标准正交向量组和正交矩阵
标准正交基
A1
,
A2
,
An
, An En
(8)
练习:
1.设1 (0,1,1,0,0),2 (1,1,0,1,0),3 (4,5,0,0,1). 求L(1, 2 ,3 )的一个标准正交基.
答案:
标准正交基为:
1
1 2
(0,1,1,0,0), 2
1 10
因为 m n,
所以必有向量 不能被 1,2, ,m 线性表出,
作向量 m1 k11 k22 kmm ( 0)
ki R 待定.
证明续: 从正交向量组的性质知
(i ,m1 ) ( ,i ) ki (i ,i ), i 1, 2, , m.
证明 设有一组数 k1, k2 , , kr使得
k11 k22 krr 0 等号两边的向量分别和1作内积
k11 k22 krr , 1 0, 1 展开得 k1 1,1 k2 2,1 kr r ,1 0
L(1, 2 , , i ) L(1,2, ,i ), i 1, 2, , n
证: 基本方法─逐个构成出满足要求的 1,2 ,
首先,可取
1
1
| 1
|1
.
,n .
证明续:
一般地,假定已求出 1,2 , ,m 是单位正交的 ,且
L(1, 2 , , i ) L(1,2 , ,i ), i 1, 2, , m (4) 当 m n 时,因为有 m1 L(1, 2 , , m ), 由(4)知 m1不能被 1,2 , ,m线性表出.
于是取
ki
( ,i ) , (i ,i )
2第二节 标准正交基
上页 下页
因为度量矩阵是正定矩阵的,根据第五章关
于正定二次型的结果,正定矩阵合同于单位矩阵.
这说明在n维欧氏空间中存在一组基,它的度量矩
阵是单位矩阵. 由此断言
结论 在n维欧氏空间中,标准正交基是存在的. 在标准正交基下,向量的坐标可以通过内积
简单地表示出来,即
(1, )1 ( 2 , ) 2 ( n , ) n (2)
3
(1,
1,
1,
1).
返回
上页 下页
第二步再单位化,便得到单位正交的向量组为
1
1 ,
2
1 , 0, 0, 2
2
1 , 6
1 ,
6
2 , 0, 6
3
1, 12
1, 12
1, 12
3 , 12
3
1 2
,
1 2
,
返回
上页 下页
对一组正交基进行单位化就得到一组标准正交基.
设ε1,ε2,…,εn是一组标准正交基,由定义,有
1 ,当 i j;
(i , j )
0,当i
j.
(1)
显然,(1)式完全刻画了标准正交基的性质. 换句话说
结论 一组基为标准正交基的<=>是它的度量矩 阵为单位矩阵.
返回
返回
上页 下页
a1, a2,…, am , β1, β2,…,βk . 成为一组正交基.
现在来看n-m=k+1的情形. 因为m<n ,所以
一定有向量β不能被a1, a2,…,am线性表出,作向量 αm+1=β-k1α1-k2α2-…-kmαm .
正交矩阵——精选推荐
第五章 二次型除特别指明外,本章都是在实数域内进行的讨论.§5.1 正交矩阵一、向量的内积1.定义:① 设有n 维行向量α = (a 1, a 2, ……, a n ) ,β = (b 1,b 2, ……, b n ) ,定义α与β的内积为: α βT = a 1 b 1 + a 2 b 2 + …… + a n b n . ② α 与 β 正交: α βT = 0 .注:非零向量正交一定线性无关(反之不成立).③ 对n 维列向量 α = (a 1, a 2, ……, a n )T ,β = (b 1,b 2, ……, b n )T , α与β的内积为: α T β = a 1 b 1 + a 2 b 2 + …… + a n b n , α与β正交,则: α T β = 0 .说明:①.我们采用符号<α,β>统一表示n 维向量α和β的内积.②.在大家熟知的三维普通空间,建立笛卡儿坐标系后,矢量(也称向量)k a j a i a a r r r r321++= 和 kb j b i b b r r r r 321++=可以作为特例.不过用行(或列)矩阵[即行(或列)向量]表示内积(亦称点积、数量积)b a rr ⋅时,必须写成[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅321321b b b a a a b a rr . 2.性质:① 对称: α βT = β αT ;( <α,β> = <β,α> ) ② 数乘(齐次):( λ α ) βT = α ( λ βT ) = λ ( α βT ) ; ③ 分配(可加):( α + β) γT = α γT + β γT ;④ 自身相乘非负: α αT ≥ 0 ;仅当 α = 0 时, α αT = 0 . 3.向量的长度(或模): 22221Tn a a a +++==L ααα ,为非负的实数.性质:① 非负:α≥ 0 ;仅当 α = 0 时, α αT = 0 ; ② 数乘(齐次): ααk k = ;③ 单位向量及非零向量单位化:若1=α,则α为n 维单位向量.对非零向量α ,都可单位化:ααβ= . ④ 三角不等式: βαβα+≤+ ; ⑤ 柯西-施瓦茨不等式:222T )(βαβα≤ .二、向量正交化1.正交向量组定义:若向量组α1,α2,……,αs 中的向量两两正交,则称该向量组是一个正交向量组. 