF=DF=2,∴OD===2,∵DE∥BC,∴∠ADE=∠B,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴DE=2OD=4.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.【分析】(1)利用待定系数法求解即可;(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即可.【解答】解:(1)根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=18x+30,∴k1=18,b=30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k2=30×0.8=24;∴y2=24x,当游泳8次时,选择方案一所需费用:y1=18×8+30=174(元),选择方案二所需费用:y2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.【分析】(1)先判定四边形BEDF是平行四边形,再根据FD=FB,即可得出四边形BEDF 是菱形;(2)设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中利用勾股定理列方程,即可得到DE的长,进而得出EM的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠EDB=∠FBD,又∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,又∵∠EDB=∠FDB,∴∠DBF=∠BDF,∴FD=FB,∴四边形BEDF是菱形;(2)解:由题可得AD=BC=8m,∠A=90°,设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中,AE2+AB2=BE2,即(8﹣x)2+42=x2,解得x=5,∴DE=5m,又∵M是DE的中点,∴EM=DE=m.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.【分析】(1)根据直线解析式可得出A、B的坐标;(2)设平移后的解析式,求出点C、点D的坐标,根据S△OCD=24求出b值,即可得直线CD的解析式;(3)根据等腰三角形的判定,分三类讨论,可求点P的坐标.【解答】解:(1)当x=0时,y=4,则B点的坐标为:(0,4);当y=0时,x=﹣3,则点A的坐标为:(﹣3,0);(2)由题意得直线CD的解析式为:y=x+b,∴当x=0时,y=b,则C点的坐标为:(0,b);当y=0时,x=﹣b,则点D的坐标为:(﹣b,0);∵S△OCD=24,∴S△OCD=OC•OD=×|b|×|﹣b|=24,∴b2=64,解得:b=8或﹣8,∴直线CD的解析式为y=x+8或y=x﹣8;(3)①当P A=PB时,点P在线段AB的垂直平分线上,如图:∴AM=BM,PM⊥AB,∵A(﹣3,0),B(0,4),∴AB===5,∵∠AOB=∠AMP=90°,∠OAB=∠MAP,∴△AOB∽△AMP,∴,即,∴AP=,∴OP=AP﹣OA=﹣3=,∴P(,0);②当P A=AB时,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴P A=AB=5,∴OP1=3+5=8,OP2=5﹣3=2,∴P(﹣8,0)或(2;0);②当PB=AB时,点B在线段AP的垂直平分线上,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴PB=AB=5,在Rt△AOB和Rt△POB中,,∴Rt△AOB≌Rt△POB(HL),∴OP=OA=3,∴P(3,0);综上可得点P的坐标为(,0)或(﹣8,0)(2;0)或(3,0).26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.【分析】(1)延长AG交CE于P,根据SAS证△ABG≌△CBE,可证AG=CE,∠GAB+∠CEB=90°,可证AG⊥CE;(2)连接AC,与(1)同理证AG=CE,根据∠GAB+∠CAG+45°=90°,∠GAB=∠BCE,得∠AOC=90°,即AG与CE的数量与位置关系仍成立;(3)连接AC,EG,根据勾股定理可得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(AB)2+(BE)2,代入数值即可得出.【解答】解:(1)如图①,延长AG交CE于P,在△ABG和△CBE中,,∴△ABG≌△CBE(SAS),∴AG=CE,∠AGB=∠CEB,∵∠AGB+∠GAB=90°,∴∠GAB+∠CEB=90°,∴∠APE=90°,即AG⊥CE;(2)AG与CE的数量与位置关系仍成立,理由如下:连接AC,在△ABG和△CBE中,α,∴△ABG≌△CBE(SAS),∴AG=CE,∠OAB=∠ECB,∵∠OAB+∠CAO+∠DAC=90°,∠DAC=∠ACB,∴∠ECB+∠ACB+∠CAO=90°,∴∠AOC=90°,即AG⊥CE;(3))连接AC,EG,∵四边形ABCD和BEFG都是正方形,AB=4,BE=3,∴AC=AB=4,EG=BE=3,∴由勾股定理得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(4)2+(3)2=50,即CG2+AE2的值为50.。
湘教版八年级数学上册期末试卷及答案
湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。
湘教版八年级下学期期末数学试卷 - 含答案
八年级(下)期末数学试卷一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.49.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于.13.(3分)写出同时具备下列两个条件的一次函数关系式.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ 全等.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2).故选:D.2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形【解答】解:A、一组对角相等且一组对边平行的四边形是平行四边形,故不符合题意;B、一组对边相等且另一组对边平行的四边形不一定是平行四边形,故符合题意;C、两组对角分别相等的四边形是平行四边形,故不符合题意;D、四条边相等的四边形是平行四边形,故不符合题意;故选:B.4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【解答】解:∵黑色皮块是正五边形,∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%【解答】解:由频率分布直方图可以得出,被调查的总人数=3+10+12+5=30.又仰卧起坐次数在25~30次的学生人数为12,故百分比为40%.故选:A.7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:【解答】解:过D作DE⊥AB于E,则DE=DC又∠C=90°,BC=1,AC=2,∴AB==,∴S1:S2=AB:BC=:1.故选:B.8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.9.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由图象可得,乙车出发1.5小时后甲乙相遇,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是km/h,故③正确;当乙车出发2小时时,两车相距:20+(2﹣1.5)×40﹣×2=km,故④错误;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=6.【解答】解:由题意得(n﹣2)•180°×=360°,解得n=6.故答案为:6.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于70°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=140°,∴∠C=70°.故答案为:70°.13.(3分)写出同时具备下列两个条件的一次函数关系式y=﹣x﹣1(答案不唯一).(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).【解答】解:该一次函数为y=kx+b(k≠0),∵y随x的增大而减小;图象经过点(1,﹣2),∴k<0,k+b=﹣2,∴答案可以为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为17.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+BC=3+6+8=17.故答案为:17.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为2.【解答】解:由题意可知:中间小正方形的边长为a﹣b,∵每一个直角三角形的面积为:ab=×4=2,∴4×ab+(a﹣b)2=16,∴(a﹣b)2=16﹣8=8,∴a﹣b=2.故答案为:2.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=8cm或15cm时,△ABC和△APQ 全等.【解答】解:①当P运动到AP=BC时,如图1所示:在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=B=8cm;②当P运动到与C点重合时,如图2所示:在Rt△ABC和Rt△PQA中,,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=15cm.综上所述,AP的长度是8cm或15cm.故答案为:8cm或15cm.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.【解答】解:过A点作AF⊥BC,垂足为F,∵∠B=∠C=30°,∴AB=AC=2AF,∵BC=,∴BF=CF=,∵AC2=AF2+CF2,∴AC2=(AC)2+()2,解得AC=2,∴AF=1,∵DE垂直平分AB,∴AE=BE,∴△ACE的周长为AE+EC+AC=BE+EC+AC=BC+AC=.故答案为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=9.6.【解答】解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.【解答】解:(1)在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,∵BC=12m,CD=13m,BD=5m∴BD2+BC2=DC2,∴∠DBC=90°,即BD⊥BC;(2)四边形ABCD的面积是S△ABD+S△BDC==36(m2).20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.【解答】证明:(1)∵四边形ABCD是矩形,∴OB=OD,∵AE∥CF,∴∠E=∠F,∠OBE=∠ODF,在△BOE与△DOF中,,∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵△BOE≌△DOF,∴OE=OF,∵四边形ABCD是矩形,∴OA=OC,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.【解答】解:(1)依题意,当x=1时,y=2;当x=﹣1时,y=6.则解之得∴一次函数解析式为:y=﹣2x+4.(2)一次函数图象与y轴、x轴分别相交于A、B两点,由y=﹣2x+4,得A点坐标(0,4),B点坐标(2,0),即OA=4,OB=2.∴S△AOB===4.即一次函数图象与两坐标轴围成的面积为4.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n=0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?【解答】解:(1)由题意,得种植桔子树(100﹣x)棵,∴y=(30×10﹣120)x+(25×6﹣80)(100﹣x)=180x﹣70(100﹣x)=110x+7000(0≤x≤100);即y与x之间的函数关系式为:y=110x+7000(0≤x≤100);(2)当x=45时,y=110×45+7000=11950,答:若种植苹果树45棵,求种植苹果树和桔子树共获利11950元.五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.【解答】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形.理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:当点O运动到AC的中点时,且△ABC中满足∠ACB为直角时,四边形AECF 是正方形.理由如下:∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∠ACB=90°,∴∠AOE=∠ACB=90°,∴AC⊥EF,∴四边形AECF是正方形.。
湘教版八年级数学期末试卷五张
湘教版八年级数学期末试卷五张一.精心选一选 (此题共 10 小题,每题 3 分,共 30 分.请把你以为正确结论的代号填入下边表格中)题号 1234567891016 的答案1. 算术平方根是 (★)A . 2B .2C . 4D .2.在实数2 ,0,34 , , 9 中,无理数有(★)3A .1 个B .2 个C .3 个D .4 个3.以下图形中,是轴对称图形而且对称轴条数最多的是(★)A . B. C. D.△A ′B ′C ′对于直线 l 对称,则∠ B 的度数为 (★)A .30oB . 50oC . 90oD . 100olA50o4. 如图,△ ABC 与A ′5.假如实数 x 、 y 知足 y=x 11 x 1 ,那么 x3y 的值是(★)A .0B . 1C .2D . -2 6.与三角形三个极点的距离相等的点是 (★)A .三条角均分线的交点 B.三边中线的交点 C .三边上高所在直线的交点D .三边的垂直均分线的交点 7.如图,已知∠ 1=∠2, AC=AD ,增添以下条件:①AB=AE ;② BC=ED ;③∠ C=∠ D ;④∠ B= ∠ E .此中能使 △ AB C ≌△ AED 的条件有 (★)A .1 个B .2个C .3 个D .4 个B30oB ′CC ′(第 4题)EC1 BA2D第7题图8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点 A 处,则点 A 表示的数是(★)A .11B .C . 3D . 229. 如图点 A 和 B 对于 X 轴对称,已知点 A 坐标是( 4, 4),则点 B 的坐标是 (★) A .( 4,- 4) B .( 4,- 2) C .(- 2, 4)D .(- 4, 2)10.一个正方体的体积是99,预计它的棱长的大小在 (★)A .2与 3之间B .3与4之间C .4与 5之间D .5与6之间yAC第9题图二.耐心填一填 (每 3 分,共 18 分,直接写出 果)11. 算︱2- 3︱+2 2的 果是.12.若 25x 2=36,则 x=;若 3 y2 , y =.13.点 P 对于 x 称的点是( 3,– 4), 点 P 对于 y 称的点的坐 是. 14.如 ,BAC ABD , 你增添一个条件:C,使 OC OD (只添一个即可) .DO15.等腰三角形的一个外角等于110 , 个三角形的 角A B.B 第 14题图16.将一个正三角形 片剪成四个全等的小正三角形,再将此中的一个按同 的方法剪成四个更小的正三角形,⋯⋯这样 下去, 果以下表:所剪次数 1 2 34⋯ n正三角形个数4710 13⋯a n第 16题a n =(用含 n 的代数式表示) .三. 算 ( 算要 真仔 ,擅长思虑!本大 有3 个小 ,共24 分)2231 17.( 8 分) 算2( 4)4818.(8 分)如 , 数a 、b 在数 上的地点,化a 2b 2(ab) 2分)如 ,AD ∥ BC , BD 均分∠ ABC ,∠ A=120 °,∠ C=60 °, AB=CD=4cm ,求四 形 ABCD 的周 .y四.解答 (本大 有 3 个小 ,共 26 分)620.( 8 分)某居民小区搞 化, 要在一 方形空地上建A 花 ,要求 的 案由等腰三角形和正方形 成(个数 C4不限),而且使整个 方形 地成 称 形,你有好的方案 ? 在如 的 方形中画出你的 方案。
