全国2018年中考数学真题分类汇编 5 二元一次方程(组)及其应用

合集下载

2023年中考数学真题分项汇编(全国通用)一次方程(组)及其应用(33题)(解析版)

2023年中考数学真题分项汇编(全国通用)一次方程(组)及其应用(33题)(解析版)

一次方程(组)及其应用一、单选题【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x , 则: 1.530x x y ++=,即5302x y +=,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.【答案】A【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:12绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: 4.50.51y x y x =+⎧⎨=−⎩,故选:A .【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.3.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm 的导线,将其全部截成10cm 和20cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( ) A .5种 B .6种 C .7种 D .8种【答案】C【分析】设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意,得出152x y −=,进而根据,x y 为正整数,即可求解.【详解】解:设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意得,1020150x y +=,即152xy −=,∵,x y 为正整数, ∴1,3,5,7,9,11,13x = 则7,6,5,4,3,2,1y =, 故有7种方案, 故选:C .【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.【答案】A【分析】设木长x 尺,根据题意“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺”,列出一元一次方程即可求解. 【详解】解:设木长x 尺,根据题意得,1( 4.5)12x x +=−,故选:A.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】A【分析】设长木长为x 尺,则绳子长为()4.5x +尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.【详解】设长木长为x 尺,则绳子长为()4.5x +尺,根据题意,得:()14.512x x +=−故选:A.【点睛】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键. 【答案】B【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.【答案】D【分析】设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得()24015012x x =+故选:D .【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】B【分析】根据某村有土地60公顷,计划将其中10%的土地种植蔬菜,得到种植茶园和种植粮食的面积为90%,结合茶园的面积比种粮食面积的2倍少3公顷,列出方程组即可. 【详解】解:设茶园的面积为x 公顷,种粮食的面积为y 公顷,由题意,得:()60110%23x y x y ⎧+=−⎨=−⎩,即:5423x y x y +=⎧⎨=−⎩ 故选B .【点睛】本题考查根据实际问题列方程组.找准等量关系,正确的列出方程组,是解题的关键.9.(2023·浙江绍兴·统考中考真题)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A .5352x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y =+⎧⎨=+⎩D .5253x y x y =+⎧⎨=+⎩【答案】B【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组. 【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.【答案】C【分析】根据等量关系“鸡的只数+兔的只数35=”和“2⨯鸡的只数4+⨯兔的只数94=”即可列出方程组. 【详解】解:设有x 只鸡,y 只兔,由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.11.(2023·广西·模拟预测)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x −=⨯C .24015024012x x +=⨯D .24015015012x x −=⨯【答案】D【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设快马x 天可以追上慢马, 依题意,得: 240x -150x=150×12. 故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( ) A .5种 B .6种 C .7种 D .8种【答案】B【分析】设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,根据采购三种图书需500元列出方程,再依据x 的数量分两种情况讨论求解即可.【详解】解:设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,其中56,0,0,x y z ≤≤>>且,,x y z 均为整数,根据题意得,302520500x y z ++=, 整理得,654100x y z ++=, ①当5x =时,6554100y z ⨯++=, ∴704,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当70410z −=时,2y =,∴15z =; 当70430z −=时,6y =,∴10z =; 当70450z −=时,10y =,∴5z =; ②当6x =时,6654100y z ⨯++=,∴644,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当64420z −=时,4y =,∴11z =; 当64440z −=时,8y =,∴6z =; 当64460z −=时,12y =,∴1z =; 综上,此次共有6种采购方案, 故选:B .【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.13.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=−⎧⎨−=⎩的解满足1x y +=,则42m n ÷的值是( ) A .1 B .2 C .4 D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n÷变形,即可解答.法二:321x y m x y n +=−⎧⎨−=⎩①②中①-②得到()221m n x y −=++,再根据1x y +=求出23m n −=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=−⎧⎨−=⎩①②,+①②得421x m n =+−,解得214m n x +−=,将214m n x +−=代入②,解得2314m n y −−=,1x y =+,21231144m n m n +−−−∴+=,得到23m n −=,2234222228m n m n m n −∴÷=÷===,法二:321x y m x y n +=−⎧⎨−=⎩①②①-②得:2221x y m n +=−−,即:()221m n x y −=++,∵1x y +=,∴22113m n −=⨯+=,2234222228m n m n m n −∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.【答案】C【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.【详解】解:设每枚黄金重x 两,每枚白银重y 两,根据题意得,911(10)(8)13x yy x x y =⎧⎨+−+=⎩. 故选:C.【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.15.(2023·四川眉山·统考中考真题)已知关于,x y 的二元一次方程组34125x y m x y m −=+⎧⎨+=−⎩的解满足4x y −=,则m 的值为( ) A .0 B .1C .2D .3【答案】B【分析】将方程组的两个方程相减,可得到3x y m −=+,代入4x y −=,即可解答.【详解】解:34125x y m x y m −=+⎧⎨+=−⎩①②,−①②得2226x y m −=+,3x y m ∴−=+,代入4x y −=,可得34m +=,解得1m =, 故选:B .【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.二、填空题【答案】54573x x +=+【分析】根据题中钱的总数列一元一次方程即可. 【详解】解:设合伙人数为x 人, 根据题意列方程54573x x +=+; 故答案为:54573x x +=+.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.17.(2023·辽宁大连·统考中考真题)我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________. 【答案】8374x x −=+【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解. 【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元, 则可列方程为:8374x x −=+ 故答案为:8374x x −=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.【答案】7(答案不唯一)【分析】先解关于x 、y 的二元一次方程组的解集,再将x y +>代入,然后解关于a 的不等式的解集即可得出答案.【详解】将两个方程相减得3x y a +=−,∵x y +>∴3a −>∴3a >+ ∵489<<,∴23<<,∴536<<,∴a 的一个整数值可以是7. 故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点. 19.