重要的n 维正交向量组:)0,,0,1(1L =e ,)0,,1,0(2L =e ,……,),,0,0(n n L =e .2.向量组正交化方法(Schmidt 正交化方法):有一线性无关的向量组α1,α2,……,α r ,但不是正交向量组,用施密特(Schmidt )正交化方法可以将其转化为一组正交且单位化的向量组. ① 正交化:令 11αβ= 1111222,,ββββααβ><><−= 222231111333,,,,ββββαββββααβ><><−><><−= ……111122221111,,,,,,−−−−><><−−><><−><><−=r r r r r r r r r ββββαββββαββββααβL ② 单位化:令111ββγ=,222ββγ=,……,rr r ββγ=.(课后看教材P.156之例6和例7.) 三、正交矩阵1.定义:设A 为n 阶实方阵,若A T A = I ,则称A 为n 阶正交方阵.2.性质:① 若A A T = I ,则A 为正交矩阵; ② 若A T = A -1 ,则A 为正交矩阵; ③ 若A 为正交矩阵,则行列式1±=A ;④ n 阶实方阵A 为正交矩阵的充分必要条件是A 的列向量为一个相互正交的单位向量组;(用定义A T A = I 说明)⑤ n 阶实方阵A 为正交矩阵的充分必要条件是A 的行向量为一个相互正交的向量组;⑥ 若A ,B 为n 阶正交矩阵,则AB ,BA 也是n 阶正交矩阵;因 ( AB )T ( AB ) = B T A T AB = B T B = I . ⑦ 正交矩阵的特征值的模等于1 .(证明略) 四、向量的正交变换:1.定义:设A 为n 阶正交矩阵,X 为任意一个n 维向量,则称Y = A X为正交变换.2.重要性质:向量X 经正交变换后长度(模)不变.因 X X X AX A X AX AX Y Y Y =====T T T T T )()( .3.推论:两个向量做相同正交变换后,内积不变,几何图形的形状不变. 五、实对称矩阵1. n 阶实对称矩阵A 的性质:[ 简单性质:A A A A A A ===T T )(,,]① 特征值都是实数;② 不同特征值对应的特征向量正交;证明: A T = A , AX 1 = λ1X 1 , AX 2 = λ 2 X 2 , λ1 ≠ λ 2 ;( AX 1 ) T = ( λ1X 1 ) T , ( X 1 ) T A T = λ1 ( X 1 ) T ;( X 1 ) T A = λ1 ( X 1 ) T , ( X 1 ) T A X 2 = λ1 ( X 1 ) T X 2 ;λ 2 ( X 1 ) T X 2 = λ1 ( X 1 ) T X 2 , ( λ 2 - λ1)[ ( X 1 ) T X 2 ] = 0 ;( X 1 ) T X 2 = 0 .③ 有n 个线性无关的实特征向量;④ 必有正交矩阵P ,使得P -1AP = P T AP = D = diag( λ1, λ2,…, λn )其中λ1, λ2,…, λn 恰为A 的n 个特征值(重根按重数依次计入);(证明:略)2.把n 阶实对称矩阵A 用正交矩阵对角化的步骤: ① 求出A 的相异特征值λ1, λ2,…, λ 5 ;② 对每个特征值λ i ,求出( λ i I – A ) X = 0 的一个基础解系,然后再正交化、单位化;③ 将求得的n 个相互正交的单位特征向量X 1, X 2, ……, X n 作为列向量排成矩阵P (就是所求的正交矩阵);④ 计算),,,,,diag(11s i i T λλλλ==−L L AP P AP P ,即为所求(n 个对角元素的值可能有重复). 六、例题(P.162例9亦P.132例4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122212221A ,求正交矩阵P ,使P T AP 为对角矩阵.解:① 由A 的特征方程0=−λA I ,求其特征值λ:1221105551222122210−λ−−−λ−+λ−λ−λ−λ=−λ−−−−λ−−−−λ=−λ=A I 2)1)(5(10211005+λ−λ=+λ−−λ−+λ−λ=解得51=λ,132−=λ=λ;② 求对应51=λ的特征向量,解齐次线性方程组 0X A I =−)5( ;由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−=−000110112330330112422242224)5(A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000110101 ,得同解方程组 ⎩⎨⎧=−=−003231x x x x ,令 33~x x = , 则 3132~,~x x x x == ,得特征向量 []T1111=X ;单位化: T1313131⎥⎦⎤⎢⎣⎡=P ; ③ 求对应132−=λ=λ的特征向量,由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−−−−=−−000000111222222222)(A I ,得同解方程组 0321=++x x x ,令 3322~,~x x x x == ,得特征向量 []T2011−=X , []T3101−=X ; [与书不同,都对]正交化:[]T22011−==X α ,[][]TTT 22223331212101121101,,⎥⎦⎤⎢⎣⎡−−=−−−=><><−=αααααX X ;单位化: T22202121⎥⎦⎤⎢⎣⎡−==ααP , T333626161⎦⎤⎢⎣⎡−==ααP ; [与书不同] ④ 所求正交矩阵为[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−==62031612131612131221P P P P . [与书不同]本题附:① 可以验证 P T AP = diag ( 5, -1, -1 ).⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=6203161213161213112221222162616102121313131T AP P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=1000100056203561213561213562616102121313131 . ② 用书上的P ,同样也可以验证 P T AP = diag ( 5, -1, -1 ).作业(P.162):1; 6.(1); 8;附录:关于复矩阵的共轭问题① 复矩阵的共轭矩阵 —— 每一矩阵元都取共轭;即复矩阵A = (ai j )的共轭矩阵为)(j ia=A.② 复向量的共轭向量 —— 每一元素都取共轭.。
高等代数9-2
首先,可取
1
|
1
1
|1
.
§9.2 标准正交基
一般地,假定已求出 1,2, ,m 是单位正交的 ,且
L(1,2, ,i ) L(1,2, ,i ), i 1,2, , m (4) 当 m n 时,因为有 m1 L(1,2, ,m ), 由(4)知 m1不能被 1,2 , ,m线性表出.
按定理1证明中的方法,作向量
是由单位向量构成的正交向量组,即
(i, j) ( j,k) (k, i) 0,
| i || j || k | 1 i, j, k 是 R3 的一组基.
§9.2 标准正交基
设 x1i y1 j z1k, x2 i y2 j z2 k R3 ① 从 ( ,i) x1, ( , j) y1, ( , k) z1
得 ( ,i)i ( , j) j ( ,k)k
② ( , ) x1x2 y1 y2 z1z2
③ | | x12 y12 z12
④ , arccos
x1 x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
即在基 i, j,k 下,R3中的与内积有关的度量性质有
即a2, a3 应满足方程 x1 + x2 + x3 = 0 .
基础解系为
1
1 0
,
2
0 1
1
1
1
1
a2
0
,
1
a3
1 2
2
1
把基础解系正交化即为所求.
§9.2 标准正交基
(以保证 a2⊥a3 成立)
把基础解系正交化,即为所求.亦即取
a2 1,
a3
2
[ 1, [ 1,
各类矩阵三角矩阵正定矩阵正交矩阵伴随矩阵
三对角矩阵在中,一个三对角矩阵是的一种,它“几乎”是一个。
准确来讲:一个三对角矩阵的在上,或比主对角线低一行的对角线上,或比主对角线高一行的对角线上。
例如,下面的是三对角矩阵:性质三对角矩阵是。
尽管一样的三对角矩阵不必然是或,许多解线性代数问题时显现的矩阵却往往有这些性质。
进一步若是一个实三对角矩阵A 知足a k,k+1 a k+1,k > 0,因此它元素的符号都为正,从而于一个埃尔米特矩阵,如此都是实数。
后一个推论若是咱们将条件a k,k+1 a k+1,k > 0 换为a k,k+1 a k+1,k≥0,结论仍然成立。
所有n×n三对角矩阵的组成一个3n-2维。
许多线性代数应用于对角矩阵时所需专门少,这种改良也常常被三对角矩阵继承。
譬如,一个n 阶三对角矩阵A的能用()的公式计算:那个地址是第k个主,即是由A最开始的k行k列组成的子矩阵。
用此方式计算三对角矩阵所需计算量是线性n,但是关于一样的矩阵复杂度是n 的3 次方。
计算程序一个将一样矩阵变成海森堡型的变换,将厄密特矩阵变成三对角矩阵。
从而,许多运用到厄密特矩阵上,第一步将输入的厄密特矩阵变成三对角矩阵。
一个三对角矩阵利用特定的比一样矩阵所用的存储空间也少得多。
例如,包将一个n-维非对称三对角矩阵存为三个1-维数列,其中一个长n包括对角元素,其它两个长为n−1 包括下对角线和上对角线元素。
三对角矩阵方程,能用一种需要O(n)次操作的解出来(Golub and Van Loan)。
正交矩阵概述正交矩阵是实数特殊化的,因此老是。
尽管咱们在那个地址只考虑实数矩阵,那个概念可用于其元素来自任何的矩阵。
正交矩阵毕竟是从内积自然引出的,关于复数的矩阵这致使了归一要求。
要看出与内积的联系,考虑在n维实数中的关于正交基写出的向量v。
v的长度的平方是v T v。
若是矩阵形式为Q v的线性变换维持了向量长度,那么。
因此有限维线性,比如、和它们的组合,都产生正交矩阵。
线性代数5
所以 2 x , y
即
2
4 x , x y , y 0
(5.1)
x , y
2
x , x y , y
上式被称为许瓦兹(Schwarz)不等式.