湘教版八年级数学上册期末试卷(完整)
湘教版八年级数学上册期末试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若分式1xx-的值为0,则x的值为________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是________.6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点P.若点C的坐标为(,23a a-),则a的值为________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、D7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥23、1.4、a+c5、156、3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2.3、(1)12b-≤≤;(2)24、(1)略;(25、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
湘教版八年级下册数学期末考试试卷及答案
湘教版八年级下册数学期末考试试题一、单选题1.下列图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.在t R ABC ∆中,3,5a b ==,则c 的长为( )A .2 BC .4D .43.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于D . 如果∠A =30°,EC =2,则下列结论不正确...的是( )A .ED =2B .AE=4C .BC =D .AB =84.已知点(2a -,a -)在第二象限,则a 的取值范围是( )A .2a <B .0a <C .2a >D .02a <<5.在平行四边形ABCD 中,对角线AC ,BD 相交于点O . 下列条件不.能.判定平行四边形ABCD 为矩形的是( ) A .∠ABC =90°B .AC =BD C .AC ⊥BDD .∠BAD =∠ADC 6.关于函数y =,下列说法正确的是( ) A .自变量x 的取值范围是5x ≥ B .5x =时, 函数y 的值是0C.当5x 时,函数y的值大于0 D.A、B、C都不对7.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则点C的坐标是( )A.(8,2) B.(5,3) C.(3,7) D.(7,3) 8.为了了解某地八年级男生的身高情况,从当地某学校选取了60名男生统计身高情况,60名男生的身高(单位:cm)分组情况如下表所示,则表中a,b的值分别为( )A.18,6 B.0.3,6C.18,0.1 D.0.3,0.19.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题10.下列度数不可能是多边形内角和的是()A .360︒B .560︒C .720︒D .1440︒11.以1,1为边长的三角形是___________三角形.12.点A (﹣3,0)关于y 轴的对称点的坐标是__.13.若点A (2,)m 、B (1,)n -在函数1y x =-+的图象上,则m 与n 的大小关系是________.14.把64个数据分成 8 组,从第 1 组到第 4 组的频数分别是 5、7、11、13,第 5 组到第7 组的频率和是 0.125,那么第 8 组的频数是__________.15.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .16.如图,已知直线l 的解析式为2y x =.分别过x 轴上的点1(1,0)A ,2(2,0)A ,3(3,0)A ,…,(,0)n A n 作垂直于x 轴的直线交l 于1B ,2B ,3B ,,n B ,将11OA B ∆,四边形1221A A B B ,四边形2332A A B B ,,四边形n 1n n n 1A A B B --的面积依次设为1S ,2S ,3S ,,n S . 则n S =_____________.三、解答题17.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 是AB 的中点.已知AC =8cm ,BD =6cm ,求OE 的长.18.在平面直角坐标系xoy 中,直线26y x =-+与x 轴、y 轴分别相交于A 、B 两点,求AB 的长及△OAB 的面积.19.已知一次函数的图象过点(3,5)与点(-4,-9).(1)求这个一次函数的解析式.(2)若点(3,21)a a +在这个函数的图象上,求a 的值.20.如图,△ABC 在直角坐标系中.(1)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.21.如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图.(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.23.如图,将□ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.24.如图,在平面直角坐标系xOy中,已知直线AB:y=23x+4交x轴于点A,交y轴于点B.直线CD:y=-13x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标.(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.参考答案1.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c4=,当b 是直角边时,c=,则c =4故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.D【解析】【分析】根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.【详解】∵∠ACB =90°,∠A =30°∴180180309060ABC A C =︒--=︒-︒-︒=︒∠∠∠∵BE 平分∠ABC ,ED ⊥AB ,EC =2∴30ABE CBE ∠=∠=︒,2DE CE ==,故选项A 正确 ∴241sin 2DE AE A ===∠,故选项B 正确∴2=1tan CE BC CBE =∠ ,故选项C 正确∴1sin 2BC AB A===∠,故选项D 错误 故答案为:D .【点睛】本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.4.B【解析】【分析】根据象限的定义以及性质求出a的取值范围即可.【详解】∵点(2a-,a-)在第二象限∴200 aa-<⎧⎨->⎩解得0a<故答案为:B.【点睛】本题考查了象限的问题,掌握象限的定义以及性质是解题的关键.5.C【解析】【分析】根据平行四边形的性质、矩形的判定定理对各项进行判断分析即可.【详解】A. 有一个角为直角的平行四边形是矩形,正确;B. 对角线相等的平行四边形是矩形,正确;C. 并不能判定平行四边形ABCD为矩形,错误;D.∵四边形ABCD 是平行四边形,∠BAD =∠ADC ∴∠BAD =∠ADC =90°,根据有一个角为直角的平行四边形是矩形,正确;故答案为:C .【点睛】本题考查了矩形的判定问题,掌握平行四边形的性质、矩形的判定定理是解题的关键.6.C【解析】【分析】根据该函数的性质进行判断即可.【详解】A. 根据50x ->可得5x >,自变量x 的取值范围是5x >,错误;B. 将5x =代入函数解析式中,y =无意义,错误;C. 当5x >时,0y ==>,正确; D. A 、B 错误,C 正确,故选项D 错误;故答案为:C .【点睛】本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.7.D【解析】【分析】平行四边形的对边相等且互相平行,所以AB=CD,AB=5,D的横坐标为2,加上5为7,所以C的横坐标为7,因为CD∥AB,D的纵坐标和C的纵坐标相同为3.【详解】在平行四边形ABCD中,∵AB∥CD AB=5,∴CD=5,∵D点的横坐标为2,∴C点的横坐标为2+5=7,∵AB∥CD,∴D点和C点的纵坐标相等为3,∴C点的坐标为(7,3).故选:D【点睛】本题考查平行四边形的性质以及坐标与图形的性质,关键是知道和x 轴平行的纵坐标都相等,向右移动几个单位横坐标就加几个单位.8.C【解析】【详解】解:因为a=60×0.3=18,所以第四组的人数是:60﹣10﹣26﹣18=6,所以b=660=0.1,故选C.【点睛】本题考查频数(率)分布表.9.C【解析】试题解析:由一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k经过第一、二、四象限,∴直线y=bx+k不经过第三象限,故选C.10.B【解析】【分析】根据多边形内角和定理求解即可.【详解】正多边形内角和定理n边形的内角的和等于:(n - 2)×180°(n 大于等于3且n为整数)A.3602180︒=⨯︒,正确;B.560=318020︒⨯︒+︒,错误;C.7204180︒=⨯︒,正确;D.14408180︒=⨯︒,正确;故答案为:B .【点睛】本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.11.等腰直角【解析】【分析】根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.【详解】∵11=∴是等腰三角形∵22211+= ∴是直角三角形∴该三角形是等腰直角三角形故答案为:等腰直角.【点睛】本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.12.(3,0)【解析】试题分析:因为点P (a ,b )关于y 轴的对称点的坐标是(-a ,b ),所以点A (﹣3,0)关于y 轴的对称点的坐标是(3,0),故答案为(3,0)考点:关于y 轴对称的点的坐标.13.m n <【解析】【分析】将点A (2,)m 、B (1,)n -分别代入函数解析式中,求出m 、n 的值,再比较m 与n 的大小关系即可.【详解】点A (2,)m 、B (1,)n -分别代入函数解析式中2111m n =-+⎧⎨=+⎩ 解得1,2m n =-=∵12-<∴m n <故答案为:m n <.【点睛】本题考查了一次函数的问题,掌握一次函数的性质和代入求值法是解题的关键.14.4.【解析】【分析】利用频率与频数的关系得出第5组到第7组的频数,即可得出第8组的频数.【详解】∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率和是0.125,∴第8组的频数是:64﹣5﹣7﹣11﹣13﹣64×0.125=20.故答案为20.【点睛】本题考查了频数与频率,正确求出第5组到第7组的频数是解题的关键.15.9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC === (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.16.21n -【解析】【分析】根据梯形的面积公式求解出n S 的函数解析式即可.【详解】根据梯形的面积公式,由题意得1112112S =⨯⨯⨯= ()212222112212S =⨯⨯+-⨯=⨯-⎡⎤⎣⎦ ()312323112312S =⨯⨯+-⨯=⨯-⎡⎤⎣⎦ 故我们可以得出21n S n =-∵当1,2,3n =均成立∴21n S n =-成立故答案为:21n -.【点睛】本题考查了解析式与坐标轴的几何规律题,掌握梯形的面积公式是解题的关键.17.OE =52cm【解析】【分析】根据菱形的性质及三角形中位线定理解答.【详解】∵ABCD 是菱形,∴OA =OC ,OB =OD ,OB ⊥OC .又∵AC =8cm ,BD =6cm ,∴OA =OC =4cm ,OB =OD =3cm .在直角△BOC 中,由勾股定理得:BC =5(cm ).∵点E 是AB 的中点,∴OE 是△ABC 的中位线,∴OE 1522BC ==cm .【点睛】本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.18.AB =9【解析】【分析】根据两点距离公式、三角形的面积公式求解即可.【详解】解:令y=0,026x =-+解得3x =令x=0,()206y =-⨯+解得6y =∴A 、B 两点坐标为(3,0)、(0,6) ∴223635AB ∴13692S =⨯⨯=故答案为:AB =9.【点睛】本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.19.(1)21y x =-;(2)12a =【解析】(1)设函数解析式为y kx b =+,将两点坐标代入求解即可;(2)将点的坐标代入解析式即可求a 的值.【详解】(1)设函数解析式为y kx b =+,将两点坐标代入得3549k b k b +=⎧⎨-+=-⎩, 解之得21k b =⎧⎨=-⎩, 所求的解析式为21y x =-(2)将点的坐标代入上述解析式得21231a a +=-, 解之得12a =【点睛】 本题考查了一次函数的问题,掌握一次函数的性质以及应用是解题的关键.20.(1)A 1(-3,0),B 1(2,3),C 1(-1,4),图略 (2)S △ABC =7【解析】【分析】(1)根据平移的性质,结合已知点A ,B ,C 的坐标,即可写出A 1、B 1、C 1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S △ABC =S 长方形ADEF ﹣S △ABD ﹣S △EBC ﹣S △ACF ,即可求得三角形的面积.(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF=4×512-⨯3×512-⨯3×112-⨯2×4=2015322---4=7.【点睛】本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.21.(1)3;(2)15【解析】【分析】(1)通过证明ACD AED △≌△,即可得出DE 的长;(2)根据三角形面积公式求解即可.【详解】(1)∵DE ⊥AB∴90DEA C ==︒∠∠∴在Rt ACD Rt AED △和△中AE AC AD AD=⎧⎨=⎩ ∴ACD AED △≌△∴3DE CD ==(2)∵BC =8,CD =3∴835BD BC CD =-=-= ∴11561522S ADB BD AC =⨯⨯=⨯⨯=△【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.22.(1)60;(2)a =30;b =0.2;c =0.1;d =12;(3)100人,由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中人数最多的科目.