人教版八年级数学上册分式方程专项练习题41

合集下载

人教版八年级数学上册分式方程(含答案)

人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。

人教版八年级数学上册期末专项训练资料:分式方程及其应用.

人教版八年级数学上册期末专项训练资料:分式方程及其应用.

八数上册期末专项训练资料:分式方程及其应用专项训练题1.下列式子中,是分式方程的是( )A.++-x 23x 1xB.-=2x 1533C.+=-+111x 1x 1D.-++=x 3x 42232.分式方程-=-22x 11x 2的解为 ( )A.=-x 1B.=1x 2C.=x 1D.=x 23.分式方程--=-+x 120x 2x 1的解为( ) A.=-x 1 B.=x 3 C.=x 1 D.=x 3或=-x 14.慧慧家在A 市,欣欣家在B 市,慧慧家的面积与欣欣家的相同,慧慧家和欣欣家2020年所 交的取暖费分别为1995元和1890元.若B 时居民没平方米取暖费的价格比A 市的便宜1元,则A 市居民每平方米取暖费上午价格为 ( ) A.17元 B.18元 C.19元 D.20元5.某工程需要在规定日期内完成;若由甲队去做恰好如期完成,若乙队去做就要超过规定日期三天完成;若先由甲乙合作二天,再由乙队单独做恰好如期完成,问规定日期为 ( ) A.3天 B. 4天 C.5天 D.6天6.甲车行驶30千米与乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依据题意列方程正确的是 ( ) A.3040x x 15=+ B.3040x 15x =- C.3040x x 15=- D.3040x 15x=+ 7.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原来提高了20%,结果共用了18天完成全部任务,设原计划每天加工x 套运动服,根据题意可以列方程为 ( ) A .()%+=+16040018x 120x B.()%+=+16040016018x 120x - C.+=16040016018x 20x -% D.()%+=+40040016018x 120x - 8.为积极响应“传统文化进校园”的号召,某中学举行书法比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔的单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元;购买的钢笔比毛笔少20支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x 元/支,那么下面所列方程中,正确的是 ( )A.-=12001500201.5x x B. -=1500120020x 1.5x C. =-1500120020x 1.5x D. -=1200150020x 1.5x9.甲、乙两位老师在某学校门口给学生检测体温,已知每分钟甲比乙少检测8个学生,甲检测120个学生所用的时间与乙检测150个学生所用的时间相等;设甲每分钟检测x 个学生,下列方程正确的是 ( ) A.=120150 B. =120150 C. =120150 D. =+120150x x 813.关于x 的分式方程=---2x 3x 3的解为正数,则m 的取值范为 . 14.已知A,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km /h .15.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程;已知乙队单独完成此项工程所需天数的45,则乙队单独完成此项工程需 天.16.解方程:⑴. 7m 11m 66m -+=--; ⑵17.若关于x 的方程23x a 1x 1x 1-+=--有增根,求a 的值? 18..于x 的分式方程+-=-2m x 21x 3x无解,求m 的值?19..某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?20.小明元旦前到文具超市用15元买了若干本练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前前便宜0.2元,小明又用20.7元钱买练习本,所以练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?21.某高速公路要对承建的工程队进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计,若甲、乙两队合作,24天可以完成,需费用120万元;若由甲队单独做20天,余下的工程由乙队做,还需40天完成,共需费用110万元;问:⑴.若甲、乙两队单独完成这项工程,各需多少天?⑵.若在甲、乙两队中选一队承包这项工程,为了使支付的费用较少,应选哪一队?22.某单位计划购进一品牌的毛笔和墨汁,已知购买一支毛笔比购买一瓶墨汁多用12元。