西安建大
二.正交向量组与正交化方法
1.正交向量组
1.正交向量组
当 x
y 0 时,定义向量
cos
2.施密特正交化方法
西安建大
三.正交矩阵与正交变化
1. 正交矩阵 定义5.2 定理5.3
1.正交矩阵
2.正交变换
如果 n阶方阵 A 满足 AT A 则称 A 为正交矩阵.
I
如果 A , B均为 n阶正交矩阵,
T
1
那么:⑴ A1 AT ⑵ A 即 A 为正交矩阵
1 A A ⑶ 2 A A 为 2n 阶正交矩阵
量两两正交,从而这 n 个向量就构成了向量空 间 R n的一组正交基.
西安建大
例5.1
T 已知 R 3的一个向量 1 1 ,1 ,1, 求 R 3的一组正交基. T T 解:求 2 x21 , x22 , x23 ,使 1 2 0
即: x21 x22 x23 0
bi ( i 1 ,2 , , r ) 再取 i bi
显然 1 , 2 , , r为正交规范化的向量组, 且与 1 , 2 , , r 等价.
西安建大
T T T 例5.2:已知 1 1 ,1 ,1 , 2 1, 2 ,1 , 3 1 ,1 ,2
西安建大
定义5.1
设n 维向量 1 , 2 , , r是向量空间 V ( V R n )的一组正交基,如果它们均为单位向 量,则称 1 , 2 , , r 为V 的一组正交规范基 或标准正交基.
正交矩阵的性质和应用
目录摘要(关键词) (1)Abstract(Key words) (1)1前言 (1)2正交矩阵的性质 (1)3正交矩阵的相关命题 (3)4 正交矩阵的应用 (5)4.1 正交矩阵在解析几何上的应用 (6)4.2正交矩阵在拓扑学和近似代数中的应用 (7)4.3 正交矩阵在物理学中的应用 (9)5后记 (10)参考文献 (10)致谢 (11)关于正交矩阵的性质及应用研究摘要:正交矩阵是数学中一类特殊的矩阵,同时它还具有一些非常特殊的性质和广泛的应用.目前也有很多关于正交矩阵文献,但是其中大部分都是研究关于正交矩阵性质,而关于正交矩阵的应用很少提及.本文的主要任务就是利用正交矩阵的定义,并以矩阵性质,行列式性质为主要工具,归纳正交矩阵的性质,并探讨正交矩阵在解析几何、拓扑学、近似代数及物理学上的应用.关键词:正交矩阵;行列式;性质;应用Abstract: Orthogonal matrix is a kind of special matrix in mathematics. Meanwhile, it also has some very special properties and it is widely used. At present, there are many literatures about orthogonal matrix, but most of them are about the properties of orthogonal matrix. However, the application of orthogonal matrix is seldom mentioned. The main task of this paper is to induce the properties of orthogonal matrix and explore the applications of it in analytic geometry, topology, approximate algebra and physics by using the definition of orthogonal matrix and utilizing the properties of matrix and determinant as the main tool.Key words: Orthogonal matrix; determinant; property; application1前言我们在讨论标准正交基的求法后,由于标准正交基在欧氏空间中占有特殊的地位,从而讨论一组标准正交基到另一组标准正交基的基变换公式。
第二节标准正交基
定理 2 对于 n 维欧氏空间中任意一组基 1 ,
2 , … , n ,都可以找到一组标准正交基 1 , 2 , … , n ,使
定理 1 n 维欧氏空间中任一个正交向量组都
能扩充成一组正交基.
证明 设 1 , 2 , … , m 是一正交向量组,
我们对 n - m 作数学归纳法.
