静电场的能量
第十章静电场中的能量
第十章静电场中的能量1电势能和电势一、静电力做功的特点1.静电力做功:在匀强电场中,静电力做功W=qEl cos θ.其中θ为静电力与位移方向之间的夹角.2.特点:在静电场中移动电荷时,静电力所做的功与电荷的起始位置和终止位置有关,与电荷经过的路径无关.(1)静电力做的功与电荷的起始位置和终止位置有关,但与具体路径无关,这与重力做功特点相似.(2)无论是匀强电场还是非匀强电场,无论是直线运动还是曲线运动,静电力做功均与路径无关.二、电势能1.电势能:电荷在电场中具有的势能,用E p表示.2.静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量.表达式:W AB=E p A-E p B.(1)静电力做正功,电势能减少;(2)静电力做负功,电势能增加.3.电势能的大小:电荷在某点(A点)的电势能,等于把它从这点移动到零势能位置时静电力做的功E p A=W A0.4.电势能具有相对性电势能零点的规定:通常把电荷在离场源电荷无限远处或把电荷在大地表面的电势能规定为零.(1)电势能E p是由电场和电荷共同决定的,是电荷和电场所共有的,我们习惯上说成电荷在电场中某点的电势能.(2)电势能是相对的,其大小与选定的参考点有关。
确定电荷的电势能,首先应确定参考点,也就是零势能点的位置。
(3)电势能是标量,有正负但没有方向。
在同一电场中,电势能为正值表示电势能大于零势能点的电势能,电势能为负值表示电势能小于零势能点的电势能。
5.静电力做功与电势能变化的关系(1)W AB=E p A-E p B.静电力做正功,电势能减少;静电力做负功,电势能增加.(2)在同一电场中,正电荷在电势高的地方电势能大,而负电荷在电势高的地方电势能小.三、电势1.定义:电荷在电场中某一点的电势能与它的电荷量之比.2.公式:φ=E p q。
(1)φ取决于电场本身;(2)公式中的E p 、q 均需代入正负号。
3.单位:国际单位制中,电势的单位是伏特,符号是V ,1 V =1 J/C.4.电势高低的判断:(1)电场线法:沿电场线方向,电势越来越低.(2)电势能判断法:由φ=E p q知,对于正电荷,电势能越大,所在位置的电势越高;对于负电荷,电势能越小,所在位置的电势越高.5.电势的相对性:只有规定了零电势点才能确定某点的电势,一般选大地或离场源电荷无限远处的电势为0.6.电势是标量,只有大小,没有方向,但有正、负之分,同一电场中电势为正表示比零电势高,电势为负表示比零电势低.7.电场中某点的电势是相对的,它的大小和零电势点的选取有关.在物理学中,常取离场源电荷无限远处的电势为零,在实际应用中常取大地的电势为零.8.电势虽然有正负,但电势是标量.在同一电场中,电势为正值表示该点电势高于零电势,电势为负值表示该点电势低于零电势,正负号不表示方向.2 电势差一、电势差1.定义:电场中两点之间电势的差值,也叫作电压.U AB =φA -φB ,U BA =φB -φA ,U AB =-U BA .2.电势差是标量,有正负,电势差的正负表示电势的高低.U AB >0,表示A 点电势比B 点电势高.3.单位:在国际单位制中,电势差与电势的单位相同,均为伏特,符号是V .4.静电力做功与电势差的关系(1)公式:W AB =qU AB 或U AB =W AB q. (2)U AB 在数值上等于单位正电荷由A 点移到B 点时静电力所做的功.二、电势差的理解1.电势差反映了电场的能的性质,决定于电场本身,与试探电荷无关.2.电势差可以是正值也可以是负值,电势差的正负表示两点电势的高低,且U AB =-U BA ,与零电势点的选取无关.3.电场中某点的电势在数值上等于该点与零电势点之间的电势差.三、静电力做功与电势差的关系1.公式U AB=W ABq或W AB=qU AB中符号的处理方法:把电荷q的电性和电势差U的正负代入进行运算,功为正,说明静电力做正功,电荷的电势能减小;功为负,说明静电力做负功,电荷的电势能增大.2.公式W AB=qU AB适用于任何电场,其中W AB仅是电场力做的功,不包括从A到B移动电荷时其他力所做的功.3.电势和电势差的比较1.定义:电场中电势相同的各点构成的面.2.等势面的特点(1)在同一等势面上移动电荷时静电力不做功.(2)等势面一定跟电场线垂直,即跟电场强度的方向垂直.(3)电场线总是由电势高的等势面指向电势低的等势面.3.等势面的特点及应用(1)在等势面上移动电荷时静电力不做功,电荷的电势能不变.(2)电场线跟等势面垂直,并且由电势高的等势面指向电势低的等势面,由此可以绘制电场线,从而可以确定电场的大致分布.(3)等差等势面密的地方,电场强度较强;等差等势面疏的地方,电场强度较弱,由等差等势面的疏密可以定性确定场强大小.(4)任意两个等势面都不相交.4.几种常见电场的等势面(如图1所示)图1(1)点电荷的等势面是以点电荷为球心的一簇球面.(2)等量异种点电荷的等势面:点电荷的连线上,从正电荷到负电荷电势越来越低,两点电荷连线的中垂线是一条等势线.(3)等量同种点电荷的等势面①等量正点电荷连线的中点电势最低,两点电荷连线的中垂线上该点的电势最高,从中点沿中垂线向两侧,电势越来越低.②等量负点电荷连线的中点电势最高,两点电荷连线的中垂线上该点的电势最低.