ALD电调天线配置指导
TD-LTE部署新型FA-D双频独立电调天线深度解读
TD-LTE部署新型FA/D双频独立电调天线深度解读随着移动宽带的快速发展,天线对网络性能乃至用户体验的影响越来越大。
如何在部署TD-LTE网络时选择最适合的天线,以保障最佳网络性能,进而保证用户体验,是广大TD-LTE运营商日益关注的问题。
传统天线在TD-LTE时代遭遇窘境2013年以来,全球TD-LTE网络进入蓬勃发展期。
在TD-LTE网络的部署中,运营商如果采用传统的天线,往往会遇到如下几个挑战。
双频网络性能难以同时达到最优。
由于原来的FA频段与新增的D频段覆盖范围不一样,在相同下倾角的情况下,D频段相对于FA频段的覆盖收缩约18%,而采用机械下倾方式进行调整,容易影响邻区覆盖,产生干扰,不能保证TD-LTE小区边缘用户体验。
TD-LTE 一期某城市调研数据表明,工程优化中有68%FA和D频段共站建设的天线方向角和下倾角需要进行调整,否则性能将下降35%.天面空间紧张。
在多频段共存的今天,天面空间紧张成为运营商部署TD-LTE网络时遇到的突出问题。
调研数据表明,在上海、北京等中心城市,出于天面空间受限和业主不同意等原因,约有50%的站点将无法新建TD-LTE独立天线。
管理效率低。
传统天线体积大,运营商不仅在建设初期有选址和安装线缆的困难,而且机械调整天线下倾角还需专门关闭站点,进行人工调整,费时费力,同时对于美化站点也难以进行网络调整。
天线权值难以管理,容易导致小区覆盖与预期不符。
传统的天线权值设置方式是在站点建设时,由现场安装人员手工设置。
然而,不同的天线厂家设计的权值存在差异,一旦权值设置错误,将导致智能天线的广播波束畸变进而导致覆盖变形,严重影响网络性能。
FA/D双频独立电调天线应运而生FA/D双频独立电调天线凭借在网络性能、安装部署、远程管理等方面的独特优势,成为运营商建设优质TD-LTE网络的最佳天线解决方案。
双网独立电调,保障双频网络性能最优FA/D双频独立电调天线可以针对FA频段和D频段独立调整天线下倾角,使不同的频段达到同样的覆盖效果,保证不同场景下TD-LTE网络性能最优。
AAU3240电调天线指导书
版本:eNodeB BTS3900 V100R009C00SPC130主控板:UMPT基带板:UBBP d4,4号槽1.修改天线端口,打开ALD供电开关,天馈端口号根据实际情况选择。
MML: MOD ANTENNAPORT: CN=0, SRN=90, SN=0, PN=R0A, PWRSWITCH=ON;2.查询天线端口动态信息,确认对应天馈端口的ALD供电开关打开。
MML:DSP ANTENNAPORT: CN=0, SRN=90, SN=0, PN=R0A;3.扫描天线设备. MML: SCN ALD: CTRLCN=0, CTRLSRN=90, CTRLSN=0;AAU3240的F和D通道是物理上2通道,逻辑上4通道,F和D 频段在物理结构混合在一起,故这里只能扫描到一个天线设备。
4.加载电调RET。
MML:ADD RET: DEVICENO=0, CTRLCN=0, CTRLSRN=90,CTRLSN=0,RETTYPE=SINGLE_RET,POLARTYPE=SINGLE,SCENARIO=REG ULAR,VENDORCODE="HW",SERIALNO="AAU324001D3000101";天线类型选单天线,计划类型选择单极化,天线场景选择常规安装场景,设备厂家编码和设备序列号根据上一步查得的结果填写。
5.校准RET。
MML:CLB RET: OPMODE=SUBUNIT, DEVICENO=0,SUBUNITNO=1;如下图表示校准成功。
6.查询天线的倾角范围。
MML: DSP RETDEVICEDATA: DEVICENO=0,SUBUNITNO=1;查询结果7.查询电调天线当前的倾角。
MML:DSP RETSUBUNIT: DEVICENO=0,SUBUNITNO=1;8.调整电调天线的下倾角。
调整下倾角至40°。
MML:MOD RETTILT:RETCLASS=RET, OPMODE=DEVICENO, DEVICENO=0, TILT=40;9.10.查询修改的结果。
电调设置方法
设置方法:1. 切断电调主电源,打开发射机,接收机电源。
2. 把发射机油门推到最大3. 连接电调主电源4. 等待提示声音5. 上电提示声音:∮∮系统将进入主选单:单声:BEEP 这是第1项目选单,为电池种类和数量。
声音重复3次,如果油门不做变动,将转到第2项目选单。
如果要选择里面内容,在这个声音结束完以前把发射机油门移动到中间,等待新的提示声音。
•-代表NIMH/NICD电池,本电调能自动检测电池数量,但要保证每次开启时候电池是充足电力的。
然后在每个电池电压下降到0.8V的时候降低动力输出。
当电池电压再下降到0.7V以下时候完全切掉动力。
这个菜单所有声音重复3次。
如果说需要这个选项,请在这3组声音结束以前把油门推到最高。
等待更改设置声音注意:更改设置声音为1声高频声音。
同时系统重新进入主选单•--使用7S锂聚合物电池每节电压下降到3.0V时候降低动力输出,在2.9V时候将完全切断动力输出•---使用6S锂聚合物电池•----使用5S锂聚合物电池•-----使用4S锂聚合物电池•------使用3S锂聚合物电池•-------使用2S锂聚合物电池如果不改变发射机油门,系统将重复此子菜单,直到发射机油门到最大,重新进入主选单。
停止选择或者取消可以在任何时候把发射机油门推到最小,系统将重新载入数据,等待1秒时间,安全提示声音出现以后。
即可按油门比例输出动力。
连续2声:BEEP BEEP 第2选单为油门控制选项••-自动适应油门行程••--固定油门行程,1.1(最小油门)-1.8MS(最大油门)••---高加速度,适合需要快速反映的场合使用。
••----低加速度,适合动力电池性能不太理想的场合使用轻微刹车,油门到最后时候启动电机刹车,连续时间为3秒。
中途有动力输出请求,即刻取消。
••---中等强度刹车,时间3秒,中途有动力输出请求,即刻取消。
••----高强度刹车,时间3秒,中途有动力输出请求,即刻取消。
LTE电调培训20150520
电调故障1)小区退服会导致;2)如果现场SBT或者RCU与天线接触不良或者设备故障会导致ALD电流异常告警3)如果出现运行数据异常,小区正常,那么检查下是否更换过RCU或者天线,配置数据需要修改,或者重启下电调4)一般配置数据时电调未校准,或者后期调整电下倾的时候没有校准电调导致电调天线未校准告警;如果数据都正常,那么是电调RCU故障导致,需要更换RCU,重新调配5)如果出现电调天线马达故障告警,建议首先复位下电调,仍是不行请更换6)如果出现射频单元ALD开关配置不匹配告警,一般可以后台检查下第一步供电开关打开方式:首先检查是否直连DSP RETPORT:;还是通过SBT相连,DSP ANTENNAPORT:;检查端口是否打开:(图、表、告警清单)案例:(通过SBT相连)MOD ANTENNAPORT: CN=0, SRN=64, SN=0, PN=R0A, PWRSWITCH=ON, THRESHOLDTYPE=UER_SELF_DEFINE, UOTHD=20, UCTHD=25, OOTHD=300,OCTHD=280;//修改天线端口(MOD ANTENNAPORTDSP ANTENNAPORT:;//查询天线端口动态信息(DSP ANTENNAPORTSCN ALD:;//扫描天线设备(SCN ALDADD RET: DEVICENO=1, CTRLCN=0, CTRLSRN=64, CTRLSN=0, RETTYPE=SINGLE_RET, SCENARIO=REGULAR, VENDORCODE="HW", SERIALNO="B5288710861385774";//增加电调天线(ADD RET)DLD RETCFGDATA: OPMODE=SUBUNIT, DEVICENO=1, SUBUNITNO=1,IP="192.168.0.48", USR="admin", SRCF="HA-ATR451714-1710-C(01).bin";//加载RET配置数据(DLD RETCFGDATALST RET:;//查询电调天线配置信息(LST RET)LST SECTOR:;//查询扇区配置信息(LST SECTOR)MOD RETSUBUNIT: DEVICENO=1, SUBUNITNO=1, CONNCN1=0, CONNSRN1=64, CONNSN1=0, CONNPN1=R0A, CONNCN2=0, CONNSRN2=64, CONNSN2=0,CONNPN2=R0B;//修改电调天线子单元(MOD RETSUBUNIT)CLB RET: OPMODE=SUBUNIT, DEVICENO=1, SUBUNITNO=1;//校准电调天线(CLB RET)DSP RETSUBUNIT: DEVICENO=1, SUBUNITNO=1;//查询电调天线子单元动态信息(DSP RETSUBUNIT)MOD RETTILT: RETCLASS=RET, OPMODE=DEVICENO, DEVICENO=1, TILT=30;//修改电调天线倾角(MOD RETTILT)DSP RETSUBUNIT:;//查询电调天线子单元动态信息(DSP RETSUBUNIT)DSP ALDVER: OPMODE=DEVICENO;//查询天线设备版本信息(DSP ALDVER)如果发生故障过,可以关闭重启端口试试,重新加载电调,如果出现硬件故障现场更换。
电调天线不能打开ALD电源供电开关
4) 自定义配置的电流门限问题导致电流保护。
解决步骤:
1) 检查组网情况,确保供电端口的唯一性和准确性;
2) 检查SBT/RCU/AISG电缆是否都已经安装好;
3) 检查自定义电流门限配置是否合理,主要是级联模式下RCU数量不同,电流门限不同;
4) 一般不能打开电源开关是SBT或者天馈系统串接了其他设备,首先检查天馈系统是否有其他隔直流设备,如开路避雷器等;
5) 检查天馈系统是否串接合路器,检查合路器的程完工,配置数据时,第一步打开ALD电源供电开关,发现无法打开,查询供电端口电流为0。
原因分析:
1) 不能打开ALD电源供电开关,一般是供电通道问题,如SBT、RCU、AISG电缆的硬件安装问题;
2) 明确组网是Antenna端口供电还是RET端口供电,供电打开方式命令不一样,且不能两个端口同时打开供电;
ALD电调天线配置指导
扫描RET天线
FA/D独立电调天线开通双模, 建议统一在LTE侧配置电调天线。
添加RET天线
设置RET天线下倾角
不正确
结束
HUAWEI TECHNOLOGIES CO., LTD.