人教版八年级上册数学-分式方程+分式应用题专练60题

人教版八年级上册数学-分式方程+分式应用题专练60题

分式方程+分式应用题专练60题一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.2.先化简再求值,,其中a=1.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.6.先化简,再求值:,其中m2+3m=﹣1.7.已知实数a满足,求的值.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.9.先化简,后求值:,其中x=﹣5.10.先化简,再求代数式的值,其中.11.化简求值:,已知m2﹣3m﹣4=0.12.先化简,再求值:,其中.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.17.先化简,再求值:,其中x=3.18.先化简,再求值:(2﹣)÷,其中x=﹣3.19.(1)化简:;(2)化简并求值:,其中.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.21.解方程:(1);(2).22.解方程:(1);(2).23.解方程:(1)=5.(2)=0.24.解分式方程(1)..25.解下列方程(1);(2).26.解方程:(1);(2).27.解下列分式方程:(1);(2).28.解方程:(1);(2).29.解分式方程:(1);(2).30.解方程:(1);(2).31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x 的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买3市斤昭通苹果和5市斤小草坝天麻需要265元.(1)1市斤昭通苹果和1市斤小草坝天麻的单价分别是多少元?(2)昆明到昭通的距离大约350km,以前超市老板都会亲自去往昭通选果,但今年的疫情原因,只能选择专车托运,以前花240元进购的苹果现在要花300元,进货单价比原来贵了1元,原来1市斤苹果进货单价为多少?39.成都大运会期间,某网店直接从工厂购进A、B两款文创纪念品,已知A、B两款纪念品的进价分别为30元/个、25元/个.(1)网店第一次用1400元购进A、B两款纪念品共50个,求A款纪念品购进的个数;(2)大运会临近结束时,网店打算把A款纪念品降价20%销售,则降价后销售A款纪念品要获得销售额800元,比按照原价销售要多卖4个才能获得同样多的销售额,求A款纪念品降价以前的售价.40.某商场计划购进一批篮球和足球,其中篮球的单价比足球的单价多30元,已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球售价为每个150元,足球售价为每个110元,商场售出足球的数量比篮球数量的三分之一还多10个,且获利超过1300元,问篮球最少要卖多少个?(3)若篮球售价为每个150元,足球售价为每个110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场有几种进货方案?哪种方案商场获利最大?41.某校学生利用双休时间去距学校10km的岳阳植物园去游玩,部分学生骑自行车从学校先出发,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达,已知汽车的速度是自行车速度的2倍,求自行车和汽车的速度分别是多少千米/小时?42.某校八年级学生乘车前往某景点秋游,现有两条线路可供选择:线路一全程25km,线路二全程30km;若走线路二平均车速是走线路一的1.5倍,所花时间比走线路一少用10min,则走线路一、二的平均车速分别为多少?43.(1)某公司到北京参加会议,给员工购买重庆到北京的高铁票.该公司计划花费43600元一次性购买一等座票,二等座票共50张.已知一等座票的价格为950元/张,二等座票的价格为820元/张,求该公司原计划购买两种高铁票各多少张?(2)已知重庆到北京的高铁全长2200公里,高铁提速后重庆到北京的时间比高铁提速前缩短3小时40分钟,该高铁提速后的速度比提速前的速度提升了50%,求提速后该高铁从重庆到北京的速度是多少公里/小时?(高铁在站点停留时间忽略不计)44.周末,小李和妈妈在600米的环形跑道上跑步锻炼,他们在同一地点沿着同一方向同时出发,跑步结束后两人有如下的对话.小李:妈妈跑得好快呀,你的速度是我的2倍;妈妈:妈妈跑完一圈所用的时间比你跑完一圈所用的时间少2分钟.(1)求小李和妈妈的速度;(2)妈妈第一次追上小李后,第二次追上小李前,再经过多少分钟,小李和妈妈在跑道上相距100米?45.远大中学组织同学到离学校15km的郊区进行社会调查.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发40min后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地,已知汽车速度是自行车速度的3倍,求自行车和汽车的速度.46.小红家到学校的路程为38km,小红从家去学校总是先乘公共汽车,下车后再步行2km,才能到达学校,路途所用时间为1h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.47.某学校开展了社会实践活动,活动地点距离学校15km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.5倍,结果甲比乙早到15min,求乙同学骑自行车的速度.48.在春季,很多学校会组织学生进行春游.某校组织学生到离学校有90公里的生态园春游,队伍8:00从学校坐大巴车出发.李老师因有事情,8:30从学校自驾小车以大巴车1.5倍的速度追赶,追上大巴车后继续前行,结果比队伍提前15分钟到达生态园.求大巴车与小车的平均速度.49.据报道,我国高铁运营里程已超过世界高铁总里程的60%.已知某高铁平均速度提高50km/h后,行驶700km 所用的时间与提速前行驶600km所用的时间相同.求该高铁提速后的平均速度.50.每年的3月12日是植树节,某中学八年级师生在植树节当天到距学校13千米的森林公园植树,一班师生骑电动车先走,走了7千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比电动车的速度每小时快35千米,求两种车的速度各是多少?51.某小区改造一段总长1800米的下水道管线,实际施工时,每天的施工效率比原计划提高了20%,可提前6天完成任务.(1)求实际施工时,每天改造下水道管线的长度;(2)施工进行10天后,为了减少对小区居民日常生活的影响,施工单位决定再次加快施工进度以确保总工期不超过25天,那么以后每天改造下水道管线至少还要增加多少米?52.一项工程,甲、乙两队合作需要8天完成,现甲队做了4天,乙队做了2天共完成这项工程的,若甲队单独做这项工程需要多少天完成?53.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?54.甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具体情况是:甲、乙两人合作6天完成了工程的,因为甲有事,由乙、丙合作2天完成余下工程的,以后三人合作5天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙、丙各得多少元?55.随着快递业务的不断增加,分拣快件是一项重要工作,某快递公司为了提高分拣效率,引进智能分拣机,每台机器每小时分拣的快件量是人工每人每小时分拣快件数量的20倍,经过测试,由5台机器分拣6000件快件的时间,比20个人工分拣同样数量的快件节省4小时.(1)求人工每人每小时分拣多少件?(2)若该快递公司每天需要分拣10万件快件,机器每天工作时间为16小时,则至少需要安排台这样的分拣机.56.新冠疫情发生后,全社会积极参与防疫工作,某医疗器械生产厂家接到A型口罩和B型口罩共86000只的订单,该工厂有甲、乙两个车间,甲车间生产A型口罩,乙车间生产B型口罩.已知A型口罩的数量是B型口罩的2倍少10000只.(1)求A型口罩和B型口罩的数量分别是多少?(2)甲、乙两个车间同时开始生产,甲车间比乙车间平均每天多生产1000只口罩,由于疫情需要,甲车间在完成所承担的生产任务后,通过技术改进使工作效率比原来提高了.设乙车间平均每天生产口罩m只,请回答下列问题:①根据题意,填写下表:(温馨提示:请写在答题卷对应的表格内)乙车间甲车间技术改进前技术改进后生产天数(天)(用含m的代数式表示)②若甲、乙两车间同时完成生产任务,求乙车间平均每天生产的口罩数量m和生产的天数.57.某化工厂为了给员工创建安全的工作环境,采用A,B两种机器人来搬运化工原料.其中A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运1500千克所用时间与B型机器人搬运1000千克所用时间相等.(1)求A,B两种机器人每小时分别搬运多少千克化工原料;(2)若每台A型,B型机器人的价格分别为5万元和3万元,该化工厂需要购进A,B两种机器人共12台,工厂现有资金45万元,则最多可购进A型机器人多少台?58.现有A,B两个蚕丝纺织作坊,已知A作坊每天纺织蚕丝布的长度比B作坊每天多纺织50米,A作坊纺织600米蚕丝布与B作坊纺织300米蚕丝布所用的天数相同.(1)求A,B两个蚕丝纺织作坊每天各纺织多少米蚕丝布?(2)某服装厂需要4000米的蚕丝布,需要A、B两作坊共同完成,若A作坊每天需花费成本1.2万元,B作坊每天需花费成本0.5万元,已知两作坊总成本不超过46.8万元,则至少安排B作坊工作多少天?59.2022年第22届世界杯足球赛在卡塔尔举行,其官方吉祥物是一个外形酷似头巾的卡通人物,名字叫做拉伊卜,受到众人的热捧.某工厂计划加急生产一批该吉祥物,已知甲车间每天加工的数量是乙车间每天加工数量的2倍,两车间各加工3000个该吉祥物时,甲车间比乙车间少用5天.(1)求甲乙两车间每天各加工多少个吉祥物?(2)已知甲乙两车间加工该吉祥物每天的费用分别是1800元和600元,该工厂计划生产15000个这种吉祥物,如果总加工费用不超过39000元,那么乙车间至少要加工多少天?60.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人工作效率的20倍,若用一台机器人分拣4000件货物,比原先16名工人分拣这些货物要少用小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,石家庄某京东仓库11月11日当天收到快递70万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和30名分拣工人,工作3小时之后,又调配了10台机器人进行增援,该公司能否在规定的时间内完成任务?请说明理由.分式方程+分式应用题专练60题参考答案与试题解析一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.【答案】2.【解答】解:原式=(1﹣)•=•=,当a﹣b=6时,原式=2.2.先化简再求值,,其中a=1.【答案】,2.【解答】解:=÷==,当a=1时,原式===2.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.【答案】x﹣1,当x=0时,原式=﹣1.【解答】解:=•=•=•=x﹣1,∵﹣1≤x<2且x为整数,(x+1)(x﹣1)≠0,∴x=0,当x=0时,原式=0﹣1=﹣1.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.【答案】(1),原式=;(2)﹣,原式=﹣.【解答】解:(1)=•+=+===,当时,原式===;(2)÷(a+2+)=÷=÷=•=﹣,∵,∴a﹣1≤2,∴a≤3,∴该不等式的正整数解为:3,2,1,∵a﹣2≠0,3+a≠0,3﹣a≠0,∴a≠2,a≠﹣3,a≠3,∴当a=1时,原式=﹣=﹣.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.【答案】﹣,1.【解答】解:原式=(﹣)÷=•=•=•=﹣,∵x+1≠0,x﹣2≠0,∴x≠﹣1,x≠2,∴当x=0时,原式=﹣=1.6.先化简,再求值:,其中m2+3m=﹣1.【答案】,﹣1.【解答】解:原式=÷(﹣)=÷=•=,∵m2+3m=﹣1,∴原式==﹣1.7.已知实数a满足,求的值.【答案】,+1.【解答】解:原式=﹣•=﹣=﹣=,∵a2+2a+2﹣=0,∴a2+2a+1=﹣1,∴原式===+1.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.【答案】,﹣1.【解答】解:原式=(+)÷=•=,在﹣2<a<2中,整数有﹣1,0,1,由题意得:x≠±1,当x=0时,原式==﹣1.9.先化简,后求值:,其中x=﹣5.【答案】x+2,﹣3.【解答】解:原式===x+2,当x=﹣5时,原式=﹣5+2=﹣3.10.先化简,再求代数式的值,其中.【答案】x+1,.【解答】解:==x+1;当时,原式=.11.化简求值:,已知m2﹣3m﹣4=0.【答案】,.【解答】解:=÷=•=•==,∵m2﹣3m﹣4=0,∴m2﹣3m=4,当m2﹣3m=4时,原式==.12.先化简,再求值:,其中.【答案】,.【解答】解:原式=÷[]===,当x=﹣3,原式==.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【答案】,﹣1或2.【解答】解:=[]×===,∵a2﹣2a≠0,解得:a≠0,a≠2,∴当a=1时,原式==2;当a=﹣1时,原式==﹣1.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.【答案】x+1,﹣2.【解答】解:原式=•=•=•=x+1,∵x﹣1≠0,x﹣3≠0,x+1≠0,∴x≠1,3,﹣1.∴当x=﹣3时,原式=﹣3+1=﹣2.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.【答案】,2.【解答】解:===,∵a≠2且a≠﹣1,∴a=0,当a=0时,原式=.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.【答案】,5.【解答】解:====,∵a=2时,原式没有意义,∴a=3时,当a=3时,原式=.17.先化简,再求值:,其中x=3.【答案】;.【解答】解:=•=•=,当x=3时,原式=.18.先化简,再求值:(2﹣)÷,其中x=﹣3.【答案】,﹣3.【解答】解:原式=÷=•=,当x=﹣3时,原式==﹣3.19.(1)化简:;(2)化简并求值:,其中.【答案】(1);(2),.【解答】解:(1)========;(2)===,当时,原式=.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.【答案】,当x=2时,原式=.【解答】解:=•=•=,∵当x=0,±1时,原分式无意义,∴x=2,当x=2时,原式==.21.解方程:(1);(2).【答案】(1)x=5;(2)无解.【解答】解:(1),x﹣2(x﹣1)=﹣3,解得:x=5,检验:当x=5时,x﹣1≠0,∴x=5是原方程的根;(2),5(x﹣1)+4x=x+3,解得:x=1,检验:当x=1时,x(x﹣1)=0,∴x=1是原方程的增根,∴原方程无解.22.解方程:(1);(2).【答案】(1)x=﹣4;(2)无解.【解答】解:(1),方程两边同时乘以(3﹣x),得:2x+1=﹣3+x,解得:x=﹣4,检验:当x=﹣4时,3﹣x≠0,∴原方程的解是x=﹣4;(2),方程两边同时乘以x(x+1)(x﹣1),得:2x﹣(x﹣1)=0,解得x=﹣1,检验:当x=﹣1时,x(x+1)(x﹣1)=0,∴x=﹣1是原方程的增根,∴原方程无解.23.解方程:(1)=5.(2)=0.【答案】(1)x=4;(2)x=.【解答】解:(1)=5.方程两边同乘(x﹣1),得:3=5(x﹣1)﹣3x,解得:x=4,检验:当x=4时,x﹣1≠0,∴原分式方程的解为:x=4;(2)=0,原方程变形为:=0,两边同乘x(x+1)(x﹣1),得:5(x﹣1)﹣(x+1)=0,解得:x=,检验:当x=时,x(x+1)(x﹣1)≠0,∴原分式方程的解为:x=.24.解分式方程(1)..【答案】(1)x=3;(2)无解.【解答】解:(1),4﹣(x+1)(x﹣1)=﹣(x﹣1)2,解得:x=3,检验:当x=3时,(x+1)(x﹣1)≠0,∴x=3是原方程的根;,2+2(x﹣3)=x﹣1,解得:x=3,检验:当x=3时,x﹣3=0,∴x=3是原方程的增根,∴原方程无解.25.解下列方程(1);(2).【答案】(1)x=0;(2)无解.【解答】解:(1),两边都乘以2x﹣5得:x﹣5=2x﹣5,解得:x=0,经检验:x=0是原方程的解,∴方程的解为:x=0.(2),∴,去分母得:2x+9=12x﹣21+6x﹣18,整理得:16x=48,解得:x=3,经检验:x=3是增根,∴原方程无解.26.解方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘(x﹣2),得x﹣3+x﹣2=﹣3,解得x=1,检验:当x=1时x﹣2≠0,∴原分式方程的解是x=1;(2)方程两边同时乘(x+1)(x﹣1),得x+1﹣2(x﹣1)=4,解得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴原分式方程无解.27.解下列分式方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:x﹣2=3(2x﹣1),去括号得:x﹣2=6x﹣3,移项,合并同类项得:﹣5x=﹣1,系数化为1得:x=,经检验,x=是分式方程的解,故原方程的解为x=;(2),去分母得:8+x2﹣4=x(x+2),去括号得:8+x2﹣4=x2+2x,移项得:x2﹣x2﹣2x=﹣8+4,解得:x=2,经检验,x=2是分式方程的增解,∴原分式方程无解.28.解方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:1+x2=(x﹣2)2,整理得:1+x2=x2﹣4x+4,移项,合并同类项得:4x=3,系数化为1得:x=,经检验,x=是原分式方程的解,故原方程的解为x=;(2)原方程去分母得:4x﹣3(x﹣1)=2(x+1),去括号得:4x﹣3x+3=2x+2,移项,合并同类项得:﹣x=﹣1,系数化为1得:x=1,经检验,x=1是原分式方程的增根,故原方程无解.29.解分式方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘2x(x+3),得x+3=4x,解得x=1,检验:当x=1时2x(x+3)≠0,∴原分式方程的解是x=1;(2)方程两边同乘(x+2)(x﹣2),得(x﹣2)2﹣(x+2)(x﹣2)=16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴原分式方程无解.30.解方程:(1);(2).【答案】(1)x=﹣;(2)x=3.【解答】解:(1)方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)(x﹣1)=3(x+1),解得x=﹣,检验:当x=﹣时(x+1)(x﹣1)≠0,∴原分式方程的解是x=﹣;(2)方程两边同乘(x+2)(x﹣2),得3(x﹣2)+2=x+2,解得x=3,检验:当x=3时(x+2)(x﹣2)≠0,∴原分式方程的解是x=3.31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?【答案】A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.【解答】解:设A型充电桩的单价为x万元,则B型充电桩的单价(x+0.3)万元,根据题意得:=,解得:x=0.9,经检验,x=0.9是所列方程的解,且符合题意,∴x+0.3=0.9+0.3=1.2.答:A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?【答案】A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元.【解答】解:设B型汽车的进价为每辆x万元,则A型汽车的进价为每辆1.5x万元,依题意得,解得:x=20,经检验,x=20是方程的解,1.5x=1.5×20=30,答:A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元;33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?【答案】(1);(2)5元.【解答】解:(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克;故答案为:;(2)根据题意,得:=×2,解之得:x=5,经检验:x=5是原方程的解,答:试销时该品种苹果的进货价是5元.34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?【答案】(1)八月份每辆车的售价是1000元;(2)每辆山地自行车的进价是680元.【解答】解:(1)设八月份每辆车的售价是x元,由题意得:,解得:x=1000.经检验x=1000是原方程的解.答:八月份每辆车的售价是1000元;(2)设每辆山地自行车的进价是y元,由题意得:,解得:y=680.经检验y=680 是原方程的解.答:每辆山地自行车的进价是680元.35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)40千米.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤60,解得:y≥40,所以至少需要用电行驶40千米.36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)第一次购买的海鲜的进价是每千克30元;(2)在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.【解答】解:(1)设第一次购买的海鲜的进价是每千克x元,则第二次购买的海鲜的进价是每千克1.2x元,根据题意得,解得x=30.经检验,x=30是原方程的解.答:第一次购买的海鲜的进价是每千克30元.(2)第一次购买海鲜的质量为3000÷30=100(千克),第二次购买海鲜的质量为100﹣10=90(千克),∴第一次盈利100×(40﹣30)=1000(元),第二次盈利30×(50﹣30×1.2)+(90﹣30)×(50×0.5﹣30×1.2)=﹣240(元).∵1000﹣240=760(元),∴在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?【答案】第一次购买水果的进价是每千克5元.【解答】解:设第一次购买水果的进价是每千克x元,则第二次购买水果的进价是每千克(1+10%)x元,依题意得:﹣=20,解得:x=5,经检验,x=5是原方程的解,且符合题意,答:第一次购买水果的进价是每千克5元.38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买。

