第七讲作业-最优风险资产组合

合集下载

投资学第七章最优风险资产组合PPT课件

投资学第七章最优风险资产组合PPT课件

投资组合理论
介绍现代投资组合理论, 包括马科维茨投资组合理 论和夏普资本资产定价模 型。
投资组合优化
阐述如何通过优化技术来 寻找最优风险资产组合。
学习目标
01
理解最优风险资产组合 的概念及其重要性。
02
掌握现代投资组合理论 的基本原理和模型。
03
学习如何运用优化技术 来构建最优风险资产组 合。
04
风险和回报的关系
风险和回报之间存在正相关关系,即高风险的证券组合可能会带来更高的预期回 报,而低风险的证券组合则可能带来较低的预期回报。投资者应该根据自己的风 险承受能力和预期回报要求来选择适合自己的证券组合。
04 动态最优风险资产组合
时间变化对最优组合的影响
时间变化对市场环境、投资者偏好和风险资产价格波动都有影响,从而影响最优风 险资产组合的构成和权重。
投资学第七章最优风险资产组合 ppt课件
目录
• 引言 • 最优风险资产组合的基本概念 • 最优风险资产组合的构建 • 动态最优风险资产组合 • 投资分散化的重要性 • 最优风险资产组合的实际应用 • 结论
01 引言
主题简介
01
02
03
最优风险资产组合
探讨如何构建在风险和回 报之间达到最佳平衡的投 资组合。
模拟分析
通过模拟不同市场环境和资产类别的变化,可以评估投资分散化策略在不同情 境下的表现,为投资者提供更准确的决策依据。
06 最优风险资产组合的实际 应用
个人投资者的应用
分散风险
个人投资者可以通过分散投资到 不同的资产类别和地区,降低单 一资产的风险,实现最优风险资
产组合。
长期投资
个人投资者应该树立长期投资的理 念,根据自身的风险承受能力和投 资目标,选择合适的投资组合,以 获得稳定的收益。

07最优风险资产组合

07最优风险资产组合

E(r)
S
P Q
风险资产的有效边界
更多风险忍耐的投资者
更多风险 厌恶的投资者
标准差
7-31
贷出和借入的有效边界
E(r) B Q P
CAL
A
rf F
7-32
7-33
7-34
w i ri c i 1 n wi 1 i 1
n
22
7-23
这样共有n+2方程,未知数为wi(i=1, 2,…,n)、λ和μ,共有n+2个未知量,其解 是存在的。 注意到上述的方程是线性方程组,可以通 过线性代数加以解决。
23
7-24
T 1 T 1 此时令: A 1 r r 1 T 1 T 1 2 B r r, C 1 1 , D BC A
7-1
第7章
最优风险资产组合
7-2
分散化降低风险
标准差
独特风险
市场风险
证券个数

7-3
两种证券的投资组合:收益率
rp = W1r1 + W2r2 W1 = 证券1的投资比例 W2 = 证券2的投资比例 r1 = 证券1的期望收益率 r2 =证券2的期望收益率 n
w
i 1
i
1
7-4
两种证券的投资组合:风险
均值
wg 方差
27
7-28
扩展到无风险资产
最优组合成为线形。
风险资产和无风险资产的单一组合将占 主要地位。
7-29
可选择的资本配置线
E(r) CAL (P)
M M CAL (A)
P
A
P
CAL (全局最小方差)
A G

第七讲作业-最优风险资产组合

第七讲作业-最优风险资产组合

第七讲作业-最优风险资产组合第七讲作业-最优风险资产组合下面的数据可用于第1至第8题:一位养老基金经理正在考虑三种共同基金。

第一种是股票基金,第二种是长期政府债券与公司债券基金,第三种是回报率为8%的以短期国库券为内容的货币市场基金。

这些风险基金的概率分布如下:名称期望收益率(%) 标准差(%)股票基金(S) 20 30债券基金(B) 12 15基金回报率之间的相关系数为0.10。

1. 两种风险基金的最小方差资产组合的投资比例是多少?这种资产组合回报率的期望值与标准差各是多少?2. 制表并画出这两种风险基金的投资机会集合,股票基金的投资比率从0%到100%,按照20%的幅度增长。

3. 从无风险回报率到机会集合曲线画一条切线,你的图表表现出来的最优资产组合的期望收益与标准差各是多少?4. 计算出最优风险资产组合下每种资产的比率以及期望收益与标准差。