【解析】【分析】(1)用C科目人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)总人数乘以样本中C科目人数所占比例,根据图表得出正确的信息即可.【详解】(1)这次调查的总人数为6÷(36÷360)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中人数最多的科目.【点睛】本题考查了扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.23.见解析【解析】【分析】(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS 推出两三角形全等即可;(2)欲证明四边形BECD 是矩形,只需推知BC=ED .【详解】证明:(1)∵四边形ABCD 为平行四边形,∴AD=BC ,AB=CD ,AB ∥CD ,则BE ∥CD .又∵AB=BE ,∴BE=DC ,∴四边形BECD 为平行四边形,∴BD=EC .∴在△ABD 与△BEC 中,AB BE BD EC AD BC ⎧⎪⎨⎪⎩===, ∴△ABD ≌△BEC (SSS );(2)由(1)知,四边形BECD 为平行四边形,则OD=OE ,OC=OB . ∵四边形ABCD 为平行四边形,∴∠A=∠BCD ,即∠A=∠OCD .又∵∠BOD=2∠A ,∠BOD=∠OCD+∠ODC ,∴∠OCD=∠ODC ,∴OC=OD ,∴OC+OB=OD+OE ,即BC=ED ,∴平行四边形BECD 为矩形.24.(1)B (0,4),D (0,-1);(2)25522s x =+(5x ≥-);(3)存在,共有3个,E点为(4,83)、(-6,-4)和2428(,)55-【解析】【分析】(1)利用y轴上的点的坐标特征即可得出结论.(2)先求出点M的坐标,再用三角形的面积之和即可得出结论.(3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.【详解】(1)将x=0代入y=23x+4,y=230⨯+4解得4y=将y=0代入y=-13x-1,y=-130⨯-1解得1y=-∴B(0,4),D(0,-1)(2)在解方程组243113y xy x⎧=+⎪⎪⎨⎪=--⎪⎩得M点的坐标是2 (5,)3 -,∵BD=5,当P点在y轴左侧时,如图(1):11255555()2222BDM PBD s s s x x ∆∆=-=⨯⨯-⨯-=+; 当P 点在y 轴右侧时,如图(2):112555552222BDM PBD s s s x x ∆∆=+=⨯⨯+⨯=+. 总之,所求的函数关系式是25522s x =+(5x ≥-)(3)存在,共有3个.当S =10时,求得P 点为(-1,23-),若平行四边形以MB 、MP 为邻边,如图,BE ∥MD ,PE ∥MB ,可设直线BE 的解析式为13y x b =-+,将B 点坐标代入得4b =,所以BE 的解析式为143y x =-+;同样可求得PE 的解析式为23y x =,解方程组14323y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩得E 点为(4,83)[{备注:同理可证另外两个点,另两个点的坐标为(-6,-4)和2428(,)55-}【点睛】本题考查了一次函数的几何问题,掌握一次函数的性质、三角形的面积公式、对角线互相平分的四边形是平行四边形、线段的中点坐标的确定方法是解题的关键.高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。
【湘教版】八年级数学上期末试卷带答案
一、选择题1.下列四个命题中,假命题有( )(1)两条直线被第三条直线所截,内错角相等.(2)如果1∠和2∠是对顶角,那么12∠=∠.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果1∠和3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个2.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 3.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个4.在“幻方拓展课程”探索中,小明在如图的3×3方格填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则y ﹣x =( )A .2B .4C .﹣6D .65.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x ﹣y =( )A .2B .4C .6D .86.在平面直角坐标系中,一次函数1y x =-的图象是( )A .B .C .D . 7.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D . 8.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y 与时间x 之间的对应关系.如果菜地和稻田的距离为akm ,小刚在稻田除草比在菜地浇水多用了bmin ,则a ,b 的值分别为( )A .1,8B .0.5,12C .1,12D .0.5,8 9.如图,若直线y=kx+b 与x 轴交于点A (-4,0),与y 轴正半轴交于B ,且△OAB 的面积为4,则该直线的解析式为( )A .y=12x+2B .y=2x+2C .y=4x+4D .y=14x+4 10.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°11.关于12的下列说法中错误的是( )A .12是12的算术平方根B .3124<<C .12不能化简D .12是无理数 12.下列各组数据,不能作为直角三角形的三边长的是( )A .5、6、7B .6、8、10C .1.5、2、2.5D .3、2、7 二、填空题13.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.14.如图,△ABC 中,∠C =50°,AD 是∠CAB 的平分线,BD 是△ABC 的外角平分线,AD 与BD 交于点D ,那么∠D =____°.15.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .底面积(2cm ) 甲杯40 乙杯60 丙杯 8016.若方程组41524x y k x y +=-⎧⎨+=⎩的解为x 、y ,且x +y >0,则k 的取值范围是__________. 17.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 18.在第二象限,到x 轴距离为4,到y 轴距离为3的点P 的坐标是 .19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.三、解答题21.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m %,3%5m ,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m 的值.23.如图,,A B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以36/dm min 的流量从水箱B 中抽水注入水箱A 中,直至水箱A 注满水为止.设注水()t min ,水箱A 的水位高度为()yA dm ,水箱B 中的水位高度为()yB dm .根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)注水t 分钟时,A 水箱中水的体积为 3dm(2)分别求出yA yB 、与t 之间的函数表达式;(3)当注水2分钟时,求出此时两水箱中水位的高度差.(4)当水箱A 与水箱B 中的水的体积相等时,求出此时两水箱中水位的高度差. 24.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为A (1,3),B (2,1),C (5,1).(1)直接写出点B 关于x 轴对称的对称点1B 的坐标为______,直接写出点B 关于y 轴对称的对称点2B 的坐标为_____,直接写出12AB B 的面积为_______;(2)在y 轴上找一点P 使1PA PB +最小,则点P 坐标为_______;说明理由. 25.已知()253|53|0x y -++--=.(1)求x ,y 的值;(2)求xy 的算术平方根.26.如图,在△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D ,求证:222AD AC BD =+.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】按照命题的条件,结论,进行推理计算,或与定理,定义,法则对照,进行判断即可.【详解】∵两条平行直线被第三条直线所截,内错角相等,∴(1)是假命题;∵对顶角相等,∴(2)是真命题;设锐角为x,则其余角为90°-x,补角为180°-x,∴(90-x)-(180-x)=90°-x-180°+x=-90<0,∴(3)是真命题;∵1∠和3∠互余,2∠与3∠的余角互补,∴1∠+3∠=90,2∠+(90-3∠)=180,∴2∠+1∠=180,∴(4)是真命题;故选A.【点睛】本题考查了对命题的真伪的甄别,解答时,熟练掌握数学的基本概念,基本定理,基本法则,基本性质是解题的关键.2.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.3.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.4.C解析:C【分析】根据各行、各列及对角线上的三个数之和都相等,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(y-x )中即可求出结论.【详解】解:依题意,得20262020x y x y y -+=-++⎧⎨-+=++⎩, 解得82x y =⎧⎨=⎩, ∴y ﹣x =﹣6.故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.C解析:C【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(x-y )中即可求出结论.【详解】依题意得:22226x y y x y -=+⎧⎨-=-+⎩,解得:82 xy=⎧⎨=⎩,∴x﹣y=8﹣2=6.故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.A解析:A【分析】先确定一次函数解析式中k与b的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A.【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键.7.A解析:A【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】解:由题意知,函数关系为一次函数y=-3x-6,由k=-3<0可知,y随x的增大而减小,且当x=0时,y=-6,当y=0时,x=-2.故选:A.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-3x-6,然后根据一次函数的图象的性质求解.8.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 9.A解析:A【分析】先利用三角形面积公式求出OB=2得到B (0,2),然后利用待定系数法求直线解析式.【详解】∵A (-4,0),∴OA=4,∵△OAB 的面积为4∵12×4×OB=4,解得OB=2,∴B (0,2),把A (-4,0),B (0,2)代入y=kx+b ,402k b b -⎨⎩+⎧==, 解得122k b ⎧⎨⎩==, ∴直线解析式为y=12x+2.故选:A .【点睛】本题考查了待定系数法求一次函数关系式:设一次函数解析式为y=kx+b (k≠0),要有两组对应量确定解析式,即得到k ,b 的二元一次方程组.10.B【分析】根据12PBC ABCS S∆∆=得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.11.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A1212的算术平方根,故该项正确;B、3124<<,故该项正确;C1223=D、∵1223=∴12是无理数,故该项正确;故选:C.此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.12.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键.二、填空题13.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠,又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠,∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 14.25°【分析】根据角平分线的定义得到∠DBE=∠CBE ∠DAE=∠CAE 根据三角形的外角的性质计算即可【详解】解:∵AD 是∠CAB 的平分线BD 是△ABC 的外角平分线∴∠DBE=∠CBE ∠DAE=∠C解析:25°【分析】根据角平分线的定义得到∠DBE=12∠CBE,∠DAE=12∠CAE,根据三角形的外角的性质计算即可.【详解】解:∵AD是∠CAB的平分线,BD是△ABC的外角平分线,∴∠DBE=12∠CBE,∠DAE=12∠CAE,∴∠D=∠DBE-∠DAE=12(∠CBE-∠CAE)=12∠C=25°,故答案为:25°.【点睛】本题考查的是三角形的外角的性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.15.180【分析】设后来甲乙丙三杯内水的高度分别为:xyx+y利用水的总体积不变分别从甲乙两杯中取出相同体积的水倒入丙杯得出二元一次方程组进而即可求解【详解】解:设后来甲乙丙三杯内水的高度分别为:xyx解析:180【分析】设后来甲、乙、丙三杯内水的高度分别为:x,y,x+y,利用水的总体积不变,分别从甲、乙两杯中取出相同体积的水倒入丙杯,得出二元一次方程组,进而即可求解.【详解】解:设后来甲、乙、丙三杯内水的高度分别为:x,y,x+y,根据题意可得:() ()() 401260128012406080 40126012x y x yx y⎧⨯+⨯+⨯+++⎪⎨-=-⎪⎩=,解得:7.59xy=⎧⎨=⎩,∴从甲杯中倒出的水的体积为:40× (12-7.5)=180(3cm),故答案是:180.【点睛】此题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题关键.16.k>-3【分析】本题可将两式相加得到6x+6y=k+3根据x+y的取值可得出k 的值【详解】两式相加得:6x+6y=k+3∵x+y>0∴6x+6y=6(x+y)>0即k+3>0∴k>-3故答案为:k>解析:k>-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y的取值,可得出k的值.【详解】两式相加得:6x+6y=k+3,∵x+y >0∴6x+6y=6(x+y )>0,即k+3>0,∴ k >-3,故答案为:k >-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y 的形式,再根据x+y >0求得k 的取值.17.