人教版八年级数学上册 分式方程及其解法 同步练习题(含答案,教师版)

人教版八年级数学上册 分式方程及其解法 同步练习题(含答案,教师版)

人教版八年级数学上册第十五章15.3.1 分式方程及其解法 同步练习题一、选择题1.下列是分式方程的是(D)A.x x +1+x +43B.x 4+x -52=0C.34(x -2)=43xD.1x +2+1=0 2.解分式方程1-x x -2=12-x-2时,去分母变形正确的是(D) A.-1+x =-1-2(x -2) B.1-x =1-2(x -2)C.-1+x =1+2(2-x)D.1-x =-1-2(x -2)3.方程23x -1=3x的解为(C) A.x =311 B.x =113 C.x =37 D.x =734.解分式方程1x -1+1=0,正确的结果是(A) A.x =0 B.x =1 C.x =2 D.无解5.对于非零的两个实数a ,b ,规定a ⊕b =1b -1a,若2⊕(2x-1)=1,则x 的值为(A) A.56 B.54 C.32 D.-166.已知关于x 的分式方程2x -m x -3=1的解是非正数,则m 的取值范围是(A) A.m ≤3B.m <3C.m >-3D.m ≥-3二、填空题7.下列关于x 的方程:①23x 2=1;②2π-x 2=1;③23x =x ;④1x -2+3=x -1x -2;⑤1x=2,其中是分式方程的是③④⑤.(填序号)8.已知关于x 的方程10x +k -3x =1的解为x =3,则k =2.9.若式子x -2x -4的值是2,则x =6. 10.若关于x 的分式方程x +m x -2+2m 2-x=3的解为正实数,则实数m 的取值范围是m <6且m≠2. 11.当a =17时,关于x 的方程ax a -1-2x -1=1的解与方程x -4x=3的解相同. 三、解答题12.解分式方程:x x 2-4+2x +2=1x -2. 解:方程两边同乘(x +2)(x -2),得x +2(x -2)=x +2. 解得x =3.检验:x =3时,(x +2)(x -2)≠0. 所以原分式方程的解为x =3.13.解下列方程:(1)2x x -2=1-12-x; 解:方程两边同乘(x -2),得2x =x -2+1.解得x =-1.检验:当x =-1时,x -2≠0.所以原分式方程的解为x =-1.(2)23+x 3x -1=19x -3. 解:方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0. 因此x =13不是原方程的解. 所以原分式方程无解.14.解方程:6x -2=x x +3-1. 解:方程两边同乘(x -2)(x +3),得6(x +3)=x(x -2)-(x -2)(x +3).解得x =-43. 检验:当x =-43时,(x -2)(x +3)≠0. 所以原分式方程的解为x =-43. 15.解下列方程:(1)(宁夏中考)2x +2+1=x x -1; 解:方程两边同时乘(x +2)(x -1),得2(x -1)+(x +2)(x -1)=x(x +2).解得x =4.检验:当x =4时,(x +2)(x -1)=18≠0.∴原分式方程的根为x =4.(2)(广安中考)x x -2-1=4x 2-4x +4; 解:方程两边同时乘(x -2)2,得x(x -2)-(x -2)2=4.解得x =4.检验:当x =4时,(x -2)2=4≠0.∴原分式方程的根为x =4.(3)x +14x 2-1=32x +1-44x -2. 解:原方程可化为x +1(2x +1)(2x -1)=32x +1-22x -1. 两边同时乘(2x +1)(2x -1),得x +1=3(2x -1)-2(2x +1).解得x =6.检验:当x =6时,(2x +1)(2x -1)≠0.∴原分式方程的解为x =6.16.解关于x 的方程:m x -n x +1=0(m ≠n ≠0). 解:方程两边乘x(x +1),得m(x +1)-nx =0.解得x =-m m -n. 检验:当x =-m m -n时,x(x +1)≠0. 所以原分式方程的解为x =-m m -n . 17.如图,点A ,B 在数轴上,它们对应的数分别为-2,x x +1,且点A ,B 到原点的距离相等.求x 的值.。

八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案一、选择题:1、下列式子:22x1am?n,,,1?,, 中是分式的有个x3a?ba?b?A、B、C、D、22、下列等式从左到右的变形正确的是bb2bb?1ababbmA、?B、?C、2? D、? aaaa?1baamb3、下列分式中是最简分式的是m2?142m?1A、 B、C、2D、 m?12a1?mm?14、下列计算正确的是11111?mB、?m?m??1 C、m4??m3?1 D、n?m?n? nmmmn 3m22n35、计算?的结果是 ?2n3mnn2n2nA、 B、?C、 D、?m3m3m3mA、m?n?6、计算xy的结果是 ?x?yx?yxyx?y D、 x?yx?yA、1 B、0C、m27、化简m?n?的结果是 m?nm2?n2mnA、 B、?C、 D、? m?nm?nnm8、下列计算正确的是A、??1B、9、如果关于x的方程0?1?1 C、3a?2?35?32??a D、ax?8k??8无解,那么k的值应为 x?77?xA、1B、-1C、?1D、910、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是A、111111111111??B、??C、??D、?? xx?56xx?56xx?56xx?56a2?a二、填空题: 11、分式,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义12、x2?y22a?1a,2,2x?y.13、9?3aa?9a?6a?9的最简公分母是_____________. ?xa?1a?1ab??_____________.15、??_____________. abba?bb ?a116、?2?_____________. 17、把?0.0000000358用科学记数法表示为______________14、18、如果方程2则m=________ 19、如果x?x?1?5,则x2?x?2?___________ ?3的解是5,m20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列方程为___________________三、解答题21、计算:0?11?3??1x?yx??2??4???3?11x?12?3?2?23 232a2?? x?1x?212?21b?aa?b2a2?4??1?0 10baba?b??xy??2y?x?y?x2?2x2x?11?,其中x??2、先化简,再求值2x?13x?1 分式方程一.选择题1.分式方程1?1的解为x?3x?x?1x??1 x??22.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h。