5. 最优资本配置线下的最优酬报与波动性比率是多少?6. 投资者对他的资产组合的期望收益率要求为14%,并且在最佳可行方案上是有效率的。

a. 投资者资产组合的标准差是多少?b. 投资在短期国库券上的比率以及在其他两种风险基金上的投资比率是多少?7. 如果投资者只用两种风险基金进行投资并且要求14%的收益率,那么投资者资产组合中的投资比率是怎样安排的?把现在的标准差与第6题中的相比,投资者会得出什么结论?8. 假设投资者面对同样的机会集合,但是不能够借款。

投资者希望只由股票与债券构成期望收益率为4%的资产组合。

合适的投资比率是多少?由此的标准差是多少?如果投资者被允许以无风险收益率借款,那么投资者的标准差可以降低多少?9.Risk and Return for Security PortfoliosSuppose you have $100 to invest in two assets, A and B. A and B are the only assets available. A is a risky asset and B is a risk-free asset. The expected return on A is 5%, and B earns a risk-free rate of 3%. The standard deviations of returns on A and B are 10% and 0%, respectively. The covariance between the returns on the two assets is 0.(a)If you invest $30 in A and $70 in B, what is the expected return on your portfolio?(b)What is the standard deviation of return for the portfolio in (a)?(c)If you want to invest $130 in A, how much do you have to short sell B? Assumeyou can fully use the proceeds from the short sale, and ignore margin and collateral requirements.(d)Calculate the expected return and the standard deviation of return for the portfolio in (c).(e)If you short sell $x of B and close your position a year later, how much do you pay when you buy back B? Ignore margin and collateral requirements.10.Optimal AllocationThere are only two assets: a risk-free asset which earns 7%, and a risky asset which earns an expected return of 15% and has a standard deviation of 22%.(a) What is the optimal allocation, y*, invested in the risky portfolio if the risk aversion parameter A = 4?(b) What are the expected return E(rC) and the standard deviation σC of the c omplete portfolio, and the utility UC whenholding the complete portfolio?(c) The borrowing rate is 9% (the lending rate is still 7%). Does this affect the investor with risk aversion A = 4? For another investor whose risk aversion A is 1.1, what is his optimal allocation y*?11.Your utility function is U = E(r) –? Aσ2, and you are risk averse. (a) Draw the shape of two utility indifference curves with utility scores 5% and 10%. Label the axes. (The curves do not have to be exact. Simply draw the shape.)(b) IBM has an expected return of 10% and standard deviation of 20%. Is it possible that IBM lies on the indifference curve with utility score = 5%? Is it possible that IBM lies on the indifference curve with utility score = 10%? Briefly explain.(c) HSBC has an expected return of 8% and standard deviation of 15%. The Risk-free rate is 4%. Using IBM, HSBC, and the risk-free asset, you form a portfolio that gives you the highest utility score. What additional information do you need in order to find this portfolio? Explain how you can find this portfolio if you are given such information.12. Consider two stocks A and B with the following characteristics:Both stocks have the same standard deviation of 30%. The expected returns on A and B are E(rA) and E(rB), respectively.The correlation between A and B is -1.(a) In a portfolio P you invest w in Stock A and 1 –w in Stock B, at what w can you achieve the minimum portfolio variance σP2?(b) What is the standard deviation of your portfolio in part (a)? Show your calculations.(c)What should the risk-free rate be (in terms of E(rA) and E(rB))? Brieflyexplain(d)Can E(rA) and E(rB) be different in equilibrium? Briefly explain 13.Your utility function is U = E(r) –? Aσ2, where A > 0.(a) Stock Q has an expected return of 15% and a standard deviation of 15%, while Stock R has an expected return of 12% and a standard deviation of 17%. Could Q and R be on the same utility indifference curve? Why or why not? (Do not use your answer in part (b) to answer this part.)(b) The risk-free rate is 6%. What value of A makes you indifferent between Stock Q and the risk-free asset?(c) Use the value of A in part (b). What is the maximum utility you can get from a portfolio that consists of Stock Q and the risk-free asset?14.You are managing a portfolio P, with an expected return of 13% and a standard deviation of 20%. The risk-free rate is 3% and the borrowing rate is 5%.(a) Your client C wants to invest 60% in P, and 40% in the risk-free asset. Find the expected return and standard deviation of your client C’s complete portfolio.(b) What is the Sharpe ratio of your portfolio P? What is the Sharpe ratio of your client C’s complete portfolio?(c) Another client D wants to invest in P and have a standard deviation of 28%. What is the expected return of his complete portfolio?(d) Draw the Capital Allocation Line (CAL). Show in the diagram where you would find Portfolio P and your clients’ portfolios (Both C’s and D’s). Label the axes.15、选择题1)Adding additional risky assets will generally move the efficient frontier to the_____ and to the _______.A) up, right B) up, left C) down, right D) down, left2)The term efficient frontier refers to the set of portfolios that ______.A) Yield the greatest return for a given level of riskB) Involve the least risk for a given level of returnC) Both a and b aboveD) None of the above answers are correct3)Asset A has an expected return of 15% and a reward-to-variability ratio of .4. Asset B has an expected return of 20% and a reward-to-variability ratio of .3. A risk-averse investor would prefer a portfolio using the risk-free asset and _______.A) asset A;B) asset B;C) no risky asset;D) can’t tell from the data given4)Diversification is most effective when security returns are __________.A) high B) negatively correlated C) positively correlated D) uncorrelated5)The standard deviation of return on investment A is .10 while the standard deviation ofreturn on investment B is .05. If the covariance of returns on A and B is .0030, the correlation coefficient between the returns on A and B is _____.A) .12 B) .36 C) .60 D) .776)Consider two perfectly negatively correlated risky securities, A and B. Security A has an expected rate of return of 16% and a standard deviation of return of 20%. B has an expected rate of return 10% and a standard deviation of return of 30%. The weight of security B in the global minimum variance is _____.A) 10% B) 20% C) 40% D) 60%7)Which of the following portfolios cannot lie on the efficientfrontier?I 8% 10% J 16% 20% K 15% 25% L 25% 38%A) Portfolio I B) Portfolio J C) Portfolio K D) Portfolio L8)The ______ average ignores compounding.A) geometric B) arithmetic C) both a and b above D) none of the above9)The geometric average of 10%, 20% and 25% is __________.A) 15% B) 18.2% C) 18.3% D) 23%10)Consider a treasury bill with a rate of return of 5% and the following risky securities: Security A: E(r) = .15; s 2 = .0400 Security B: E(r) = .10; s 2 = .0225Security C: E(r) = .12; s 2 = .1000Security D: E(r) = .13; s 2 = .0625The investor must develop a complete portfolio by combining the risk-free asset with one of the securities mentioned above. The security the investor would choose as part of his complete portfolio would be __________.A) security A ;B) security B ; C) security C ; D) security D11)An investor can design a risky portfolio based on two stocks, A and B. The standard deviation of return on stock A is 20% while the standard deviation on stock B is 15%.The correlation coefficient between the return on A and B is 0%. The expected return onstock A is 20% while on stock B it is 10%. The proportion of the minimum variance portfolio that would be invested in stock B is ________.A) 6% B) 50% C) 64% D) 100%12)In the mean-standard deviation graph, the line that connects the risk-free rate and the optimal risky portfolio, P, is called __________.A) the capital allocation lineB) the indifference curveC) the investor’s utility lineD) the security market line16.(马克威茨的资产组合理论)市场中有三种可投资的资产,其收益率分别为321r r r ,,。