当 n - m = 0 时, 1 , 2 , … , m 就是一组正交 基.
假设 n - m = k 时定理成立,也就是说,可以
找到向量 1 , 2 , … , s , 使得
ki = 0 ( i = 1, 2, …, m) .
证毕
这个结果说明,在 n 维欧氏空间中,两两正交
的非零向量不能超过 n 个. 这个事实的几何意义是
清楚的. 例如,在平面上找不到三个两两垂直的非 零向量; 在空间中,找不到四个两两垂直的非零向
量. 从解析几何中看到,直角坐标系在图形度量性 质的讨论中有特殊的地位. 在
定义
标准正交基的求法
举例 正交矩阵
一、定义
1. 正交向量组的定义 定义 5 欧氏空间 V 中一组非零的向量,如
果它们两两正交,就称为一正交向量组. 应该指出,按定义,由单个非零向量所成的向 量组也是正交向量组. 当然,以下讨论的正交向量 组都是非空的.
2. 正交向量组的性质
(i 1,2,, m) .
( i = 1, 2, … , m).
由 的选择可知, m +1 0 . 因此
线性代数-N维向量空间-第5节-标准正交基
n
[, ] = i=1aibi = T.
第四章 n维列向量空间
2. 内积的基本性质
(1) 对称性: [, ] = [, ];
§ 4.5 内积与正交矩阵
(2) 线性性: [k11+k22,] = k1[1, ]+k2[2,];
(3) [, ] 0; 且[, ] = 0 = 0 .
(3) 三角不等式(Triangle Inequality):
| +| |||| + ||||.
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
5. 长度为1的向量称为单位向量(unit vector).
对于非零向量, ||||1是一个单位向量.
——单位化/标准化(normalize).
(i,j1,2,
i j
,n),
故Ae1,Ae2,…,Aen也是一个标准正交组.
第四章 n维列向量空间
§4.5 内积与正交矩阵
§4.5 内积与正交矩阵
一. Rn中向量的内积, 长度和夹角
1. 设 =(a1, a2, …, an)T, =(b1, b2, …, bn)T,
则称实数
n
i=1aibi
为向量
与
的内积
(inner/dot/scalar product).
记为[, ], 即
(4) (Cauchy-Schwartz Inequality) |[, ]| [, ] [, ].
考察y = [, ]x2 + 2[, ]x + [, ].
n
=
i=1
(xai
+
bi)2
0
4-1向量的内积与正交
BB
1
2 0
0 1
1
2 0
0
1 2
则 B 是正交矩阵。
1 0 2
1 0 0
0 1 0 1 0
1 2
0
0 0 1
1
CC
0
0 0
1 0
1 0
0 0
1 0
2 0
0 0
0 0 E
1 0 1 1 0 1 0 0 2
则 C不 是正交矩阵。
19
性质3 设 A、B 都是正交矩阵,则 AB 也是正交矩阵。
9
例3 1 1,1,1,1T , 2 1,1,1,1T , 3 1,1,1,1T ,
求与 1,2 ,3 都正交的单位向量。
解 设所求向量为 X x1, x2, x3, x4 T
X X
, ,
1 2
0 0
X ,3 0
即
x1 x1
x2 x2
x3 x3
x4 x4
0 0
x1 x2 x3 x4 0
证 因为 A 、B都是正交矩阵,则 A A E BB E
ABAB B A AB B A A B E
则 AB 也是正交矩阵。 性质4 设 A 是正交矩阵,则 A1 与 A, A
也是正交矩阵。 性质5 设 A 是正交矩阵,则 A 1.
20
例6 A 为 n 阶正交阵,则
(1) A 1 或 1 (2) A 是正交矩阵
i j
0, i 1, i
j j
即 A 的 n 个列向量是单位正交向量组。
例5 观察下列矩阵是否为正交矩阵
1 A 0
0
0 1 0
0
1 2
0
B
1 2
线性代数课件-正交矩阵
,b2,b3
且b 1
,b2,b3与a1
,
a2,a3等价.
令 3 3 k11 k22 , 为使
1, 3 2, 3 0 , 则 可推出
k1
3 , 1,
1 1
,
k2
3 , 2 ,
2 2
,
于是
3
3
3 , 1,
1 1
1
3 , 2 ,
2 2
2
,
1, 2 , 3 是与1, 2 , 3 等价的正交向量组 .
1 正交的概念 当 ( x, y) 0 时 , 称向量 x 与 y 正交. (orthogonal)
由定义知,若 x ,则 x 与任何向量都正交.
2 正交向量组的概念 若一非零向量组中的向量两两正交,则称该向
量组为正交向量组.