人教版八年级上册数学分式方程应用题训练

人教版八年级上册数学分式方程应用题训练

人教版八年级上册数学15.3 分式方程应用题训练姓名:__________ 班级:__________考号:__________1、某商店第一次用 600 元购进 2B 铅笔若干支,第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了 30 支.( 1 )求第一次每支铅笔的进价是多少元?( 2 )若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于 420 元,问每支售价至少是多少元?2、为增加学生阅读量,某校购买了“ 科普类” 和“ 文学类” 两种书籍,购买“ 科普类” 图书花费了 3600 元,购买“ 文学类” 图书花费了 2700 元,其中“ 科普类” 图书的单价比“ 文学类” 图书的单价多 20% ,购买“ 科普类” 图书的数量比“ 文学类” 图书的数量多 20 本.( 1 )求这两种图书的单价分别是多少元?( 2 )学校决定再次购买这两种图书共 100 本,且总费用不超过 1600 元,求最多能购买“ 科普类” 图书多少本?3、端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是 1200 元,购进乙种粽子的金额是 800 元,购进甲种粽子的数量比乙种粽子的数量少 50 个,甲种粽子的单价是乙种粽子单价的 2 倍.( 1 )求甲、乙两种粽子的单价分别是多少元?( 2 )为满足消费者需求,该超市准备再次购进甲、乙两种粽子共 200 个,若总金额不超过 1150 元,问最多购进多少个甲种粽子?4、“ 节能环保,绿色出行” 意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的 A 型自行车去年销售总额为 8 万元.今年该型自行车每辆售价预计比去年降低 200 元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少 10% ,求:( 1 ) A 型自行车去年每辆售价多少元;( 2 )该车行今年计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不超过 A 型车数量的两倍.已知, A 型车和 B 型车的进货价格分别为 1500 元和 1800 元,计划 B 型车销售价格为 2400 元,应如何组织进货才能使这批自行车销售获利最多.5、小刚家到学校的距离是 1800 米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有 20 分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了 4.5 分钟,且骑自行车的平均速度是跑步的平均速度的 1.6 倍.( 1 )求小刚跑步的平均速度;( 2 )如果小刚在家取作业本和取自行车共用了 3 分钟,他能否在上课前赶回学校?请说明理由.6、接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗 16 万剂,但受某些因素影响,有 10 名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作 8 小时增加到 10 小时,每人每小时完成的工作量不变,这样每天只能生产疫苗 15 万剂.( 1 )求该厂当前参加生产的工人有多少人?( 2 )生产 4 天后,未到的工人同时到岗加入生产,每天生产时间仍为 10 小时.若上级分配给该厂共 760 万剂的生产任务,问该厂共需要多少天才能完成任务?7、某区对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造 20 米,甲队改造 400 米的道路与乙队改造 300 米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?8、随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有 A , B 两种型号的无人机都被用来运送快件, A 型机比 B 型机平均每小时多运送 20 件, A 型机运送700 件所用时间与 B 型机运送 500 件所用时间相等,两种无人机平均每小时分别运送多少快件?9、小刚家到学校的距离是 1800 米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有 20 分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了 4.5 分钟,且骑自行车的平均速度是跑步的平均速度的 1.6 倍.( 1 )求小刚跑步的平均速度;( 2 )如果小刚在家取作业本和取自行车共用了 3 分钟,他能否在上课前赶回学校?请说明理由.10、甲,乙两人去市场采购相同价格的同一种商品,甲用 2400 元购买的商品数量比乙用3000 元购买的商品数量少 10 件.( 1 )求这种商品的单价;( 2 )甲,乙两人第二次再去采购该商品时,单价比上次少了 20 元 / 件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是______ 元 / 件,乙两次购买这种商品的平均单价是 ______ 元 / 件.( 3 )生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合( 2 )的计算结果,建议按相同 ______ 加油更合算(填“ 金额” 或“ 油量” ).11、某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?12、某工程队(有甲、乙两组)承包一条路段的修建工程,要求在规定时间内完成。

八年级上册数学分式方程应用题及答案

八年级上册数学分式方程应用题及答案

八年级上册数学分式方程应用题及答案Revised on July 13, 2021 at 16:25 pm八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材;甲单独整理需要40分完工;若甲、乙共同整理20分钟后;乙需要再单独整理20分才能完工..问:乙单独整理需多少分钟完工 解:设乙单独整理需x 分钟完工;则120204020=++x解;得x =80 经检验:x =80是原方程的解..答:乙单独整理需80分钟完工..2、有两块面积相同的试验田;分别收获蔬菜900千克和1500千克;已知第一块试验田每亩收获蔬菜比第二块少300千克;求第一块试验田每亩收获蔬菜多少千克 解:设第一块试验田每亩收获蔬菜x 千克;则3001500900+=x x 解;得x =450 经检验:x =450是原方程的解..答:第一块试验田每亩收获蔬菜450千克..3、甲、乙两地相距19千米;某人从甲地去乙地;先步行7千米;然后改骑自行车;共用了2小时到达乙地..已知这个人骑自行车的速度是步行速度的4倍..求步行的速度和骑自行车的速度..解:设步行速度是x 千米/时;则247197=-+xx 解;得x =5 经检验:x =5是原方程的解..进尔4x =20千米/时答:步行速度是5千米/时;骑自行车的速度是20千米/时..4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶;但她在百货商场食品自选室发现;同样的酸奶;这里要比供销大厦每瓶便宜0.2元;因此;当第二次买酸奶时;便到百货商场去买;结果用去18.40元钱;买的瓶数比第一次买的瓶数多;问:她第一次在供销大厦买了几瓶酸奶解:⑴设她第一次在供销大厦买了x 瓶酸奶;则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解;得x =5 经检验:x =5是原方程的解..答:她第一次在供销大厦买了5瓶酸奶..5、某商店经销一种纪念品;4月份的营业额为2000元;为扩大销售;5月份该商店对这种纪念品打九折销售;结果销售量增加20件;营业额增加700元..⑴ 求这种纪念品4月份的销售价格..⑵ 若4月份销售这种纪念品获利800元;问:5月份销售这种纪念品获利多少元 解:⑴设4月份销售价为每件x 元;则xx 9.07002000202000+=+ 解;得x =50经检验:x =50是原方程的解..⑵4月份销售件数:2000÷50=40件每件进价:2000-800÷40=30元5月份销售这种纪念品获利:2000+700-30×40+20 =900元答:4月份销售价为每件50元;5月份销售这种纪念品获利900元..6、王明和李刚各自加工15个零件;王明每小时比李刚多加工1个;结果比李刚少用半小时完成任务;问:两人每小时各加工多少个零件解:设李刚每小时加工x 个;则列方程为:xx 155.0115=++ 注:此方程去分母后化为一元二次方程7、某一项工程在招标时;接到甲、乙两个工程队的投标书;施工一天;需付甲工程队款1.5万元;乙工程队款1.1万元;工程领导小组根据甲、乙两队的投标书测算;可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天;余下的工程由乙队单独完成;也正好如期完成.. 试问:在不耽误工期的情况下;你觉得哪一种施工方案最节省工程款 请说明理由.. 解:设规定时间为x 天;则154=++x x x 解;得x =20 经检验:x =20是原方程的解..方案一付款:1.5×20=30万元方案二:耽误工期不预考虑..方案三付款:1.5×4+1.1×20=28万元答:方案三节省工程款..8、一个分数的分母比分子大7;如果把此分数的分子加17;分母减4;所得新分数是原分数的倒数;求原分数..解:设原分数为x;则xx x x 74717+=-++ 解;得x =3 经检验:x =3是原方程的解.. 原分数为:1037=+x x 答:原分数为103.. 9、今年某市遇到百年一遇的大旱;全市人民齐心协力积极抗旱..某校师生也行动起来捐款打井抗旱;已知第一天捐款4800元;第二天捐款6000元;第二天捐款人数比第一天捐款人数多50人;且两天人均捐款数相等;那么两天共参加捐款的人数是多少 解:设第一天有x 人;则5060004800+=x x 解;得x =200 经检验:x =200是原方程的解..x +x +50=450人答:两天共参加捐款的人数是450人..10、某超市用5000元购进一批新品种的苹果进行试销;由于销售状况良好;超市又调拨11000元资金购进该品种苹果;但这次的进价比试销时的进价每千克多了0.5元;购进苹果数量是试销时的2倍..⑴ 试销时该品种苹果的进价是每千克多少元⑵ 如果超市将该品种苹果按每千克7元的定价出售;当大部分苹果售出后;余下的400千克按定价的七折售完;那么超市在这两次苹果销售中共盈利多少元解:⑴设试销时进价为每千克x 元;则5.01100050002+=⨯x x 解;得x =5 经检验:x =5是原方程的解..⑵ 1100050004007.074005.0511000550007--⨯⨯+⎪⎭⎫ ⎝⎛-++⨯=4160元 答:试销时进价为每千克5元;超市在这两次苹果销售中共盈利4160元..11、某公司开发的960件新产品必须加工后才能投放市场;现有甲、乙两个工厂都想加工这批产品;已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等;而且乙工厂每天比甲工厂多加工8件产品;在加工过程中;公司需每天支付50元劳务费请工程师到厂进行技术指导..⑴ 甲、乙两个工厂每天各能加工多少件产品⑵ 该公司要选择既省时又省钱的工厂加工产品;乙工厂预计甲工厂将向公司报加工费用为每天800元;请问:乙工厂向公司报加工费用每天最多为多少元时;有望加工这批产品解:⑴设甲每天加工件产x 品;乙每天加工x +8件;则87248+=x x 解;得x =16 经检验:x =16是原方程的解..x +8=24件⑵设乙工厂向公司报加工费每天最多为y 元;则249605024960169605016960800⨯+≥⨯+⨯y 解;得y ≤1225 答:甲每天加工16件产品;乙每天加工24件;乙工厂向公司报加工费每天最多为1225元..12、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料;其每千克的售价比甲种涂料每千克的售价少3元;比乙种涂料每千克的售价多1元;求这种新涂料每千克的售价..解:设新涂料每千克x 元;则xx x 24010012403100+=-++ 解;得x =17 经检验:x =17是原方程的解..答:这种新涂料每千克的售价是17元..13、为加快西部大开发;某自治区决定新修一条公路;甲、乙两工程队承包此项工程..如果甲工程队单独施工;则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成;现在甲、乙两队先共同施工4个月;剩下的由乙队单独施工;则刚好如期完成..问原来规定修好这条公路需多长时间解:设原来规定修好这条公路需要x 个月才能如期完成;则甲单独修好这条公路需要x 个月才能完成;乙单独修好这条公路需要x+6个月才能完成;由题意得:错误! 解之得: x =12经经验:x=12是原方程的根且符合题意∴ 原方程的根是x=12答:原来规定修好这条公路需要12个月的时间才能如期完成..14、某中学到离学校15千米的西山春游;先遣队与大队同时出发;行进速度是大队的1.2倍;以便提前21 小时到达目的地做准备工作;求先遣队与大队的速度各是多少 解:设大队的速度是x 千米/时;则先遣队的速度是1.2x 千米/时;由题意得: 错误! - 错误!= 错误!解之得:x=5经检验:x=5是原方程的根且符合题意∴原方程的根是x=5∴ 1.2x=1.2×5=6千米/时答:先遣队的速度是6千米/时;大队的速度是5千米/时15、一项工程;需要在规定日期内完成;如果甲队独做;恰好如期完成;如果乙队独做;就要超过规定3天;现在由甲、乙两队合作2天;剩下的由乙队独做;也刚好在规定日期内完成;问规定日期是几天 本题5分解:设规定日期是x 天;则甲队独完成需要x 天;乙队独完成需要x+3天;由题意得:错误! + 错误!= 1解之得:x=6经检验:x=6是原方程的根且符合题意∴原方程的根是x=6答:规定日期是6天16、某市今年1月1日起调整居民用水价格;每立方米水费上涨25%.小明家去年12月份的水费是18元;而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3;求该市今年居民用水的价格.解:设该市去年居民用水的价格为x 元/m3;则今年用水价格为1+25%x 元/m3 根据题意得:36186(125%)x x-=+………………………………………4分 解得:x=1.8经检验:x=1.8是原方程的解答:该市今年居民用水的价格为2.25元/m3 …………………………………7分17.小明家、王老师家、学校在同一条路上;小明家到王老师家的路程为3千米;王老师家到学校的路程为0.5千米;由于小明的父母战斗在抗“非典”第一线;为了使他能按时到校;王老师每天骑自行车接小明上学..已知王老师骑自行车的速度是步行速度的3倍;每天比平时步行上班多用了20分钟;问王老师的步行速度及骑自行车速度各是多少千米/时解:设王老师的步行速度为x 千米/时;则骑自行车速度为3x 千米/时..1分依题意得:315.035.033=-++x x 4分 20分钟=31小时 解得:x=5 5分经检验:x=5是所列方程的解∴3x=3×5=15 6分答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时 7分18、在争创全国卫生城市的活动中;我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后;附近居民主动参加到义务劳动中;使清运垃圾的速度比原计划提高了一倍;结果提前4小时完成任务;问“青年突击队”原计划每小时清运多少吨垃圾 解:设“青年突击队”原计划每小时清运x 吨垃圾;由题意得:错误!―4 = 错误!解之得:x= 错误!经检验x= 错误!是原方程的根;且符合题意∴原方程的根是:x= 错误!答:“青年突击队”原计划每小时清运 错误!吨垃圾..19、2007福建宁德课改;10分我国“八纵八横”铁路骨干网的第八纵通道——温州福州铁路全长298千米.将于2009年6月通车;通车后;预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米;火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间结果精确到0.01小时.解:设通车后火车从福州直达温州所用的时间为x 小时. 1分依题意;得29833122x x =⨯+. 5分 解这个方程;得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分20、2007广东河池非课改;8分某商店在“端午节”到来之际;以2400元购进一批盒装粽子;节日期间每盒按进价增加20%作为售价;售出了50盒;节日过后每盒以低于进价5元作为售价;售完余下的粽子;整个买卖过程共盈利350元;求每盒粽子的进价. 解:设每盒粽子的进价为x 元;由题意得 1分20%x ×50-x2400-50×5=350 4分 化简得x2-10x -1200=0 5分解方程得x1=40;x2=-30不合题意舍去 6分经检验;x1=40;x2=-30都是原方程的解;但x2=-30不合题意;舍去. 7分答: 每盒粽子的进价为40元. 8分22、2007广西玉林课改;3分甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一;这时增加了乙队;两队又共同工作了1天;总量全部完成.那么乙队单独完成总量需要 DA.6天 B.4天 C.3天D.2天23、2007河北课改;2分炎炎夏日;甲安装队为A 小区安装66台空调;乙安装队为B 小区安装60台空调;两队同时开工且恰好同时完工;甲队比乙队每天多安装2台.设乙队每天安装x 台;根据题意;下面所列方程中正确的是 DA .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 24、2007吉林长春课改;5分张明与李强共同清点一批图书;已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同;且李强平均每分钟比张明多清点10本;求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本;则李强平均每分钟清点(10)x +本;依题意;得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式;同样得分.25、2007江苏南通课改;3分有两块面积相同的试验田;分别收获蔬菜900kg 和1500kg;已知第一块试验田每亩收获蔬菜比第二块少300kg;求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg;根据题意;可得方程 CA .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 27、2007辽宁沈阳课改;10分甲、乙两个施工队共同完成某居民小区绿化改造工程;乙队先单独做2天后;再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!;求甲、乙两个施工队单独完成此项工程各需多少天解:设甲施工队单独完成此项工程需x 天;则乙施工队单独完成此项工程需错误!x 天; ……………………1分根据题意;得 错误!+错误!=1 ………………………………… 4分解这个方程;得x =25 ………………………………………6分经检验;x =25是所列方程的根 ……………………………7分当x =25时;错误!x =20 …………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分30、2007山东青岛课改;3分某市在旧城改造过程中;需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响;实际工作效率比原计划提高了20%;结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m;则根据题意可得方程 240024008(120)x x-=+% . 31、2007山东日照课改;7分今年4月18日;我国铁路实现了第六次大提速;这给旅客的出行带来了更大的方便.例如;京沪线全长约1500公里;第六次提速后;特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里;求第五次提速后和第六次提速后的平均时速各是多少解:设第五次提速后的平均速度是x 公里/时;则第六次提速后的平均速度是x+40公里/时.根据题意;得: x 1500-401500+x =815;……………………………………2分 去分母;整理得:x2+40x -32000=0;解之;得:x1=160;x2=-200; ……………………………… 4分经检验;x1=160;x2=-200都是原方程的解;但x2=-200<0;不合题意;舍去.∴x=160;x+40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时;第六次提速后的平均时速为200公里/时. ……………………… 7分32、2007山东泰安课改;9分某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本;并按该书定价7元出售;很快售完.由于该书畅销;第二次购书时;每本书的批发价已比第一次提高了20%;他用1500元所购该书数量比第一次多10本.当按定价售出200本时;出现滞销;便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了;还是赚钱了不考虑其它因素 若赔钱;赔多少 若赚钱;赚多少 解:设第一次购书的进价为x 元;则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分 解得:5x =经检验5x =是原方程的解 6分 所以第一次购书为12002405=本. 第二次购书为24010250+=本第一次赚钱为240(75)480⨯-=元第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=元所以两次共赚钱48040520+=元 8分答:该老板两次售书总体上是赚钱了;共赚了520元. 9分33、2007山东威海课改;7分甲、乙两火车站相距1280千米;采用“和谐”号动车组提速后;列车行驶速度是原来速度的3.2倍;从甲站到乙站的时间缩短了11小时;求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时;则提速后的速度为3.2x 千米/时;根据题意;得12801280113.2x x-=. 4分 解这个方程;得80x =. 5分经检验;80x =是所列方程的根. 6分80 3.2256∴⨯=千米/时.所以;列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时;则提速前列车从甲站到乙站所需时间为(11)x +小时;根据题意;得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256千米/时答:列车提速后的速度为256千米/时.34、2007四川德阳课改;8分某公司投资某个工程项目;现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息;从节约资金的角度考虑;公司应选择哪个工程队、应付工程队费用多少元解:设甲队单独完成需x 天;则乙队单独完成需要2x 天.根据题意得 1分111220x x +=; 3分 解得 30x =.经检验30x =是原方程的解;且30x =;260x =都符合题意. 5分∴应付甲队30100030000⨯=元.应付乙队30255033000⨯⨯=元.∴公司应选择甲工程队;应付工程总费用30000元. 8分35、2007广东深圳课改;8分A 、B 两地相距18公里;甲工程队要在A 、B 两地间铺设一条输送天然气管道;乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里;甲工程队提前3周开工;结果两队同时完成任务;求甲、乙两工程队每周各铺设多少公里管道解:设甲工程队每周铺设管道x 公里;则乙工程队每周铺设管道1+x 公里 ………………………1分根据题意; 得 311818=+-x x ………………………4分 解得21=x ;32-=x ………………………6分经检验21=x ;32-=x 都是原方程的根但32-=x 不符合题意;舍去 ………………………7分∴3x+1=答: 甲工程队每周铺设管道2公里;则乙工程队每周铺设管道3公里.………………………8分。