博迪《投资学》(第9版)课后习题-最优风险资产组合(圣才出品)

博迪《投资学》(第9版)课后习题-最优风险资产组合(圣才出品)

第7章最优风险资产组合一、习题1.以下哪些因素反映了单纯市场风险?a.短期利率上升b.公司仓库失火c.保险成本增加d.首席执行官死亡e.劳动力成本上升答:ae。

2.当增加房地产到一个股票、债券和货币的资产组合中,房地产收益的哪些因素影响组合风险?a.标准差b.期望收益c.和其他资产的相关性答:ac。

房地产被添加到组合中后,在投资组合中有四个资产类别:股票、债券、现金和房地产。

现在投资组合的方差包括房地产收益的方差项和房地产收益与其他三个资产类别之间的协方差项。

因此,房地产收益的方差(或标准差)和房地产收益与其他资产类别收益之间的相关性影响着投资组合的风险。

(注意房地产收益和现金收益之间的相关性很有可能为零。

)3.以下关于最小方差组合的陈述哪些是正确的? a .它的方差小于其他证券或组合 b .它的期望收益比无风险利率低 c .它可能是最优风险组合 d .它包含所有证券 答:a 。

4.用以下数据回答习题4~10:一个养老金经理考虑3个共同基金。

第一个是股票基金,第二个是长期政府和公司债基金,第三个是短期国债货币基金,收益率为8%。

风险组合的概率分布如表7-1所示。

表7-1基金的收益率之间的相关系数为0.1。

两种风险基金的最小方差投资组合的投资比例是多少?这种投资组合收益率的期望值与标准差各是多少?答:机会集的参数为:E (r S )=20%,E (r B )=12%,σS =30%,σB =15%,ρ=0.10。