Page 2
数据配置步骤
步骤1、执行MML配置ANTENNAPORT供电开关及电流 告警门限等参数。 MOD ANTENNAPORT 步骤2、执行MML扫描ALD设备。SCN ALD
10
10 10 10
15
15 15 15
300
400 500
280
360 440
200+ (100 x N)
200+ (80 x N)
表中数据是以华为TD-LTE基站和华为RET天线为例,按照2个RET天线级联组网形式配置。 此告警门限表适用于单个RET天线依次校准的场景。
HUAWEI TECHNOLOGIES CO., LTD.
ALD电调天线配置指导 (中国移动版本)
Version: V1.0(2013.11.16)
HUAWEI TECHNOLOGIES CO., LTD.
数据配置步骤
1. 执行MML配置ANTENNAPORT (RETPORT)供电开关及电流告警门限等参数 MOD ANTENNAPORT (8T8R RRU 和AAU3210适用此场景) MOD RETPORT (RRU3172-fad、RRU3250适用此场景)
2、四通道内置RCU电调天线序列号编码规则
天线端口上边频与颜色对应表
上边频范围 700 to 1000 MHz 1001 to 1700 MHz 1701 to 2300 MHz 2301 to 4000 MHz 字段含义 红色(r) 绿色(g) 蓝色(b) 黄色(y)
AAU3213智能天线配置指导书V2- 修改by Quanlang
AAU3213天线权值配置指导书
1 操作前核查
1、查询RRU型号:DSP BRDMFRINFO:CN=0,SRN=200,SN=0;
(注意查询框号为200的RRU型号,仅操作型号为AAU3213的基站)
2、查找删除权值:LST BFANT:; ////RMV BFANT:;
若查询出具有权值信息中天线类型为ATD451602、ATD4516C2这两种的1种,则需要使用RMV BEANT命令,删除所有的权值信息即可。
2 操作步骤
步骤1:打开ALD供电开关:MOD ANTENNAPORT:;
步骤2:查询ALD开关状态:DSP ANTENNAPORT:;
步骤3:扫描天线信息:SCN ALD:;
步骤4:添加RET设备:ADD RET
参数设置按照下表进行:
注:请在添加天线2~3分钟后设置天线下倾角。
(即步骤5)
步骤
5:修改内置电下倾:MOD RETSUBUNIT
步骤6:查询天线的实际下倾角:DSP RETSUBUNIT
命令查询天线的实际下倾角,验证实际下倾角与设置下倾角是否一致。
注:后续步骤为添加内置方位角的步骤
步骤7:添加RAE :ADD RAE
参数按照下表配置即可:
步骤8:检查RAE状态:DSP RAESUBUNIT
步骤9:修改RAE子单元:MOD RAESUBUNIT
步骤10:添加天线权值信息:ADD BFANT
步骤11:修改电子水平方位角:MOD BFANT。
Elecraft KXAT1 内部自动天线调节器设立指南和使用说明书
E LECRAFT KXAT1AUTOMATIC ANTENNA TUNERAssembly and Operating InstructionsRevision A, Oct. 14, 2003. Copyright © 2003, Elecraft; All Rights ReservedIntroductionThe KXAT1 internal automatic antenna tuner (ATU) allows random-length, end-fed wire antennas to be connected directly to the Elecraft KX1 transceiver and used on one or more bands. It can be also be used with most coax-fed antennas, or with balanced feedlines via a balun. Like our KAT1, KAT2, and KAT100 auto-tuners, the KXAT1 functions on receive as well as transmit. This provides an increase in receive sensitivity and improves rejection of out-of-band signals.The KXAT1 uses latching relays to reduce current drain to nearly zero except when tuning. These relays select appropriate combinations of inductance and capacitance, as well as either a capacitor-in or capacitor-out L-network configuration. Tune-up is controlled by the KXAT1's microprocessor, which also supplies SWR and power information to be displayed on the KX1's 3-digit LED display. Once a match has been found, matching parameters are saved so that the settings can be recalled immediately on any band change.ATU parameters (L, C, SWR, etc.) can be viewed using the KX1’s ATU menu entry. Additional settings are provided to perform component-level troubleshooting of all relays and L-network components.In addition to being one of the world’s smallest automatic antenna tuners, the KXAT1 is very easy to build and install. The KXAT1 module plugs directly into the KX1’s main board with no additional wiring. Gold plated connectors and redundant connector pins are used to provide excellent reliability for field operation.SpecificationsL/C Ranges L (inductance): 0-4.5 µH in 7 steps; C (capacitance): 0-140 pF in 7 steps Network Type L-network (series L, shunt C); C switchable to transceiver or antenna side Tuning time 1 to 3 seconds typical for initial tune-up; < 1/2 sec. to recall per-band settings SWR Display 1.0:1 to 9.9:1Current Drain Approx. 10-30 mA during TUNE; < 1 mA at all other timesSize 4.8" (L) x 1.0" (D) x 0.5" (H) (12.2 x 2.5 x 1.3 cm)Weight1 oz.Ca ution: Some components in this kit can be damaged by static discharge. Beforetouch any grounded, unpainted metal surface.12Parts InventoryThe table below lists all parts in the kit. The KX1 Owner's manual has photographs of similar parts.Ref.Description Qty Part No.C1Capacitor, 20 or 22 pF ("20," "22," "200," or "220")1E530017C2Capacitor, 39 pF ("39" or "390")1E530036C3Capacitor, 82 pF ("82" or "820")1E530038C4-C8,C11Capacitor, .01 µF ("103")6E530019C10Capacitor, 100 pF, 200 V, NPO disc ("101")1E530034C9Capacitor, 1-40 pF trimmer 1E540002D1,D2Diode, 1N57112E560004K1-K7Relay, DPDT 7E640010L1,2,3T37-2 toroid core, red, 0.37" diameter (L1=0.64 µH,12T; L2=1.3 µH, 17T; L3 = 2.6 µH, 25 T)3E680006P1Connector, 3 pin male, 0.1" spcg 1E620071P2Connector, 2 pin male, 0.1" spcg 1E620072P3Connector, 5 pin male, 0.1" spcg 1E620073R1,R2Potentiometer, 100 k trimmer, low-profile 2E520012R3Resistor, 200 ohms, 1/4-W, 5% (red-black-brown)1E500020R4Resistor, 3.3 k, 1/4-W, 5% (orange-orange-red)1E500017RFC1Miniature RF choke, 15 µH (brown-green-black)1E690012T1Transformer on FT37-43 core, 10 turns bifilar (see text)1E680003U1MCU, KXAT1, PIC16C7161E610016Z1Ceramic resonator, 4.0MHz +/- 0.2%1E660001MISCKXAT1 PC board (part of KX1 PC board set)1E100175MISCEnamel wire, #26 red 5 ft.E760002MISCEnamel wire, #26 green 2 ft.E760004MISCSolid, insulated hookup wire, green 1 ft.E760008MISCSocket for U1, 18 pins 1E620031MISC Foot, self-adhesive (spacer between ATU/bottom cover)1E700024Parts Placement DrawingsParts placement drawings for both sides of the KXAT1 PC board can be found in Appendix F of the KX1manual.3AssemblyA fine-point, temperature-controlled soldering iron (700-800 degrees F) is required to assembleminimum amount of solder to avoid ground shorts.All parts are installed on the top side of the board except as noted (the side with the relays, toroids,PC boards can be difficult.Place relays at locations K1-K7 as shown by their component outlines. Do not solder yet. Do notUsing a flat object to hold K1-K7 in place, flip the board over. Solder just one inner pin on each relay. Inspect the relays closely to make sure that they’re seated flat against the PC board. If not, re-heat theTrim the relay leads as short as possible to provide clearance for folded capacitors in a later step.Install the IC socket at U1. Align the socket's notched end with the notch in the component outline.On the bottom side, install R3 (200 ohms, red-black-brown) and R4 (3.3 k, orange-orange-red).Install D1 and D2, with the banded end of each diode oriented as shown on the board.Install ceramic resonator Z1, which looks like a capacitor with three leads. It can be installed in eitheralter its frequency. Trim the leads after soldering.Install trimmers R1 and R2 on the bottom side. Make sure they are seated flat against the PC board.Install RF choke RFC1 (brown-green-black). The leads are fragile—handle carefully.Install the trimmer capacitor, C9, on the bottom side. The flat side should be oriented as shown by theInstall the capacitors listed below on the bottom side of the board, but don't solder them yet. Leave the shown in parentheses.