从中点沿中垂线向两侧,电势越来越高.(4)匀强电场的等势面是垂直于电场线的一簇平行等间距的平面.3 电势差与电场强度的关系一、匀强电场中电势差与电场强度的关系1.在匀强电场中,两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积.2.公式:U AB =Ed .二、公式E =U AB d的意义 1.意义:在匀强电场中,电场强度的大小等于两点间的电势差与这两点沿电场强度方向距离之比.2.电场强度的另一种表述:电场强度在数值上等于沿电场方向单位距离上降低的电势.3.电场强度的另一个单位:由E =U AB d可导出电场强度的另一个单位,即伏每米,符号为V /m.1 V/m =1 N/C.三、匀强电场中电势差与电场强度的关系1.公式E =U AB d及U AB =Ed 的适用条件都是匀强电场. 2.由E =U d可知,电场强度在数值上等于沿电场方向单位距离上降低的电势. 式中d 不是两点间的距离,而是两点所在的等势面间的距离,只有当此两点在匀强电场中的同一条电场线上时,才是两点间的距离.3.电场中电场强度的方向就是电势降低最快的方向.4.电势差的三种求解方法(1)应用定义式UAB =φA -φB 来求解.(2)应用关系式UAB =WAB q来求解. (3)应用关系式UAB =Ed(匀强电场)来求解.5.在应用关系式UAB =Ed 时可简化为U =Ed ,即只把电势差大小、场强大小通过公式联系起来,电势差的正负、电场强度的方向可根据题意另作判断.四、利用E =U d定性分析非匀强电场 U AB =Ed 只适用于匀强电场的定量计算,在非匀强电场中,不能进行定量计算,但可以定性地分析有关问题.(1)在非匀强电场中,公式U =Ed 中的E 可理解为距离为d 的两点间的平均电场强度.(2)当电势差U 一定时,场强E 越大,则沿场强方向的距离d 越小,即场强越大,等差等势面越密.(3)距离相等的两点间的电势差:E 越大,U 越大;E 越小,U 越小.五、用等分法确定等势线和电场线1.在匀强电场中电势差与电场强度的关系式为U =Ed ,其中d 为两点沿电场方向的距离. 由公式U =Ed 可以得到下面两个结论:结论1:匀强电场中的任一线段AB 的中点C 的电势φC =φA +φB 2,如图1甲所示. 图1结论2:匀强电场中若两线段AB ∥CD ,且AB =CD ,则U AB =U CD (或φA -φB =φC -φD ),同理有U AC =U BD ,如图乙所示。
静电场的能量
【解】带电球形电容器的电场分布是对称的,由有介质中 的高斯定理可求其电场强度的大小为
E
Q
40 rr 2
则电场能量密度为
we
1 2
0
r
E
2
Q2
322 0 r r 4
现取半径为r、厚为dr的球壳为一体积元,则该体积元的体积为
dV 4r2dr
因此,球壳中储存的电场能量为
于是总能量为
dWe
wedV
Q2
8 0 r r 2
U Ed
将平行板电容器的电容公式(7-38)带入式(7-43),可得
We
=
1 2
CU
21 20r Sd(Ed )21 2
0r E2Sd
1 2
E 2V
上式说明了电场能量的携带者是电场本身。
由上式可得单位体积电场内所具有的电场能量为
we
We V
=
1 E2
2
上式表明,电场的强度越大,电场的能量密度也越大。上 式虽然是从平行板电容器中求得的,但可以证明,对于任意电 场,这个结论也成立。
对于非均匀电场,我们可以任取一体积元dV,可以认为dV 内是均匀电场,则在dV内电场所储存的能量为
dWe
wedV
1 E2dV
2
因此,整个电场的能量为
We
V dWe =
V wedV
1 E2dV
V2
【例7-11】一球形电容器,内、外半径分别为R1和R2,所 带电量分别为+Q和-Q,两球间充满相对电容率为εr的电介 质,如下图所示。求此电容器储存的电场能量是多少?
物理学
静电场的能量
1.1 电容器的静电能
电容器充电时,电源必须做功,才能克服电容器极板上
静电场能量
1 2
[q1 1
q2
2
q3 3)
1 2
3 i 1
qi i
•
N个导体(等势体)系统:
We
1 2
N
i1
qi i
对电荷连续分布,也可推出相应公式:
• 体电荷分布系统:
We
1 2
d
dq d sds ldl
• 面电荷分布系统:
W e
1 2
S s d S
• 线电荷分布系统:
W e
1 2
L l dl
N = 2 即两导体电容器 : q1 = q,q2 = -q
We
1 2
q(1
2)
1 2
qU
1 CU 2 1 q2
2
2C
3. 静电能的场矢量计算式:
R
讨论:
We
1 2
Φd
1 2
V
(•
D)Φd
•(ΦA) Φ• AΦ• A
V
1 2
V
[•
(D)
•
D]d
S 1 D • d S 1 E • Dd
R5
0 60
150
⑵
We
1 2
V
0E 2d
1 2
1 0 E12d
1 2
2 0E22d
1 2
0
R 0
( r0 3 0
) 2 4r
2dr
1 2
0
(
R
R3 3 0 r
0 2
)2
4r
2dr
40
2
R5
150
可见结果是一样的
We
1 2
E • Dd
V
静电场的能量
q
连接后, 腔内电场消失, 腔外电场不变, 所以 静电场能量减少.