根据标准差和相关系数,可以推出协方差矩阵(注意()ov ,S B S B C r r ρσσ=⨯⨯):债券 股票 债券 225 45 股票45900最小方差组合可由下列公式推出:w Min(S)=()()()222,225459002252452,B S BS B S BCov r rCov r rσσσ−−=+−⨯+−=0.1739w Min(B)=1-0.1739=0.8261最小方差组合的均值和标准差为:E(r Min)=(0.1739×0.20)+(0.8261×0.12)=0.1339=13.39%σMin=()122222w w2w w ov,S S B B S B S BC r rσσ/⎡⎤++⎣⎦=[(0.17392×900)+(0.82612×225)+(2×0.1739×0.8261×45)]1/2=13.92%5.制表并画出这两种风险基金的投资可行集,股票基金的投资比率从0~100%按照20%的幅度增长。

7 最优风险资产组合

7 最优风险资产组合

E D wD , wE 1 wD D E D E 结论: 1时组合P的风险可降至零
15 15
情况三:
若 1 DE 1,
2 2 2 2 则有: P wD D wE E 2wD wE D E DE
当不允许卖空:wD , wE 0 wD D wE E P | wD D wE E | 结论: 1时组合P的风险可有一定程度降低
r 假定1:市场上存在 n 2 种风险资产,令 w (w1 , w2 ,...,wn )T
代表投资到这n种资产上的财富的相对份额,则有:
w
i 1
n
i
1
且卖空不受限制,即允许 wi 0 2.r ( E(r1 ),, E(rn ))T也是一个n维列向量,它表示每一种资 产的期望收益率,则组合的期望收益
16 16
图7.4 作为投资比例函数的组合标准差
17 17
最小方差投资组合
min w w 2wD wE D E DE
2 P 2 D 2 D 2 E 2 E
s.t. wD wE 1
18 18
组合的机会集与有效集
资产组合的机会集合(Portfolio opportunity
投资学
第7章
最优风险资产组合
1
本章逻辑: 风险资产组合与风险分散化原理 风险资产组合的优化
从资本配置到证券选择
22
7.1 分散化与投资组合风险
投资组合的风险来源:
来自一般经济状况的风险(市场风险、系统
性风险、 不可分散风险) 特别因素风险(独特风险、公司特有风险、 非系统风险、可分散风险)
28 28

最优风险资产组合

最优风险资产组合


2 E
= 基金E的方差
CovrD , rE = 基金D和基金E收益率的协方差
INVESTMENTS | BODIE, KANE, MARCUS
7-9
两个资产构成的资产组合: 风险
• 组合方差的另一种表达方式:
2 P wD wDCov(rD , rD ) wE wE Cov(rE , rE ) 2wD wE Cov(rD , rE )
INVESTMENTS | BODIE, KANE, MARCUS
7-35
最优组合和非正态收益
• 在肥尾分布下,在险价值和预期损失值会特别高, 我们应该适当减少风险组合的配置。 • 我们可以比较最优风险组合和其他组合的在险价 值与预期损失,如果某个组合的值比最优低的话, 我们可能倾向于这一组合。
INVESTMENTS | BODIE, KANE, MARCUS
– 如果 = +1.0,不会分散任何风险。. – 如果 = 0, σP 可能低于任何一个资产的标准差。 – 如果 = -1.0, 可以出现完全对冲的情况。
INVESTMENTS | BODIE, KANE, MARCUS
7-20
图 7.6 债券和股权基金的投资可行集和两条资本配置线
INVESTMENTS | BODIE, KANE, MARCUS
• 投资于一项两年期的风 险组合
– 长期投资决策的风险更 大 – 卖出一部分两年期的风 险组合来降低风险 – “时间分散化” 并不 是真正的分散化
• 第一年投资于风险组合, 第二年投资于无风险组 合。
INVESTMENTS | BODIE, KANE, MARCUS
INVESTMENTS | BODIE, KANE, MARCUS

投资学第7章最优风险资产组合-v1汇总.pptx

投资学第7章最优风险资产组合-v1汇总.pptx

精心整理
4
图 7.1 Portfolio Risk as a Function of the Number of Stocks in the Portfolio
精心整理
5
图7.2 投资组合分散化
精心整理
6
Covariance and Correlation
▪ Portfolio risk depends on the correlation between the returns of the assets in the portfolio
2 P
w
D2
2 D
在 此w E2处键E2 入2公w式Dw。ECov(rD ,rE
)
又:
Cov(rD ,rE ) DE D E
2 P
w
D2
2 D
w
2 2
EE
2w Dw E D E DE
1 DE 1
越大,组合P的方差越大
精心整理
12
情况一:
若DE 1,
则有:
2 P
w
D2
2 D
w
E2
2 E
投资学 第7章
优化风险投资组合
Optimal Risky Portfolios
精心整理
1
上章回顾:
▪ 无风险资产与风险资产组合 ▪ 资本配置线 ▪ 最优风险资产头寸
y*
E(rp ) rf
A
2 p
本章逻辑:
▪ 风险资产组合与风险分散化原理 ▪ 风险资产组合的优化 ▪ 从资本配置到证券选择
精心整理
2
)
7-10
精心整理
Table 7.2 Computation of Portfolio Variance From the Covariance Matrix