__ C1, 20 or 22 pF (20, 22, 200, or 220)__ C2, 39 pF (39 or 390)__C3, 82 pF (82 or 820) __ C10, 100 pF (101)4Fold down C1, C2, and C3 at about a 45-degree angle, but not so far that they contact the nearby relaySolder C1-C3 and C10 from the bottom side to avoid damaging the relays. Trim the leads on the top. In the following step, the installed height of the capacitors must be no more than 5/16" (7.5 mm).installed height is below the limit specified, there's no need to straighten the leads.Install the .01-µF capacitors ("103") on the top side of the board (C6, C4, C5, C7, C8, C11). TheyIn the following steps, inductors L1 through L3 will be wound and installed. There is no need toInductor L1 is wound on a T37-2 core (red) using 8" (20 cm) of #26 red enamel wire. To wind the inductor, pass the long end of the wire through the core exactly 12 times . Each pass through the corecounts as one turn. The finished winding should look like the illustration below. Exact turns spacing is not critical.Remove insulationSpread out the turns of L1 so they occupy about 80-90% of the core’s circumference.Cut L1's leads to about 1/2" (12 mm) long. Completely remove the enamel insulation from the leads to within 1/8” (3 mm) of the core. The enamel wire provided can be heat-stripped using a small amount of solder on the tip of your iron. Stripping using this method takes 4-6 seconds.5Install L1 vertically on the PC board as shown by its component outline, then pull the leads taut onTrim and solder the leads of L1. When soldering, make sure that the solder binds well to the leads. IfMeasure from pad to pad using an ohmmeter to verify the connection (low resistance).Wind and install L2 and L3 using the same procedure you used for L1. The number of turns and wire __ L2, 17 turns (11" [28 cm])__ L3, 25 turns (15" [38 cm])Fold C10 down toward K6 and L3, but not so far that it touches the leads of these components.T1 is wound on a ferrite toroidal core (gray, FT37-43; may have an orange dot). Cut two 10" (25 cm)coating is not chipped or broken.Twist the two wires together, crossing over each other about 3 to 4 times per inch (1-2 times per cm). Wind the twisted wires onto the core as shown below, using 10 turns. Each pass through the coreAs shown below, the wires labeled (1) and (3) should originate from below the core, andabove it. This will ensure that the transformer has the correct phasing.Trim the leads of T1 to about 1/2" (12 mm) long. Then completely remove the insulation from T1's an X-acto knife. Do not attempt to burn off the insulation using a match or lighter, as the flame may fuse the pairs of wire together, causing them to become shorted.6Tin T1's leads with solder. If the leads do not tin easily, the insulation may not be fully removed.Using an ohmmeter, measure between the red and green wires to make sure that they're not shorted. Install T1 as indicated by its PC board outline. Insert the leads into the numbered holes as identifiedPull the leads taut on the bottom of the board. Before soldering, make sure that the entire portion ofCut a 1-1/8" (2.9 cm) length of insulated, solid-conductor hookup wire. Remove 1/4" (6 mm) ofInsert this wire through the center of T1 and into the pad labeled 5. Bend the wire down to the left and 6. Pull the leads of the wire taut on the bottom of the board, then solder.Install the self-adhesive foot in the location identified on the ATU module ("FOOT").Touch a grounded, unpainted metal surface before handling the microcontroller (U1, 16C716).the pin 1 label.Remove the bottom cover from the KX1 transceiver (2 thumbscrews) and turn it upside-down withRemove the jumper installed between pins 1 and 3 of J7 (ATU bypass).The KXAT1 kit includes mating male connectors for J8, J7, and J6, designated P2, P1, and P3,connectors on the KX1 board. P1-P3 must be fully seated, or the bottom cover will not fit properly withthe ATU installed.Place the KXAT1 module onto the pins of P1-P3. Verify that the module is resting flat against thethe positions of toroids and capacitors on the two boards to allow them to fit together without obstruction.Press down on the KXAT1 at both ends to ensure that P1-P3 are fully inserted into J6-J8. Then solderall pins of P1-P3.Trimmer R4 on the KX1 board is accessible through a hole in the ATU board (as well as aclockwise (maximum power output, about 4 watts at 12-13V). R4 can be adjusted using a small flat-blade screwdriver.This completes KXAT1 assembly. Keep the bottom cover off for the alignment and test steps which follow.7Alignment and TestConnect a power supply or battery to the KX1 and turn on power. Tap MENU and scroll through the entries until you find ATU . To select the mode for the ATU, hold . If you see three dashes (---) instead of the ATU parameter, refer to Troubleshooting.Using the VFO knob, set the ATU parameter to the first relay test setting, L0. You should hear a L1, then to L2, and finally to L3. The same should be true for C0through C3, as well as N1 and N2. (If you don't hear any relays switching, see Troubleshooting.) Exit themenu.Select 40 meters using the KX1's BANDswitch.Connect a 50-ohm dummy load to the KX1’s antenna jack (5W or higher rating).Set the ATUparameter to CALusing the menu. Pre-set potentiometers R1 and R2 on the bottom of the ATU board to exactly their mid-points.Touch the (+) lead of a digital multimeter (DMM) or analog voltmeter to the small hole near the" label on the bottom of the KXAT1 board. Connect the (-) lead to one of the KX1's long standoffs.Set the voltmeter for 2 or 3 DC volts full scale. Locate a non-metallic tuning tool for adjusting ceramic trimmer C9. You can use a small flat-blade Enter TUNE mode by holding M ENU and BAND together (the KX1 will display forward power,). Adjust C9 for the lowest possible voltmeter reading—the null may be sharp. Cancel TUNE mode by tapping any switch (the KX1 will display SWR, e.g. r1.0).If your voltmeter has a lower scale than 2 or 3 V, set it for this scale, and repeat the previous step.Optional Power Calibration: The KXAT1 will provide acceptable power-reading accuracy with R1 andR2 set to exactly their mid-points. More accurate adjustment requires a calibrated wattmeter:Connect a known-accurate wattmeter between the KX1 and a 50-ohm dummy load.Enter TUNE mode. Adjust R1 (FWD) on the KXAT1 so that the KX1’s power display agrees with the r1.0. If it doesn't, chances are your dummy load is not 50 ohms, or the null adjustment (C9) was not done correctly.Adjust R2’s rotation to match that of R1 (visually).Installing the Bottom CoverTurn off the KX1 and re-install the bottom cover. Be very careful not to pinch the battery wiresUsing The ATUBasic ATU Operation• Connect the best possible antenna and ground to the KX1 (see Antenna Considerations).• Use the KX1 menu to set the ATU’s operating mode to TUN (auto-tune), then exit the menu.• Enter TUNE mode (M ENU + B AND). ATU will be displayed for a few seconds while the tunerfinds the best match (if you don't hear any relays, the SWR was already low). Power will thenbe displayed (e.g. P4.0). Tap any switch to cancel TUNE; the SWR will be displayed (e.g. r1.0).• With the ATU installed, the LED bargraph will show power output while keying (0.5 watts per bar).• ATU settings are stored in EEPROM, and will be recalled instantly whenever you change bands. Displaying Power Output and SWR while preserving matched L and C settingsIf you change the ATU setting to rX.X (SWR) in the menu, L and C settings will not be changed during TUNE mode, even if the SWR is high. This setting is rarely needed; TUN mode is recommended.Using an External Antenna TunerIf you're using an external antenna tuner, bypass the KXAT1 by setting ATU to CAL. Power and SWR will still be displayed in TUNE mode. Note: The KXAT1 cannot display SWR continuously during TUNE, so an external tuner with built-in SWR bridge is recommended. Most stand-alone tuners include a bridge. Important ATU Operating Tips• A 1.0:1 SWR is not necessary for good performance. However, a low SWR will help protectthe transmitter. See Antenna Considerations.