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩, 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3, 得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.18.(﹣34)【解析】试题分析:应先判断出点P 的横纵坐标的符号进而根据到坐标轴的距离判断点P 的具体坐标解:∵P 在第二象限∴点P 的横坐标小于0纵坐标大于0;又∵点P 到x 轴的距离是4即点P 的纵坐标为4;点P 解析:(﹣3,4)【解析】试题分析:应先判断出点P 的横、纵坐标的符号,进而根据到坐标轴的距离判断点P 的具体坐标.解:∵P 在第二象限,∴点P 的横坐标小于0,纵坐标大于0;又∵点P 到x 轴的距离是4,即点P 的纵坐标为4;点P 到y 轴的距离为3,即点P 的横坐标为﹣3,∴点P 的坐标是(﹣3,4);故答案是:(﹣3,4).点评:本题考查的是点的坐标的几何意义:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.20.101【分析】取AB 的中点O 过D 作DE ⊥AB 于E 根据勾股定理解答即可得到结论【详解】解:取AB 的中点O 过D 作DE ⊥AB 于E 如图2所示:由题意得:OA =OB =AD =BC 设OA =OB =AD =BC =r 寸则解析:101【分析】取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA =OB =AD =BC ,设OA =OB =AD =BC =r 寸,则AB =2r (寸),DE =10寸,OE =12CD =1寸, ∴AE =(r ﹣1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r ﹣1)2+102=r 2,解得:r =50.5,∴2r =101(寸),∴AB =101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.三、解答题21.见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC(等量代换)∴AE∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F(已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.22.(1)照明灯45万个,投射灯5万个;(2)m=20.【分析】(1)设该城市灯光秀使用照明灯x万个,投射灯y万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x万个,投射灯y万个,依题意,得:50 91201005 x yx y+=⎧⎨+=⎩,解得:455xy=⎧⎨=⎩.答:该城市灯光秀使用照明灯45万个,投射灯5万个.(2)依题意,得:9(1﹣m%)×1000+120(135-m%)×50×(1+20%)=13536,解得:m=20.答:m的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)6t;(2)365yB t=-+;yA t=;(3)2.8dm;(4)2dm;【分析】(1)根据题目中B→A的速度求解即可;(2)根据A的体积求出yA,再根据长方体体积计算即可;(3)分别求出yA,yB,计算即可;(4)根据题意求出yB,求出t,即可得解;【详解】(1)∵注水t 分钟,水从B→A 以36/dm min ,∴()36A V t dm =; 故答案为6t ; (2)∵326A V yA t =⨯⨯=, ∴yA t =,又∵()5266yB t ⨯⨯-=,()1066yB t -=,365yB t =-+;(3)当2t =时,()2yA t dm ==,()33626 4.855yB t dm =-+=-⨯+=, ∴高度差()4.82 2.8dm =-=; (4)∵A 、B 水体积相等,∴B 箱中水抽走一半, ∴1525262yB ⨯⨯=⨯⨯⨯, ∴()3yB dm =,当3yB =时,3635t -+=, 5t =,当5t =时,()5yA t dm ==,∴高度差()532dm =-=.【点睛】 本题主要考查了一次函数的实际应用,准确计算是解题的关键. 24.(1)(2,1)-,(2,1)-,7;(2)50,3⎛⎫ ⎪⎝⎭;理由见解析.【分析】(1)根据关于x 轴、y 轴对称的点的坐标特征即可得到B 1、B 2坐标,利用分割法即可求得△AB 1B 2面积;(2)根据轴对称的性质得到B 3(﹣2,﹣1),求得直线B 3A 解析式继而令0x =时即可求解.【详解】(1)(2,1)B 关于x 轴对称点B ,1B ∴坐标为(2,1)-(2,1)B 关于y 轴对称点2B2B ∴坐标为(2,1)-∴S △AB 1B 2面积=11144231424222⨯-⨯⨯-⨯⨯-⨯⨯ 16324=---7=故12AB B 的面积为7,(2)点P 坐标为50,3⎛⎫ ⎪⎝⎭,理由如下:∵B 1(2,﹣1)关于y 轴对称点B 3(﹣2,﹣1),连接B 3A 交于y 轴于P 则P 为所求,设直线B 3A 表达式为(0)y kx b k =+≠,把B 3(﹣2,﹣1),A (1,3)代入得123k b k b -=-+⎧⎨=+⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩4533y x ∴=+ 当0x =时53y =50,3P ⎛⎫∴ ⎪⎝⎭【点睛】本题考查轴对称有关知识,解题的关键是熟练掌握关于x 轴、y 轴对称的点的坐标特征及轴对称的性质.25.(1)53x =-,53y =+;(2)22【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)()2530x -+≥,530y --≥,()253530x y -++--=, 530x ∴-+=,530y --=,解得:53x =-,53y =+;(2)()()535325322xy =-+=-=, xy ∴的算术平方根为22.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26.见解析【分析】连接AM 得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA ,∵MD ⊥AB ,∴AD 2=AM 2-MD 2,BM 2=BD 2+MD 2,∵∠C =90°,∴AM 2=AC 2+CM 2∵M 为BC 中点,∴BM =MC .∴AD 2=AC 2+BD 2【点睛】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.。
湘教版数学八年级下册期末考试试卷含答案
湘教版数学八年级下册期末考试试题第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列交通标志图案中是中心对称图形的是()A B C D2.在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标是() A.(2,-3) B.(2,3)C.(3,-2) D.(-2,-3)3.对某班学生在家里做家务的时间进行调查后,将所得的数据分成4组,第一组的频率是0.16,第二、三组的频率之和为0.74,则第四组的频率是() A.0.38 B.0.30 C.0.20 D.0.104.一次函数y=x+2的图象大致是()A B C D5.如图,在平面直角坐标系中,▱ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)第5题图第6题图6.如图,∠C=90°,AB=12,BC=3,CD=4.若∠ABD=90°,则AD的长为()A.10 B.13 C.8 D.117.已知点(-4,y1),(2,y2)都在直线y=12x+2上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.在四边形ABCD中,AC,BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD9.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,BC的中点,点F 在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.14 B.16 C.18 D.20第9题图第10题图10.在一次“寻宝”游戏中,“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是10 ,则“宝藏”点的坐标是()A.(1,0) B.(5,4)C.(1,0)或(5,4) D.(0,1)或(4,5)11.一个有进水管与出水管的容器,从某时刻开始6 min内既出水又进水,在随后的4 min内只出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则7 min时容器内的水量为()A.35 L B.37.5 L C.40 L D.42.5 L12.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,现有下列结论:①乙比甲晚出发1 h;②乙的速度是10 km/h;③乙出发20分钟后追上甲;④当甲出发1.5小时时,甲乙两人相距2.5 km,其中结论正确的个数是()A.1 B.2 C.3 D.4第12题图第Ⅱ卷(非选择题共84分)二、填空题(共6小题,每小题3分,共18分)13.函数y=xx+2的自变量x的取值范围是.14.在平面直角坐标系中,将点(-2,-3)向右平移3个单位,再向上平移4个单位后得到的对应点的坐标是.15.在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其他8个小长方形的高的和的17,且这组数据的总个数为120,则中间一组的频数为.16.如图,DB⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=120°,则∠DGF=.第16题图17.如图所示的方格图是某学校的平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,图书馆的位置可用坐标(1,2)表示,则教学楼的位置用坐标表示为.第17题图第18题图18.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)已知y+3与x成正比例,且x=2时,y=1.(1)求y关于x的函数表达式;(2)当x=-12时,求y的值.20.(本题满分5分)已知点A(x,4-y)与点B(1-y,2x)关于y轴对称,求x y的值.21.(本题满分6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE;(2)若DE=4 cm,矩形ABCD的周长为32 cm,求AE的长.22.(本题满分8分)某课题组为了解全市八年级学生对数学知识的掌握情况,在一次数学检测中,从全市24 000名八年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表.分数段频数频率x<60 20 0.1060≤x<7028 0.1470≤x<8054 0.2780≤x<90 a 0.2090≤x<10024 0.12100≤x<11018 b110≤x≤12016 0.08请根据以上图表提供的信息,解答下列问题:(1)表中a和b所表示的数分别是多少?(2)请在图中补全频数直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24 000名八年级考生中数学成绩为优秀的约有多少?23.(本题满分8分)某烤鸡店,烤制的时间随着鸡的质量的变化而变化,并且烤制的时间y(min)与鸡的质量x(kg)的关系可以用y=40x+20来表示.(1)在这个变化过程中,自变量、因变量各是什么?(2)若要烤制3.5 kg的鸡,需要烤制多长时间?(3)若烤制的时间是180 min,则烤制的鸡的质量是多少?24.(本题满分8分)周日,小明骑自行车从家里出发到野外郊游,从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y(km)与小明离家的时间x(h)之间的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数表达式.25.(本题满分11分)如图,在矩形ABCD中,AB=2,BC=5,点E,P分别在AD,BC上,且DE=BP=1,连接BE,CE,AP,DP,AP与BE交于点H,DP 与CE交于点F.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.26.(本题满分10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?参考答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列交通标志图案中是中心对称图形的是(C)A B C D2.在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标是(B) A.(2,-3) B.(2,3)C.(3,-2) D.(-2,-3)3.对某班学生在家里做家务的时间进行调查后,将所得的数据分成4组,第一组的频率是0.16,第二、三组的频率之和为0.74,则第四组的频率是(D) A.0.38 B.0.30 C.0.20 D.0.104.一次函数y=x+2的图象大致是(A)A B C D5.如图,在平面直角坐标系中,▱ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是(C)A.(3,7) B.(5,3) C.(7,3) D.(8,2)第5题图第6题图6.如图,∠C=90°,AB=12,BC=3,CD=4.若∠ABD=90°,则AD的长为(B)A.10 B.13 C.8 D.117.已知点(-4,y1),(2,y2)都在直线y=12x+2上,则y1和y2的大小关系是(C)A.y1>y2B.y1=y2C.y1<y2D.无法确定8.在四边形ABCD中,AC,BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是(C)A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD9.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,BC的中点,点F 在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(B)A.14 B.16 C.18 D.20第9题图第10题图10.在一次“寻宝”游戏中,“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是10 ,则“宝藏”点的坐标是(C)A.(1,0) B.(5,4)C.(1,0)或(5,4) D.(0,1)或(4,5)11.一个有进水管与出水管的容器,从某时刻开始6 min内既出水又进水,在随后的4 min内只出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则7 min时容器内的水量为(B)A.35 L B.37.5 L C.40 L D.42.5 L12.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,现有下列结论:①乙比甲晚出发1 h;②乙的速度是10 km/h;③乙出发20分钟后追上甲;④当甲出发1.5小时时,甲乙两人相距 2.5 km,其中结论正确的个数是(C)A.1 B.2 C.3 D.4第12题图第Ⅱ卷(非选择题共84分)二、填空题(共6小题,每小题3分,共18分)13.