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=−的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b −=⎧⎨−+=−⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4−−【分析】先分别解一元一次方程37322x x +=−和二元一次方程组2428a b a b −=⎧⎨−+=−⎩,求得点Q 的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=−,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b −=⎧⎨−+=−⎩①②,由2+⨯①②得,3=12b −,解得:4b =−,把4b =−代入①得,24=4a +,解得:0a =,∴=04=4a b +−−,∴点Q 的纵坐标为4−,∴点Q 的坐标为()5,4−,又∴点Q 关于y 轴对称点Q '()5,4−−, 故答案为:()5,4−−.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键. 20.(2023·浙江·统考中考真题)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为__________斤.【答案】967【分析】设原有生丝x 斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝x 斤,依题意,30121230316x =−,解得:967x =,故答案为:967.【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.三、解答题21.(2023·江苏连云港·统考中考真题)解方程组3827x y x y +=⎧⎨−=⎩ 【答案】31x y =⎧⎨=−⎩【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨−=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =−.∴原方程组的解为3,1.x y =⎧⎨=−⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.22.(2023·浙江台州·统考中考真题)解方程组:7,2 2.x y x y +=⎧⎨−=⎩【答案】3,4.x y =⎧⎨=⎩【分析】把两个方程相加消去y ,求解x ,再把x 的值代入第1个方程求解y 即可.【详解】解:722x y x y +=⎧⎨−=⎩①②①+②,得39x =.∴3x =.把3x =代入①,得4y =.∴这个方程组的解是34x y =⎧⎨=⎩.【点睛】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.23.(2023·湖南常德·统考中考真题)解方程组:213423x y x y −=⎧⎨+=⎩①② 【答案】52x y =⎧⎨=⎩【分析】方程组利用加减消元法求解即可.【详解】解:将①2⨯得:242x y −=③+②③得:5x =将5x =代入①得:2y =所以52x y =⎧⎨=⎩是原方程组的解.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆依题意得451560(3)y x y x +=⎧⎨−=⎩,解得:60013x y =⎧⎨=⎩,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,142002800⨯=,103003000⨯=,∵28003000<∴租14辆45座客车较合算.【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键. 25.(2023·四川自贡·统考中考真题)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人【分析】设该客车的载客量为x 人,由题意知,430510x x +=−,计算求解即可.【详解】解:设该客车的载客量为x 人,由题意知,430510x x +=−,解得,40x =,∴该客车的载客量为40人.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程. 26.(2023·安徽·统考中考真题)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【分析】设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意,列出二元一次方程组,解方程组即可求解.【详解】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y +=⎧⎨++=−⎩,解得:4050x y =⎧⎨=⎩答:调整前甲、乙两地该商品的销售单价分别为40,50元【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键. 27.(2023·全国·统考中考真题)2022年12月28日查干湖冬捕活动后,某商家销售A ,B 两种查干湖野生鱼,如果购买1箱A 种鱼和2箱B 种鱼需花费1300元:如果购买2箱A 种鱼和3箱B 种鱼需花费2300元.分别求每箱A 种鱼和每箱B 种鱼的价格.【答案】每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【分析】设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,由题意得:21300232300x y x y +=⎧⎨+=⎩,解得700300x y =⎧⎨=⎩,答:每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.【答案】(1)甲区有农田50000亩,乙区有农田40000亩;(2)100亩【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【详解】(1)解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y ⎛⎫=− ⎪⎝⎭,即5031.2y y ⎛⎫=− ⎪⎝⎭, 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,答:A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元.(2)解:设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,购买A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,()()305230m m m m ⎧−−≥⎪∴⎨≤−⎪⎩,解得35202m ≤≤,又m 为正整数,m ∴所有可能的取值为18,19,20,①当18m =,3012m −=时,购买总费用为30182012780⨯+⨯=(元),②当19m =,3011m −=时,购买总费用为30192011790⨯+⨯=(元),③当20m =,3010m −=时,购买总费用为30202010800⨯+⨯=(元),所以购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )【答案】(1)534;(2) 3.63768(1200)y x x =−>;(3)26立方米【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y 与x 之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【详解】(1)∵33200m 400m <,∴该年此户需缴纳燃气费用为:2.67200534⨯=(元),故答案为:534;(2)y 关于x 的表达式为()()400 2.671200400 3.15 3.631200y x =⨯+−⨯+− 3.63768(1200)x x =−> (3)∵()400 2.671200400 3.1535883855⨯+−⨯=<, ∴甲户该年的用气量达到了第三阶梯.由(2)知,当3855y =时,3.637683855x −=,解得1273.6x ≈.又∵()()2.67100400 3.15120020050041703855⨯++⨯+−=>, 且()2.6710040013353855⨯+=<, ∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为3m a .则有()2.67500 3.155003855a ⨯+−=,解得1300.0a =,∴31300.01273.626.426m −=≈.答:该年乙户比甲户多用约26立方米的燃气.【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程. 31.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x 人,由题意得,320425x x +=−,解得45x =,∴该班的学生人数为45人;(2)解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗, 由题意得,()30401555400m m +−≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量 32.(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M 型平板电脑的价值为2100元;(2)她应获得120m 元的报酬【分析】(1)设这台M 型平板电脑的价值为x 元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【详解】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:150********x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.【答案】(1)豆沙粽的单价为4元,肉粽的单价为8元;(2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②10m =【分析】(1)设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意列一元一次方程即可求解;(2)①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意列二元一次方程组即可求解; ②根据销售额=销售单价⨯销售量,列一元二次方程,解之即可得出m 的值.【详解】(1)解:设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意得10122136x x +⨯=,解得4x =;则28x =;所以豆沙粽的单价为4元,肉粽的单价为8元;(2)解:①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意得20302703020230a b a b +=⎧⎨+=⎩,解得37a b =⎧⎨=⎩,所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②依题意得[3(40)7](804)[3(40)7](48)17280m m m m m m +−⨯⨯−+⨯−+⨯+=,解得19m =或10m =, 1(40)2m m <−,∴403m <,10m ∴=.【点睛】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到题中的等量关系列出方程或方程组是解题的关键.。