第7章-最优风险资产组合(投资学,上海财经大学)

第7章-最优风险资产组合(投资学,上海财经大学)

16

若有A、B两个股票,则可行组合在其连线 上,并视ρ的值而为直线、折线或曲线。若 有A、B、C三个股票,则可行组合一般为 一区域。
ρ=1 ρ= -1 A Z C B A



B
17
相关效应的结论:


资产相关性越小,分散化就更有效,组合风 险也就越低。 随着相关系数接近于-1,降低风险的可能性 也在增大。
t 1
5
n
2、两个资产构成的资产组合: 收益
rp rP Portfolio Return 资产组合的收益率
wr
D
D
wE r E
wD Bond Weight 债券的权重 rD Bond Return 债券的收益率 wE Equity Weight 股票的权重 rE Equity Return 股票的收益率
一、分散化和组合风险 (一)投资决策
1. 2. 3.
决策过程可以划分为自上而下的3步: 风险资产与无风险资产之间的资本配置 各类资产间的配置 每类资产内部的证券选择
2
(二)投资组合风险构成


市场风险 系统性风险或不可分散风险 公司特有风险 非系统风险或可分散风险
P128图7.1 组合风险关于股票数量的函数
25
(三)资本配置和分离特性

每个人都投资于P,而不考虑他们的风险厌恶 程度。

大多数风险厌恶者更多的投资于无风险资产。 少数的风险厌恶者在P上投资的更多。

分离特性阐明组合决策问题可以分为两个独立 的步骤。

决定最优风险组合,这是完全技术性的工作。 整个投资组合在无风险短期国库券和风险组合 之间的配置,取决于个人偏好。

最优风险资产组合

最优风险资产组合
Fra bibliotekPPT文档演模板
最优风险资产组合
图 投资组合分散化
PPT文档演模板
最优风险资产组合
投资组合的收益
▪ 投资组合的期望收益率就是组成投资组合的 各种投资项目的期望报酬率的加权平均数, 其权数是各种投资项目在整个投资组合总额 中所占的比例。其公式为:
•Wi代表投资比例
PPT文档演模板
最优风险资产组合
投资组合的风险
PPT文档演模板
最优风险资产组合
示例:续
▪ X、Y的相关系数
▪ X与Y的收益具有较强的负相关性
PPT文档演模板
最优风险资产组合
示例:续
▪ X股票与Y股票的组合的方差为:
▪ 标准差为:
▪ 可以看出,该组合相对于政府债券的组合更具有优势。一 方面取得了较高的收益,另一方面标准差较小。
PPT文档演模板
•其中,
是所有元素为1的n维列向量。
由此构造Lagrange函数
PPT文档演模板
•34
最优风险资产组合
PPT文档演模板
•35
最优风险资产组合
PPT文档演模板
•36
最优风险资产组合
令其一阶条件为0,得到方程组
PPT文档演模板
•0=[0,0,…,0] T
•37
最优风险资产组合
PPT文档演模板
•38
(%)
政府债券收 益(%)
牛市
50
25
1
5
熊市
30
10
-5
5
异常年份
20
-25
35
5
期望收益%
10.5
6
5
标准差
18.9
14.73

ch07最优风险资产组合

ch07最优风险资产组合

8-6
7.1分散化与组合风险
标准差 σ
独特风险(非系统风险)
市场风险(系统风险)
股票数量n
8-7
7.1分散化与投资组合风险
结论:一种股票:风险来自宏观经济和企业自己 两种股票: 股票组合降低风险 平均地,资产组合风险随着分散化而下降,但是分 散化降低风险的能力受到系统风险的制约 。 下图是纽约证券交易所的数据得出的投资组合分散 风险的效果。
8-8
图7-2
投资组合分散化
8-9
7.2两个风险资产的组合
我们将考察一个包括两个共同基金的投资组合,一个是专 门投资于长期债券的债券资产组合D,一个是专门投资于股权 证券的股票基金E,表 7-1列出了影响其收益率的参数,这些 参数可以从真实的基金中估计得出。
0.00
8-10
资产组合中的数学—协方差
对于: 糖生产的正常年份 名称 股市的牛市 股市的熊市 概率 0.50 0.30 收益率 (%) 25 10 (贝斯特· 凯迪) 凯恩收益率 (%) 1 -5 异常年份 糖的生产危机 0.2 -25
35
计算在某一特定情景中,每种股票与预期收益的偏差的积, E(r贝斯特·凯迪 )=10.5%, E(r凯恩)=6%:
情景
r D
E rD
rE E rE
8-13
资产组合中的数学—协方差
在本例中,由于当 E(r贝斯特·凯迪 )=10.5%,E(r凯恩)=6% 时每一情景的收益已知,我们可以计算两种股票的协方差为: Cov(r贝斯特·凯迪 ,r凯恩) = 0.5(25 -10.5)(1-6) + 0.3(10-10.5)(-5-6) + 0.2(25-10.5)(35-6)=-240.5 负的协方差证实了糖凯恩公司股票对贝斯特·凯迪公司 股票具有的套期保值作用。糖凯恩公司股票的收益与贝斯 特·凯迪公司股票是呈反方向变动的。