函数y=xx+2的自变量x的取值范围是__x≥0__.14.在平面直角坐标系中,将点(-2,-3)向右平移3个单位,再向上平移4个单位后得到的对应点的坐标是__(1,1)__.15.在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其他8个小长方形的高的和的17,且这组数据的总个数为120,则中间一组的频数为__15__.16.如图,DB⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=120°,则∠DGF=__140°__.第16题图17.如图所示的方格图是某学校的平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,图书馆的位置可用坐标(1,2)表示,则教学楼的位置用坐标表示为__(2,1)__.第17题图第18题图18.★已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为__(3,4)或(2,4)或(8,4)__.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)已知y+3与x成正比例,且x=2时,y=1.(1)求y关于x的函数表达式;(2)当x=-12时,求y的值.解:(1)设y+3=kx(k是常数且k≠0),把x=2,y=1代入,得2k=1+3,解得k=2,所以y+3=2x,所以y 关于x 的函数表达式为y =2x -3. (2)当x =-12 时,y =2×⎝ ⎛⎭⎪⎫-12 -3=-4. 20.(本题满分5分)已知点A(x ,4-y)与点B(1-y ,2x)关于y 轴对称,求x y 的值. 解:依题意,有⎩⎨⎧4-y =2x ,-x =1-y , 解得⎩⎨⎧x =1,y =2, 故x y =1.21.(本题满分6分)如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC. (1)求证:△AEF ≌△DCE ;(2)若DE =4 cm ,矩形ABCD 的周长为32 cm ,求AE 的长.(1)证明:∵EF ⊥CE , ∴∠FEC =90°,∴∠AEF +∠DEC =90°, 而∠ECD +∠DEC =90°,∴∠AEF =∠ECD.在Rt △AEF 和Rt △DCE 中, ∠FAE =∠EDC =90°,∠AEF =∠DCE ,EF =EC. ∴△AEF ≌△DCE.(2)解:∵△AEF ≌△DCE ,∴AE =CD. AD =AE +4.∵矩形ABCD 的周长为32 cm , ∴2(AE +AE +4)=32.解得AE =6 cm. 答:AE 的长为6 cm.22.(本题满分8分)某课题组为了解全市八年级学生对数学知识的掌握情况,在一次数学检测中,从全市24 000名八年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表.分数段频数频率x<60 20 0.1060≤x<7028 0.1470≤x<8054 0.2780≤x<90 a 0.2090≤x<10024 0.12100≤x<11018 b110≤x≤12016 0.08请根据以上图表提供的信息,解答下列问题:(1)表中a和b所表示的数分别是多少?(2)请在图中补全频数直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24 000名八年级考生中数学成绩为优秀的约有多少?解:(1)a=40,b=0.09.(2)如图所示.(3)(0.12+0.09+0.08)×24 000=0.29×24 000=6 960(名).答:该市24 000名八年级考生中数学成绩为优秀的约有6 960名.23.(本题满分8分)某烤鸡店,烤制的时间随着鸡的质量的变化而变化,并且烤制的时间y(min)与鸡的质量x(kg)的关系可以用y=40x+20来表示.(1)在这个变化过程中,自变量、因变量各是什么?(2)若要烤制3.5 kg的鸡,需要烤制多长时间?(3)若烤制的时间是180 min,则烤制的鸡的质量是多少?解:(1)∵烤制的时间y(min)与鸡的质量x(kg)的关系可以用y=40x+20来表示,∴在这个变化过程中,自变量是鸡的质量,因变量是烤制的时间.(2)当x =3.5时,y =40×3.5+20=160, 即要烤制3.5 kg 的鸡,需要烤制160 min. (3)当y =180时,180=40x +20,解得x =4,即若烤制的时间是180 min ,则烤制的鸡的质量是4千克.24.(本题满分8分)周日,小明骑自行车从家里出发到野外郊游,从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y(km)与小明离家的时间x(h)之间的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数表达式.解:(1)小明骑车的速度为20 km/h , 在南亚所游玩的时间为1 h. (2)设妈妈驾车的速度为x km/h ,则 2560 x =20+1560 ×20, 解得x =60,因而点C 的坐标为⎝ ⎛⎭⎪⎫94,25 .设CD 所在直线的函数表达式为y =kx +b , 则⎩⎪⎨⎪⎧116k +b =0,94k +b =25,解得⎩⎨⎧k =60,b =-110,所以CD 所在直线的函数表达式为y =60x -110.答:妈妈驾车的速度为60 km/h ,CD 所在直线的函数表达式为y =60x -110.25.(本题满分11分)如图,在矩形ABCD 中,AB =2,BC =5,点E ,P 分别在AD ,BC 上,且DE =BP =1,连接BE ,CE ,AP ,DP ,AP 与BE 交于点H ,DP 与CE 交于点F.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.解:(1)△BEC是直角三角形.理由:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AD=BC=5,AB=CD=2.由勾股定理,得CE=CD2+DE2=22+12= 5 ,同理BE=2 5 ,∴CE2+BE2=5+20=25.∵BC2=52=25,∴BE2+CE2=BC2,∴△BEC是直角三角形且∠BEC=90°.(2)四边形EFPH是矩形.证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC.∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP.∵AD=BC,AD∥BC,DE=BP,∴AE∥CP,AE=CP∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形.∵∠BEC=90°,∴四边形EFPH是矩形.(3)在Rt△PCD中,FC⊥PD.由三角形的面积公式,得12PD·CF=12PC·CD,由(1)(2),知PD=BE=2 5 ,∴CF=4×225=45 5 ,∴EF =CE -CF = 5 -45 5 =15 5 . ∵PF =PC 2-CF 2 =85 5 , ∴S 矩形EFPH =EF·PF =85 , 即四边形EFPH 的面积是85 .26.(本题满分10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x 是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量; (2)求y 关于x 的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)? 解:(1)由题意,得第2个月的发电量: 300×4+300(1+20%)=1 560(千瓦), 今年下半年的总发电量:300×5+1 560+300×3+300×2×(1+20%)+300×2+300×3×(1+20%)+300×1+300×4(1+20%)+300×5×(1+20%)=1 500+1 560+1 620+1 680+1 740+1 800 =9 900.答:该厂第2个月的发电量为1 560千瓦; 今年下半年的总发电量为9 900千瓦.(2)设y 与x 之间的关系式为y =kx +b ,由题意得 ⎩⎨⎧k +b =1 500,2k +b =1 560, 解得⎩⎨⎧k =60,b =1 440. ∴y 关于x 的函数关系式为y=60x+1 440(1≤x≤6).(3)设到第n个月时ω1>ω2,当n=6时,ω1=9 900×0.04-20×6=276,ω2=300×6×6×0.04=432,ω1<ω2不符合.∴n>6.∴ω1=[9 900+360×6(n-6)]×0.04-20×6 =86.4n-242.4,ω2=300×6n×0.04=72n. 当ω1>ω2时,86.4n-242.4>72n,解得n>16.8,∴n=17.答:至少要到第17个月,ω1超过ω2.。
湘教版数学八年级上册期末考试试卷及答案
湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。
湘教版八年级数学上册期末试卷(含答案)
湘教版八年级数学上册期末试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.下列各式中,正确的是( ) A .2(3)3-=- B .233-=- C .2(3)3±=± D .23=3±4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程:2420x x +-=2.先化简,再求值:(x -1)÷(x -21x x-),其中x 2+13.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,在△OBC中,边BC的垂直平分线交∠BOC的平分线于点D,连接DB,DC,过点D作DF⊥OC于点F.(1)若∠BOC=60°,求∠BDC的度数;(2)若∠BOC= ,则∠BDC=;(直接写出结果)(3)直接写出OB,OC,OF之间的数量关系.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、A6、D7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、(3,7)或(3,-3)3、﹣24、256、16 三、解答题(本大题共6小题,共72分)1、12x =-22x =-2、1+3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
湘教版八年级数学上册期末考试卷(加答案)
湘教版八年级数学上册期末考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b +的结果是________.2.计算1273-=___________. 3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、D6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b23、3.4、x>3.5、156、15.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、112x;15.3、(1)a≥2;(2)-5<x<14、(1)见解析(2)成立(3)△DEF为等边三角形5、CD的长为3cm.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
湘教版八年级下册期末数学试卷(含答案)
八年级下册期末数学试卷、选择题(每小题 3分,共8道小题,合计24 分)1•民族图案是数学文化中的一块瑰宝•下列图案中,既不是中心对称图形也不是轴对称图形的是2.如图,△ ABC 中,CD 丄AB 于D ,且E 是AC 的中点.若AD = 6, DE = 5,则CD 的长等于()C . 7D . 8①AB = BC ,② ∠ ABC = 90°,③AC = BD ,④AC 丄 BD四个条件中,选两个作为补充条件后,使得四边形 ABCD是正方形,现有下列四种选法,其中错3.如图,平行四边形ABCD 中,E,F 是对角线BD 上的两点, 如果添加一个条件使△ ABE ◎△ CDF ,C . BF = DE4.将点 A (- 1 , 2) 向左平移4个单位长度得到点 B ,则点B 坐标为(A . (- 1 , 6)B . (- 1 , - 2)C . (3, 2)(-5, 2)25.在平面直角坐标系中,点 P (3,- X 1)关于 X 轴对称点所在的象限是(A .第一象限B. 第二象限C. 第三象限D. 第四象限6.已知四边形 ABCD 是平行四边形,再从 ( )A . 5误的是(7•小刚以400m∕min 的速度匀速骑车 5min ,在原地休息了 6min ,然后以500m∕min 的速度骑回出发地,小刚与出发地的距离 S (km )关于时间t (min )的函数图象是()8•如图,已知正方形 ABCD 的边长为12 , BE = EC ,将正方形边 CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①厶 ADG ◎△ FDG ;②GB = 2AG ;③ ∠ GDE = 45°;④DG = DE 在以上4个结论中,正确的共有()个BECA . 1个B . 2个C . 3个D . 4个、填空题(每小题 3分,共6道小题,合计18分)9. 若一个多边形的内角和是外角和的 5倍,则这个多边形是 边形.10. 如图所示,已知函数 y = 2x+b 与函数y = kx - 3的图象交于点 P ,则不等式kx -3>2x+b 的解集是_______、⅛4T =2X -!'⅛/、、/儿\、ι∙l=⅛c-311.已知一次函数 y =( 1 - m ) x+m - 2图象不经过第一象限,求m 的取值范围是 ________A •选①②B .选②③C 选①③D •选②④0.5A . 0.4 PnO 5Ii 15 f (Hml)C .11 f CmLn): .........D.H 、3Ll 15 t (min)12.函数y= Z中自变量X的取值范围是s+1 -------13.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、卩0,则厶PBQ周长的最小值为__________ Cm (结果不取近似值).14.如图:在平面直角坐标系中,直线I: y= X- 1与X轴交于点Ai,如图所示依次作正方形A I B I C I O>正方形A2B2C2C1、…、正方形A n B n C n C n-1,使得点Aχ A2、A3、…在直线I上,点Cχ C2、C3、…15. ( 6分)已知关于X的一次函数y=( 1 - 2m) x+m- 1,求满足下列条件的m的取值范围:(1)函数值y随X的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过原点.16.( 6分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准•若某户居民每月应缴水费y (元)与用水量X (吨)的函数图象如图所示,(1)分别写出X≤ 5和X> 5的函数解析式;(2)观察函数图象,禾U用函数解析式,回答自来水公司采取的收费标准;(3)若某户居民六月交水费31元,则用水多少吨?19. ( 6分)在如图所示的平面直角坐标系中,每个小方格都是边长为 均在格点上,点 A 的坐标是(-3,- 1).(1) 将厶ABC 沿y 轴正方向平移3个单位得到△ A 1B 1C 1 ,画出△ A 1B 1C 1 ,并写出点B 1坐标. (2) 画出△ A 1B 1C 1关于y 轴对称的厶A 2B 2C 2,并写出点C 2的坐标.17. ( 6分)如图,在△ ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点 A 作 交BE 的延长线于点F ,连接CF . (1)求证:AF = DC ;BC 的平行线(2)若AC ⊥ AB ,试判断四边形 ADCF 的形状,并证明你的结论.18.