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)1.威立到小吃店买水饺,他身上带的钱恰好等于15 粒虾仁水饺或20 粒韭菜水饺的价钱,若威立先买了9 粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.122.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载。

租车方案有()A.4种B.3种C.2种D.1种3.“保护好环境,拒绝冒黑烟。

”某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.则每辆A型车的售价是()A.14万元B.18万元C.22万元D.26万元4.小明在某商店购买商品A,B共两次,这两次购买商品A,B的数量和费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购物 4 3 93第二次购物 6 6 162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种6.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为张,2元的贺卡为张,那么、所适合的一个方程组是()A.B.C.D.7.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种9.某花农培育甲种花木10株,乙种花木8株,共需成本6400元;培育甲种花木4株,乙种花木5株,共需成本3100元。

中考数学知识点复习 第二章 方程(组)与不等式(组)

中考数学知识点复习 第二章 方程(组)与不等式(组)

中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。

2018全国中考数学分类汇编--3方程与不等式应用题

2018全国中考数学分类汇编--3方程与不等式应用题

2018全国中考数学分类汇编--3方程与不等式应用题D【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.10.(2018·山东淄博)(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2018·四川眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是A.8% B.9% C.10% D.11%答案:C8.(2018·四川绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【考点】一元二次方程的应用【解析】【解答】解:设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为:C.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.6.(2018·四川宜宾)(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2018·浙江杭州)某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

2014年全国中考数学试题分类汇编05 二元一次方程(含解析)

2014年全国中考数学试题分类汇编05 二元一次方程(含解析)

二元一次方程(组)及其应用一、选择题1.(2014•新疆,第8题5分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()由题意得,.2.(2014•温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()B C D.3.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),4.(2014•襄阳,第8题3分)若方程mx+ny=6的两个解是,,则m,n的值为()解:将分别代入中,得:5.(2014•襄阳,第9题3分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()6.(2014•孝感,第5题3分)已知是二元一次方程组的解,则m﹣n的值是()代入方程组得:7.(2014·台湾,第6题3分)若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值.解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A .点评:此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.8.(2014•滨州,第12题3分)王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( )9.(2014年山东泰安,第7题3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8 分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D 点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二.填空题1. (2014•福建泉州,第11题4分)方程组的解是.,.故答案为:2.(2014•浙江湖州,第18题分)解方程组.分析:方程组利用加减消元法求出解即可.解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.3.(2014•滨州,第16题4分)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备34 元钱买门票.,,三.解答题1. (2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•广西贺州,第20题6分)已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将x=2,y=3代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,4.(2014•舟山,第21题8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?.5.(2014•邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?.6.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m (件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.7. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:8. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为9. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.10. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.由题意得,解得:11. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?==1②根据题意得:;<≤,2≤<﹣;,得到,12.(2014•呼和浩特,第22题7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?由题意得,,13.(2014•滨州,第19题3分)(2)解方程组:.).。

数学-第5章二元一次方程组及其应用

数学-第5章二元一次方程组及其应用

第5章二元一次方程组及其应用一、选择题1. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎪⎨⎪⎧x+y=3012x+16y=400B.⎩⎪⎨⎪⎧x+y=3016x+12y=400C.⎩⎪⎨⎪⎧12x+16y=30x+y=400D.⎩⎪⎨⎪⎧16x+12y=30x+y=400 2.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x 元,包子每颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?A .⎩⎨⎧⨯=++=+9.09051125035y x y xB .⎩⎨⎧÷=++=+9.09051125035y x y xC .⎩⎨⎧⨯=+-=+9.09051125035y x y xD .⎩⎨⎧÷=+-=+9.09051125035y x y x3.二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解( ) A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩4.灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人?( ) A .男村民3人,女村民12人 B .男村民5人,女村民10人 C .男村民6人,女村民9人 D .男村民7人,女村民8人5.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩6.方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x7.方程组31x y x y +=⎧⎨-=-⎩,的解是( )A .12.x y =⎧⎨=⎩,B .12.x y =⎧⎨=-⎩,C .21.x y =⎧⎨=⎩,D .01.x y =⎧⎨=-⎩,8.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .3 二、填空题1. 方程组237,38.x y x y +=⎧⎨-=⎩的解是 .2. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 元.3. 方程组257x y x y ì+=ïïíï-=ïî的解是 .4. 已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为.5. 方程组524050x y x y --=⎧⎨+-=⎩的解是___________________.6. 方程组257x y x y ì+=ïïíï-=ïî的解是 . 7. 方程组237,38.x y x y +=⎧⎨-=⎩的解是 .8. 若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.9. 已知.a y x 3y x 3y 2的解的二元一次方程,是关于+=⎩⎨⎧==x 求(a+1)(a-1)+7的值_______三、解答题1. 为了参加2011年威海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.2 .小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?3 某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?4.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?5.某县为鼓励失地农民自主创业,在2011年对60位自主创业的失地穷民进行了奖励,共计奖励了10万元,奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人? 6.解方程组:38.53 4.x y x y +=⎧⎨-=⎩7.去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金80万元用于打井.已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?8 .解方程组:222,230.x y x xy y -=⎧⎨--=⎩ 9.解方程:)10553(4222=--+--y x y x 。