答案(B)
太原理工大学大学物理
例3 为电容器充电. 在电源保持连接的情况下, 把电介质插入, 则静电能 . (填增大、减小、不变)
解:电源保持连接时,两极板间的电 压一定,插入介质后,C增大 由 得静电能增加
思考: 若将“电源保持连接”改为“电源断开”, 结果如何?
We 1 2 e 0 r E V 2
对于电容器中充有各向同性的电介质
1 2 1 e 0 r E DE 2 2
说明: 1)公式对任意电场成立。 2)电场的能量密度与场强的平方成正比, 场强越大,能量密度越大。 太原理工大学大学物理
3.一般电场的能量 对于非均匀电场,电场能量密度应为空间 坐标的函数,任何带电系统的电场中所储存的 总能量为:
dr
q E2 2 4 πr
r
o
R
取半径为r-r+dr 的球壳, 体积 dV= 4πr2dr 体积元中电场能为 dW dV 1 E 2 dV e e 2 太原理工大学大学物理
整个电场中能量 1 We E 2 dV V 2
0dV
0 R R
R
0
0dV
2
R
1 2 E2 4 r 2 dr 2
1 q 2 4 r dr 2 2 4 r
q2 8 R
2 2 2
解二 看成电容器(孤立导体球)
1q q q We 2 C 2 4 R 8 R
太原理工大学大学物理
例2 如图,一带电量为q的球形导体置 于一任意形状的空腔导体中. 若用导 线将两者连接,则系统静电场能将 (A)增加. (B)减少. (C)不变. (D)无 法确定. 解:连接前, 腔内外均有电场.
静电场的能量5
W球面 <W球体 e e
课堂讨论
13.5 静电场的能量 (electrostatic energy)
定义: 定义: 把系统从当前状态无限分裂到彼此相距无 限远的状态中静电场力作的功, 限远的状态中静电场力作的功,叫作系统 在当前状态时的静电势能。简称静电能。 在当前状态时的静电势能。简称静电能。 或: 把这些带电体从无限远离的状态聚合到当 前状态过程中,外力克服静电力作的功。 前状态过程中,外力克服静电力作的功。
r
比较均匀带电球面和均匀带电球体所储存的能量。 比较均匀带电球面和均匀带电球体所储存的能量。
q
0 E = q 4 r2 πε0
R
R
r <R r >R
q
R
r q 4 ε R π0 3 E = q 4 ε0r2 π
∞
r <R r >R
1 1 2 2 2 2 W = ∫ ε0E ⋅ 4 r dr +∫ ε0E ⋅ 4 r dr π π e 2 2 0 R
3.电容器储存的能量 电容器储存的能量
K
a
b
开关倒向a,电容器充电。 开关倒向 ,电容器充电。 开关倒向b,电容器放电。 开关倒向 ,电容器放电。
灯泡发光
←电容器释放能量
←电源提供
计算电容器带有电量Q,相应电势差为U 计算电容器带有电量 ,相应电势差为 时所 具有的能量。 具有的能量。
电容器中的能量是在充电过 程中建立起来的。 程中建立起来的。 充电过程, 充电过程,使电容器的两极 板分别带上等量的正负电荷, 板分别带上等量的正负电荷,这 相当于将某一极板上的电荷拉到 另一极板上。 另一极板上。这是电荷在两极板 间的搬迁过程。 间的搬迁过程。 搬迁过程中, 搬迁过程中,随着极板上电 荷的累积,要做的功越来越大, 荷的累积,要做的功越来越大, 这就像粮仓中粮食的囤积过程, 这就像粮仓中粮食的囤积过程, 粮越来越高,再往上倒, 粮越来越高,再往上倒,就越来 越困难。 越困难。
静电场的能量--能量密度
dr R3
-q1
r
q1 o
R1
R2
r
We
R2 R1
1 2
o
r
E2
2
4r
2
dr
R1 r R2 :
q12 ( 1 1 )
8 or R1 R2
电场能量也可用下式求得:We
1 2
E2
q12 C
q1
4 o r r 2
上页
下页
例10-9 如图,半径为a的长直导线,外面套有共轴导体圆筒,筒内
半径为b,导线与圆筒间充以介电常量为的 均匀介质。沿轴线单位
A We
Q q dq 1 Q2
0C
2C
利用Q=CV,可以得到电容器的储能公式为
We
1 2
Q2 C
1 CV 2 2
1 QV 2
三、静电场的能量 能量密度
电容器储存的电能等于两极板间的电场的能量,用 描述场的量来改写上式有(以平行板电容器为例)
We
1 2
S
d
E2d 2
1 2
E 2Sd
1 E 2V
O R3
r R3 E 0
R3
uo
Edr Edr
0
R3
4 0 R3
r R3
E
4 0r 2
u
r
Edr
4 0r
上页
下页
2
(V Sd :电容器体积)
上页
下页
电场的能量密度(即单位体积内储存的电能):
e
1 E 2
2
1 2
ED
表明:电场能量是储存在电场中的。就是说场是 能量的携带者。
第五讲 静电场中的能量
r
Q2
U1 为 Q1 , Q2 1球面处电势的代数和 Q1 Q 1 Q1 在1球面处电势: Q1在2球面处电势: 4 0 r 4 0 R1
U1
4 0 R1
Q1
4 0 r
Q2
U 2 为 Q1 , Q2 2球面处电势的代数和
U j 是由 Q j 和 Q j 以外的全部电荷在 Q j 处产生的
电势,该式是导体系的总静电能。