• If you switch to BAT (battery) display mode, then enter TUNE, you'll see the transmit-mode batteryvoltage, not SWR or power output. The ATU settings will not change. If the indicated battery voltagedrops too far on transmit, the battery should be recharged or replaced.ATU Menu SettingsTable 1 lists all of the ATU menu settings. TUN is used for normal operation, and the tuner is bypassed when set to CAL. Other settings are primarily used for troubleshooting.Table 1. ATU ModesMode Description Mode DescriptionCAL Calibration/Bypass, L and C = 0Exx1-49 = error (see Troubleshooting)TUN Auto-tune mode Fx.x KXAT1 firmware revision, e.g. F1.0rx.x SWR from most recent TUNE L0-L3Individual inductor test (C = 0)Lx.x Inductance, µH C0-C3Individual capacitor test (L = 1 µH)C.xx Capacitance, nF (.01 nF = 10 pF)N1Network relay test, Cin (L/C = 0)NTx Network type; 1=Cin, 2=Cout N2Network relay test, Cout (L/C = 0)8Antenna ConsiderationsThe KXAT1 will work with coax-fed dipoles, verticals, etc., but it's optimized for use with random-length wire antennas. These are often the easiest antennas to set up in the field. However, certain wire lengths must be avoided, and ground radials are required (both issues are discussed below). You should test your chosen antenna system ahead of time, if possible, to be sure the KXAT1 can achieve an acceptable match. No-feedline operation: At QRP power levels, feedline is not always necessary. In many cases you can connect a wire antenna directly to the KX1 and toss it into a tree, then lay out at least one ground radial, as shown below. This antenna can be set up quickly, and compares favorably to a low, coax-fed dipole or inverted V. It also minimizes station weight (see further details on wire and accessories on page 10). If you toss the wire into a tree, try to keep all but about one foot of wire exposed. A wire that is mostly in a tree will still radiate, but not as well.Wire antenna length: Since the KX1 can only match a moderate range of impedances, a given random wire length is not guaranteed to provide an acceptable match on all three bands. Results will vary depending on the wire length, height, type of support, and ground system. But for backpacking use on40/30/20 meters, a wire length of 24-28 feet will generally provide good results. For use on 30/20 m only, as little as 12 ft. can be used, and for 20 m only, as little as 8 ft. Avoid lengths which are close to a half-wavelength long or any multiple thereof, which will be out of the KXAT1's matching range. For example, you should avoid using close to 33' if 20 m operation is planned, or 46' if you'll be using 30 m.Ground system: Use a at least one ground radial, cut to at least 1/8th wavelength on the lowest band used (16' on 40 meters). When possible, use two or more radials, with one cut to 1/4 wavelength on each band.9Backpacking Verticals: The KXAT1 may improve the match to a backpacking-style vertical. If the antenna has a loading coil, you should first adjust it for minimum SWR, since such antennas can be very narrow-banded. Set the ATU menu entry to CAL mode (bypass) for this purpose, then back to TUN mode to further match the antenna using the KXAT1 (if necessary).Whip Antennas: Short whip antennas connected directly to the KX1 may damage the antenna jack or PC board, and so should only be used in an emergency. They are also very poor radiators.Do I Need a really low SWR? Not necessarily. For example, if the SWR is 2:1, the loss in transmitted signal strength will be only about 0.5 dB. However, a low SWR will protect the transmitter, and an SWR under 2:1 is recommended. The KXAT1 always tries to hit 1:1, and with most antennas it will find an SWR below 1.5:1 on most bands. If the SWR is higher than 2:1 after matching, try using a balun or reconfiguring the antenna or changing its length.Using Baluns:A balun can improve the match to very high-impedance antennas, allow the KXAT1 to be used with balanced line, and help isolate the antenna from the rig to reduce RF pickup. A low-loss, broad-band, 4:1 balun such as the Elecraft BL1 is a good choice(it's also quite small—just 1.5 x 3"). Suggested Wire and AccessoriesWire: #26 stranded copperclad steel wire, such as Wireman #541 (also available from Davis RF as#WM541), is strong, lightweight, and easy to keep straight. A 25-ft. length weighs less than half an ounce. Adapters: To go from BNC directly to wires, you'll need an adapter. The smallest suitable adapter is the Pomona model 3430-2, which is a singlebinding post to BNC male (see drawing below).If you use this adapter type, you'll need to use one of the KX1's thumbscrews as a ground tie-point, requiring that you carefully remove some paint from around the bottom cover holes on both inside and outside. A larger but more versatile adapter is the Pomona model 1296. This is a double binding post to BNC male, which provides both antenna and ground connections. The more expensive model 3296 also has double binding posts, but they're the miniature type, reducing overall dimensions.Weights: A large, stainless steel hex machine nut, thread diameter 5/8", can be found at hardware stores and works well for tossing wires into trees (weight: about 1 oz.). If you prefer fishing weights, avoid using lead, which is toxic to wildlife. Stainless steel weights are available (e.g., 1). Supporting hardware: End insulators and non-conductive support line are not strictly necessary for low-power portable antenna installations. In general, you can simply attach a weight to the end of the wire itself. But if you prefer to isolate the end of the wire to minimize interaction with other objects, you can fabricate lightweight insulators from small pieces of plastic. Small-diameter nylon cord can be used for support lines. 1Additional suppliers can be found with a web search for "non-toxic weights" or "non-toxic fishing tackle."10TroubleshootingIf the ATU menu parameter shows "---" at all times, look for a connector shifted by one position, an unsoldered pin, U1 installed backwards on the ATU board, or a defective U1. Also check the ATU PC board for shorts to ground, solder bridges, and unsolderedIf the ATU menu parameter becomes "---" after doing a tune-up, it may be due to very high RF feedback into the transceiver. Turn power off and back on, then re-test the ATU using a dummy load or a different antenna. If it functions correctly on a dummy load but not on your antenna, try using a balun.If the SWR isn’t < r1.2 with a 50-ohm load, C9's setting may be incorrect.If the power indicated is always about 0 watts, the windings of T1 may be reversed, or one or more leads of T1 or L1-L4 may not be properly stripped.If the ATU shows an error message (Exx in the menu where xx is between 1 and 49), you may have a defective microcontroller (KXAT1-U1). Exx numbers 50-99 are used for tune-up algorithm tracking, and do not indicate a problem.If SWR is not displayed after exiting TUNE, you may have high RF feedback into the transceiver. You may need to improve your ground system, move the antenna farther away, or use a balun.If the tuner is unable to achieve a low SWR on some bands, even with several different antennas, you could have a single defective relay or component on the L-C board. Start by slowly scrolling through ATU menu parameters L0 through L3, C0 through C3, N1, and N2. These are intended for relay testing. For example, L0 turns off all of the inductor relays (K4-K6). L1 turns on K4, etc. Similarly, C0 turns off all of the capacitor relays, and C1 turns on K1. N1 and N2 place the network configuration relay, K7, into its two positions: CTX (C-in L-network) or CANT (C-out L-network).If the relays are all working but you suspect an inductor or capacitor, you can test each L and C by noting