全国中考真题分类汇编 一元二次方程及其应用

全国中考真题分类汇编 一元二次方程及其应用

精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。

2019年全国各地中考数学试题分类汇编专题5 二元一次方程(组)及其应用(含解析)

2019年全国各地中考数学试题分类汇编专题5 二元一次方程(组)及其应用(含解析)

二元一次方程(组)及其应用一.选择题1. (2019•天津•3分)方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D.2. (2019•广西贺州•3分)已知方程组,则2x +6y 的值是( ) A .﹣2B .2C .﹣4D .4【分析】两式相减,得x +3y =﹣2,所以2(x +3y )=﹣4,即2x +6y =﹣4. 【解答】解:两式相减,得x +3y =﹣2, ∴2(x +3y )=﹣4, 即2x +6y =﹣4, 故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.二.填空题1. (2019•河北•4分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;2. (2019•江苏宿迁•3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.3. (2019•四川自贡•4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题1. (2019•贵阳•10分)某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A 款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.【解答】解:(1)设A款毕业纪念册的销售为x元,B款毕业纪念册的销售为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售为10元,B款毕业纪念册的销售为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出等量关系是解题关键.2. (2019•海南•10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.3. (2019•河南•9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;【解答】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;【点评】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.4. (2 019·江苏盐城·10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B 型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?5. (2019•广东省广州市•9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6. (2019•甘肃省庆阳市•6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.7.(2019•天津•10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg 。

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

二元一次方程(组)及其应用一、选择题1.(2015•山东东营•一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =523x +2y =20 B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D2.(2015·广东中山·4月调研)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩3.(2015·山东枣庄·二模)二元一次方程组233x y x y ⎧⎨⎩+=−=的解为( ) A .21x y ⎧⎨⎩== B .21x y ⎧⎨⎩==− C .21x y ⎧⎨⎩=−=− D .21x y ⎧⎨⎩=−=答案:B4.(2015·山东省东营区实验学校一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20C.⎩⎪⎨⎪⎧x +y =202x +3y =52D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D5.(2015·江西省·中等学校招生考试数学模拟)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=+−.54,23y x y x 的解,则b a 2+的值为( )A . 4B . 5C . 6D . 7答案:选D .命题思路:考查二元一次方程组的解法与消元、整体思想的运用.6.(2015·重点高中提前招生数学练习)在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D )图1A .22B .24C .36D .44答案:D7.(2015•山东潍坊广文中学、文华国际学校•一模)已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3−=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或4答案:A ;8.(2015·广东广州·一模)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.⎩⎪⎨⎪⎧ x =y -18,y -x =18-yB.⎩⎪⎨⎪⎧ y -x =18,x -y =y +18C. ⎩⎪⎨⎪⎧ x +y =18,y -x =18+yD.⎩⎪⎨⎪⎧y =18-x ,18-y =y -x 答案:D9.(2015·江苏江阴长泾片·期中)已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=−=+17by ax by ax 的解,则a b −的值为( )A .-1B .1C .2D .3答案:A二、填空题1.(2015•山东济南•网评培训)方程组257x y x y +=⎧⎨−=⎩,的解是 . 答案:43y x =⎧⎨=−⎩, 2.(2015•山东潍坊广文中学、文华国际学校•一模)如图1,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是_______.答案:(56,57−); 3. (2015·江苏高邮·一模)若a +3b -2=0, 则3a ×27b 的值为 ▲ .答案:9;三、解答题 1.(2015·锡山区·期中)(本题满分10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列高铁上;根据报名人数,若都买一等座单程火车票需6175元,若都买二等座单程火车票且花钱最少,则需3150元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(高铁学生票只有二等座.....可以打7.5折)如下表所示:运行区间票价上车站下车站一等座二等座无锡上海95(元)60(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?答案:解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,(2分)解得:答:参加社会实践的老师、家长与学生分别有5人、10人、50人.(4分)(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x),即y=-35x+5425(50≤x<65),(5分)②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65-x)张,∴火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65-x ),即y =-50x +6175(0<x <50), (6分) 答:购买火车票的总费用(单程)y 与x 之间的函数关系式是y =-35x +5420(50≤x <65)或y = -50x +6175(0<x <50). (7分)(3)由(2)小题知,当50≤x <65时,y = -35x +5425,∵-35<0,y 随x 的增大而减小, ∴当x =64时,y 的值最小,最小值为3185元,当x =50时,y 的值最大,最大值为3675元. (8分) 当0<x <50时,y = -50x +6175,∵-50<0,y 随x 的增大而减小,∴当x =49时,y 的值最小,最小值为3725元,当x =1时,y 的值最大,最大值为6125元. (9分) 所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元. (10分)2.(2015·江苏无锡崇安区·一模)解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.答案:由①得y =3x -7代入②,x +3(3x -7)=-1,得x =2……………………………(2分)于是y =-1……………… (3分) 故原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1…………………(4分) 3. (2015•山东东营•一模) 某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:, 解得:, 答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.1.(2015·广东从化·一模)(本小题满分9分解方程组:533x y x y +=⎧⎨−=⎩答案:解: 533x y x y +=⎧⎨−=⎩ (2)(1) (1)+(2)得:48x = ……………………………………………2分 解得:2=x (3) ……………………………………………4分 把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x …………………………………9分 4.( 2015·呼和浩特市初三年级质量普查调研)(5分)解方程组:211342x y y x −=⎧⎪⎨+−=⎪⎩答案:解原方程可化为:21618x y x y −=⎧⎨−−=⎩,48,2x x ==两式相减得:,2213x x y y =−==把代入得;23x y =⎧⎨=⎩所以方程组得解为; 5. (2015·山东省济南市商河县一模) (本小题满分4分)解方程组:⎩⎨⎧=−=+②①72552y x y x解:⎩⎨⎧=−=+②①72552y x y x ①+② 得: ···································································· 1分 6x =12,x =2, ···································································································· 2分 把x =2代入①得:y =23, ················································································ 3分 ∴方程组的解为:⎪⎩⎪⎨⎧==232y x ··············································································· 4分6. (2015·辽宁盘锦市一模)20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:20002400x y y x +=⎧⎨−=⎩ 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件7.(2015·网上阅卷适应性测试)(1)计算:()21342|8|−−−⨯+−⎩⎨⎧=+=+1137y x y x (2)⎩⎪⎨⎪⎧3x +y =3,①x +y =1.② 答案:(1)()21342|8|−−−⨯+−=9―2+8=15(2)解:由①—②,得2x =2,x =1. ③将③代入②中,得 y =0.所以,方程组的解为:⎩⎪⎨⎪⎧x =1,y =0.8. (2015·福建漳州·一模)请从以下三个二元一次方程: x +y =7, 173+−=x y , x +3y =11中,任选两个方程构成一个方程组,并解该方程组.(1)所选方程组是: .(2)解方程组:答案:(1) ①② …………………………………………………………2分(2)解:②-①得:42=y …………………………………………………………4分 ∴2=y …………………………………………………………………5分把2=y 代入①得 :5x = ………………………………………………7分∴⎩⎨⎧==25y x …………………………………………………………………8分 9.(2015·广东广州·二模)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件? 解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:---------1分 20002400x y y x +=⎧⎨−=⎩ -----------------------------------------------------------------------------5分 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件 --------- ---------7分10. (2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x . 答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分。