Chap007最优风险资产组合共42页

Chap007最优风险资产组合共42页
Chap007最优风险资产组合
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
CHAPTER 7
7-3
The Investment Decision 投资决策
• Top-down process with 3 steps:自上而下 1. Capital allocation between the risky portfolio and
risk-free asset首先分配份额:安全、风险资产间 2. Asset allocation across broad asset classes各类
资产间的配置 3. Security selection of individual assets within
each asset class每类资产内部的证券选择
INVESTMENTS | BODIE, KANE, MARCUS
7-4
Diversification and Portfolio Risk 分散化与组合风险
INVESTMENTS | BODIE, KANE, MARCUS
7-11
Two-Security Portfolio: Risk 风险情况
• Another way to express variance of the portfolio:表达组合方差的另一种办法
P 2 w D w D C o v ( r D , r D ) w E w E C o v ( r E , r E ) 2 w D w E C o v ( r D , r E )

最优风险资产风险组合

最优风险资产风险组合

最优风险资产的风险组合8.1 分散化与资产组合风险分散化(diversification):投资者如果不是进行单一证券的投资,而是投资于由两种以上证券构成的投资组合。

如果构成投资组合的证券不是完全正相关,那么投资组合就会降低风险,在最充分分散条件下还保存的风险是市场风险(market risk),它源于与市场有关的因素,这种风险亦称为系统风险(systematic risk),或不可分散风险(nondiversifiable risk)。

相反,那些可被分散化消除的风险被称为独特风险(unique risk)、特定公司风险(firm-specific risk)、非系统风险(nonsystematic risk)或可分散风险(diversifiable risk)资产组合中股票的个数8.2 两种风险资产的资产组合两种资产的资产组合较易于分析,它们体现的原则与思考可以适用于多种资产的资产组合,我们将考察包括的资产组合,一个为只投资于长期债券的资产组合D,另一个专门投资于股权证券的股票基金E,两个共同基金的数据列表(8-1)如下:债券股权期望收益率E(r)(%)8 13 标准差为σ(%) 12 20 协方差Cov(r D, r E) 72相关系数ρDE 0.3投资于债券基金的份额为w D,剩下的部分为w E=1- w D投资于股票基金,这一资产组合的投资收益r p 为:r p=w D r D,+ w E r Er D为债券基金收益率r E为股权基金的收益率。

资产组合的期望收益:E(r p)=w D E(r D)+ w E E(r E)两资产的资产组合的方差:σ2P =W D2σ2D+ W E2σE2+2W D W E Cov(r D,r E)根据第六章式[6-5]得:ρDE=[Cov(r r D, r E)]/[ σD*σE]Cov(r r D, r E)= ρDE*σD*σE所以:σ2P =W D2σ2D+ W E2σE2+2W D W EρDE*σD*σE 当完全正相关时:ρDE=1σ2P =W D2σ2D+ W E2σE2+2W D W E*σD*σE=(W DσD+ W E σE)2资产组合的标准差σP =W DσD+ W EσE当完全负相关时:ρDE=-1σ2P =W D2σ2D- W E2σE2+2W D W E*σD*σE=(W DσD- W E σE)2资产组合的标准差σP =︱W DσD- W EσE︱当完全负相关时:ρDE=-1 则W DσD- W EσE=0 因为w E=1- w D 两式建立联立方程得运用表(8-1)中的债券与股票数据得:E(r p)=w D E(r D)+ w E E(r E)= 8w D+ 13w Eσ2P =W D2σ2D+ W E2σE2+2W D W EρDE*σD*σE=122 W D2+ 202W E2+2*12*20*0.3*W D W E=144 W D2+400 W E2+144 W D W E表8-3 不同相关系数下的期望收益与标准差给定相关性下的资产组合的标准差W D We E(rp) ρ=-1ρ=0ρ=0.3ρ=1 0113202020200.10.912.516.818.0399618.3956519.20.20.81213.616.17916.8760218.40.30.711.510.414.4554515.4660917.60.40.6117.212.924414.1985916.80.50.510.5411.661913.11488160.60.4100.810.762912.2637715.20.70.39.5 2.410.3227911.6961514.40.80.29 5.610.411.4542613.60.90.18.58.810.9836211.5585512.810812121212图8-3中,当债券的投资比例从0-1(股权投资从1-0)时,资产组合的期望收益率从13%(股票的收益率)下降到8%(债券的收益率)LcbcW6f1.0 0 -1.0 债券如果w D〉1,w E〈0时,此时的资产组合策略是做一股权基金空头,并把所得到的资金投入到债券基金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲作业-最优风险资产组合下面的数据可用于第1至第8题:一位养老基金经理正在考虑三种共同基金。