(完整版)八年级上册数学分式方程应用题及答案

(完整版)八年级上册数学分式方程应用题及答案

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

人教 版 八年级上册数学 分式方程 专项练习

人教 版 八年级上册数学 分式方程 专项练习

八年级(上)数学分式方程专项训练一.选择题(共10小题)1.在下列各式中,是关于的分式方程的是A.B.C.D.2.分式方程的解为A.B.C.D.3.如果关于的方程无解,则的值是A.2B.0C.1D.4.已知关于的分式方程的解为正数,则的取值范围为A.B.且C.D.且5.若关于的分式方程有增根,则的值是A.B.C.D.6.若关于的分式方程的解是非负数,则的取值范围是A.B.且C.D.且7.某项工作,甲单独完成需要40分钟;若甲、乙共同做20分钟后,乙需再单独做20分钟才能完成,则乙单独完成需要A.40分钟B.60分钟C.80分钟D.100分钟8.某工厂计划生产1500个零件,但是在实际生产时,,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件个,可得方程,则题目中用“”表示的条件应是A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成9.轮船顺流航行60千米返回,共用5时.已知水流速度为3千米时,如果设轮船在静水中的航行速度为千米时,则所列方程正确的应该是A.B.C.D.10.使得关于的分式方程有正整数解,且关于的不等式组至少有2个整数解,那么符合条件的所有整数的和为A.B.C.D.二.填空题(共8小题)11.方程的解为.12.分式方程的解为.13.若关于的方程的解为负数,则的取值范围为.14.若分式方程有增根,则的值是.15.用换元法解分式方程时,若设,则原方程可以化为整式方程.16.定义:,则方程的解为.17.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是.18.观察分析下列方程:④的解是或;②的解是或;③的解是或;利用它们所蕴含的规律,则关于的方程为正整数)的解是.三.解答题(共8小题)19.解方程:.20.解方程:.21.若关于的分式方程的解为,求的值,22.已知关于的分式方程的解为负数,求的取值范围.23.甲、乙两人做某种机械零件,已知甲每小时比乙多做2个,甲做120个所用的时间与乙做100个所用的时间相等,求甲、乙两人每小时各做多少个零件?24.某超市预测某饮料有发展前途,用2000元购进一批饮料,面市后果然供不应求,又用5000元购进这批饮料,第二批饮料的数量是第一批的2倍,但进货单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少2000元,那么销售单价至少为多少元?25.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种。