新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)

新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)

新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)一、选择题1.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩ 【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.2.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A【解析】【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得.【详解】 ∵由3420x y += 可得,34y 203, 54x y x =-=- ,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A .【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.4.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3 B.5 C.7 D.9【答案】B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1,所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.7.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C【解析】【分析】 首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.二元一次方程3x+y =7的正整数解有( )组.A .0B .1C .2D .无数 【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【解析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程.【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道,依题意得:()532072x y x y ----=,化简得:6292x y -=.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.13.已知关于x,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程25x y -=,则m 的值为( )A .1B .2C .3D .4 【答案】C【解析】【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.14.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.15.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A .B .C .D .【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩.∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.19.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4 B .1- C .2 D .1【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.【详解】2315x y a x y +=-⎧⎨-=⎩①②①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.20.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2B .2C .-1D .1 【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.。

专题6一次方程(组)及应用(40题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第1期)

专题6一次方程(组)及应用(40题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第1期)

2021年中考数学真题分项汇编【全国通用】(第01期)专题6一次方程(组)及应用(共40题)一、单选题1.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( )A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=2.(2021·安徽)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-3.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( ) A .02x y =⎧⎨=⎩ B .11x y =⎧⎨=⎩ C .22x y =⎧⎨=-⎩ D .33x y =⎧⎨=-⎩4.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )A .()60.5125x -=B .()25160.5x -=C .()60.5125x +=D .()25160.5x +=5.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元6.(2021·四川南充市·中考真题)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( )A .105(1)70x x +-=B .105(1)70x x ++=C .10(1)570x x -+=D .10(1)570x x ++=7.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩8.(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩C .2502503x y x x -=⎧⎪⎨-=⎪⎩D .2502503x y x y -=⎧⎪⎨-=⎪⎩ 9.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 10.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A .3(2)29y x y x -=⎧⎨-=⎩B .3(2)29y x y x +=⎧⎨+=⎩C .3(2)29y x y x -=⎧⎨+=⎩D .3(2)29y x y x -=⎧⎨+=⎩二、填空题11.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________. 12.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.13.(2021·浙江金华市·中考真题)已知2x y m =⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 14.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 15.(2021·重庆中考真题)若关于x 的方程442x a -+=的解是2x =,则a 的值为__________. 16.(2021·重庆中考真题)方程2(3)6x -=的解是__________.17.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两) 18.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.19.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.20.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.21.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.22.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为________.三、解答题23.(2021·江苏扬州市·中考真题)已知方程组271x yx y+=⎧⎨=-⎩的解也是关于x、y的方程4ax y+=的一个解,求a的值.24.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.25.(2021·浙江丽水市·中考真题)解方程组:26 x yx y=⎧⎨-=⎩.26.(2021·四川眉山市·中考真题)解方程组32200 21530 x yx y-+=⎧⎨+-=⎩27.(2021·浙江台州市·中考真题)解方程组:241 x yx y+=⎧⎨-=-⎩28.(2021·江苏苏州市·中考真题)解方程组:3423 x yx y-=-⎧⎨-=-⎩.29.(2021·陕西中考真题)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.30.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2925a%.求a的值.31.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?32.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?33.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?34.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?35.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.36.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?37.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.38.(2021·四川泸州市·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.39.(2021·重庆中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n . 40.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.。

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。

全国中考数学真题分类汇编 5 二元一次方程(组)及其应用-人教版初中九年级全册数学试题

全国中考数学真题分类汇编 5 二元一次方程(组)及其应用-人教版初中九年级全册数学试题

二元一次方程(组)及其应用考点一、二元一次方程组(8~10分)1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