第一种是股票基金,第二种是长期政府债券与公司债券基金,第三种是回报率为8%的以短期国库券为内容的货币市场基金。

这些风险基金的概率分布如下:名称期望收益率(%) 标准差(%)股票基金(S) 20 30债券基金(B) 12 15基金回报率之间的相关系数为0.10。

1. 两种风险基金的最小方差资产组合的投资比例是多少?这种资产组合回报率的期望值与标准差各是多少?2. 制表并画出这两种风险基金的投资机会集合,股票基金的投资比率从0%到100%,按照20%的幅度增长。

3. 从无风险回报率到机会集合曲线画一条切线,你的图表表现出来的最优资产组合的期望收益与标准差各是多少?4. 计算出最优风险资产组合下每种资产的比率以及期望收益与标准差。

5. 最优资本配置线下的最优酬报与波动性比率是多少?6. 投资者对他的资产组合的期望收益率要求为14%,并且在最佳可行方案上是有效率的。

a. 投资者资产组合的标准差是多少?b. 投资在短期国库券上的比率以及在其他两种风险基金上的投资比率是多少?7. 如果投资者只用两种风险基金进行投资并且要求14%的收益率,那么投资者资产组合中的投资比率是怎样安排的?把现在的标准差与第6题中的相比,投资者会得出什么结论?8. 假设投资者面对同样的机会集合,但是不能够借款。