3 正交向量组的性质
定理1 若 n 维向量 α1,α2 , ,αr 是一组两两正交的 非零向量 , 则 α1,α2 , ,αr 线性无关.
1 1
a2 0 , 1
a3
1 1
2
0 1
2
2 . 1
四、正交矩阵与正交变换
1. 定义 若实矩阵 A 满足 AAT=ATA=I ,则称 A 为正交矩阵 .
2. 性质 1 A1 AT,
2 A 1 ,
3 AT , A1, AB也是正交方阵
4 A 为正交矩阵 A的行列向量组
证明 设有 1,2 , ,r 使 11 22 r 0
以a1T 左乘上式两端,得 11T1 0 由 1 0 1T1 1 2 0,
同理可得2 r 0. 故1,2 , ,r线性无关.
如:a1 1,0,0,a2 0,1,0,a3 0,0,1
b1 1,0,0,b2 1,1,0,b3 1,1,1
5.3 n维向量空间的正交化
返回
1. 定义 若实矩阵 A 满足 AAT=ATA=I ,则称 A 则称 为正交矩阵 . 2. 性质
(1) A = A , (2) A = A = I =1.
T T 2
正交矩阵的乘积也是正 交矩阵. T T T T 设 A A = AA = I B B = BB = I , 则
β1 = (β1 , β1 )
4 4 1 = (α1 , α1 ) + (α2 , α2 ) + (α3 , α3 ) = 1 , 9 9 9 同样 ,β2 = β3 = 1 .
α2 = X1 = (1, 0, − 1) , ( X2 , α2 ) 1 α3 = X2 − α2 = (0, 1, − 1) − (1, 0, − 1) (α2 , α2 ) 2
1 = (− 1, 2, − 1) . 2
返回
将 X1 , X2 正交化:
例4 将 α1 = (1, 1, 1) , α2 = (1, 2, 1) ,α3 = (0, − 1, 1) 标准正交化. 解 设 β1 = α1 = (1, 1, 1), 4 (α2 , β1 ) β2 = α2 − β1 = (1, 2, 1) − (1, 1, 1) 3 (β1 , β1 )
是 Rn 的标准正交基 .
1 1 1 1 0 0, ,3 = (0, 0) 1 α1 = ,, ,2 = − , α α , 2 2 2 2 3 是 R 的标准正交基 .
返回
α1 , α2 ,L,αs 满足: (1) (αi , α j ) = 0 , (i ≠ j, αi ≠ 0, α j ≠ 0) (2) αi = 1, (i = 1, 2,L, s) ( α Lα 则称α1, 2, , s 为标准 规范)正交向量组.
向量组的正交性与正交矩阵
证:
设k11 k22 ... kmm O (i , k11 k22 ... kmm ) (i , O) 0 k1 (i , 1 ) k2 (i , 2 ) ... km (i , m ) 0 Q 1,2 ,..., m为正交向量组, 则(i, j ) 0, (i j) ki (i , i ) 0 由于i O, 即(i , i ) 0 ki 0 ( i =1,2,·,m ) · ·
2.在R4中求由下列向量生成的子空间的维数和一组正 交规范基 α1=(2,0,1,1),α2=(-1,-1,-1,-1), α3=(1,-1,0,0),α4=(0,-2,-1,-1)
1.求由下列向量组生成的向量空间 V L 1,2 ,3 ,4 ,5 的维数和一组正交规范基,并用它表示向量组中剩余的向 量。
即1 ,2 ,.., n为单位正交向量组。
方法一、用定理。 方法二、用定义。
1/ 9 8 / 9 4 / 9 A 8 / 9 1 / 9 4 / 9 , A正交吗? 4 / 9 4 / 9 7 / 9 正交
1 8 4 A 8 1 4 , A正交吗? 4 4 7
2 .. n
1T 1 1T 2 T T 2 1 2 2 .. .. T T n 2 n 1
.. 1T n T .. 2 n .. .. T .. n n
0 0 ( i , i ) 1, ( i , j ) 0 .. (i j ) 1
五、正交矩阵:
T 若 1.定义4: n阶方阵A满足A A E,则称A为n阶正交矩阵。
2.性质:(i)
3.5 标准正交向量组
9
[1 , r ] [ 2 , r ] r r 1 2 [1 , 1 ] [ 2 , 2 ]
2014年4月21日7时27分
(2)单位化,取
1 2 e1 , e2 , 1 2
那么 e1 , e2 ,
r , er r
, er 为V 的一个标准正交基
1 1 4 例2:设 1 2 , 2 3 , 3 1 ,把这组 1 1 0 向量正交单位化
从而 k1 = 0
同理可证,k2 = k3 = … = kr =0 综上所述, α1, α2, …, αr 线性无关
2014年4月21日7时27分 6
三、施密特正交单位化 定义5:若两两正交的单位向量组构成向量空间的基, 则称它们为标准正交基 如:
1 0 0 0 0 1 0 0 1 ,2 ,3 ,4 0 0 1 0 0 0 0 1
称两两正交的不含零向量的向量组为正交向量组
注:零向量与任何向量都正交
2014年4月21日7时27分 5
定理1:正交向量组必线性无关
证明:设α1, α2, …, αr 是正交向量组,存在k1, k2, …, kr
使得 则 即 k1α1 + k2α2 + … + kr αr = 0 [α1, k1 α1 + k2 α2 + … + kr αr]= [α1, 0] =0 k1 [α1, α1] + k2 [α1, α2] + … + kr [α1, αr]=0 k1 [α1, α1] = 0
线性代数正交矩阵
T = QTT Q ,
又因为 1 ,2 , ,n 与 1 ,2 , ,n 均为标准正交基,
所以
T = E, T = E,
故
QTQ E.