their effect on SWR, one at a time. Start on the highest band. Connect a 50-ohm dummy load to one of the antenna jacks, select L0, do TUNE, and note the SWR reading. Then select L1 and do TUNE again; the SWR should change by a small amount. L2 should have a larger effect, etc. If the inductance selections cause the SWR to go off the scale (9.9), switch to a lower band, go back to L0, then test the remaining inductors. Similarly, you can test all three capacitors, starting on the highest band with C0, C1, etc. You'll know you have found the bad component if it has too large or small an effect (or no effect) on SWR, in relation to the others tested.11Circuit DetailsThe ATU uses three inductors and three capacitors in an L-network, with values optimized for use with moderate-length wire antennas on 40-20 meters. The capacitance can be placed at the transmitter or antenna end of the network via K7. Each inductor and capacitor has its own DPDT relay, with the individual sections of each relay placed in parallel for reliability. The relays are selected under control of the ATU's microcontroller, U1. Latching relays are used so that they will not consume any power except when the operator is actually tuning.T1, D1, D2 (etc.) form a directional coupler for SWR and power measurements. The bridge output is buffered by op-amp U2 and routed to the KX1 control board. The bridge outputs are also connected to A-to-D inputs on the microcontroller, U1. U1 measures these voltages and converts them to SWR or power readings, using averaging and linearization techniques to improve accuracy. During transmit, the VFWD line provides an analog power indication to the KX1’s main microcontroller. At other times this line used to transmit digital data between the ATU and KX1. U1 "sleeps" except during antenna tune-up, so it generates no receiver noise.KXAT1 SchematicElecraft • • 831-662-8345。
电调天线安装调测指导
电调天线安装调测指导
电调天线
安装、调测指南
一、电调天线的原理
对于间隔排列为d 的N 个单元阵列,当相邻单元的相位呈等相均匀分布时,天线最大波束形成于法向正前方。
当相邻单元的相位依次相差Φ时,最大波束形成于θ0空间方向。
电调天线的波束下倾角调整,是通过调整天线内部的振子间相位来实现的。
电调天线的优点:
有效克服机械调下倾角的缺点,如:在大角度下倾时水平面覆盖产生畸变,且伴随交叉极化和主极化特性变差、水平面前后比与无下倾时趋势不一致。
导致邻扇区抗干扰性能变差,覆盖性能变差;调整下倾角困难,不适合进行优化覆盖;电调天线在结构上可垂直安装,安装件更简单、更可靠,便于美0sin 2θ?=Φd λ
π
化。
电调天线的缺点:
增益有所损失,结构复杂化,成本上升,可靠性下降。
二、电调天线的安装
目前使用的京信电调天线,均采用了外置驱动电机的方式。
电机整合在外置的RCU(远程电调天线驱动器)内,RCU通过控制线和RRU/RRH上的RET口连接。
双级化电调天线示意图:
RCU示意图:
电调线(一头公口、一头母口)示意图:
安装步骤:
1、将RCU安装至天线上:
注意:部分型号的天线有下倾角标尺,安装RCU时需要注意:RCU 安装角度不对会顶住标尺,导致可调行程卡死。
2、用电调线将RRU/RRH上的RET口和RCU连接。
每个RRU/RRH上只有一个RET口,若遇到1个/2个RRU开多个小区时,需要将RCU进行级联。
RCU级联示意图:。
天线电调系统搭建方案
I. 电调天线系统的基本组成 II. 常用的电调天线控制方案
To be your best partner
电调天线的优势
网络优化的智能化
天线设备的管理和维护
电调天线的远程遥控示意图
远程可调电调天线
控制器
790-960MHz
1710-2170MHz 1710-2690MHz
AISG
电调天线遥控需要的硬件支持
1 支持电动遥控的天 线 可以是2G或3G天 线,结构上可以是 单根的,也可以是 多根天线组合在一 起的集束天线等等, 就是说,只要是与 相应的驱动器能配 合使用的天线都可 以。
电调天线遥控需要的硬件支持
2 电调天线驱动器 驱动器一般是与所选用的 电调天线配套使用的,各厂家 做的产品在结构样式上各不相 同,但如果都支持相同的控制 协议,软件上一般都可以互联 互通。上图是摩比公司设计的 第一代驱动器,符合AISG1.0 标准,下图是第二代驱动器, 是根据AISG1.1标准做的,主 要区别是第一代用12V电源工 作,第二代支持10~30V宽电压 工作,当然硬件接口和软件协 议也有些变化。
电 调 天 线
电 调 天 线
驱 动 器
电 调 天 线
驱 动 器
可以继续接 6个驱动器
控制电缆
塔 控制信号分路器 放
塔 放
塔 放
节省电缆以及 接口资源
控制信号 避雷器
以太网
远程网络管理协议
避雷器
馈线
天馈避雷器
网管中心
基站设备
机 房
对应本地方案1
电调天线远程控制方案(6)
电调天线遥控需要的硬件支持
7 台式控制器 台式控制器是安装在标准机柜里的具有远程控制功 能的控制器,它通过以太网接入系统,在控制中心可以对 基站的天线设备进行管理和控制.这种控制器基本功能一 样,但结构形式不尽相同,有的是做成1U 19英寸标准机箱 方式,有的和其它设备再重新结合制作成为集成控制器. 上图上摩比公司设计的一种样机,它通过以太网接口与控 制中心通信,通过USB或RS232接口可以用本地计算机进 行本地控制。同时支持三路天线控制器,电源支持直流48V和交流100~240V.目前通过网页可以完成远程遥控功 能。
天线调试指导书
R A Y T E C H(S H E N Z H E N)C O.,L T D手机天线调试前预备工作(1)工程师从研发经理处领取手机A首先观察手机,确定手机金属装饰件的位置,预评估其对天线有无影响,做到心中有数。
B拆开手机,察看机天线周边的器件,导线的位置,评估其是否影响天线,确定天线的是否避让这些器件。
(2) 察看匹配电路形式和测试点焊接位置。
匹配电路一般为L型或Л型,分清并联和串联。
测试点一般为匹配后的connect连接点(如果客户指定测试点,则按客户要求),将connect焊掉后,可看到测试点的准确位置。
如果connect离匹配太近,影响匹配调试时元件焊接,也可将connect后的元件焊掉,直接将connect 后端连接线点作为测试点。
红线箭头所指为connect。
(3) 确认测试点,要合理规划cable线的焊接路径,原则是尽量少破坏主板上的元器件,不能去掉和前盖LCD连接的卡钩,cable线不易弯折太大,弯折角度要圆弧形,不能直角弯折,cable线的焊接路径上要有足够的地要来焊接,屏蔽罩取下后要保留,最后再装上去。
确认好后,用电热枪将路径上的元器件吹掉,将路径上的地刮好(绿漆要刮除),涂上助焊剂,焊上一层锡。
(6) 剥出cable另一端的内芯线2mm左右,焊上一层焊锡,表面要光滑,不能有毛刺。
然后把cable上靠近剥除内芯处,剥去长阅2mm的胶皮,露出外导体,焊上一层焊锡,表面要光滑,不能有毛刺。
(7) 把做好的cable线按照预定路径紧贴在主板上,在地的部分把两者焊接,焊接要牢固,光滑,不能有毛刺。
(8) 把剥好的芯线压低,靠近测试点,用焊锡连接。
使用万用表测试电缆是否与地及馈点焊盘连通。
(9) 把做好的主板放入机壳,(有屏蔽罩的要放回屏蔽罩,)盖回后盖。
这个过程中凡是机壳和机板上的cable有干涉的地方要剪除,使cable能正常的从机壳中穿出。
R A Y T E C H(S H E N Z H E N)C O.,L T D天线的调试天线的调试有常用的方法规律,也有时候不依常理,所以需要精确判断,灵活思考,经验的积累至关重要。
天线调试匹配方法[精选]
天线调试匹配方法[精选]第一篇:天线调试匹配方法[精选]通常对某个频点上的阻抗匹配可利用SMITH圆图工具进行, 两个器件肯定能搞定, 即通过串+并联电感或电容即可实现由圆图上任一点到另一点的阻抗匹配, 但这是单频的。
而手机天线是双频的, 对其中一个频点匹配,必然会对另一个频点造成影响, 因此阻抗匹配只能是在两个频段上折衷.在某一个频点匹配很容易,但是双频以上就复杂点了。
因为在900M完全匹配了,那么1800处就不会达到匹配,要算一个适合的匹配电路。
最好用仿真软件或一个点匹配好了,在网络分析仪上的S11参数下调整,因为双频的匹配点肯定离此处不会太远。
,只有两个元件匹配是唯一的,但是pi 型网络匹配,就有无数个解了。
这时候需要仿真来挑,最好使用经验。
仿真工具在实际过程中几乎没什么用处。
因为仿真工具是不知道你元件的模型的。
你必须要输入实际元件的模型,也就是说各种分布参数,你的结果才可能与实际相符。
一个实际电感器并不是简单用电感量能衡量的,应该是一个等效网络来模拟。
本人通常只会用仿真工具做一些理论的研究。
实际设计中,要充分明白Smith圆图的原理,然后用网络分析仪的圆图工具多调试。
懂原理让你定性地知道要用什么件,多调是要让你熟悉你所用的元件会在实际的圆图上怎么移动。
(由于分布参数及元件的频率响应特性的不同,实际件在圆图上的移动和你理论计算的移动会不同的)。
双频的匹配的确是一个折衷的过程。
你加一个件一定是有目的性的。
以GSM、DCS双频来说,你如果想调GSM而又不太想改变DCS,你就应该选择串连电容、并联电感的方式。
同样如果想调DCS,你应该选择串电感、并电容。
理论上需要2各件调一个频点,所以实际的手机或者移动终端通常按如下规律安排匹配电路:对于简单一些的,天线空间比较大,反射本来就较小的,采用Pai型(2并一串),如常规直板手机、常规翻盖机;稍微复杂些的采用双L型(2串2并):对于更复杂的,采用L +Pai型(2串3并),比如用拉杆天线的手机。
电调天线安装配置指南v1.0
电调天线安装配置指导此指导书针对当前发货的ATR4516R0型号天线制定,后续有变化的话,会对指导书进行刷新。
1 安装部分此次发货的属于RCU内置的电调天线,硬件安装部分和以前的天线安装方法一致,注意一点F频和D频的通道要选对。
天线信号通过ACL口进行发送,所以不需要额外配置AISG线缆。
安装完成后,需要现场督导将每个扇区的天线铭牌拍摄记录,传递到前台督导进行数据配置。
照片示范:其中红色部分必须拍摄到,HWM开头的为RET的SN号,其中以b结尾的表示F频段的RER设备编号,y表示D频段。
后台加载数据的时候一定要根据现场所用的频段进行配置。
HWX开头的序列号可以无视。
2 数据配置部分因为脚本不具有通用性,所以没有通用脚本。
数据配置步骤:①执行MML配置ANTENNAPORT供电开关及电流告警门限等参数告警门限设置参照图:②查询RET 天线供电状态DSP ANTENNAPORT执行结果中观察ROA通道供电开关是否打开以及有无电流值。
③扫描ALD天线此命令执行时间较长,需等待可在命令行下面的对话框中观察进度。
扫描进度报告扫描结果扫描出来的设备序列号以M或X开头,需与现场督导反馈的照片信息进行核对。
④添加RET天线注意设备厂家编码和设备序列号和上图显示的结果一致,设备序列号务必于实际使用的频段相一致。
④询下倾角信息查询结果!!⑤调整下倾角(此步骤仅作验证使用,看是否可以调整下倾角,验证完毕后,建议用2.5度验证,要改回原来的角度,一般默认的为2度)⑥查询电下倾支持范围(此步骤仅作了解不需执行)。
外置电机电调天线控制线连接指导
00-KX,电调天线控制线
3根
控制线的长度需要根据现场安装来预定,有专门用于串连的短控制线,考虑控制型号的损耗,总长度(从手持机到最末端的RCU)以不超过100M为宜。
3、外置电机电调天线(支持AISG1.0)
2)采用手持调测机
单频段三个扇区的天线配件如下(如果是多频段天线要根据具体的天线再确定相应的RCU及电调天线控制线):
物料名称Байду номын сангаас
数量
备注
CCU-VII,便携式电调天线控制器
1个
外置驱动电机手持机,RCU串连时最多可串连6个,准备升级为可窜9个。
RCU-003,电调天线室外控制器
电调天线基本步骤、指令
1、LSTRET查询是否存在电调天线若没有查到相应结果,无电调天线,不能电调。
2、若有单元动态信息且开工状态,可用;实际倾角有值,可直接调整:⑴MODRETSUBUNIT设置下倾角;DSPRETSUBUNIT查询默认20⑵MODBFANT设置权值;(与倾角值相同)(F频需要,D频不需要)3、有单元动态信息开工状态不可用;实际倾角NULL,则进行下一步,开启天线端口(1)MODANTENNAPORTF频段:MODANTENNAPORT:CN=0,SRN=60,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_SELF_DEFINE,UOT HD=10,UCTHD=15,OOTHD=400,OCTHD=360;D频段:(2(3)(4)((5)(6)4、F频段:ADDBFANT:DEVICENO=0,CONNSRN=60,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=39;ADDBFANT:DEVICENO=1,CONNSRN=61,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=39;ADDBFANT:DEVICENO=2,CONNSRN=62,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=39;D频段:ADDBFANT:DEVICENO=0,CONNSRN=200,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=38;ADDBFANT:DEVICENO=1,CONNSRN=201,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=38;ADDBFANT:DEVICENO=2,CONNSRN=202,MODELNO="TJAAU",TILT=2,BEAMWIDTH=65,BAND=38;判断范围是PUSCH上检测到用户级别的RSRP为index0到PUSCH上检测到用户级别的RSRP为index8占比为50%以上算是弱覆盖或者是PUSCH上检测到用户级别的RSRP为index17到PUSCH上检测到用户级别的RSRP为index23占比为8%以下算是弱覆盖。
Silicon Laboratories BGM220S 天线调整指南说明书