1 n W qiVi 2 i 1
u i 是由 q i 以外的电荷在 q i处产生的电势,该式是
点电荷系总静电能的一部分------相互作用能。
4、带电电容器的储能
电容器静电能:充电过程将元电荷dq从一板搬到另一 u(t ) 板,电场力做元功:
导体球总能量
W
Q2 8 0 R
解2: 利用带电体系静电场能量公式
r R, E 0 r r, E Q 4 0 r 2
R
r
dr
作厚度为 dr 的球壳,球壳内的电场能量:
1 dW dV 0 E 2 dV 2 dV 4r 2 dr
球的总电场能量
W
R
设 带电体电量为Q,元电荷dq从无穷远整个电荷过程中 外界反抗电场力做元功:
dA udq
A dA udq
0 Q
电场力的功转化成带电体系的静电自能
W udq
0
Q
自能本质:各部分电荷之间的相互作用能,这是带电体自身 有的能量。
3、电荷连续分布的带电体系的静电能:自能&元以外的全部电荷共同产生带电导体组的总静电能
第五讲 静电场中的能量
静电场的能量
ϕa =
Q 4πε 0 a
因此静电场总能量为
W=
Q2 8πε 0 a
方法之二:
1 v v W = ∫ E ⋅ Dd V 2 ∞
因为球内电场为零, 故只须对球外积分
2 Q 2 drdQ = W= ∫ r 2 2 2 (4πε 0 r ) 8πε 0
ε0
Q2r = . 2 8πε 0 a r
式中右边第二项散度体积分化为面积分
v v v r →∞ → 0 ∫ ∇ ⋅ (ϕD)dV = ∫ ϕD ⋅ dS
所以
1 W = ∫ ρϕdV 2
例3 求带电量Q、半径为a的导体球的静电场总能量。 解 整个导体为等势体, 导体球的电荷分布于球 面上,方法之一:
1 1 W = ∫ ρϕdV = Qϕ a 2 2
第一项是设想体系的电 荷集中于原点上时在外 场中的能量 第二项是体系的电 偶极矩在外电场中 的能量 第三项是四极 子在外电场中 的能量
W (0 ) = Qϕ e (0 )
W
(2 )
(1)
v v = p ⋅ Ee (0 )
只有在非均匀场 中四极子的能量 才不为零
W
v 1 t = − D : ∇Ee 6
六、静电场的能量 电荷体系与 外电场的相互作用
1、静电场能量
1 v v W = ∫ E ⋅ DdV 2 ∞
由E=-∇ϕ和∇⋅D=ρ得 v v v v v E ⋅ D = −∇ϕ ⋅ D = −∇ ⋅ (ϕD) + ϕ ∇ ⋅ D v = −∇ ⋅ (ϕD) + ρϕ 因此
v 1 1 W = ∫ ρϕdV − ∫ ∇ ⋅ (ϕD )dV 2 2
代入得
3 1 3 ∂ ∂2 W = ∫ ρ ϕ e (0 ) + ∑ xi ϕ e (0) + ∑ xi x j ϕ e (0) + L dV 2! i , j =1 ∂xi ∂xi ∂x j i =1 1 ∂ ∂2 ϕ e (0 ) + ∑ Dij ϕ e (0) + L = Qϕ e (0 ) + ∑ pi 6 i, j ∂xi ∂xi ∂x j i 1 t v = Qϕ e (0 ) + p ⋅ ∇ϕ e (0 ) + D : ∇∇ϕ e (0 ) + L 6
高考物理复习:静电场中的能量
(1)在电场中,两点之间电势的差值叫作电势差。
(2)公式:UAB=φA-φB,UAB=-UBA。
(3)静电力做功与电势差的关系: UAB=
。
知识点二
等势面
1.定义:电场中电势相等的各点组成的面。
2.四个特点。
(1)等势面一定与电场线垂直。
(2)在同一等势面上移动电荷时静电力不做功。
把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔片都张开,则
( C )
A.此时A带正电,B带负电
B.此时A电势低,B电势高
C.移去C,贴在A、B下部的金属箔片都闭合
D.先把A和B分开,然后移去C,贴在A、B下部的金属箔片都闭合
解析:由静电感应可知,A带负电,B带正电,A、B的电势相等,选项A、B错误。
训练突破
1.(多选)空间存在如图所示的静电场,a、b、c、d为电场中的四个点,则
( AD )
A.a点的电场强度比b点的大
B.d点的电势比c点的低
C.质子在d点的电势能比在c点的小
D.将电子从a点移动到b点,静电力做正功
解析:a点的电场线比b点的电场线密,根据电场线的疏密程度表示电场强度
的大小,可知a点的电场强度比b点的电场强度大,故A正确。根据沿着电场
的位置如图所示,三点的电势分别为10 V、17 V、26 V。下列说法正确的
是(
)
ABD
A.电场强度的大小为2.5 V/cm
B.坐标原点处的电势为1 V
C.电子在a点的电势能比在b点的低7 eV
D.电子从b点运动到c点,静电力做功为9 eV
思维点拨根据a、b、c三点的电势关系可以找出等势面,进而求出等势面
知识点四
第2章 静电场(8) 静电场的能量
2
400 R 5Q
2
―带电金属球”或“均匀带电球面”
We Q 80 R
400 R
35
均匀带电球体
We 6Q
2
400 R
―带电金属球”或“均匀带电球面”
We 5Q
2
400 R
36
[结论] 将“带电金属球”改为同样大小的 “均匀带电球面”,结果?