一、选择题例1.(2017·某某某某·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对1.(2017某某某某3分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.2. (2017·某某某某·3分)二元一次方程组的解为()A. B. C. D.3.(2017·某某某某)某某市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.74. (2017·某某龙东·3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.45.(2017·某某某某·3分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5二、填空题1. (2017·某某·3分)某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元.设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为.2. (2017·某某·6分)(1)解方程组:.3.(2017·某某某某)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.4.(2017·某某省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9 个零件.三、解答题1.(2017·某某某某)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?2.(2017·某某某某)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?3. (2017·某某龙东·10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?4.(2017·某某某某·4分)解方程组.5.(2017·某某某某·10分)某某新闻网讯:2017年2月21日,某某市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2017年到2018年市政府配置公共自行车数量的年平均增长率.6.(2017·某某某某·6分)解方程组:⎩⎨⎧=+=-178923y x y x7.(2017·某某某某·13分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?8. (2017·某某省某某市)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9.(2017·某某省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.五. 问答题1.(2017·某某省滨州市·4分)某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据 46 66 22 10 11 8 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.答案二元一次方程(组)及其应用一、选择题1.(2017·某某某某·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.1.(2017某某某某3分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2. (2017·某某某某·3分)二元一次方程组的解为()A. B. C. D.【考点】二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.3.(2017·某某某某)某某市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【考点】二元一次方程组的应用.【分析】设生产甲产品x件,则乙产品(20﹣x)件,根据生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,列出不等式组,求出不等式组的解,再根据x为整数,得出有5种生产方案.【解答】解:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.4. (2017·某某龙东·3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.4【考点】二元一次方程的应用.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C.5.(2017·某某某某·3分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【考点】二元一次方程的应用.【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的X围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.二、填空题1. (2017·某某·3分)某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元.设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意得到:A型电脑数量+B型电脑数量=10,A型电脑数量×5000+B型电脑数量×3000=34000,列出方程组即可.【解答】解:根据题意得:,故答案为:2. (2017·某某·6分)(1)解方程组:.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;3.(2017·某某某某)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.4.(2017·某某省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9 个零件.【考点】二元一次方程组的应用.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.【点评】本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.三、解答题1.(2017·某某某某)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的X围内y与x之间的函数关系,注意自变量的取值X围;(3)根据小英家5月份用水26吨,判断其在哪个X围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(xx﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元,答:小英家5月份水费69吨.【点评】本题考查了一次函数的应用、二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值X围.2.(2017·某某某某)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A 商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值X围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.3. (2017·某某龙东·10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B 种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值X围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出那种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.4.(2017·某某某某·4分)解方程组.【分析】首先联立方程组消去x求出y的值,然后再把y的值代入x﹣y=2中求出x的值即可.【解答】解:将两式联立消去x得:9(y+2)2﹣4y2=36,即5y2+36y=0,解得:y=0或﹣,当y=0时,x=2,y=﹣时,x=﹣;原方程组的解为或.【点评】本题主要考查了高次方程的知识,解答本题的关键是进行降次解方程,此题难度不大.5.(2017·某某某某·10分)某某新闻网讯:2017年2月21日,某某市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2017年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2017年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2017年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2017年到2018年市政府配置公共自行车数量的年平均增长率为75%.6.(2017·某某某某·6分)解方程组:【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.7.(2017·某某某某·13分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【分析】首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可.【解答】解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:.答:该校的大寝室每间住8人,小寝室每间住6人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程组.8. (2017·某某省某某市)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值X围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值X围即可解决最值问题.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.(2017·某某省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9 个零件.【考点】二元一次方程组的应用.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.【点评】本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.1.(2017·某某省滨州市·4分)某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据 46 66 22 10 11 8 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【考点】二元一次方程组的应用.【分析】设本场比赛中该运动员投中2分球x个,3分球y个,根据投中22次,结合罚球得分总分可列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设本场比赛中该运动员投中2分球x个,3分球y个,依题意得:,解得:.答:本场比赛中该运动员投中2分球16个,3分球6个.【点评】本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。

不等式(组)及其应用(41题)(原卷版)--2024年中考数学真题分类汇编

不等式(组)及其应用(41题)(原卷版)--2024年中考数学真题分类汇编

专题10 不等式(组)及其应用(41题)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −< +≥−①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<<+的解集为3x <,则m 的取值范围是( ) A .m>2 B .2m ≥ C .2m < D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+ +≥− 的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥ −>−的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( ) A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥ −<的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥−> 恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −> −<的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·中考真题)不等式321x −<的解集是 .25.(2024·广东·中考真题)关于x 是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 30.(2024·江苏连云港·中考真题)解不等式112x x−<+,并把解集在数轴上表示出来.31.(2024·甘肃·中考真题)解不等式组:()223122x x x x −<++< 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤−≥− ①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x −<+−<35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>−≤①②的整数解. 36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤−<,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需1102棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?。