( 6分)如图,在平面直角坐标系Xoy 中,矩形ABCD 的边AD = 6, A (1, 0)B (9, 0),直线y = kx+b 经过B 、D 两点.(1) 求直线y = kx+b 的表达式;(2) 将直线y = kx+b 平移,当它I 与矩形没有公共点时,直接写出b 的取值范围.1的正方形,△ ABC 的顶点20. ( 6分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员 对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表•请你根据统计图表所 提供的信息回答下面问题:某校师生捐书种类情况统计表 种类频数百分比A .科普类12 n B .文学类 14 35% C .艺术类 m 20% D .其它类615%(1)统计表中的 m =(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?某校师生摘书种类情况条形统计國(2)点P 的纵坐标比横坐标大 3;(3)点P 在过A (2, - 4)点且与X 轴平行的直线上.22.( 6分)如图,在 RtAABC 中,∠ C = 90°, BD 是厶ABC 的一条角平分线.点 0、E 、F 分别在BD 、BC 、AC 上,且四边形 OECF 是正方形.P 点的坐标.).试分别根据下列条件,求出 21(1)点P 在y 轴上;(1) 求证:点 O 在∠ BAC 的平分线上; (2) 若 AC = 5, BC = 12,求 OE 的长.B 两点,点P 在线段AB 上由A 向B 点以每秒2个单位运动,秒1个单位运动(其中一点先到达终点则都停止运动),过点P 与X 轴垂直的直线交直线 AO 于点Q .设运动的时间为t 秒(t ≥ 0).(1) 直接写出:A 、B 两点的坐标 A __________ , B _______ . ∠ BAO = ________ 度; (2) ___________________________________ 用含t 的代数式分别表示: CB = , PQ = ; (3)是否存在t 的值,使四边形PBCQ 为平行四边形?若存在,求出t 的值;若不存在,说明理由;(4) 是否存在t 的值,使四边形PBCQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并 探究如何改变点 C 的速度(匀速运动),使四边形 PBCQ 在某一时刻为菱形,求点 C 的速度和X ,y 轴分别相交于A 、点C 在线段OB 上由O 向B 点以每23.( 10分)已知如图:直线其图象与坐标轴 时间t .参考答案与试题解析一、选择题(每小题3分,共8道小题,合计24分)1 •解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;560°360*180 度,c、旋转角是一,只是每旋转一7—与原图重合,而中心对称的定义是绕一定点旋转新图形与原图形重合•因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C∙2.解:•••△ ABC 中,CD丄AB 于D,∙∙∙∠ADC = 90 ° .∙∙∙ E是AC的中点,DE = 5,∙AC= 2DE = 10.∙∙∙ AD = 6,∙CD=Q疋亠E=右化/ = 8•故选:D.3•解:A、当AE = CF无法得出厶ABE◎△ CDF ,故此选项符合题意;B、当BE = FD ,•••平行四边形ABCD中,∙AB= CD , ∠ ABE =∠ CDF ,在厶ABE和厶CDF中ΓAB=CDZABE^ZC DF,IBE=DK•••△ ABE◎△ CDF (SAS),故此选项错误;C、当BF = ED,•BE= DF ,•••平行四边形ABCD中,∙AB= CD , ∠ ABE =∠ CDF , 在厶ABE和厶CDF中r AB=CD1 ZABE=ZCD F,i BE=DF•••△ ABE ◎△ CDF (SAS),故此选项错误;D、当∠ 1 = ∠ 2,•••平行四边形ABCD中,∙∙∙ AB= CD , ∠ ABE =∠ CDF ,在厶ABE和厶CDF中r Zl=Z2,AB=CD ,L ZAEE=ZCDF• △ ABE◎△ CDF (ASA),故此选项错误;故选:A.A___________________ ZJ4•解:•••点A (- 1, 2)向左平移4个单位长度得到点B,• B (- 5, 2),故选:D •5.解:点P (3, - X2- 1)关于X轴对称点坐标为:(3, x2+1),T x2+1 > 0,∙点P (3, - X2- 1)关于X轴对称点所在的象限是:第一象限.故选:A.6.解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.7 •解:因为开始时的速度小,路程逐渐变大,中间的6分钟速度为O ,路程不变、后来速度大,路程逐渐减小,故选:C.8.解:由折叠可知,DF = DC = DA, ∠ DFE =∠ C= 90°,∙∙∙∠DFG = ∠ A= 90 ° ,•••△ ADG ◎△ FDG ,①正确;•••正方形边长是12,•BE= EC = EF = 6,设AG = FG = X,贝V EG= x+6, BG = 12 —x,由勾股定理得:EG2= BE2+BG2,即:( x+6) 2= 62+( 12 —x) 2,解得:X= 4∙AG = GF = 4, BG = 8,∙BG = 2AG ,②正确;•/△ ADG 也厶FDG ,∙∠ADG = ∠ FDG ,由折叠可得,∠ CDE = ∠ FDE ,∙∠GDE = ∠ GDF+ ∠ EDF = —∠ ADC = 45° ,故③正确;∙∙∙ AG= 4, AD = 12, CE = 6, CD = 12,•DG =』4外1/ =屈l, DE =J∕+l∕=近鬲,•DG V DE,故④错误;.故选:CoBEC、填空题(每小题3分,共6道小题,合计18 分)o解得n= 12.故答案为:十二.10.解:•••函数y= 2x+b与函数y= kx- 3的图象交于点P (4, - 6),•••不等式kx- 3>2x+b的解集是XV 4.故答案为XV 4.11.解:根据一次函数的性质,函数y随X的增大而减小,则1 - mv 0,解得m> 1;函数的不图象经过第一象限,说明图象与y轴的交点在X轴下方或原点,即m- 2≤ 0,解得m≤ 2;所以m的取值范围为:1 V m≤ 2.故答案为:1 V m≤ 212 .解:由题意,得x≥0且x+1 ≠ 0,解得x≥0,故答案为:x≥ 0.13.解:连接DQ ,交AC于点P,连接PB、BD, BD交AC于O.•••四边形ABCD是正方形,∙AC ⊥ BD , Bo = OD , CD = 2cm,•点B与点D关于AC对称,•BP= DP ,•BP+PQ= DP + PQ= DQ .在Rt△ CDQ 中,DQ =J CD S CQ Z=J/+] 2 =越cm,•••△ PBQ 的周长的最小值为:BP+PQ+BQ = DQ + BQ =. Π+1 (cm).14.解:当y= 0 时,有X- 1 = 0,解得:X = 1,•••点A i 的坐标为(1 , 0)••••四边形 A i B i C i O 为正方形,•点B i 的坐标为(1 , 1 )•同理,可得出:A (2, 1), A (4, 3), A 4 (8, 7), A 5 ( 16, 15),∙∙∙,• B 2( 2, 3), B 3(4, 7), B 4( 8, 15), B 5( 16, 31 ),∙∙∙,• B n (2n 「1, 2n - 1)( n 为正整数),•点 B 2018 的坐标是(22017, 22018- 1)∙故答案为:(22017, 22018- 1)∙三、解答题:(共 9道大题,共58分)15 .解:(1)τ函数值y 随X 的增大而增大,• 1 - 2m >0,解得:mv 丄,•当mv 丄时,函数值y 随X 的增大而增大;(2) τ函数图象与y 轴的负半轴相交,• m- Iv 0, 1 - 2m≠ 0解得:mv 1且m 尹g ,1•当mv 1且m —时,函数图象与y 轴的负半轴相交;(3) τ函数图象过原点,• m - 1 = 0,解得:m = 1,•当m =1时,函数图象过原点. 16•解:(1)当XV 5时,设函数解析式为 y = kx ,将X = 5, y = 15代入得:5k =15,解得k = 3,•当 x ≤ 5 时,y = 3x , 解得:k = 4, b =- 5.•当 x > 5 时,y = 4x - 5.(2) 由(1)解析式得出:X ≤ 5自来水当x >5时,设函数的解析式为 y = kx+b ,将 X = 5, y = 15; X = 8, y = 27 代入得:Γ5k+bll5 t Sk+b=2?公司的收费标准是每吨 3元.x > 5自来水公司的收费标准是每吨4元; (3) 若某户居民六月交水费 31元,设用水X 吨,4x - 5 = 31,解得:X = 9 (吨) 17.( 1)证明:连接DF ,∙∙∙E 为AD 的中点,∙∙∙ AE = DE ,∙∙∙ AF // BC ,∙∠ AFE = ∠ DBE ,在厶AFE 和厶DBE 中,r ZAFE=ZDBE彳 ZFEA=ZDEB,;AE=DE•••△ AFE 也厶 DBE (AAS ),∙ EF = BE ,∙∙∙ AE = DE ,∙四边形AFDB 是平行四边形,• BD = AF ,∙∙∙ AD 为中线,• DC = BD ,• AF = DC ;(2)四边形ADCF 的形状是菱形,理由如下:∙∙∙ AF = DC , AF // BC ,•四边形ADCF 是平行四边形,∙.∙ AC ⊥ AB ,∙∠ CAB = 90°,∙∙∙ AD 为中线,•平行四边形 ADCF 是菱形;•AD将B , D 两点坐标代入y = kx+b 中,Γk+b=6t ⅞k+b=O3 27(2)把 A (1, 0), C (9, 6)分别代入 y =--r x+b , 得出b =「,或b =」,4 4∙:二或I..-'7 ".4 419.解:(1)如图所示:△ A i B i C i 即为所求,点 B i 的坐标为:(2)如图所示:△ A 2B 2C 2即为所求,点C 2的坐标为(1 , 1)20 .解:(1) n = 1 - 35% - 20% - 15% = 30%,•••此次抽样的书本总数为 12÷ 30% = 40 (本), ∙ m = 40 - 12 - 14 - 6= 8,故答案为:8, 30% .(2)补全条形图如图:AD = 6.∙∙∙ D(1, 6) 2,- 1);某較师生捐书种类i⅛兄築形貌计團答:估计有600本科普类图书.21.解:(1)τ点P (2m+4 , m- 1),点P 在y 轴上,.∙. 2m+4 = 0,解得:m=- 2,贝U m —1 = —3,故P (0, —3);(2)τ点P的纵坐标比横坐标大3,.m- 1 —( 2m+4) = 3,解得:m=- 8,故P (—12,—9);(3)τ点P在过A ( 2,—4)点且与X轴平行的直线上,.∙. m — 1 =— 4,解得:m=- 3,.∙. 2m+4 =—2,故P (—2,—4).22.( 1)证明:过点O作OM丄AB,∙∙∙ BD是∠ ABC的一条角平分线,.OE= OM,•••四边形OECF是正方形,.OE= OF,.∙. OF = OM,∙∙∙ AO是∠ BAC的角平分线,即点O在∠ BAC的平分线上;(2)解:•••在Rt △ ABC 中,AC = 5, BC= 12 ,∙AB= J A/+詁=JQ + Ia= 13,设CE = CF = x, BE= BM = y, AM = AF = Z ^+y=12•「卄z=13,L x+z=5解得:*尸1D,Us∙∙∙CE= 2,∙∙∙ OE= 2.令X= 0, y =-.,∙ B (0, 「;),∙OB='.,令y= 0,•••- ;χ+ -= 0,∙ X= 3,∙ A (3, 0),∙∠BAO = 30 ° ,故答案为:(3, 0),(0, :\), 30;(2)由运动知,OC = t, AP = 2t,∙CB= OB - OC =.:";- t,∙∙∙ PQ⊥ OA,∙∠AQP = 90 °,在Rt△ APQ 中,∠ PAQ = 30°,23.解:(1)τ直线AB解析式为y=^字汁7E,∙OA= 3,在Rt △ AOB中,tan∠ BAO =OB J√3OA ~2故答案为::;-1, t;(3)τ PQ// BC,•••当PQ = BC 时,t = :-;- t,.t= ,四边形PBCQ是平行四边形.2√3(4)由(3)知,t= 时,四边形PBCQ是平行四边形,•PB= 2 .「;-2t = 「;, PQ= t=.,•PB≠PQ,•四边形PBCQ不能构成菱形.若四边形PBCQ构成菱形则PQ/ BC,PQ = BC,且PQ = PB时成立.则有t = 2亡了—2t,∙t = —2r∙LΞ√3BC= BP —PQ =_3,OC = OB -BC = /亿√3I33√3C OC 311VV C= t =还=23•当点C的速度变为每秒一个单位时, t=丄秒时四边形PBCQ是菱形.。
湘教版八年级数学上册期末测试卷(带答案)
湘教版八年级数学上册期末测试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50°9.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.若代数式1x x -有意义,则x 的取值范围为__________. 3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 商品甲 乙 进价(元/件)60x + x 售价(元/件) 200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a ),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、D6、A7、D8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、0x ≥且1x ≠. 3、a (a ﹣b )2.4、x >3.5、46、45︒三、解答题(本大题共6小题,共72分)1、x=32、3x 3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(5a 2+3ab )平方米,63平方米6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。
湘教版八年级数学下册期末考试卷含答案
湘教版八年级数学下册期末考试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.下列计算正确的是( )A .235+=B .3223-=C .623÷=D .(4)(2)22-⨯-=4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.分解因式:22a4a2-+=__________.3.若分式1x x-的值为0,则x 的值为________. 4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、D6、A7、C8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、()22a 1-3、1.4、x >15、26、20三、解答题(本大题共6小题,共72分)1、原方程无解2、4ab ,﹣4.3、(1)a ≥2;(2)-5<x <14、(1)略(25、24°.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
湘教版八年级上册数学期末考试试题含答案