Answer: 改为球面, We不变; 同样大小的“均匀带电球体”?
20
能量体密度:
(定义)
1 we D E 2
we E 2 1
2
(2-103)
对于理想介质: (2-104)
物理意义:
电场是一种物质,它具有能量。
21
注释:
We 1
2
d V
(2-97)
V
★适用范围: 仅适用于静电场
★适用范围:
(反映了:静止电荷所具有的静电位能)
即位移是虚设的,故称为虚位移法。
45
★虚位移法
★原理:能量守恒
外力做的功=静电场能量的变化+电场力做功
d W d We f g d g
d W k dqk
与各带电导体 相连的外电源 提供的能量;
K
第p号导体作dg 位移后电场储 能We的增量;
f 在 g 方向 的分量。
46
★方法:
第二章 静电场
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 §2.8 库仑定律与电场强度 静电场的无旋性与电位函数 静电场中的导体与电介质 高斯通量定理 泊松方程和拉普拉斯方程 分界面上的边界条件 导体系统的电容 静电场能量和静电力
静电场的能量
结论:一个带电体系所具有的静电能就是该体系所 具有的电势能,它等于把各电荷元从无限远离的状 态聚集成该带电体系的过程中,外界所作的功。
带电体系所具有的静电能是由电荷所携带呢,还 是由电荷激发的电场所携带?能量定域于电荷还是 定域于电场?在静电场中没有充分的理由进行说明 ,但在电磁波的传播中能充分说明场才是能量的携 带者。
能量是定域于场的,静电能是定域于静电场的。
在电容器充电过程中,设某时刻两极板间的电压
为UAB , 在外力作用下持续地将dq电量从负极板移 到正极板时,外力因克服静电场力作的功为
dA
U
ABdq
1 C
qdq
(1)
+
A Q q dq 1 Q 2 1 CU 2 1 QU (2) C
0C
2C 2
2
9
R
所以在电容器中储存的能量为
We
Q2 A
2C
1 CU 2 2
1 2
QU
(3)
因为电容器中的电量和电压分别为:
Q = S = ES , UAB=Ed
由此可以求得电 容器中静电能量
We
1 2
QU
1 E 2 (Sd ) (4)
2
电容器中静电 能的能量ຫໍສະໝຸດ 度weWe Sd1 E2
2
1 2
DE
1 E2
2
(5)
对于非匀强电场,在体
元d 内的电场能量为
dWe wed
1 E 2d (6)
2
整个电场的能量可以表示为
We
dWe
1 2
E2d
1 2
DEd
(7)
在各向异性电介质中,一般说来 D 与 E 的方向
静电场能量
静电场能量是指由于电荷在静电场中所具有的能量。
在一个静电场中,电荷之间存在电势差,当电荷在电场中移动时,它们会受到电势差的作用而发生势能的转化。
对于两个点电荷之间的静电场能量,可以使用库仑定律来计算。
库仑定律描述了电荷之间的相互作用力与它们之间的距离和电荷量之间的关系。
静电场能量的表达式为:
E = k * (Q1 * Q2) / r
其中,E表示静电场能量,k是库仑常数(约为9 ×10^9 N·m^2/C^2),Q1和Q2分别是两个电荷的电荷量,r是两个电荷之间的距离。
静电场能量是正的,它的单位是焦耳(J)或电子伏特(eV)。
当两个电荷之间的电荷量或距离增加时,静电场能量也会增加。
静电场能量可以在电荷之间的相互作用中转化为其他形式的能量,如动能、热能等。
第23讲 静电场中的能量
判断方法
方法解读
做功判断法
电场力做正功,电势能减小;电场力做负功,电势能增大
判断方法
方法解读
公式法
,将 、 的大小、正负号一起代入公式, 越大,电势能越大
能量守恒法
在电场中,当只有电场力做功时,电荷的动能和电势能相互转化,动能增大,则电势能减小,反之,动能减小,则电势能增大
② ,适用于__________.
任何电场
2.电势能
(1)定义:电荷在______中具有的势能,数值上等于将电荷从该点移到________位置时静电力所做的功.
电场
零势能
(2)静电力做功与电势能变化的关系:静电力做的功等于________的减少量,即 .
电势能
(3)电势能的相对性:电势能是______的,通常把电荷离场源电荷________处的电势能规定为零,或把电荷在大地______上的电势能规定为零.
[解析]两等量正离子在 点的合场强为0,两等量负离子在 点的合场强为0,则四个离子在 点的合场强为0,所以A错误;由于等量异种点电荷的连线的中垂线为等势线,则 、 、 都在同一等势线上,各点电势相同,都为0,所以B错误,D正确; 、 两点电场强度大小相等,方向相反,所以C错误.
变式2 [2021·全国甲卷] (多选)某电场的等势面如图所示,图中 、 、 、 、 为电场中的5个点,则( )
把 三等分, 、 为三等分点则 ,如图所示,连接 ,则电场强度的方向垂直 指向左下方,故B错误;由几何关系知 ,即 ,则 ,故C正确;设 的中点为 ,则 , ,即电势能增加 ,D正确.