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案学校:班级:姓名:考号:1.为了美化市区,市园林处对中山公园再次进行了绿化.施工队在种植花草800平方米后,采用机械化施工,这样每天绿化的面积是原来的2倍,最后共用了5天完成3200平方米的绿化面积,请问该施工队原来每天绿化的面积是多少?2.某商店购进了一批甲、乙两种不同品牌的雪糕,其中甲种雪糕花费了200元,乙种雪糕花费了240元,已知甲种雪糕比乙种雪糕多了20个,乙种雪糕的单价是甲种雪糕单价的1.5倍.(1)求购进的甲、乙两种雪糕的单价;(2)若甲雪糕每个售价是3.5元,该商店保证卖出这批雪糕的利润不低于230元,那么乙种雪糕每个售价至少是多少元?3.奥达玩具商店根据市场调查,用5000元购进一批悠悠球,很受中小学生欢迎,悠悠球很快脱销,接着又用9000元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批悠悠球每套的进价是多少元?(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球售价至少是多少元?4.为加快公共领域充电基础设施建设,某停车场计划购买A、B两种型号的充电桩.已知A型充电桩比B 型充电桩的单价少0.2万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等,求A、B两种型号充电桩的单价各是多少万元?5.某市把学位建设和消除义务教育阶段“大班额”工作作为全市民生工程.某校现有学生1200人,化解“大班额”后,每班平均学生人数是50人,班级数量比原来多了9个,求化解“大班额”前平均每班有多少学生?6.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.(1)设乙队单独施工1个月能完成总工程的1x,两队半个月完成总工程的____________(用含x的式子表示).(2)哪个队的施工速度快?7.某中学为落实《教育部办公厅关于进一步加强中小学生体质健康管理工作的通知》文件要求,决定增设篮球,足球两门选修课程,需要购进一批篮球和足球.若购买篮球的数量是足球的2倍,购买篮球用了6000元,购买足球用了2000元,篮球单价比足球单价贵30元.(1)求篮球和足球的单价分别是多少元:(2)学校计划采购篮球、足球共60个,并要求篮球多于40个,且总费用低于4900元.那么有哪几种购买方案8.2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款文化衫和用400元购进B款文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购进两种文化衫,应至少购进B款文化衫多少件.9.某公司计划共花费2800元为所有员工网购工作服,恰逢双11购物狂欢节,商家将服装原价上涨40%后再打五折,该公司实际比原计划可多买3件.(1)求每件服装的原价;(2)若该公司按原计划数量购买服装,将剩余的钱用来购买围巾和袜子.一条围巾的售价比一双袜子的售价的12倍还多2元.该公司给每位员工购买了2条围巾和5双袜子,恰好用完剩余的钱,求一条围巾和一双袜子的售价.10.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.求A,B两种学习用品的单价各是多少元?11.岳阳市第十九中八年级举行数学思维导图比赛,学校购买A,B两种学习用品作奖品,A发给一等奖,B发给二等奖,已知A种学习用品的单价比B贵10元,且用180元购买A种学习用品的数量与用120元购买B种学习用品的数量相同.(1)求A,B两种学习用品的单价各是多少元?(2)学校准备购买A,B两种学习用品共28件,且两种学习用品的购买经费不少于680元,问A学习用品最少要购买多少件?12.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车的进价是每辆B 型汽车的进价的1.5倍,若用3000万元购进A 型汽车的数量比2400万元购进B 型汽车的数量少20辆.(1)A 型和B 型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A 型和B 型汽车共150辆,最多可以购买多少辆A 型汽车?13.某市计划采购A ,B 两种花卉对某广场进行美化.(1)该市第一批花费2000元采购A ,B 两种花卉共1500盆,此时A ,B 两种花卉的价格分别为1元/盆,2元/盆,求采购A ,B 两种花卉各多少盆?(2)由于花卉价格有所调整,该市第二批分别花费450元,900元购买A ,B 两种花卉,已知购买的B 种花卉每盆比A 种花卉多1元,且B 种花卉比A 种花卉的盆数多20%,求购买A 种花卉多少盆?14.2023年8月开始,溆浦县城开始创建全国文明县城活动,在警予路的绿化工程中,甲、乙两个施工队承担了这路段的绿化工程任务,甲队单独做要40天完成.若乙队先做30天后,甲、乙两队合作再做20天恰好完成任务(1)乙队单独做需要多少天能完成任务?(2)因工期需要,将此项工程分成两部分,甲做x 天,乙做y 天完成,其中x y ,均为正整数,且19x <和60y <问甲、乙两队各做了多少天?15.小南从北关中学返回天津前,用300元购入青莲紫笔记本和铁艺胸针两种纪念品若干,其中青莲紫笔记本总费用比铁艺胸针总费用的2倍少60元.(1)求购买青莲紫笔记本和铁艺胸针的总费用各为多少元?(2)小南发现,两种纪念品的单价和为10元,青莲紫笔记本和铁艺胸针的数量相同,请帮助他算出纪念品的总个数.16.三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,甲工程队植树480棵和乙工程队植树360棵所用的时间相等.(1)求甲、乙两工程队每天各植树多少棵?(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?17.甜酒是长乐美食一张名片,某超市推出两款经典甜酒,一款是色香味俱全的“富硒甜酒”,另一款是清香四溢的“糯米甜酒”.已知2坛“富硒甜酒”和1坛“糯米甜酒”需68元;1坛“富硒甜酒”和2坛“糯米甜酒”需61元.(1)求“富硒甜酒”和“糯米甜酒”的单价;(2)糯米是两款美食必不可少的材料,该超市老板发现本月的每千克糯米价格比上个月涨了25%,同样花24元买到的糯米数量比上个月少了1千克,求本月糯米的价格.18.某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了840元,购买围棋用了1176元,已知每副围棋比每副象棋贵8元.(1)求每副象棋和围棋的价格各多少元?(2)若该校决定再次购买同种象棋和围棋共40副,但费用不能超过1000元,则最多可再次购买多少副围棋?19.某商厦进货员预测有一种衬衫能畅销市场,就用4万元购进这种衬衫,投放市场后供不应求,商厦又用8.8万元购进了第二批同样的衬衫,所购数量是第一次的2倍,但单价每件贵了4元.(1)商厦第二次购进的衬衫每件多少元?(2)商厦对两次购进的衬衫都按60元的售价进行销售,最后剩下的500件按五折全部售空.在这笔生意中,商场盈利多少元?20.在国庆节期间,学校举行了诗歌朗诵等系列活动,嘉嘉和淇淇负责为班级参赛学生购置纪念品.他们发现,一个笔记本比一支钢笔贵3元,用225元购买的笔记本数量与用180元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给参赛的30名学生每人发放一个笔记本或一支钢笔作为活动纪念品,要使购买纪念品的总费用不超过380元,最多可以购买多少个笔记本?参考答案:1.该施工队原来每天绿化的面积为400平方米.2.(1)甲的单价为2元,乙的单价为3元(2)乙种雪糕的售价至少是4元3.(1)50元(2)70元4.A型充电桩的单价为0.6万元,B型充电桩的单价为0.8万元.5.80个学生6.(1)11 62x(2)乙队的施工速度快7.(1)篮球的单价为90元,足球的单价为60元(2)共有三种购买方案,方案一:采购篮球41个,采购足球19个;方案二:采购篮球42个,采购足球18个;方案三:采购篮球43个,采购足球17个.8.(1)每件B款文化衫为40元,每件A款文化衫为50元(2)20件9.(1)每件服装原价为400元;(2)一条围巾售价为50元,一双袜子售价为4元.10.A、B两种学习用品的单价分别为20元和30元11.(1)一个A种学习用品需要30元,购买一个B种学习用品需要20元;(2)A学习用品最少要购买12件.12.(1)A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元(2)最多可以购买60辆A型汽车13.(1)采购A种花卉1000盆,B种花卉500盆(2)购买A种花卉300盆14.(1)乙队单独做需要100天能完成任务(2)甲队做了18天,乙两队做了55天15.(1)购买青莲紫笔记本的总费用是180元,购买铁艺胸针的总费用是120元(2)纪念品的总个数为60个16.(1)甲工程队每天植树80棵,乙工程队每天植树60棵(2)甲工程队至少植树5天可以完成任务17.(1)“富硒甜酒”的单价为25元,“糯米甜酒”的单价为18元(2)本月糯米的价格为6元/千克18.(1)象棋每副20元,围棋每副28元(2)围棋最多可买25副19.(1)第二次购进的衬衫每件44元(2)在这笔生意中商场盈利37000元20.(1)笔记本和钢笔的单价各15元,12元(2)最多可以购买6个笔记本。

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则解,得x=5经检验:x=5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。