湘教版八年级上册数学期末考试试卷一、单选题1.在实数-2、13-、0 )A .-2B .13-C .0 D2.若a b >,则下列不等式变形正确的是( )A .22ac bc >B .22a b ->-C .33a b -<-D .22a b -<- 3.如图,在△ABC 和△DEF 中,AB=DE ,∠B=∠DEF ,添加下列哪一个条件无法证明△ABC ≌△DEF ( )A .AC//DFB .∠A=∠DC .AC=DFD .BE=CF 4x 的取值范围在数轴上表示正确的是( ) A . B .C .D .5.下列命题,是真命题的是( )A .直角三角形的一个内角为32°,则另外一个锐角为68°B .如果0ab =,那么0a =C .有两边和一角对应相等的两个三角形全等D .如果一个数的立方根等于这个数本身,那么这个数是0或±16.将一副三角板按如图所示的方式放置,则DAC ∠等于( )A .75°B .90°C .105°D .120°7是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.下列尺规作图,能判断AD 是△ABC 边上的高是( )A .B .C .D . 9.如果0ab >,0a b +<,那么下面各式不正确的是( )A a -B 1C b -D = 10.某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( )A .2x 1x x 3+=+B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭D .1x 1x x 3+=+二、填空题11.在实数范围内因式分解:22x -4=____________.12.2019新型冠状病毒(2019-nCoV ),因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名.新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株,它的直径约在()9880~120nm 1nm 10m -=,120nm 用科学记数法可表示为______m .13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.计算:))2020202122的结果是______.15.关于x的分式方程2213m xx x+-=-有增根,则此分式方程的增根为______.16.如图,点D、点E分别是ABC的边BC和AC的中点,若DEC的面积是22cm,则ABC 的面积为______.17.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=ABC的三边长分别为2,4,ABC的面积为______.18.已知关于x,y的方程组325x y ax y a-=+⎧⎨+=⎩的解x,y都为正数,满足不等式46a a+-<成立的整数a的值为______(写一个即可).三、解答题1910 1(2020) 3π-⎛⎫-⎪⎝⎭20.解不等式组475(1)1332x xx x-<-⎧⎪+⎨<-⎪⎩,并求出不等式组的所有整数解.21.先化简:2212111x xx x⎛⎫-+-÷⎪-⎝⎭,再从23x-<<的范围内选取一个你喜欢的x值代入求值.22.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)求证:FC AD =;(2)若4AE =,BE =ABCD 的面积.23.老师展示小明解方程2 1.512112x x x-+=--的过程如下: 解:方程两边同时乘以21x -,得21 1.5x -+=- 解这个方程,得12x =- 检验:当12x =-时,210x -≠12x ∴=-是原分式方程的解 同学们一眼就发现了他的解法有错误,你发现了吗?请你帮助小明写出正确的解答过程.24.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,邵阳某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩;(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有30000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过81000元,那么甲厂房至少生产了多少天?25.设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:(0)(0)a b a a b a a b-≤⎧⎪⊕=⎨>⎪⎩例如:111(3)33⊕-==--;(3)2(3)25-⊕=--=-,()2211(1)1x x x x ++⊕-=-,参照上面材料,解答下列问题:(1)计算:(21⊕;(2)解方程:()()22311x x x ⊕-=⊕-; (3)解不等式:4(43)0(7)x x -⊕->⊕+.26.如图,在ABC 中,90ACB ∠=︒,4cm AC CB ==,F 是AB 边上的中点,将AFC ∠绕点F 顺时针旋转,旋转角为()090αα︒<<︒得到A FC ∠'',A FC ∠''的两边分别与AC 、BC 边相交于点D ,E 两点,连结DE .(1)求证:ADF CEF ≌;(2)在此旋转变化的过程中,DEF ∠的大小是否发生变化?若不变,请求出DEF ∠的度数;若变化,请说明如何变化.(3)当BEF 为等腰三角形时,求CE 的长度(温馨提示:在Rt ABC 中222AC BC AB +=)参考答案1.A【分析】把每个数的绝对值计算出来,作出比较即可得到解答.【详解】解:∵|-2|=2,1133-=,|0|=0, =又1023<<<, ∴绝对值最大的实数是-2,故选A .【点睛】本题考查绝对值的综合应用,熟练掌握绝对值的求法和实数的大小比较方法是解题关键. 2.C【分析】根据不等式的性质逐项判断即可求解.【详解】解:A. 当c ≠0时,22ac bc >,当c =0时,22ac bc =,故原选项变形错误,不合题意;B. 22a b --<,故原选项变形错误,不合题意;C. 33a b -<-,故原选项变形正确,符合题意; D. 22a b -->,故原选项变形错误,不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.3.C【分析】根据全等三角形的判定定理依次分析判断即可.【详解】A :∵AC//DF ,∴∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ,不符合题意;B :∵∠A=∠D ,AB=DE ,∠B=∠DEF ,利用ASA 可得△ABC ≌△DEF ,不符合题意; C :∵AC=DF ,AB=DE ,∠B=∠DEF ,据此无法证明△ABC ≌△DEF ,符合题意;D :∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,利用SAS 可得△ABC ≌△DEF ,不符合题意;故选:C.【点睛】本题主要考查了全等三角形的判定,熟练掌握相关概念是解题关键.4.D【分析】根据代数式有意义的条件,得1-x ≥0,且1-x ≠0,转化为不等式问题求解即可.【详解】根据题意,得1-x ≥0,且1-x ≠0,解得x <1,图示如下:故选D .【点睛】本题考查了分母中含有二次根式的代数式有意义的条件,不等式解集的表示法,熟练掌握代数式有意义的条件,准确用数轴表示不等式的解集是解题的关键.5.D【分析】根据题意逐项判断即可求解.【详解】解:A. 直角三角形的一个内角为32°,则另外一个锐角为58°,故原选项是假命题,不合题意;B. 如果0ab =,那么0a =或b =0,故原选项是假命题,不合题意;C. 有两边和一角对应相等的两个三角形不一定全等,故原选项是假命题,不合题意;D. 如果一个数的立方根等于这个数本身,那么这个数是0或±1,故原选项是真命题,符合题意.故选:D【点睛】本题考查了判断命题的真假,考查了直角三角形的性质,全等三角形的判定,立方根,两个数相乘等知识,熟知相关知识是解题关键.6.C【分析】根据三角板的每个角度及三角形的有关性质求解.【详解】解:在△AFC中,由三角形外角性质可得:∠DAC=∠DFC+∠C=60°+45°=105°,故选C.【点睛】本题考查三角形的综合应用,熟练掌握三角板的构成及三角形的外角性质是解题关键.7.B【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.8.B【详解】试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.9.D【分析】由ab>0,a+b<0,可得出a<0,b<0,再根据二次根式的性质及乘除法运算法则即可得到解答.【详解】解:∵ab>0,a+b<0,∴a<0,b<0.∴A a a=-,正确,不符合题意;B1==,正确,不符合题意;C b b==-,正确,不符合题意;D、因为二次根式的被开方数不能为0故选D.【点睛】本题考查了二次根式与不等式的综合应用,解题的关键熟练掌握二次根式的性质、二次根式乘除法的运算法则及不等式的基本性质.10.D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.2()(x【详解】试题分析:首先提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-2)=2(x)(x考点:因式分解12.71.210-⨯【分析】先换算单位,再根据科学记数法的定义即可得出答案.【详解】-9-7120nm=12010m=1.210m ⨯⨯,故答案为-71.210⨯.【点睛】本题考查的是科学记数法,注意科学记数法的形式为n 10a ⨯,其中110a ≤<. 13.60【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】连接AB ,根据题意得:OB =OA =AB ,∴△AOB 是等边三角形,∴∠AOB =60°. 故答案为60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB =OA =AB .142【分析】利用积的乘方的逆运算和同底数幂乘法的逆运算解答.【详解】))2020202122=)))20202020222+=))2020222⎡⎤⨯⎣⎦2,2.【点睛】此题考查积的乘方的逆运算和同底数幂乘法的逆运算,平方差计算公式,二次根式的混合运算,熟记运算公式是解题的关键.15.3x =【分析】增根是原方程化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,然后再代入原方程所化成的整式方程中检验即可得到正确解答.【详解】解:∵原方程有增根,∴最简公分母x (x −3)=0,解得x =0或3,又原方程两边同乘x (x −3)后可得:x (2m +x )-2(x -3)=x (x -3),当x =0时,则m 无解,当x =3时,m =-1.5,∴x=0不是原方程的增根,x =3是原方程的增根,故答案为:x =3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可得到解答.16.28cm【分析】首先根据三角形的中线将三角形分成面积相等的两部分,求出ACD S ∆是多少;然后根据D 是BC 的中点,用ACD ∆的面积乘以2,求出ABC ∆的面积为多少即可.【详解】解:E 是ADC ∆的边AC 的中点,2224()ACD S cm ∆∴=⨯=;又D 是BC 的中点,2428()ABC S cm ∆∴=⨯=.故答案是:28cm .【点睛】此题主要考查了三角形的面积的求法,解答此题的关键是要明确:三角形的中线将三角形分成面积相等的两部分.17.4【分析】把a 、b 、c 的值代入所给公式即可得到答案.【详解】解:由题意可得:ABC S=4=,故答案为4.【点睛】本题考查代公式计算,熟练掌握代公式计算的方法、平方与开平方的计算方法是解题关键,其中认真细致的习惯和态度也是不可或缺的 .18.3或4【分析】把a 看成常数求出x 和y 的值,再根据x 和y 都是正数,求出a 的取值范围,然后根据a 的取值范围化简不等式46a a +-<,结合条件a 为整数即可得出答案.【详解】解:∵325x y a x y a -=+⎧⎨+=⎩①②①+②得:363x a =+解得:21x a =+将21x a =+代入①中得:2y a =-又∵x 和y 都是正数∴21020a a +>->,解得:2a >当24a <≤时,46a a +-<可化简为46a a +-<可得46<恒成立又a 为整数,故a 的值为3或4;当4a >时,46a a +-<可化简为46a a +-<可得5a <又a 为整数,故无解;综上所述,故a 的值为3或4.【点睛】本题考查了含参数的二元一次方程组与不等式的结合,难度系数较大,把a 看成常数求解出二元一次方程组的解是解决本题的关键.19【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及算术平方根定义计算即可求出值.【详解】101(2020)3π-⎛⎫- ⎪⎝⎭341=+-【点睛】本题考查了绝对值、零指数幂、负整数指数幂法则,以及算术平方根定义、解题的关键是掌握相关的运算法则.20.不等式组的解集为23x -<<;不等式组的整数解为-1,0,1,2【分析】先解不等式组,分别求出每个不等式的解,再求出每个解的公共部分,即得不等式组的解集,而满足不等式组解集条件的所有整数即为不等式组的所有整数解.【详解】解:解不等式4x -7<5(x -1)可得:x >-2, 解不等式1332x x +<-可得: x <3, ∴不等式组的解集为:-2<x <3,∵-1、0、1、2都满足大于-2且小于3这个条件,∴所以不等式组的所有整数解为:-1、0、1、2.【点睛】本题考查不等式组的求解,熟练掌握不等式组的求解方法及整数解的意义和求法是解题关键 .21.1x x+;当2x =时,原式32= 【分析】先化简分式,再把2x =代入进行计算即可.【详解】 解:原式21(1)(1)(1)x x x x x =--+÷- 2(1)(1)(1)1x x x x x -+=⋅-- 1x x+=, 当2x =时,原式21322+==. 【点睛】 本题考查了分式的化简求值,解题的关键是掌握因式分解.22.(1)见解析;(2)【分析】(1)利用ASA 证明△AED ≌△FEC 即可;(2)根据题意,=ABF ABCD S S △四边形,根据1·2AF BE 计算即可. 【详解】(1)∵AD ∥BC ,∴∠ADE =∠FCE ,∵∠AED =∠FEC ,DE =CE ,∴△AED ≌△FEC ,∴FC =AD ;(2)∵△AED ≌△FEC ,∴=ADE S S △△FCE ,AE =EF ,∴=ABF ABCD S S △四边形,∴=ABF ABCD S S △四边形=1·2AF BE =122AE BE AE BF ⨯==4⨯【点睛】本题考查了平行线的性质,三角形全等的判定和性质,割补法计算图形的面积,熟练掌握三角形全等的判定和性质,灵活运用割补法计算面积是解题的关键.23.无解【分析】先去分母化为整式方程,解整式方程,最后检验即可求解.【详解】.解:方程两边进了乘以21x -,得221 1.5x x -+-=-, 解得12x =, 检验:当12x =时,210x -= 12x ∴=不是原分式方程的解,原方程无解. 【点睛】本题考查了分式方程的解法,熟知解分式方程的步骤是解题关键,注意去分母时不要漏乘,小明的解法出现的错误就是漏乘.24.(1)甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩.(2)甲厂房至少生产30天.【分析】(1)根据等量关系式:乙厂房加工时间-甲厂房加工时间=5,列写分式方程并求解; (2)设甲厂房生产了y 天,根据题意,不等关系为:甲厂房的费用+乙厂房的费用≤81000,列写不等式可求得.【详解】解:(1)设乙厂房每天生产x 箱口罩,则甲厂房每天生产1.5x 箱口罩, 依题意,得6000600051.5x x-=,解得400x = 经检验:400x =是原分式方程的解,且符合实际意义.∴1.5600x =答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩.(2)设甲厂房生产口罩y 天.依题意,得300006001500120081000400y y -+⨯< 解得30y ≥答:甲厂房至少生产30天.【点睛】本题考查分式方程和不等式的应用,解题关键是依据题意,找出等量关系式(不等关系式).25.