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案

中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案一、单选题1.已知一次函数 y =x +1 和一次函数 y =2x −2 的图象的交点坐标是 (3,4) ,据此可知方程组{x −y =−12x −y =2 的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−32.如图,直线y =kx+b 交x 轴于点A (﹣2,0),直线y =mx+n 交x 轴于点B (5,0),这两条直线相交于点C (2,c ),则关于x 的不等式组 {kx +b <0mx +n >0的解集为( )A .x <5B .1<x <5C .﹣2<x <5D .x <﹣23.用图象法解二元一次方程组{kx −y +b =0x −y +2=0时,小英所画图象如图所示,则方程组的解为( )A .{x =1y =2B .{x =2y =1C .{x =1y =2.5D .{x =1y =34.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组 {2x −y =0x +y =b 的解为( ) A .{x =1y =2B .{x =−1y =2C .{x =1y =−2D .{x =−1y =−25.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−2y =−4B .{x =−4y =−2C .{x =2y =−4D .{x =−4y =26.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x ﹣y=2的解的是( )A .B .C .D .7.在平面直角坐标系中,直线l 1:y =x+3与直线l 2:y =mx+n 交于点A (﹣1,2),则关于x 、y 的方程组{y =x +3y =mx +n 的解为( ) A .{x =2y =1B .{x =2y =−1C .{x =−1y =2D .{x =−1y =−28.如图,是在同一坐标系内作出的一次函数l 1、l 2的图象,设l 1:y =k 1x+b 1,l 2:y =k 2x+b 2,则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =−2y =2B .{x =−2y =3C .{x =−3y =3D . {x =−3y =49.如图,l 1经过点(0,1.5)和(2,3),l 2经过原点和点(2,3),以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{3x −4y =−63x −2y =0B .{−3x +4y =63x +2y =0C .{3x −4y =63x −2y =0D .{3x −4y =63x +2y =010.直线 y =2x −3 与直线 y =x −1 的交点坐标是( )A .(2,1)B .(4,3)C .(2,−1)D .(−2,1)11.已知直线y=3x ﹣3与y=﹣32x+b 的交点的坐标为(43,a ),则方程组{−3x +y +3=03x +2y −2b =0的解是( )A .{x =43y =−1B .{x =43y =1C .{x =−43y =−1D .{x =−43y =112.如图,已知一次函数y=ax+b 和y=kx 的图象相交于点P ,则根据图象可得二元一次方程组 的解是( )A .{x =−4y =−2B .{x =−2y =−4C .{x =2y =4D .{x =2y =−4二、填空题13.已知方程组{x +y =12x −y =2的解为{x =1y =0,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为14.如图,直线l 1的解析式是y =2x -1,直线l 2的解析式是y =x +1,则方程组 {x −y =−12x −y =1 的解是 .15.一次函数y =3x -5与y =2x +b 的图象的交点的坐标为P(1,-2),则方程组 {y =3x −5y =2x +b 中b的值为 .16.如图,已知函数y=x ﹣2和y=﹣2x+1的图象交于点P (1,﹣1),根据图象可得方程组{x −y =22x +y =1的解是 .17.已知函数y=2x+1和y=﹣x ﹣2的图象交于点P ,点P 的坐标为(﹣1,﹣1),则方程组{2x −y +1=0x +y +2=0的解为 . 18.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y =kx+b 与y =bx+k 互为交换函数,例如:y =5x+2的交换函数为y =2x+5.一次函数y =kx+2与它的交换函数图象的交点横坐标为 .三、综合题19.如图,在平面直角坐标系中,点O 为坐标原点,直线y =2x ﹣1与直线y = 34 x+ 32交于点A ,过点A 作x 轴的垂线,点B 为垂足,点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上,连接BC .(1)求点A的坐标;(2)求∠CBO的度数.20.如图,在直角坐标系中,直线y=−43x+4与分别于x、y轴交于点A,B,点C在x轴上CD∠AB.垂足为D,交y轴于点E (0,3).(1)求∠AOB的面积;(2)求线段CE的长;(3)求D点的坐标.21.如图,两直线l1:y=−x+4、l2:y=2x+1相交于点P,与x轴分别相交于A、B 两点.(1)求P点的坐标;(2)求S∠PAB.22.一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x ﹣2y=0的解 {x =0y =0 和 {x =2y =1 可以转化为点的坐标A (0,0)和B (2,1).以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象.(1)写出二元一次方程x ﹣2y=0的任意一组解 ,并把它转化为点C 的坐标 ;(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x ﹣2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A 、点B 和点C ,观察它们是否在同一直线上; (3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;(4)根据图象,写出二元一次方程x ﹣2y=0的图象和二元一次方程x+y=3的图象的交点坐标 ,由此可得二元一次方程组 {x −2y =0x +y =3 的解是 .23.如图,直线y 1=kx+b 与坐标轴交于A (0,2),B (m ,0)两点,与直线y 2=-4x+12交于点P (2,n ),直线y 2=-4x+12交x 轴于点C ,交y 轴于点D .(1)求m ,n 值;(2)直接写出方程组{y =kx +b y =−4x +12的解为 ;(3)求∠PBC的面积.24.为便民惠民,树人公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】A11.【答案】B12.【答案】A13.【答案】(1,0)14.【答案】15.【答案】-416.【答案】{x=1y=−117.【答案】{x=−1y=−1 18.【答案】119.【答案】(1)解:由{y=2x−1①y=34x+32②,解得{x=2y=3∴A(2,3);(2)解:过C点作CD∠x轴于D∵A(2,3)∴B (2,0)∵点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上 ∴y =2×(﹣1)﹣1=﹣3 ∴C (﹣1,﹣3) ∴BD =3,CD =3∴∠CBD 的等腰直角三角形 ∴∠CBO =45°.20.【答案】(1)解:∵当x=0时, y =4 ,∴B (0,4)∵当y=0时, x =3 ,∴A (3,0) ∴OA =3,OB =4 ∴S ∠AOB =12×3×4=6 (2)解:∵E (0,3) ∴OE=3 ∴OE=OA∵∠ECO+∠CEO=90°,∠BED+∠DBE=90°,∠CEO=∠BED ∴∠ECO=∠DBE 又∵∠COE=∠BDE=90° ∴∠AOB∠∠EOC (AAS ); ∴OC=OB=4∴Rt∠COE 中,CE =√OC 2+OE 2=√42+32=5 (3)解:由(2)得OC =4,即C (﹣4,0) 设直线CE 的解析式为y=kx+b 把C (﹣4,0),E (0,3)代入得 {−4k +b =0b =3 解得{b =3k =34∴直线CE 解析式为: y =34x +3由题意得方程组 {y =−43x +4y =34x +3解得: {x =1225y =8425 ∴D (1225,8425) .21.【答案】(1)解:联立方程组得: {y =−x +4y =2x +1,解得 {x =1y =3 ,因此 P(1,3) (2)解:在 y =−x +4 中,当 y =0 时, −x +4=0 , x =4 ,在 y =2x +1 中,当 y =0时 2x +1=0 , x =−12 ,∴A (−12,0) ,B (4,0) ,∴AB= |x A −x B |=92∴S ∠PAB = 92⋅|y P |⋅12=92×3×12=27422.【答案】(1){x =−2y =−1;(﹣2,﹣1)(2)解:如图,点A 、点B 和点C 同一直线上(3)二元一次方程x+y=3的两个解为 {x =3y =0 或 {x =0y =3 ,把它们转化成点的坐标为(3,0),(0,3) 如图(4)(2,1);{x =2y =123.【答案】(1)解:把点P (2,n )代入y 2=−4x +12得:n =−8+12=4第 11 页 共 11 ∴P (2,4)把A (0,2),P (2,4)代入y 1=kx +b 得,{b =22k +b =4解得:{k =1b =2∴y 1=x +2把B (m ,0)代入y 1=x +2得:0=m +2解得:m =−2∴m =−2,n =4;(2){x =2y =4(3)解:当y 2=−4x +12=0时解得:x =3∴C (3,0)∵P (2,4),B (-2,0),C (3,0)∴BC=5∴S △PBC =12×5×4=10. 24.【答案】(1)解:由题意得,普通卡:y 1=20x ;贵宾卡:y 2=10x +200; (2)解:令y 1=500得:20x =500,解得:x =25∴点B 坐标为(25,500);令y 2=500得:10x +200=500,解得:x =30∴点C 的坐标为(30,500);联立y 1、y 2得: {y =20x y =10x +200解得: {x =20y =400 ∴点A 的坐标为(20,400);∴A (20,400),B (25,500),C (30,500);(3)解:由图像可知:①当0<x <20时,选择普通卡更合算; ②当x =20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20<x <30时,选择贵宾卡更合算;④当x =30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x >30时,选择至尊卡更合算.。