三、正交矩阵及其性质 定义2 实数域 R 上的 n 阶矩阵 Q 满足 QTQ E, 则
称 Q 为正交矩阵.
性质 (1) n阶矩阵Q 为正交矩阵 Q1 QT ; 进而, 给出等价定义: 如果 QQT E, 则Q 为正交矩阵.
第四章 向量空间
§4.1 向量空间
§4.2 向量内积 §4.3 正交矩阵
Rn 的标准正交基
两组标准正交基间的过渡矩阵 正交矩阵及其性质 求标准正交基的方法
一、Rn 的标准正交基
定义1 Rn 中的 n 个向量 1 ,2 , ,n 满足
(1) 两两正交 iTj 0 (i j) (2) 都是单位向量, 即 i 1, i 1, 2, , n
四、求标准正交基的方法
1.施密特正交化方法
设 1 ,2 , ,s 是 Rn 中一组给定的基,
令 3
1 1,
3
T 3
1
1T 1
T 2
2
2,
T 2
1
1T 1
1,
…… ,
s
s
T s
1
1T 1
1
T s
2
T 2
2
2
T s
s
1
T s1 s1
s1
即
i
i
i 1 k 1
T i
k
T k
1
1 2
2
,
2
1 6
1
1 6
2
2 6
3
,
3
正交矩阵的判定例题
正交矩阵的判定例题(原创实用版)目录1.引言2.正交矩阵的定义和性质3.判定正交矩阵的方法4.例题解析5.结论正文1.引言在线性代数中,正交矩阵是一个重要的概念,它具有一些独特的性质。
对于一个矩阵,如何判断其是否为正交矩阵呢?本文将通过一个例题来介绍判定正交矩阵的方法。
2.正交矩阵的定义和性质正交矩阵是指一个矩阵的转置矩阵等于其逆矩阵,即 A^T = A^-1。
正交矩阵具有以下性质:1) A 的行向量组和列向量组都是单位正交向量组,即任意两行(列)向量的内积为 0,且每个行(列)向量的模为 1。
2) A 的行列式值为 1 或 -1。
3) 正交矩阵的逆矩阵、转置矩阵和共轭矩阵都是它本身。
3.判定正交矩阵的方法要判断一个矩阵是否为正交矩阵,可以采用以下方法:1) 计算矩阵的行列式值,若行列式值为 1 或 -1,则该矩阵可能是正交矩阵。
2) 检查矩阵的行向量组和列向量组是否都是单位正交向量组。
具体方法是计算任意两行(列)向量的内积,如果内积为 0,则该矩阵可能是正交矩阵。
3) 计算矩阵的逆矩阵,如果逆矩阵等于其转置矩阵,则该矩阵是正交矩阵。
4.例题解析例题:判断矩阵 A 是否为正交矩阵,其中 A = [[1, 2], [3, 4]]。
解答:首先计算矩阵 A 的行列式值,det(A) = 1 * 4 - 2 * 3 = -2 ≠ 0,所以 A 不是正交矩阵。
其次,计算矩阵 A 的逆矩阵,A^-1 = [[4, -2], [-3, 1]]。
发现 A^-1 ≠ A^T,所以 A 不是正交矩阵。
因此,矩阵 A 不是正交矩阵。
5.结论通过以上例题,我们可以看出判断一个矩阵是否为正交矩阵,需要检查其行列式值、逆矩阵和行向量组、列向量组是否满足正交矩阵的性质。
第二节标准正交基
(5)
(5) 式相当于一个矩阵的等式
ATA = E ,
(6)
或者
A-1 = AT .