AN1394: BGM220S Antenna Tuning Guide This application note provides guidelines on how to design PCBsfor BGM220S modules and how to tune the module integrated an-tenna.The information provided is supplemental to the design guidelines and recommenda-tions included in the BGM220S data sheet.The main purpose of this document is to provide additional design considerations and best practices for use-cases when exact implementation of the reference design is not feasible.KEY FEATURES•Layout guidelines•Antenna tuning guidelines •Antenna efficiency reference valuesDevice Compatibility 1. Device CompatibilityThis application note supports the following devices:•EFR32BG22-based SiP Modules:•BGM220SC12•BGM220SC22Introduction 2. IntroductionAntennas (by their nature) are sensitive to the electromagnetic characteristics of their environment and therefore an antenna which was optimized for a given use-case may become detuned in a different application. While the BGM220S integrated antenna is relatively robust to detuning effects, its performance still can be subject to some degree of degradation if the application significantly deviates from the reference design and these differences are not compensated appropriately.Furthermore, the BGM220S antenna is also prone to part-to-part variation due to component spreading (see 8. Appendix 3 – Part-to-Part Variation for more details) and therefore it is recommended to make sure there is adequate margin in the antenna matching to account for this part-to-part spreading.In a typical application, it is usually the host PCB shape and stack-up related recommendations which are most difficult to implement because these parameters are often bounded by other application requirements as well. Therefore, the primary objective of this docu-ment is to provide additional information and recommendations on how to maximize the antenna performance even when the carrier board specifications are differing from the optimum reference design.3. Generic RF Layout Considerations•Place the BGM220S at the center of a PCB edge with ~55 mm length. The center line of the first antenna trace (which is perpendicu-lar to the board edge) should coincide with the PCB edge center line (as shown in Figure 4.1 Optimum PCB Dimensions and Module Placement on page 5).•Avoid placing any components or routing in the close proximity of the antenna loop area.•Unless otherwise specified, ground pours are recommended in all areas of the application board. Restrict GND metal keep-outs to the internal areas of the PCB and keep the board GND metallization outline intact.•Avoid separation of the ground plane metallization (especially between the BMG220S and the antenna loop) and use as many GND stitching vias as possible between the GND planes on different layers.•Add GND stitching vias near the GND pins and along the antenna loop to minimize series parasitic inductance between the GND pins and the ground planes of different layers.•Use as many GND stitching vias as possible along the PCB edges. The maximum distance between the vias at the board edges should be less than lambda/10 of the 10th harmonic (the typical distance between vias on reference radio boards is 40–50 mil). This distance is required to reduce the PCB radiation at higher harmonics caused by the fringing field.•For designs with more than two layers, it is recommended to put as many traces (even the digital traces) as possible in an inner layer and ensure large, continuous GND pours on the top and bottom layers.•Avoid using loops and long wires, especially near the PCB edges as these could also become a source of unwanted spurious radia-tion.•Use a 4-layer PCB stack-up with 1.6 mm total thickness and ~4.4 relative permittivity (a.k.a. dielectric constant). The stack-up usedin the reference designs is detailed in the figure below.Figure 3.1. Reference Design PCB Stack-UpRefer to the BGM220S data sheet for instructions on how to realize the antenna loop and additional layout design guidelines.Generic RF Layout Considerations4. Board Size Specific Layout RecommendationsThe following sections list additional board size specific layout recommendations on how to maximize the BGM220S antenna efficiency (applicable to both BGM220S12A and BGM220S22A).Note that some of the listed layout solutions also require tuning the antenna matching, which is described in Section 5. Tuning the An-tenna Impedance.4.1 Optimum PCB Dimensions and Module PlacementFigure 4.1. Optimum PCB Dimensions and Module PlacementThe smallest form factor without compromising antenna performance is as follows:•Board width (W) is 55 mm•Board height (H) is 20 mm•No large metal keep-outs (other than the antenna loop clearance area)4.2 Recommendations for Small PCB SizeFigure 4.2. Recommended Small PCB Layout – Solid GND Fill•Degraded antenna gain due to smaller effective antenna area (especially when the board size is smaller than 40 x 20 mm).•Place the BGM220S and antenna at the center of longest PCB edge.•If W is between 40 and 50 mm, then H should be 30 mm.•If W is 40 mm or smaller, then H should be equal to W.4.3 Recommendations for PCBs with Extended H DimensionsFigure 4.3. Recommended PCB Layout for Extended H Dimension – Horizontal Metal Keep-OutsNote: Spaces filled in green represent metal keep-out areas.•Similar antenna performance to Optimum Layout.•Board width (W) is 55 mm.•Board height (H) is 30 mm or larger.•Add 3 mm wide keep-outs as shown on all metal layers to form an 18x3 mm “bridge” between the BGM220S section and the rest of the application board.•Restrict all signal and power line routing between the BGM220S section and the rest of the application board to the “bridge” between the two areas.Figure 4.4. Recommended PCB Layout for Extended W & H Dimensions – Wide Metal Keep-OutsNote: Spaces filled in green represent metal keep-out areas.•Similar antenna performance to Optimum Layout.•Board width (W) is 55 mm or larger.•Board height (H) is 30 mm or larger.•Wide antenna keep-out areas adjacent to the 20 mm sides of the BGM220S section.•Add additional 3 mm wide keep-outs as shown on all metal layers to form a B x 3 mm “bridge” between the BGM220S section and the rest of the application board.•If W is less than 80 mm, then B = 21 mm is recommended.•If W is 80 mm or greater, then B = 30 mm is recommended.•Restrict all signal and power line routing between the BGM220S section and the rest of the application board to the “bridge” betweenthe two areas.Figure 4.5. Recommended PCB Layout for Extended W & H Dimensions – L-Shaped Metal Keep-OutsNote: Spaces filled in green represent metal keep-out areas.•Similar antenna performance to Optimum Layout.•More space available for application than with the previous Wide Metal Keep-Outs solution.•Board width (W) is 70 mm or larger.•Board height (H) is 30 mm or larger.•Add 3 mm wide L-shaped keep-outs as shown on all metal layers to form a 47x3 mm “bridge” between the BGM220S section and the rest of the application board.