变式 [2022·北仑中学模拟] (多选)有一匀强电场的方向平行于 平面,平面内 、 、 、 四点的位置如图所示, 、 分别垂直于 轴、 轴,其中 、 、 三点电势分别为 、 、 .一电荷量为 的点电荷从 点开始沿 路线运动,则下列判断正确的是( )
第五讲 静电场中的能量
Vi
除 qi 以外所有电荷在 qi 出激发的电势。
2、自能: 一个孤立带电体系其静电能一般称为自能或固有能。 从功的角度定义:
将带电体系的各部分电荷,从无限远分离的状态,聚集成 带电体状态时,外力反抗电场力所做的功。
设 带电体电量为Q,元电荷dq从无穷远整个电荷过程中 外界反抗电场力做元功:
dA udq
-
A dA
0
Q
Q
0
q 1 2 dq Q C 2C
C
dq
dq
U
Q CU
W 1 1 Q CU 2 QU 2 2 2C
2
设电容器正负极板的电荷 +Q,-Q,两极板的电势 代入静电体系的总静电能公式:
1 2 1 1 W Q jU j [(QU ) (QU )] QU 2 j 1 2 2
U2
4 0 R2
Q2
4 0 r
Q1
1、2两球的总静电能:
1 Q1 Q2 1 Q2 Q1 W Q1 ( ) Q2 ( ) 2 4 0 R1 4 0 r 2 4 0 R2 4 0 r Q12 Q2 QQ 1 2 8 0 R1 8 0 R2 4 0 r
2
此式也是1、2两球球面激发的静电场能量。
解2: 带电体系的总静电能等于两球的自能与两球的相互作用 能之和。
W W 12 自 1 W 自2 W
1 Q12 W自1 Q1U1 2 4 0 R1
2 1 Q2 W自2 Q2U 2 2 4 0 R2
可以将两球看成点电荷,求互能:
,
1 W QU 2
结论:该式是电容器的总静电能
10-8-静电场的能量和能量密度
11-5 静电场的能量和能量密度
A2
q2
q1
4 0r12
A3
q3
q1
4 0r13
q3
q1
4 0r23
三个点电荷的系统具有的电势能应等于系统
建立过程中外力所做总功,即
A
A2
A3
q1q2
4 0r12
q3
(
q1
4 0r13
q2 )
4 0r23
1 2
q1U1
1 2 q2U2
( r ) ,那么(1)、(2)的结果如何?
解(1)插入d’,若电容充电,达到静电平衡后,铜板内E=0.相
当于电容器的板间距减少d’.故
C' 0s
d d'
插入位置无影响
(2) U0 时,
W
1 2
CU
2 0
0 SU02
2(d d ')
断开电源抽出铜板
21
11-5 静电场的能量和能量密度
Q2
(d ' d ')
2 0S
0S
2 0 S
r
( 此处 Q C'U0 )
A'
0
SU
2 0
(d
'
d
'/
r
)
2(d d ' d '/ r )2
r ( r 1)0Sd ' 2 rd ( r 1)d '2
U
2 0
23
dr
静电场的能量
的功,把空间区域V用离散的小体积元表示荷。电荷体建立
过程中外力克服电场力对电荷体所做的功,等效为所
有离散的小电荷体集结过程中外力克服电场力做功的
总和。
r1 V 1
r2 V2
静电场的能量
r1V1
第一个小电荷元自从无穷远处移到r1,
外界克服电场力做功为零(电场没有
Q212
静电场的能量
dW2 r2 dV212
1 2
r2
dV212
r1 dV121
dW3 12 r3dV 3 13 r3 dV323 r1 dV131 r2 dV232
dWn
1 2
rndV n 1n rn dVn2n rn dVn n1,n
r1 dV1n1 r2 dV2n2 rn1 dVn 1 n ,n1
r2V2 建立)
第二个小电荷元自从无穷远处移 到r2 点时,外力克服电场力作功 为:
r2
dW2 r2dV2E1 dL r2dV212
静电场的能量
第三个小电荷元自从无穷远处移到r3点时,外力克服电场力作功
为:
dW3 r3 dV313 r3 dV323
第n个小电荷元自从无穷远处移到rn点时,外力克服电场力作功 为:
V
1 2
DrErdV
静电场能量既可以通过电荷的分布计算,也可以通过 电场计算
n
(r1)dV1(21 31 ...n1) (r1)dV1 j1 (r1)dV11
j1( j1)
n
(r2 )dV2 (12 32 ...n2 ) (r2 )dV2 j2 (r2)dV22
j1( j2)
静电场的能量
We
lim n
1 2
n i 1
6静电场的能量
2 a ⎛ 1 1 Q Q 3 r ⎞ 2 We = ∫ ρ udV = ∫ ⎟ ⎜ 4 π r dr − 3 3 ⎟ ⎜ 2 2 0 4 π a 3 8πε 0 ⎝ a a ⎠
3Q 2 = 16 πε 0 a 3
∫
a
0
2 ⎛ ⎞ r 3 2 r ⎜ ⎜ a − a3 ⎟ ⎟dr ⎝ ⎠
Q
a
3Q We = 20 πε 0 a
1 q2 = 2C
4 πε R1 R2 C= R2 − R1
思考: 半径为R、带电量为Q的均匀带电球面, 其静电能与球体 的静电能相比, 哪个大?