投资者希望只由股票与债券构成期望收益率为4%的资产组合。

合适的投资比率是多少?由此的标准差是多少?如果投资者被允许以无风险收益率借款,那么投资者的标准差可以降低多少?9.Risk and Return for Security PortfoliosSuppose you have $100 to invest in two assets, A and B. A and B are the only assets available. A is a risky asset and B is a risk-free asset. The expected return on A is 5%, and B earns a risk-free rate of 3%. The standard deviations of returns on A and B are 10% and 0%, respectively. The covariance between the returns on the two assets is 0.(a)If you invest $30 in A and $70 in B, what is the expected return on your portfolio?(b)What is the standard deviation of return for the portfolio in (a)?(c)If you want to invest $130 in A, how much do you have to short sell B? Assumeyou can fully use the proceeds from the short sale, and ignore margin and collateral requirements.(d)Calculate the expected return and the standard deviation of return for the portfolio in (c).(e)If you short sell $x of B and close your position a year later, how much do you pay when you buy back B? Ignore margin and collateral requirements.10.Optimal AllocationThere are only two assets: a risk-free asset which earns 7%, and a risky asset which earns an expected return of 15% and has a standard deviation of 22%.(a) What is the optimal allocation, y*, invested in the risky portfolio if the risk aversion parameter A = 4?(b) What are the expected return E(rC) and the standard deviation σC of the complete portfolio, and the utility UC when holding the complete portfolio?(c) The borrowing rate is 9% (the lending rate is still 7%). Does this affect the investor with risk aversion A = 4? For another investor whose risk aversion A is 1.1, what is his optimal allocation y*?11.Your utility function is U = E(r) –½ Aσ2, and you are risk averse. (a) Draw the shape of two utility indifference curves with utility scores 5% and 10%. Label the axes. (The curves do not have to be exact. Simply draw the shape.)(b) IBM has an expected return of 10% and standard deviation of 20%. Is it possible that IBM lies on the indifference curve with utility score = 5%? Is it possible that IBM lies on the indifference curve with utility score = 10%? Briefly explain.(c) HSBC has an expected return of 8% and standard deviation of 15%. The Risk-free rate is 4%. Using IBM, HSBC, and the risk-free asset, you form a portfolio that gives you the highest utility score. What additional information do you need in order to find this portfolio? Explain how you can find this portfolio if you are given such information.12. Consider two stocks A and B with the following characteristics:Both stocks have the same standard deviation of 30%. The expected returns on A and B are E(rA) and E(rB), respectively.The correlation between A and B is -1.(a) In a portfolio P you invest w in Stock A and 1 –w in Stock B, at what w can you achieve the minimum portfolio variance σP2?(b) What is the standard deviation of your portfolio in part (a)? Show your calculations.(c)What should the risk-free rate be (in terms of E(rA) and E(rB))? Brieflyexplain(d)Can E(rA) and E(rB) be different in equilibrium? Briefly explain 13.Your utility function is U = E(r) –½ Aσ2, where A > 0.(a) Stock Q has an expected return of 15% and a standard deviation of 15%, while Stock R has an expected return of 12% and a standard deviation of 17%. Could Q and R be on the same utility indifference curve? Why or why not? (Do not use your answer in part (b) to answer this part.)(b) The risk-free rate is 6%. What value of A makes you indifferent between Stock Q and the risk-free asset?(c) Use the value of A in part (b). What is the maximum utility you can get from a portfolio that consists of Stock Q and the risk-free asset?14.You are managing a portfolio P, with an expected return of 13% and a standard deviation of 20%. The risk-free rate is 3% and the borrowing rate is 5%.(a) Your client C wants to invest 60% in P, and 40% in the risk-free asset. Find the expected return and standard deviation of your client C’s complete portfolio.(b) What is the Sharpe ratio of your portfolio P? What is the Sharpe ratio of your client C’s complete portfolio?(c) Another client D wants to invest in P and have a standard deviation of 28%. What is the expected return of his complete portfolio?(d) Draw the Capital Allocation Line (CAL). Show in the diagram where you would find Portfolio P and your clients’ portfolios (Both C’s and D’s). Label the axes.15、选择题1)Adding additional risky assets will generally move the efficient frontier to the_____ and to the _______.A) up, right B) up, left C) down, right D) down, left2)The term efficient frontier refers to the set of portfolios that ______.A) Yield the greatest return for a given level of riskB) Involve the least risk for a given level of returnC) Both a and b aboveD) None of the above answers are correct3)Asset A has an expected return of 15% and a reward-to-variability ratio of .4. Asset B has an expected return of 20% and a reward-to-variability ratio of .3. A risk-averse investor would prefer a portfolio using the risk-free asset and _______.A) asset A;B) asset B;C) no risky asset;D) can’t tell from the data given4)Diversification is most effective when security returns are __________.A) high B) negatively correlated C) positively correlated D) uncorrelated5)The standard deviation of return on investment A is .10 while the standard deviation ofreturn on investment B is .05. If the covariance of returns on A and B is .0030, the correlation coefficient between the returns on A and B is _____.A) .12 B) .36 C) .60 D) .776)Consider two perfectly negatively correlated risky securities, A and B. Security A has an expected rate of return of 16% and a standard deviation of return of 20%. B has an expected rate of return 10% and a standard deviation of return of 30%. The weight of security B in the global minimum variance is _____.A) 10% B) 20% C) 40% D) 60%7)Which of the following portfolios cannot lie on the efficient frontier?I 8% 10% J 16% 20% K 15% 25% L 25% 38%A) Portfolio I B) Portfolio J C) Portfolio K D) Portfolio L8)The ______ average ignores compounding.A) geometric B) arithmetic C) both a and b above D) none of the above9)The geometric average of 10%, 20% and 25% is __________.A) 15% B) 18.2% C) 18.3% D) 23%10)Consider a treasury bill with a rate of return of 5% and the following risky securities: Security A: E(r) = .15; s 2 = .0400Security B: E(r) = .10; s 2 = .0225Security C: E(r) = .12; s 2 = .1000Security D: E(r) = .13; s 2 = .0625The investor must develop a complete portfolio by combining the risk-free asset with one of the securities mentioned above. The security the investor would choose as part of his complete portfolio would be __________.A) security A ;B) security B ; C) security C ; D) security D11)An investor can design a risky portfolio based on two stocks, A and B. The standard deviation of return on stock A is 20% while the standard deviation on stock B is 15%.The correlation coefficient between the return on A and B is 0%. The expected return onstock A is 20% while on stock B it is 10%. The proportion of the minimum variance portfolio that would be invested in stock B is ________.A) 6% B) 50% C) 64% D) 100%12)In the mean-standard deviation graph, the line that connects the risk-free rate and the optimal risky portfolio, P, is called __________.A) the capital allocation lineB) the indifference curveC) the investor’s utility lineD) the security market line16.(马克威茨的资产组合理论)市场中有三种可投资的资产,其收益率分别为321r r r ,,。

相关文档
最新文档