人教版八年级数学上册第十五章分式-测试题带答案

人教版八年级数学上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案 类型一、销售利润问题例1.某公司推出一款桔子味饮料和一款荔枝味饮料 桔子味饮料每瓶售价是荔枝味饮料每瓶售价的54倍.4月份桔子味饮料和荔枝味饮料总销售60000瓶 桔子味饮科销售额为250000元 荔枝味饮料销售额为280000元.(1)求每瓶桔子味饮料和每瓶荔枝味饮料的售价?(2)五一期间 该公司提供这两款饮料12000瓶促销活动 考虑荔枝味饮料比较受欢迎 因此要求荔枝味饮料的销量不少于桔子味饮料销量的32;不多于枯子味饮料的2倍.桔子味饮料每瓶7折销售 荔枝味饮料每瓶降价2元销售 问:该公司销售多少瓶荔枝味饮料使得总销售额最大?最大销售额是多少元?【答案】(1)每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元;(2)当m =7200时 销售额最大 w 最大值是76800元【解析】(1)解:设每瓶荔枝味饮料的售价为x 元 则每瓶桔子味饮料的售价为54x 元 依题意 得:2500002800006000054x x += 解得:x =8 经检验 x =8是原方程的解 且符合题意 ∴54x =10(元) 答:每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元.(2)解:设销售荔枝味饮料m 瓶则销售桔子味饮料(12000﹣m )瓶 依题意 得:3(12000)22(1200)m m m m ⎧≥-⎪⎨⎪≤-⎩ 解得:7200≤m ≤8000 设总销售额w 元 则100.7(12000)684000w m m m ⨯⨯-+-+== ∴w 是m 的一次函数 且k =﹣1<0 ∴当m =7200时 销售额最大 w 最大值是76800元【变式训练1】某超市销售A 、B 两款保温杯 已知B 款保温杯的销售单价比A 款保温杯多10元 用600元购买B 款保温杯的数量与用480元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯销售单价各是多少元?(2)由于需求量大 A B 两款保温杯很快售完 该超市计划再次购进这两款保温杯共120个 且A 款保温杯的数量不少于B 款保温杯数量的一半 若两款保温杯的销售单价均不变 进价均为30元/个 应如何进货才使这批保温杯的销售利润最大 最大利润是多少元?【答案】(1)A 款保温杯销售单价为40元 B 款保温杯销售单价为50元(2)购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【解析】(1)解:设A 款销售单价为x 元 则B 款销售单价为(10x +)元 根据题意得:60048010x x=+ 解得40x = 经检验 40x =是原方程的解且符合题意 ∴10401050x +=+=答:A 款保温杯销售单价为40元 B 款保温杯销售单价为50元;(2)解:设购进A 款保温杯m 个 则购进B 款保温杯(120-m )个 总利润为W 元 ∴1201202m m -≤≤ ∴40120m ≤≤ 根据题意得:()()()40305030120102400W m m m =-+--=-+∴100-<∴W 随m 的增大而减小∴40m =时 W 最大 且2000W =最大值 此时1201204080m -=-=答:购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【变式训练2】国家推行“节能减排 低碳经济”政策后 低排量的汽车比较畅销 某汽车经销商购进A B 两种型号的低排量汽车 其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台 设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润 求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时 每周销售这两种汽车的总利润最大?最大利润是多少万元?【答案】(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台 ②A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元【解析】(1)解:设B 型汽车的进货单价为x 万元 根据题意 得:502x +=40x 解得x =8 经检验x =8是原分式方程的根 8+2=10(万元)答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台 则A 型汽车的售价为(t +1)万元/台①根据题意 得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14) 解得:t ≥414 ∴t 的最小值为414 即B 型汽车的最低售价为414万元/台 答:B 型汽车的最低售价为414万元/台; ②根据题意 得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23∴﹣2<0 当t =12时 w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元.【变式训练3】某家电销售商城电冰箱的销售价为每台2100元 空调的销售价为每台1750元 每台电冰箱的进价比每台空调的进价多400元 商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台 设购进电冰箱x 台 这100台家电的销售总利润y 元 要求购进空调数量不超过电冰箱数量的2倍 且购进电冰箱不多于40台 请确定获利最大的方案以及最大利润.(3)实际进货时 厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变 请你根据以上信息及(2)中条件 设计出使这100台家电销售总利润最大的进货方案.【答案】(1)每台空调的进价为1600元 则每台电冰箱的进价为2000元;(2)当购进电冰箱34台 空调66台获利最大 最大利润为13300元;(3)当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大【解析】解:()1设每台空调的进价为x 元 则每台电冰箱的进价为()400x +元 根据题意得:8000064000400x x=+ 解得:1600x = 经检验 1600x =是原方程的解 且符合题意 40016004002000x +=+=答:每台空调的进价为1600元 则每台电冰箱的进价为2000元.()2设购进电冰箱x 台 这100台家电的销售总利润为y 元则()()()21002000175016001005015000y x x x =-+--=-+根据题意得:100240x x x -≤⎧⎨≤⎩ 解得:133403x ≤≤ x 为正整数 34x ∴= 35 36 37 38 39 40 ∴合理的方案共有7种即①电冰箱34台 空调66台;②电冰箱35台 空调65台;③电冰箱36台 空调64台; ④电冰箱37台 空调63台;⑤电冰箱38台 空调62台;⑥电冰箱39台 空调61台;⑦电冰箱40台 空调60台;5015000y x =-+ 500k =-< y ∴随x 的增大而减小∴当34x =时 y 有最大值 最大值为:50341500013300(-⨯+=元)答:当购进电冰箱34台 空调66台获利最大 最大利润为13300元.()3当厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变则利润()()()()21002000175016001005015000y k x x k x =-++--=-+当500k -> 即50100k <<时 y 随x 的增大而增大 133403x ≤≤ ∴当40x =时 这100台家电销售总利润最大 即购进电冰箱40台 空调60台; 当50k =时 15000y = 各种方案利润相同;当500k -< 即050k <<时 y 随x 的增大而减小 133403x ≤≤ ∴当34x =时 这100台家电销售总利润最大 即购进电冰箱34台 空调66台; 答:当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大.【变式训练4】为迎接“五一”小长假购物高潮 某品牌专卖店准备购进甲、乙两种衬衫 其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元 且不超过34700元 问该专卖店有几种进货方案;(3)在(2)的条件下 专卖店准备对甲种衬衫进行优惠促销活动 决定对甲种衬衫每件优惠a 元(6080)a <<出售 乙种衬衫售价不变 那么该专卖店要获得最大利润应如何进货?【答案】(1)甲种衬衫每件进价100元 乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.【详解】解:(1)依题意得:3000270010m m =- 整理 得:3000(10)2700m m -= 解得:100m = 经检验 100m =是原方程的根 答:甲种衬衫每件进价100元 乙种衬衫每件进价90元; (2)设购进甲种衬衫x 件 乙种衬衫(300)x -件根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩ 解得:100110x x 为整数 110100111-+= 答:共有11种进货方案;(3)设总利润为w 则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+①当6070a <<时 700a -> w 随x 的增大而增大 ∴当110x =时 w 最大此时应购进甲种衬衫110件 乙种衬衫190件;②当70a =时 700a -= 27000w =(2)中所有方案获利都一样;③当7080a <<时 700a -< w 随x 的增大而减小 ∴当100x =时 w 最大此时应购进甲种衬衫100件 乙种衬衫200件.综上:当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 (2)中所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.类型二、方案问题例.某商店决定购进A 、B 两种纪念品.已知每件A 种纪念品的价格比每件B 种纪念品的价格多5元 用800元购进A 种纪念品的数量与用400元购进B 种纪念品的数量相同.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件 考虑市场需求和资金周转 用于购买这100件纪念品的资金不少于800元 且不超过850元 那么该商店共有几种进货方案?(3)已知商家出售一件A 种纪念品可获利m 元 出售一件B 种纪念品可获利(6﹣m )元 试问在(2)的条件下 商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)【答案】(1)购进A 种纪念品每件需要10元 B 种纪念品每件需要5元;(2)共有11种进货方案;(3)当3m ≥;A 种70件 B 种30件时可获利最多;当03m << A 种60件 B 种40件时可获利最多【详解】解:(1)设购进A 种纪念品每件价格为m 元 B 种纪念币每件价格为5m -元 根据题意可知: 8004005m m =- 解得:10m = 55m -=. 答:购进A 种纪念品每件需要10元 B 种纪念品每件需要5元.(2)设购进A 种纪念品x 件 则购进B 种纪念品100x -件 根据题意可得:800105(100)850x x ≤+⨯-≤ 解得:6070≤≤x x 只能取正整数 60,61,,70x ∴=⋅⋅⋅ 共有11种情况故该商店共有11种进货方案分别为:A 种70件 B 种30件;A 种69件 B 种31件;A 种68件 B 种32件;A 种67件 B 种33件;A 种66件 B 种34件;A 种65件 B 种35件;A 种64件 B 种36件;A 种63件 B 种37件;A 种62件 B 种38件;A 种61件 B 种39件;A 种60件 B 种40件. (3)销售总利润为(100)(6)(26)600100W mx x m m x m =+--=-+-商家出售的纪念品均不低于成本价 0m ∴>根据一次函数的性质 当260m -≥时 即3m ≥W 随着x 增大而增大当70x =时 W 取到最大值;即方案为:A 种70件 B 种30件时可获利最多;当260m -<时 即03m << W 随着x 增大而减小当60x =时 W 取到最大值;即方案为:A 种60件 B 种40件时可获利最多.【变式训练1】为切实做好疫情防控工作 开学前夕 我县某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只 每盒水银体温计有10支 每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计 且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数) 则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后 超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买 共支付总费用w 元;①当总费用不超过1800元时 求m 的取值范围;并求w 关于m 的函数关系式.②若该校有900名学生 按(2)中的配套方案购买 求所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元、50元;(2)购买水银体温计5m 盒能和口罩刚好配套;(3)①w =450(4)360360(4)m m m m ≤⎧⎨+>⎩;②购买口罩和水银体温计各18盒、90盒 所需总费用为6840元【解析】解:(1)设每盒口罩和每盒水银体温计的价格分别是x 元 (150)x -元根据题意 得1200300150x x =- 解得200x = 经检验 200x =是原方程的解15050x ∴-= 答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y 盒能和口罩刚好配套根据题意 得100210m y =⨯ 则5y m =答:购买水银体温计5m 盒能和口罩刚好配套;(3)①由题意得:2005051800m m +⨯4501800m ∴ 4m ∴ 此时 450w m =;若4m > 则1800(4501800)0.8360360w m m =+-⨯=+ 综上所述:450(4)360360(4)m m w m m ⎧=⎨+>⎩; ②若该校九年级有900名学生 需要购买口罩:90021800⨯=(支)水银体温计:9001900⨯=(支)此时180010018m =÷=(盒) 51890y =⨯=(盒) 则360183606840w =⨯+=(元).答:购买口罩和水银体温计各18盒、90盒 所需总费用为6840元.【变式训练2】某超市准备购进甲、乙两种牛奶进行销售 若甲种牛奶的进价比乙种牛奶的进价每件少5元 其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件 两种牛奶的总数不超过95件 该商场甲种牛奶的销售价格为49元 乙种牛奶的销售价格为每件55元 则购进的甲、乙两种牛奶全部售出后 可使销售的总利润(利润=售价﹣进价)超过371元 请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【答案】(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件;【详解】(1)设甲种牛奶进价为x 元 则乙种牛奶进价为:()5+x 元根据题意 得:901005x x =+ ∴45x = 当45x =时 0x ≠ 且50x +≠∴45x =是方程901005x x =+的解 ∴550x += ∴甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m 件 则该商场购进甲种牛奶数量为()35m -件∴两种牛奶的总数不超过95件 ∴3595m m -+≤ ∴25m ≤∴销售的总利润(利润=售价﹣进价)超过371元 ∴()()()3549455550371m m --+-≥∴17391m ≥ ∴23m ≥ ∴2325m ≤≤∴商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件.【变式训练3】某公司经销甲种产品 受国际经济形势的影响 价格不断下降.预计今年的售价比去年同期每件降价1000元 如果售出相同数量的产品 去年销售额为10万元 今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入 公司决定再经销另一种类似产品乙 已知产品甲每件进价为3500元;产品乙每件进价为3000元 售价3600元 公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件 分别列出具体方案 并说明哪种方案获利更高.【答案】(1)今年这种产品每件售价为4000元;(2)有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件;方案①的利润更高.【详解】解:()1设今年这种产品每件售价为x 元 依题意得:10000080000x 1000x=+ 解得:x 4000=. 经检验:x 4000=是原分式方程的解.答:今年这种产品每件售价为4000元.()2设甲产品进货a 件 则乙产品进货()15a -件.依题意得:()()3500a 300015a 500003500a 300015a 49000⎧+-≤⎪⎨+-≥⎪⎩解得:8a 10≤≤因此有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件.方案①利润:()()4000350083600300078200-⨯+-⨯=方案②利润:()()4000350093600300068100-⨯+-⨯=方案③利润:()()40003500103600300058000-⨯+-⨯=820081008000>>∴方案①的利润更高.类型三、工程问题例.为稳步推进5G 网络建设 深化共建共享 现有甲、乙两个工程队参与5G 基站建设工程.(1)已知乙队的工作效率是甲队的1.5倍 如果两队单独施工完成该项工程 甲队比乙队多用20天 求乙队单独施工 需要多少天才能完成该项工程?(2)当甲队施工20天完成5G 基站建设工程的13时 乙队加入该工程 结果比甲队单独施工提前25天完成了剩余的工程.①求乙队单独施工 需要多少天才能完成该项工程?②若乙队参与该项工程施工的时间不超过12天 求甲队从开始施工到完成该工程至少需要多少天?【答案】(1)乙队单独施工 需要40天才能完成该项工程.(2)①36天 ②至少40天【详解】解:(1)设乙队单独施工 需要x 天才能完成该项工程 题意 得1.5120x x=+ 解方程 得40x = 经检验 40x =是原分式方程的解 且符合题意.答:乙队单独施工 需要40天才能完成该项工程.(2)①由题意得 甲队单独施工20天完成该项工程的13 所以甲队单独施工60天完成该项工程. 甲队单独施工完成剩余23的工程的时间为602040-=(天) 于是甲、乙两队共同施工的时间为402515-=(天).设乙队单独施工需要y 天才能完成该项工程则11215603y ⎛⎫+⨯= ⎪⎝⎭解方程 得36y . 经检验 36y 是原分式方程的解 且符合题意.答:若乙队单独施工 需要36天才能完成该项工程.②设甲队从开始施工到完成该工程需要z 天依题意列不等式 得1216036z -≤ 解得:40.z ≥【变式训练1】某工程公司承包了修筑一段塌方道路的工程 并派旗下第五、六两个施工队前去修筑 要求在规定时间内完成.(1)已知第五施工队单独完成这项工程所需时间比规定时间多32天 第六施工队单独完成这项工程所需时间比规定时间多12天 如果第五、六施工队先合作20天 剩下的由第五施工队单独施工 则要误期2天完成那么规定时间是多少天?(2)实际上 在第五、六施工队合作完成这项工程的56时 公司又承包了更大的工程 需要调走一个施工队.你认为留下哪个施工队继续施工能按时完成剩下的工程?【答案】(1)规定的时间是28天;(2)留下第六施工队继续施工能在规定的时间内完成剩下的工程 见解析.【详解】解:(1)设规定的时间是x 天 根据题意 得22013212x x x ++=++ 解得28x = 经检验 28x =是原分式方程的解且符合实际意义.答:规定的时间是28天;(2)设第五、六施工队合作完成这项工程的56用了y 天 根据题意 得115283228126y ⎛⎫+= ⎪++⎝⎭ 解得20y = 由第五、六施工队单独完成剩下的工程 所需的时间分别为:5111062832⎛⎫-÷= ⎪+⎝⎭(天) 51216628123⎛⎫-÷= ⎪+⎝⎭(天) 因为2220103028,206262833+=>+=< 所以留下第六施工队继续施工能在规定的时间内完成剩下的工程.答:留下第六施工队继续施工能在规定的时间内完成剩下的工程.【变式训练1】某校利用暑假进行田径场的改造维修 项目承包单位派遣一号施工队进场施工 计划用30天时间完成整个工程.当一号施工队工作10天后 承包单位接到通知 有一大型活动要在该田径场举行 要求比原计划提前8天完成整个工程 于是承包单位派遣二号与一号施工队共同完成剩余工程 结果按通知要求如期完成整个工程.(1)若二号施工队单独施工 完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工 完成整个工程需要多少天?【答案】(1)若由二号施工队单独施工 完成整个工期需要45天;(2)若由一、二号施工队同时进场施工 完成整个工程需要18天【详解】(1)设二号施工队单独施工需要x 天 根据题意得:30830810130x---+= 解得:45x = 经检验 45x =是原分式方程的解∴若由二号施工队单独施工 完成整个工期需要45天;(2)一号、二号施工队同时进场施工需要的天数为x 天 根据题意得:1113045x ⎛⎫+= ⎪⎝⎭∴18x =∴若由一、二号施工队同时进场施工 完成整个工程需要18天.【变式训练2】2019年 在新泰市美丽乡村建设中 甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米 其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工 甲工程队比乙工程队平均每天多施工10米.由于工期需要 甲工程队在完成所承担的13施工任务后 通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a 米 若甲、乙两队同时完成施工任务 求乙工程队平均每天施工的米数a 和施工的天数.【答案】(1)道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米 施工的天数为160天【详解】解:(1)设道路拓宽里程数为x 千米 则道路硬化里程数为(21)x -千米依题意 得:(21)8.6x x +-= 解得: 3.2x =21 5.4x -=∴.答:道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工a 米 则甲工程队技术改进前每天施工(10)a +米 技术改进后每天施工点6(10)5a +米 依题意 得:乙工程队施工天数为3200a 天 甲工程队技术改造前施工天数为:15400180031010a a ⨯=++天 技术改造后施工天数为:15400(1)30003610(10)5a a ⨯-=++天. 依题意 得:3200180030001010a a a =+++ 解得:20a = 经检验 20a =是原方程的解 且符合题意3200a∴160=. 答:乙工程队平均每天施工20米 施工的天数为160天.【变式训练3】某市为了做好“全国文明城市”验收工作 计划对市区S 米长的道路进行改造 现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米 求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路 乙工程队每天可以改造b 米道路 (其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造 后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造 后一半时间由乙工程队改造.根据上述描述 请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)方案二所用的时间少【详解】(1)设乙工程队每天道路的长度为x 米 则甲工程队每天道路的长度为()30x +米根据题意 得:36030030x x=+ 解得:150x = 检验 当150x =时 ()300x x +≠ ∴原分式方程的解为:150x = 30180x +=答:甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+= 方案二所用时间为2t 则221122t a t b s += 22s t a b =+ ∴22()22()a b a b S S S ab a b ab a b +--=++ ∴a b 00a b >>,∴()20a b -> ∴202a b S S ab a b+->+ 即:12t t > ∴方案二所用的时间少.【变式训练4】2008年5月12日 四川省发生8.0级地震 某市派出两个抢险救灾工程队赶到汶川支援 甲工程队承担了2400米道路抢修任务 乙工程队比甲工程队多承担了600米的道路抢修任务 甲工程队施工速度比乙工程队每小时少修40米 结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米.(1)设乙工程队每小时抢修道路x 米 则用含x 的式子表示:甲工程队每小时抢修道路 米 甲工程队完成承担的抢修任务所需时间为 小时 乙工程队完成承担的抢修任务所需时间为 小时. (2)列出方程 完成本题解答.【答案】(1)(x ﹣40);240040x -;3000x ;(2)甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米【详解】(1)设乙工程队每小时抢修道路x 米 则甲工程队每小时抢修道路(x ﹣40)米 甲工程队完成承担的抢修任务所需时间为240040x -小时 乙工程队完成承担的抢修任务所需时间为2400600x =3000x 小时. 故答案为:(x ﹣40);240040x -;3000x . (2)依题意 得:240040x -=3000x 解得:x =200经检验 x =200是原方程的解 且符合题意∴x ﹣40=160.答:甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米.。