•Restrict all signal and power line routing between the BGM220S section and the rest of the application board to the “bridge” betweenthe two areas.5. Tuning the Antenna ImpedanceWARNING: Any antenna tuning, and/or change of the antenna loop dimensions, is likely to invalidate a modular certification, unless it is done to compensate for the degradation caused by a host board deviating in size or PCB stack-up from the manufacturer’s best-case reference. The guidance provided below describes how to address this particular kind of degradation, in which case a permissive change to the modular approval may not be necessary. However, since this is evaluated on a case-by-case basis, please consult your certification house on the best approach.To achieve optimum realized efficiency, terminate RF_2G4 with a 50 Ω load impedance. If the data sheet design guidelines are fol-lowed and the application board size is 55 x 20 mm / 50 x 30 mm, then the antenna input impedance is ~50 Ω by design, meaning ANT_IN can be connected directly to RF_2G4 via a 0R resistor. However, if the design significantly deviates from the data sheet 55 x 20 mm / 50 x 30 mm reference design, then tuning of the antenna impedance may be required.The antenna matching can be tuned by adjusting only two parameters: W loop and R_TUNE. W loop is the antenna loop width (as shown in Figure 5.1 on page 9) and modifying it primarily affects the antenna resonance frequency. R_TUNE is the value of a series capac-itor/inductor between RF_2G4 and ANT_IN (as shown in Figure 5.2 on page 9) and it can be used to cancel out any residual anten-na reactance.Figure 5.1. R_TUNE and W loopFigure 5.2. Antenna Schematic with Single Tuning Component (R_TUNE)Recommended W loop and R_TUNE values are summarized in Table 5.1for BGM220S12A and in Table 5.2 on page 11for BGM220S22A. Each configuration was tuned assuming 1.6 mm PCB thickness and eps = 4.4 relative PCB permittivity.5.1 Recommended Tuning Values vs. PCB SizeTable 5.1. Recommended Antenna Tuning Values for BGM220SC12A(based on simulated results, eps = 4.4, PCB Thickness = 1.6 mm)Table 5.2. Recommended Antenna Tuning Values for BGM220SC22A(based on simulated results, eps = 4.4, PCB Thickness = 1.6 mm)5.2 Tuning the Effects of PCB Relative PermittivityThe PCB relative permittivity (a.k.a. dielectric constant, εr) is inversely proportional to the antenna resonance frequency. The relation-ship between the two is shown in Figure 6.2 for different use cases, however, it can be approximated as:Increasing/decreasing the PCB relative permittivity by 0.2 decreases/increases the antenna resonance frequency by ~10 MHzThe easiest way of tuning back the antenna resonance frequency is by adjusting the antenna loop width (W loop). As shown in Figure 7.1, the antenna resonance frequency is also inversely proportional to W loop and its effect can be approximated as:Increasing/decreasing W loop by 0.1 mm decreases/increases the antenna resonance frequency by ~20 MHzBased on the above information, the W loop offset needed to compensate for the effect of different PCB dielectric constants can be cal-culated easily. For example, if the PCB dielectric used has epsilon = 4.0, then the W loop values listed in Table 5.1 on page 10 and Table 5.2 on page 11 should be increased by ~0.1 mm.5.3 Tuning the Effects of PCB ThicknessThe PCB thickness has a smaller but more complex effect on the antenna matching. As the total PCB thickness decreases, so does the antenna susceptance (the imaginary part of the complex admittance). However, the resonance frequency also changes slightly (see Figure 6.1 for reference). The magnitude of these detuning effects is slightly different for different configurations (board size, layout ep-silon, etc.).If the PCB thickness is between 0.8 mm and 1.0 mm, then simulation results show that the antenna performance can be tuned back in most cases by adjusting both R_TUNE and W loop as below:•If Table 5.1 on page 10 and Table 5.2 on page 11 lists an inductor or 0R as R_TUNE for a given configuration, then this R_TUNE value should be increased by 0.6 nH for 1 mm PCB thickness and 1 nH for 0.8 mm PCB thickness.•If Table 5.1 on page 10 and Table 5.2 on page 11 lists a capacitor for R_TUNE, then its new value (R_TUNE new) should be calcula-ted as: R_TUNE new = (R_TUNE orig × C) / (R_TUNE orig + C) where C = 7 pF for 1 mm PCB thickness and C = 4.2 pF for 0.8 mm PCB thickness.•W loop should be also adjusted so that the resonance frequency is increased by ~20 MHz, which (as per Table 5.2 on page 11) trans-lates to ~0.1 mm increase in W loop compared to its nominal value.5.4 Full Discrete Antenna MatchingAlternative to using W loop and R_TUNE, the antenna impedance may be also tuned by adding a placeholder for a 3-element π-network (as in the figure below) and evaluating the required discrete matching components with a vector network analyzer.Figure 5.3. Antenna Schematic with 3-element Pi-Match6. Appendix 1 – Antenna Performance vs. Host PCB Stack-UpFigure 6.1. BGM220S22A Antenna S11 vs. PCB Thickness (40x20 mm PCB, eps = 4.4)Figure 6.2. Antenna Resonance Frequency vs. Host PCB Relative Permittivity (PCB Thickness = 1.6 mm)Appendix 1 – Antenna Performance vs. Host PCB Stack-Up7. Appendix 2 – Antenna Resonance Frequency vs. W loopSizeFigure 7.1. Antenna Resonance Frequency vs. W loop SizeNote: *50x30 mm PCB, Total PCB thickness = 1.6 mm, W loop nominal = 5.98 mmNote: **55x20 mm PCB, Total PCB thickness = 1.6 mm, W loop nominal = 4.88 mmAppendix 2 – Antenna Resonance Frequency vs. Wloop Size8. Appendix 3 – Part-to-Part VariationFigure 8.1. Antenna |S11| Yield Analysis (BGM220SC12, 55x20 mm PCB, 1000 samples)Appendix 3 – Part-to-Part VariationSilicon Laboratories Inc.400 West Cesar Chavez Austin, TX 78701USAIoT Portfolio/IoTSW/HW/simplicityQuality /qualitySupport & Community/communityDisclaimerSilicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor -mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit /about-us/inclusive-lexicon-projectTrademark InformationSilicon Laboratories Inc.®, Silicon Laboratories ®, Silicon Labs ®, SiLabs ® and the Silicon Labs logo ®, Bluegiga ®, Bluegiga Logo ®, EFM ®, EFM32®, EFR, Ember ®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ®, WiSeConnect , n-Link, ThreadArch ®, EZLink ®, EZRadio ®, EZRadioPRO ®, Gecko ®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio ®, Telegesis, the Telegesis Logo ®, USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.。
电调基站天线技术参数
电调基站天线技术参数电调基站天线的技术参数主要包括以下几个方面:1.电气指标:•频率范围:例如1880~1920MHz,2010~2025MHz,2500~2690MHz等。
•极化方式:例如±45°。
•电下倾角:通常在0°到12°之间,也有可以达到2°到12°的产品。
•各单元端口以及校准端口驻波比:一般要求≤1.5。
•校准端口至各单元端口耦合度:一般在-26±2dB。
•增益:例如,水平面半功率波瓣宽度在65°±15°时,增益应≥16.5dBi;在业务波束0°波束时,增益应≥20dBi等。
•前后比:例如,水平面半功率波瓣宽度在65°±15°时,前后比应≥23dB。
2.机械指标:•水平波瓣宽度:例如65°±6°。
•垂直波瓣宽度:例如≥9°,也有产品可以达到≥6°。
•天线尺寸和重量:例如,尺寸为1785×500×158mm,重量为32.2kg。
•天线罩材质和颜色:例如,材质为UPVC,颜色为灰色。
3.其他参数:•上副瓣抑制:对于小区制蜂窝系统,为了提高频率复用能力,减少对邻区的同频干扰,基站天线波束赋形时应尽可能降低那些瞄准干扰区的副瓣,上第一副瓣电平应小于-18dB。
•波束下倾:由于覆盖或网络优化的需要,基站天线的俯仰面波束指向需要调整。
此外,根据具体的应用场景和需求,电调基站天线还可以定制一些特殊的参数,例如直径规格、电压范围、功率范围、输出转速、速比范围、输出力矩以及齿轮材质等。
请注意,以上参数只是部分电调基站天线的参数示例,并非所有电调基站天线都具有相同的参数。
具体的参数应根据产品规格和应用场景进行选择。
同时,由于技术的不断发展,新的参数和指标也可能会出现。
天线电调系统搭建方案
电调天线遥控需要的硬件支持
3 控制电缆
控制电缆是用来把驱动器 和控制器连接的一种部件。通 过它,控制器发出的指令才可以 到达驱动器从而达到遥控的目 的。右图是我们常用的符合 AISG协议的控制电缆,它由一 条6芯电缆和两个圆形DIN头连 接器组成。
电调天线遥控需要的硬件支持
4 控制信号分路器 控制信号分路器是用来 把多个驱动器并联接入一条 控制线的一个设备,它通过 一条电缆接入,然后分出多路 信号,分别接到多个驱动器。 它本身还有防雷功能,适合用 在控制电缆分立控制方案中。 也可以用于扩展单端口的控 制器,以便在基站里同时对 三路天线进行控制(后面有一 个案例进行说明)。右图是摩 比公司生产的一分三的分路 器,根据用户需求,也可以 做一分四,一分六等等的分 路器。
电 调 天 线
驱 动 器 控制电缆
电 调 天 线
驱 动 器
电 调 天 线
驱 动 器
电 调 天 线
驱 动 器
天线端T型头
可以继续接 6个驱动器
馈线
基站端T型头 控制电缆 控制器
天馈避雷器
基站设备
RJ-45 RS-232
笔记本电脑
对应远程方案7
机 房
电调天线本地控制方案(5)
电 调 天 线
驱 动 器
电 调 天 线 控制电缆
信号→分路器→天线端T型头 →基站端T型头→控制器
电 调 天 线
驱 动 器 控制信号分路器
电 调 天 线
驱 动 器
电 调 天 线
驱 动 器
电 调 天 线
驱 动 器
天线端T型头
控制电缆 馈线
可以继续接 6个驱动器
基站端T型头
控制电缆
以太网 网管中心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 4
数据配置步骤
步骤5、设置RET天线下倾角。 MOD RETSUBUNIT 步骤6、查询RET 天线下倾角。 DSP RETSUBUNIT
由于不同厂商、不同型号的电调天线所支持的范围可能不同。在设置前,建议 通过DSP RETDEVICEDATA命令查询需要设置的RET所支持的倾角范围。
正确
扫描RET天线
FA/D独立电调天线开通双模, 建议统一在LTE侧配置电调天线。
添加RET天线
设置RET天线下倾角
不正确
结束
HUAWEI TECHNOLOGIES CO., LTD.