定义 7 n 级实数矩阵 A 称为正交矩阵,如
果 ATA = E . 因此,以上分析表明,由标准正交基到标准正
交基的过渡矩阵是正交矩阵;反过来,如果第一组 基是标准正交基,同时过渡矩阵是正交矩阵,那么
第二组基一定也是标准正交基. 最后我们指出,根据逆矩阵的性质,由
i j.
(1)
显然,(1) 式完全刻画了标准正交基的性质. 换句
话说,一组基为标准正交基的充分必要条件是:
它的度量矩阵为单位矩阵. 因为度量矩阵是正定的.
根据第五章关于正定二次型的结果,正定矩阵合同 于单位矩阵. 这说明在 n 维欧氏空间中存在一组基, 它的度量矩阵是单位矩阵. 由此可以断言,在 n 维 欧氏空间中,标准正交基是存在的.
理 1 证明中的方法,作向量
m
m1 m1 ( m1,i )i . i 1
显然
m +1 0 , 且 (m +1 , i) = 0 ,i = 1 , 2 , … , m .
令
m1
m1 | m1
|
.
则 1 , 2 , … , m , m +1 就是一单位正交向量组.
同时
L(1 , 2 , … , m +1 ) = L(1 , 2 , … , m +1) .
交向量组的方法称为施密特(Schimidt)正交化过程.
三、举例
例1 设
1
1
4
a1 2 , a2 3 , a3 1 ,
1
1
0
试用施密特正交化过程把这组向量变成单位正交
11第4章2正交矩阵
得特征值
1 2 1, 3 10
14
(2)求特征向量 对于 1 2 1,
1 由 I A 2 2 得一个基础解系
解方程组 I A X 0
2 1 2 2 4 4 0 0 0 0 0 0 4 4 T T 1 2,1, 0 , 2 2, 0,1 2
对于
3 8
得到特征向量
3 (2, 1, 2)
1 1,
取 3
1 1 0.5 [2,1 ] 1 2 2 1 2 0 2 [ 1,1 ] 0 2 1 0.5
I A x 0
4 2 4 x1 0 2 1 2 x2 0 4 2 4 x 0 3
,2 (, 1 0, 1 ) (, 1 2, 0) 得到两个线性无关的特征向量 1
2 问A能否对角化?请说明理由。
解
因 是矩阵A的特征向量,故存在数,使得A ,
2 1 2 1 1 即 5 a 3 1 1 , 1 b 2 1 1 1 得 2 a , 1 b
0 0 1 0 0 1
定义4.6 如果一个方阵P满足 则称矩阵P为正交矩阵。
PT P I (或 PPT I ),
2
例1 证明
6 2 3 1 是正交矩阵。 验证矩阵 A 3 6 2 7 2 3 6 因为 6 2 3 6 3 2 1 1 T AA 3 6 2 2 6 3 7 7 2 3 6 3 2 6 49 0 0 1 0 49 0 I 49 0 0 49
正交矩阵的性质
③正交矩阵 A R nn 的特征根
i) 分类
实特征根为1或-1
非实特征根为成对共轭 与 出现, 且 1
2
ii) 可设 正特征根
1 2 t 1
1 2 s 1
(4)
负特征根
非实特征根 1 ,1 ,2 ,2 ,,k ,k 且 i i i
相同。
③ 若A有特征根,则特征根1的重数与n的奇偶性相同。
习题课 正交矩阵的性质
6
问题 ① 证明奇数维欧氏空间中的旋转一定以1作为它的一个 特征值。 ② 证明第二类正交变换一定以-1作为它的一个特征值。
③ 设A是3 3正交阵且 A 1
证明A的特征多项式为
f ( ) 3 t2 t 1 ,
这里 1 t 3
习题课 正交矩阵的性质
① 与 ② 进一步的结论?
③ 考虑A的所有特征值的可能性
i) ii) iii)
(1,1,1) (1,1,1)
(1, , ) , 1 ,
2
习题课 正交矩阵的性质
nn
矩阵 A R
满足
(1 , 2 ,, n ) ( 1 , 2 ,, n ) A
则 1 , 2 ,, n 为标准正交基 A为正交矩阵
习题课 正交矩阵的性质
3
A为n维欧氏空间 Vn (R)的线性变换, 1 , 2 ,, n 是一组 标准正交基,若 A(1 , 2 ,, n ) ( 1 , 2 ,, n ) A , A R nn 则
nn A ( 1 , 2 ,, n ) ( 1 , 2 ,, n ) A , R 标准正交基,且 A