人教版初中数学八年级上册同步练习:分式方程

人教版初中数学八年级上册同步练习:分式方程
人教版初中数学
人教版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 人教版初中数学 和你一起共同进步学业有成!
TB:小初高题库
同步练习:分式方程
人教版初中数学
(66 分)
一、选择题(每题 4 分,共 20 分)
2 x+2
1.解分式方程 + =3 时,去分母后变形为
(D)
x-1 1-x
(2)如果园林处安排 26 人同时种植这两种花木,每人每天能种植 A 花木 60 棵
或 B 花木 40 棵,应分别安排多少人种植 A 花木和 B 花木,才能确保同时完
成各自的任务?
【解析】 (1)首先设 B 花木数量为 x 棵,则 A 花木数量是(2x-600)棵,由
题意得等量关系:种植 A,B 两种花木共 6 600 棵,根据等量关系列出方
=5 960(元).
答:售完这批 T 恤衫商店共获利 5 960 元.
(12 分)
16.(12 分)[2015·宁波]宁波火车站北广场将于 2015 年底投入使用,计划在广场
内种植 A,B 两种花木共 6 600 棵,若 A 花木数量是 B 花木数量的 2 倍少
600 棵.
(1)A,B 两种花木的数量分别是多少棵?
2
2
【解析】 解方程得 x= ,即 >0,解得 a<1,
1-a 1-a
当 x-1=0 时,x=1,代入得 a=-1,此为增根,
∴a≠-1,
∴a<1 且 a≠-1.
三、解答题(共 26 分)
TB:小初高题库
人教版初中数学
1
4
11.(10 分)(1)[2014·黔西南]解方程: = ;
x-2 x2-4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档