Page 2
数据配置步骤
步骤1、执行MML配置ANTENNAPORT供电开关及电流 告警门限等参数。 MOD ANTENNAPORT 步骤2、执行MML扫描ALD设备。SCN ALD
10
10 10 10
15
15 15 15
300
400 500
280
360 440
200+ (100 x N)
200+ (80 x N)
表中数据是以华为TD-LTE基站和华为RET天线为例,按照2个RET天线级联组网形式配置。 此告警门限表适用于单个RET天线依次校准的场景。
HUAWEI TECHNOLOGIES CO., LTD.
HUAWEI TECHNOLOGIES CO., LTD.
Page 7
附录二 TD-LTE基站RET天线电流告警门限
欠流告警产 生门限(mA) 欠流告警消 失门限(mA) 过流告警产 生门限(mA) 过流告警消 失门限(mA)
ALD系统个RET天线级联 CUSTOM 3个RET天线级联 N个RET天线级联 1. 2.
HUAWEI TECHNOLOGIES CO., LTD.
Page 5
附录一 RET天线序列号编码规则
1、FA/D独立电调天线序列号编码规则
天线背板序列号规则
字段位数 1~2 3 4~7 8 9 10~13 14~18 19 字段含义 厂家编码 设备类型 天线ITEM码 出厂年份 出厂月份 流水号 随机码 Color Coding码 字段说明 固定为“HW”。 “M”表示RET电调设备,“X”表示RAE权值管理设备。 对应天线的ITEM码后4位。例如:ITEM码是“27011175”,取后4位即为“1175”。 用0~9表示2000~2009年,用26个大写字母表示2010年及后续年份。 例如:2004年用“4”表示,2013年用“D”表示。 采用16进制。例如:“1”表示1月,“A”表示10月。 设备生产时产生的流水号。 设备生产时产生的随机码。 “b”表示FA频段,“y”表示D频段。
一个RET天线有两组 序列号,分别存储 于天线背板和AIMM 中。当基站扫描天 线时,AIMM首先检 测背板工作状态, 若背板正常,则优 先上报存储于天线 背板中的序列号, 若背板故障,则上 报AIMM自身存储的 序列号。
HUAWEI TECHNOLOGIES CO., LTD.
Page 6
附录一 RET天线序列号编码规则
ALD电调天线配置指导 (中国移动版本)
Version: V1.0(2013.11.16)
HUAWEI TECHNOLOGIES CO., LTD.
数据配置步骤
1. 执行MML配置ANTENNAPORT (RETPORT)供电开关及电流告警门限等参数 MOD ANTENNAPORT (8T8R RRU 和AAU3210适用此场景) MOD RETPORT (RRU3172-fad、RRU3250适用此场景)
1710 - 2180 频段的左侧 端口对应的内置RCU 的序列号:
HWM0994D132653698yL
1710 - 2180 频段的右侧 端口对应的内置RCU 的序列号:
HWM0994D17824167yyR
第1 位、第2 位:表示厂家编码,固定为“HW”。 第3 位:表示是内置RCU,固定为“M”。 第14 位~第19 位用:“yL”黄色,左侧天线。“yyR”第二个黄色,右 侧天线。
独立电调天线扫描结果为2个天线,FA与D部分有各自独立序列号。 请参考附录一中如何通过序列号区分FA与D频段天线。
扫描天线等待时间 较长,请耐心等待
HUAWEI TECHNOLOGIES CO., LTD.
Page 3
数据配置步骤
步骤3、执行MML配置RET及其参数。 ADD RET 步骤4、执行MML校准RET。 CLB RET
Page 8
谢谢!
Copyright © Huawei Technologies Co., Ltd. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. NO WARRANTY The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.
天线配置流程
开始
配置准备
打开RET天线供电开关
不正确
2. 执行MML扫描ALD设备。
SCN ALD 3. 执行MML配置RET及其参数 ADD RET 4. 执行MML校准RET CLB RET 5. 执行MML配置RET倾角 MOD RETSUBUNIT
查询RET天线 下倾角
正确
查询RET天线 供电状态
校准天线等待时间 较长,请耐心等待 1)通过天线扫描结果配置RET天线信息,常规安装场景下,控制端为 连接RRU的R0A端口或是RET端口。 2)天线设备名称用户可以自定义,要保证名称一个基站内不重复,否 则系统会返回重名。 3) 中国区使用独立电调天线均为单天线。 4)天线场景参数的选择需要与物理实际连接场景一致,否则系统无法 与RET天线正常通信。TD-LTE基站 RET天线配置时,请选择“级联安装 场景”。 5)独立电调天线如果只接D频段使用,只需增加D频段部分。如果接 了FA部分,需要增加两次天线。如果TDS不能电调,需要将两个天线都 绑定到D频段LTE RRU上。
AIMM序列号规则
字段位数 1~2 3 4~12 13~14 15 16~18 19 字段含义 厂家编码 设备类型 随机码 出厂年份 出厂月份 流水号 位置信息 字段说明 固定为“HW”。 “B”表示RET电调设备,“X”表示RAE权值管理设备。 设备生产时产生的随机码。 取年份后两位数字表示2000~2099。例如:“13”表示2013年。 采用16进制。例如:“1”表示1月,“A”表示10月。 设备生产时产生的流水号。 表示AIMM位置信息,“1”表示AIMM左边电机,控制FA频段;“2”表示AIMM右边电 机,控制D频段。
2、四通道内置RCU电调天线序列号编码规则
天线端口上边频与颜色对应表
上边频范围 700 to 1000 MHz 1001 to 1700 MHz 1701 to 2300 MHz 2301 to 4000 MHz 字段含义 红色(r) 绿色(g) 蓝色(b) 黄色(y)
天线阵列位置对照表
天线阵列垂直方向分布 缩写 T M B 含义 顶部天线阵列 中部天线阵列 底部天线阵列 天线阵列水平方向分布 缩写 L C R 含义 左侧天线阵列 中心天线阵列 右侧天线阵列
•说明: • 柜号、框号、槽号、端口号根据使用的主设备配置情况来填写。 • 在操作过程中,由于RET天线校准过程中电流会增大,因此电流告警门限类 型推荐使用“UER_SELF_DEFINE(用户自定义类型)”,根据实际使用RET天线 级数手动设置电流告警门限,避免选择其余自动设置类型导致校准时基站过流 保护。电流告警门限请根据附录二的电流告警门限配置中推荐值设置。 • RRU/RFU的天线端口和“RET”端口的供电开关不能同时设置为“ON”,否 则系统返回“执行失败”。