2 1 q we = ε E 2 = 2 8πε r 2
dWe = we dV
静电场的能量
We = ∫ we dV = ∫
计算电容量:
R2
R1
q2 q2 dr = 2 8πε r 8πε
⎛1 1 ⎞ ⎜ ⎜R −R ⎟ ⎟ 2 ⎠ ⎝ 1
q2 1 We = 2 4 πε R1 R2 R2 − R1
2
静电场的能量
解法二:
We = ∫ we dV = ∫0
=∫
a 2
a
∞1 1 2 ε 0 E1 dV + ∫ ε 0 E22 dV a 2 2
2
o
∞1 ⎛ Q ⎞ 1 ⎛ Qr ⎞ 2 2 ⎟ ⎜ ⎟ r r 4 π r dr 4 π d ε0⎜ ε + 0⎜ 3 ⎟ 2 ∫ ⎟ ⎜ a 2 2 ⎝ 4 πε 0 a ⎠ ⎝ 4 πε 0 r ⎠
1 2 We = ε E Sd 2
电容器体积: V = Sd
静电场的能量
Hale Waihona Puke 电场的能量密度: 单位体积电场所具有的能量
第十章 静电场中的能量
第十章静电场中的能量B.A点的电势为,电场强度为;C.B点的电势为,电场强度为;D.A点的电势为,电场强度也为。
答案:ABD二、XXX答题1.静电场中的能量是如何计算的?静电场中的能量可以通过电场中电荷所具有的电势能来计算。
在电场中,电荷由高电势能处移动到低电势能处,电势能的差值就是电荷所具有的动能。
根据能量守恒定律,电荷的动能减少的同时,电场中的能量会增加。
因此,静电场中的能量可以表示为电荷在电场中移动所释放的电势能总和。
2.电势能和电势的区别是什么?电势能是指电荷在电场中由于位置发生变化而具有的能量。
电势是指电场中某一点的电势能与单位正电荷之间的比值,也可以理解为单位电荷在该点所具有的电势能。
电势能是一种物理量,而电势是一种描述电场性质的物理量。
3.什么情况下电势差为零?电势差是指两点间电势的差值。
当两点间的电势相等时,电势差为零。
在静电场中,如果两点间的电场强度和距离都相等,则两点间的电势相等,电势差为零。
此外,在一些特殊情况下,如电荷分布对称、电场中存在等势面等情况下,也可能出现电势差为零的情况。
B。
在点A处,正试探电荷的电势能较高,受到的静电力的方向是向右的。
C。
将正试探电荷从点O移动到点A需要克服静电力做功。
D。
当将同一正试探电荷从点O和点B移动到点A时,后者的电势能变化更大。
8.电子在经过点A时具有4.8×10^-17J的电势能和3.2×10^-17J的动能,在经过点B时,它的电势能降至3.2×10^-17J。
如果电子只受到静电力作用,则:B。
从点A到点B的静电力做功为100eV。
C。
在点B处,电子的动能为1.6×10^-17J。
9.在图中,C点是线段AB的中点,A和B处的等势线分别为30V和10V。
因此,C点的电势φc:A。
φc=20V。
10.在图中,点电荷Q产生了电场,M、N、P和F是四个点,其中M、N、P是直角三角形的三个顶点,F是MN的中点,∠M=30°。
大学物理7.17 静电场的能量
存的静电能W
We
Q2 2C
CU 2 QU 22
Q2
A
0
dq C
2C
Q CU
任何电容器的能量式
2015/2/5
DUT 常葆荣
1
二、电场能量和能量密度
由电容器中的能量得
We
QU 2
U Ed
Q S
E
Sd V
We
2
E 2V
we
E2 2
能量密度
各向同性介质
We
E2
dV 非均匀电场 V2
2015/2/5
DUT 常葆荣
3
例题:求电量为Q 、半径为R的均匀带电球面的静电能。
解:
W
eE
2
E
2V
0 Q
r
We
R V
E 2
2
dV
40 r 2 (r R)
R
取半径为r,厚度为dr的球壳,球壳的体积为dV=4r2dr
体积dV内的静电能为
dWe
wedV
1 2
0
E
2
4
r
2dr
We
1
2
0
E
2
dV
R
1
2
0
(
Q2
4 0
r
2
)2
4
r
2
d
r
Q2
8 0 R
均匀带电导体球的静电能?
2015/2/5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离为d.充电后,两极板间相互作用力为F.则两
极板间的电势差为______2_F_d__/ C____,极板上的电
荷为______2_F_d_C_____.
C
0
S d
Q2
F1 E1Q 2 0 S
F1
Q2
2 0 S
Q2 2Cd
F
Q 2FdC E1 2dC
U Ed 2E1d
0 ++++++++++
E0
-0- - - - - - - - - -
0 + + + + ++ + + + + + r E
-0 - - - - - - - - - - -
C C0 Q 不变
1
U r U0
E E0
r
We
Q2 2C
1 QU
2
1 CU 2 2
(B) E↓,C↑,U↓,W↓.
答案B
R2
)
2
4π
R2 R1
R2 R1
讨论
(1)W e
Q2 2 C C
4π
R2 R1 (球形电容器电容) R2 R1
(2)以上为求电容器电容的第二种方法,即先求 能量,再求电容
例2. 一绝缘金属物体,在真空中充电达某一电势值, 其电场总能量为W0.若断开电源,使其上所带电荷
保持不变,并把它浸没在相对介电常量为 的无r
限大的各向同性均匀液态电介质中,问这时电场总
能量有多大?