(11;(2)32x =-;(3)2x < 【分析】(1)根据题目中新定义运算规则得到(21⊕=进行化简即可;(2)利用题目中新定义运算规则得到22311x x x =--,然后解分式方程即可; (3)利用题目中新定义运算规则得到417x x -->--,然后解此一元一次不等式即可.【详解】解:(1)(211⊕==; (2)∵()2233x x x x ⊕-=-,()221111x x ⊕-=- ∴22311x x x =--, 去分母,得()31x x +=, 解得32x =-, 经检验32x =-是原方程的解; (3)∵4(43)4(43)41x x x -⊕-=---=--,0(7)0(7)7x x x ⊕+=-+=--,∴417x x -->--,解得2x <.【点睛】本题属于新定义问题,考查了二次根式中分母有理化、解分式方程及解一元一次不等式,理解题意,并能根据新定义运算规则进行求解是解题的关键.26.(1)见解析;(2)不会发生变化,45DEF ∠=︒;(3)2cm或(4cm -【分析】(1)由等腰直角三角形的性质可得∠A =∠B =45°=∠ACF =∠BCF ,AF =BF =CF ,AB ⊥CF ,由ASA 可证△ADF ≌△CEF ;(2)由全等三角形的性质可得DF =EF ,即可求解;(3)分三种情况讨论,即可得解.【详解】(1)证明: ∵∠ACB =90°,AC =CB =4cm ,F 是AB 边上的中点,∴∠A =∠B =45°=∠ACF =∠BCF ,AF =BF =CF ,AB ⊥CF ,∴∠AFC =∠A ′FC ′=90°,∴∠AFD =∠CFE =α∴在△ADF 和△CEF 中, AFD CFE AF CFA ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△CEF (ASA )(2)不会发生变化,45DEF ∠=︒,理由如下:∵△ADF ≌△CEF ,∴DF =EF ,∵∠DFE =90∘,∴∠DEF =∠EDF =45°;(3)当EF BE =时,90FEB ∠=︒,∵AC=CB=4cm ,F 是AB 的中点,E 是BC 的中点,∴CE=BE=122BC cm =, 当BE BF =时,∵AC=CB=4cm ,F 是AB 的中点,∴AF=CF=BF=FC ’=12AB =cm,∴(4cm CE BC BE BC BF =-=-=-;当EF BF =时,点E 与点C 重合,此时旋转角0α∠=︒,又090α︒︒<<EF BF ∴=不成立.综上所述,当BEF 为等腰三角形时,CE 的长度为2cm 或(4cm -.【点睛】本题是四边形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理的应用,灵活运用这些性质进行推理是本题的关键.。
湘教版八年级数学上册期末考试卷(可打印)
湘教版八年级数学上册期末考试卷(可打印) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=--- 4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.(1)已知x 35y 352x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y=22-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,已知一次函数y kx b =+ 的图象经过A (-2,-1), B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式(2)△AOB 的面积5.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、B7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、22()1y x =-+3、3m ≤.4、255.5、26、15.三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、(1)42,(2)13+-3、(1)102b -≤≤;(2)24、(1)4533y x =+;(2)525、(1)略;(2)略.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
湘教版八年级数学上册期末考试卷及答案【全面】
湘教版八年级数学上册期末考试卷及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .无法确定5.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.33x x -=-,则x 的取值范围是________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB=4,则AC 的长是________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:()()22141a a a +--,其中18a =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.已知OP 平分∠AOB ,∠DCE 的顶点C 在射线OP 上,射线CD 交射线OA 于点F ,射线CE 交射线OB 于点G .(1)如图1,若CD ⊥OA ,CE ⊥OB ,请直接写出线段CF 与CG 的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC ,试判断线段CF 与CG 的数量关系,并说明理由.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、B6、A7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、3.3、3x≤4、x=25、36、3三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、23、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)CF=CG;(2)CF=CG,略5、(1)略;(2)8.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版数学八年级上册期末复习题(一)一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 (★)A . 2B . ±2C .4D . ±4 2.在实数23-,0,34,π(★) A .1个 B .2个 C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是(★)4. 如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 (★)A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是(★)A .0B .1C .2D .-26.与三角形三个顶点的距离相等的点是 (★) A .三条角平分线的交点 B .三边中线的交点 C .三边上高所在直线的交点 D .三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ; ②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 (★)A .1个B .2个C .3个D .4个8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是(★)B ACB ′(第4题)lC.A .211 B .1.4 C .3 D .29.如图点A 和B 关于X 轴对称,已知点A 坐标是(4,4), 则点B 的坐标是 (★) A .(4,-4) B .(4,-2) C .(-2,4) D .(-4,2)10.一个正方体的体积是99,估计它的棱长的大小在 (★)A .2与3之间B .3与4之间C .4与5之间D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 . 14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…… 如此继续下去,结果如下表: 所剪次数12 3 4 … n 正三角形个数 471013…a nn = (用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算 ()32281442⨯+--)(18.(8分)如图,实数a 、b 在数轴上的位置, 化简222)(b a b a -+-第16题DO CBA第14题图OXABCy第9题图19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分)20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。
21.(8分)如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,.(1)求出ABC △的面积.(2)在图中作出ABC △关于y 轴的对称图形111A B C △.(3)写出点A1,B1,C1的坐标. 22.(10分)已知:△ABC 为等边三角形,D为AB 上任意一点,连结BD . (1)在BD 左下方...,以BD 为一边作等边三角形BDE (尺规作图,保留作图痕迹,不写作法) (2)连结AE ,求证:CD =AE第21题图1)xyAB CO524 6 -5-2a五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)如图,△ABC 中,AD ⊥BC ,点E 在AC 的垂直平分线上,且BD=DE. (1)如果∠BAE= 40°,那么∠B=_______° ,∠C=_______° ;(2)如果△ABC 的周长为13cm ,AC=6cm ,那么△ABE 的周长=_________cm ; (3)你发现线段AB 与BD 的和等于图中哪条线段的长,并证明你的结论.24.(12分)含30o 角的直角三角板ABC (30B ∠=o )绕直角顶点C 沿逆时针方向旋转角α(90α∠<o ),再沿A ∠的对边翻折得到A B C ''△,AB 与B C '交于点M ,A B ''与 BC 交于点N ,A B ''与AB 相交于点E . (1)求证:ACM A CN '△≌△.(2)当30α∠=o 时,找出ME 与MB '的数量关系,并加以说明. EBMACA 'NB '八年级上册期末复习题(一)答案一. 精心选一选(本题共10小题,每题3分,共30分.)二.耐心填一填(每题3分,共18分,直接写出结果)11. 3+2 12.±56;-8. 13.(-3,4) 14. ①BC=AD ;② ∠ABC=∠DAB ;③ ∠C=∠D ; ④AC=BD ;……(只添一个即可)15. 700或40016. 3n+1三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算:()32281442⨯+--)( =2-4+4×21= 2-4+2 = 0 18.(8分)如图,实数a 、b 在数轴上的位置, 化简222)(b a b a -+-解:222)(b a b a -+- =-a-b-(a-b)=-a-b-a+b =-2a19.(8分)∵AD ∥BC∴∠ADB=∠DBC ∠ADC+∠C=1800 ∠ADC=1500 ∵∠ABD=∠DBC ∠A=120°∴∠ADB=∠ABD =300 ∠BDC=∠ADC - ∠ADB=900 ∴AD =AB=4cm在R t △BCD 中, ∵∠DBC=300∴BC=2CD=8cm ,∴AB+BC+CD+DA=20 cm .四.解答题(本大题有3个小题,共26分)题号 1 2 3 4 5 6 7 8 9 10 答案 ABCDCDCDBC20.(8分)(略)21.(8分)(1)(2分)S△ABC =215(2)(3分)(略) (3)(3分)A1(1,5),B1(2,0),C1(4,3)22.(10分)(1)△BDE 即为所求.(4分) (2)(6分)(略)五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)(1)(2分)∠B=_70__° ,∠C=__35__° (2)(2分)△ABE 的周长=__7___cm (3)(6分)解:AB+BD=DC .证明:(略) 24.(12分)(1)(6分)(略)(2)(6分)当30α∠=o 时,ME =21MB '. 证明:(略)班级姓名湘教版数学八年级上册期末复习题(二)题号一二三总分一、选择题(10题,每小题3分,共30分)1、下列条件中能证明两个三角形全等的是()A、有两条边对应相等的两个三角形B、有两个对应角相等的两个三角形C、有三条边对应相等的两个三角形D、有一个角和一条边对应相等的两个三角形2、下列说法正确的是()A、面积相等的两个三角形全等B、周长相等的两个三角形全等C、能够完全重合的两个三角形全等,D、等底等高的两个三角形全等3、如图所示,△AB C≌△EFD,那么()A、AB=DE,AC=EF,BC=DFB、AB=DF,AC=DE,BC=EFC、AB=EF,AC=DE,BC=DFD、AB=EF,AC=DF,BC=DE4、如图所示△AB C≌△CDA,并且AB=CD,那么下列结论错误的是()A、∠1=∠2B、CA=ACC、∠D=∠BD、AC=BC5、如图所示,左右成轴对称图形的是()6、点P(2,—3)关于y轴的对称点的坐标是()A、(2,3 )B、(-2,—3)C、(—2,3)D、(—3,2)7、下列图形中不是轴对称图形的是()A、线段B、相交直线C、有公共端点的两条相等线段D、有公共端点的两条不相等线段8、全等和对称的关系()A、全等必对称B、对称必全等C、全等不一定对称D、对称不一定全等9、如图所示,已知AB=A′B′,∠A=∠A′,若△AB C≌△A′B′C′,还需补充的条件是否()A、∠B=∠B′B、∠C=∠C′C、AC= A′C′D、以上都对10、如图所示在三角形△AB C中AB=AC,AD是△AB C的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,则下列四个结论中,○1AB上一点与AC上一点到D的距离相等;○2AD上任意一点到AB、AC的距离相等;○3∠BDE=∠CDF;○4BD=CD,AD⊥BC。
其中正确的个数是() A、1个 B、2个 C、3个 D、4个二、填空题(10小题,每小题2分,共20分)11、等边三角形是图形,它共有条对称轴;12、若△AB C≌△BAD,且AB=4cm,BC=3cm,则AD的长为;13、如图所示,AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE PF(填“﹥”“﹦”“﹤”);14、已知点(x,y)与点(-2,-3)关于x轴对称,那么x+y= ;15全等变换包括变换,变换,变换;16、等腰三角形的一个角等于40°,则另两个角为;17、如图所示,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为;18、如图所示PD⊥AB,PE⊥AC,且 PD=PE,连接AD,则∠BAP ∠CAP;19、如图所示,在△ABC中,CD是∠ACB的平分线D E∥BC交AC于E,若DE=7cm,AE=5cm,则AC= cm;20、如图所示,将△ABC绕其顶点A顺时针旋转20°后得△ADE,则△ABC与△ADE是关系,且∠BAD的度数为;三、综合解答(共50分)21如图所示,已知AD=BC,AB=DC,试判断∠A与∠B的关系,下面是小颖同学的推导过程,你能说明小颖的每一步的理由吗?(共6分)解:连结BD在△ABD与△CDB中AD=BC( )AB=CD( )BD=DB( )∴△ABD≌△CDB( )∴∠ADB=∠CBD( )∴AD∥BC()∴∠A+∠ABC=180°()。