解:因为所带电荷保持不变,故电场中各点的电 位移矢量 D 保持不变,
又
w
1 DE 2
1
2 0 r
D2
1
r
1
2 0
D02
w0
r
因为介质均匀,∴电场总能量 W W0 / r
1. 一个带电的金属球,当其周围是真空时, 储存的静电能量为W0,使其电荷保持不变,
1Q
E 4π r2
we
1 E 2
2
Q2
32 π2 r 4
R1 dr
r
R2
we
1
2
E2
Q2
32 π2
r4
变量
Q2
dWe wedV 8 π r 2 dr
R1 drrຫໍສະໝຸດ R2We Q2
dWe 8 π
R 2 dr r R1 2
Q2
8π
1 (
R1
1 )
R2
Q2 1 1 1
Q2
We
8π
( R1
1 QU 2
1 CU 2 2
二、静电场的能量
1、讨论:充电电容器所储存的能量谁是其携带者?
We
1 2
CU
2
设此电容器是一个平行平板电容器则有:
We
1 2
CU 2
1 2
S
d
(Ed )2
1 E2(Sd)
2
1 2
E2V
上述分析表明:电场具有能量。它是静电场本身 所具有的能量。
2. 能量密度
We
1 CU 2
2
1 E 2V
2
电场能量密度
we
W V
1 E 2 1 ED
2
2
电场空间所存储的能量
We
V wedV
1 E 2dV
V2
例1 如图所示,球形电容器的内、外半径分别
为 R1 和 R2,所带电荷为 Q .若在两球壳间充以
电容率为 的电介质,问此电容器贮存的电场能量
为多少?
解:两球壳间的电场强度为
答案B
3. 一空气平行板电容器充电后与电源断开,然后 在两极板间充满某种各向同性、均匀电介质,则 电场强度的大小E、电容C、电压U、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小 (↓)的情形为
(A) E↑,C↑,U↑,W↑. (B) E↓,C↑,U↓,W↓. (C) E↓,C↑,U↑,W↓. (D) E↑,C↓,U↓,W↑.
Q2 Q2d
W1 2C1 2 0 S
Q2 Q2d
W2 2C2
0S
W W2 -W1 Q2d 0S
两极板的相互吸引力
0 ++++++++++
d
E0 F1
- 0 - - - - - - - - - -
E1
注意:E1是一块板 产生的电场
E1
0 2 0
Q
2 0 S
Q2
F1 EQ 2 0 S
5. 一空气平行板电容器,电容为C,两极板间距
0 + + + + ++ + + + + + r E
-0 - - - - - - - - - - -
W0
1 2
C0U 2
W
1 CU 2 2
1 2
r
C
0U
2
rW0
4.一个平行板电容器的极板面积为S, 间距为d,用 电源充电后两极板上带电分别为 Q ,断开电源后 将电容器两极板间距离拉到2d,外力克服两极板的
E0
-0- - - - - - - - - -
Q2 W0 2C0
0 + + + + ++ + + + + + r E
-0 - - - - - - - - - - -
W
Q2
2C
Q2
2 rC0
W0
r
平行板电容器充电后未与电源断开 U 不变
0 ++++++++++
E0
-0- - - - - - - - - -
§6-4 静电场的能量
§6-4-1 点电荷系的静电势能
状态a
以两个点电荷系统为例 想象q1 q2 初始时相距无限远
q1 r q2
第一步 先把q1摆在某处 外力不作功
第二步 再把q2从无限远移过来 使系统处于状态a
使系统处于状态a,
状态a
外力克服q1的场作功等于该 q1 r q2
带电系统静电能的增加
静电能
W
1 dqV 2 Q
3Q 2
20 0R
真空中均匀带电的球面和球体,如果两者的半 径和总电量都相等,则带电球面的电场能量W1与 带电球体的电场能量W2相比,W1 ________W2
(填< 、=、>)。
§6-4 -2 电容器的能量 一 充电电容器的储能
1 充电电容器储存有能量的实验验证
K 。a
它浸没在相对介电常量为 r 的无限大各向同性
匀电介质中,这时它的静电能量
W =________W__0___r___.
2. 如图所示, 一球形导体,带有电荷q,置于一
任意形状的空腔导体中.当用导线将两者连接后,
则与未连接前相比系统静电场能量将
(A) 增大.
(B) 减小.
(C) 不变.
q
(D) 如何变化无法确定.
εC
K 。b
K打到a电容器充电
R K打到b,电容器放电, 灯泡R发出强闪光
根据功能原理充电后电容
器所储存的能量应等于外力
搬运电荷过程中所做的功。
+ + + + + + + + +
dW Udq q dq C
U
E
+
- - - - - - - - - dq
W
1 C
Q qdq Q2
0
2C
W
We
Q2 2C
3. 一空气电容器充电后切断电源,电容器储能W0,
若此时在极板间灌入相对介电常量为 的煤r 油, 则电容器储能变为W0的________1___r 倍.如果灌煤
油时电容器一直与电源相连接,则电容器储能将是
W0的__________r__倍.
平行板电容器充电后与电源断开 Q 不变
0 ++++++++++
r
W Aq1 q2E1 dl q2 E1 dl
r
V1q2
q1q2
4 0r
q1在q2处产生的电势
W q2q1
4 0r
1 2
q1
q2
4 0r
1 2
q2
q1
4 0r
状态a
q1 r q2
1
1
2 q1V1 2 q2V2
q1在q2处产生的电势
q2在q1处产生的电势
W
1 2 q1V1
Q2d
吸引力所作的功为
2 0 S
Q2
两极板的相互吸引力为
2 0 S
平行板电容器充电后与电源断开 Q 不变
0 + + + + + + + + + +
d
E0
-0- - - - - - - - - -
C0
0
S d
0 + + + + + + + + + +
2d
E0
-0- - - - - - - - - -
1 2 q2V2
状态a
q1 r q2
1
W 2
i
qiVi
点电荷系