上海市八年级第二学期数学专题05 二元二次方程组与列方程(组)解应用题(真题测试)(解析版)

上海市八年级第二学期数学专题05 二元二次方程组与列方程(组)解应用题(真题测试)(解析版)

上海市八年级第二学期数学专题05 二元二次方程组与列方程(组)解应用题【真题测试】 一、选择题1. (黄浦2018期中3)下列方程组中,属于二元二次方程组的为( ) A.02x y x y +=⎧⎨-=⎩; B.123224x y x y⎧+=⎪⎪⎨⎪-=-⎪⎩;C.21x x y ⎧=⎪⎨+=⎪⎩; D.324x xy =⎧⎨=⎩.【答案】D ;【解析】解:A 、两个方程都是二元一次方程,所组成的方程组为二元一次方程组,所以A 选项不正确; B 、两个方程都是分式方程,所组成的方程组为分式方程组,所以B 选项不正确; C 、有一个方程是无理方程,所组成的方程组不是二元二次方程组,所以C 选项不正确; D 、有一个方程是二元二次方程,另一个是一元一次方程,所组成的方程组为二元二次方程组,所以D 选项正确. 故选:D .2. (浦东2018期中3)由方程组2210(1)(1)40x y x y --=⎧⎨-+++=⎩消去y 后化简得到的方程是( ) A.22260x x --=; B. 22250x x ++=; C. 2250x +=; D. 22250x x -+= 【答案】D 【解析】解:2210(1)(1)40x y x y --=⎧⎨-+++=⎩①②,由①,得x=y+1③,将③代入②,得(x-1)2+x 2+4=0,化简,得2x 2-2x+5=0,故选:D .3. (杨浦2019期中16)下列方程组中,属于二元二次方程组的是( )A .⎩⎨⎧=-+=2232x xy x y B.⎪⎩⎪⎨⎧=+=-+102122y x x y xy c.⎩⎨⎧-=-=+135y x y x D.⎪⎩⎪⎨⎧=+-=53132y x x y【答案】A ;【解析】A 、二元二次方程组,符合题意;B 、含分式方程,故不符合题意;C 、二元一次方程组,不符合题意;D 、含无理方程,不符合题意;因此答案选A.4.(浦东四署2019期末4)某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x 千米/小时,下列所列方程正确的是( ) A.350350130x x -=-; B. 350350130x x -=-; C. 350350130x x -=+; D. 350350130x x-=+. 【答案】C ;【解析】提速前所用时间为:350x,提速后所用时间为:35030x +,依题可得:350350130x x -=+. 二、填空题5.(浦东四署2019期中9)方程组2235x y x y -=⎧⎨+=⎩的根是 .【答案】121224,111x x y y ==-⎧⎧⎨⎨==-⎩⎩; 【解析】2235x y x y -=⎧⎨+=⎩①②,则①+②得2280x x +-=,解得24x x ==-或,当2x =时,1y =;当4x =-时,11y =-;故原方程组的解为121224,111x x y y ==-⎧⎧⎨⎨==-⎩⎩. 6.(普陀2018期末9)把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是 和 . 【答案】x +5y =0和 x ﹣y =0;【解析】解:∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0. 7. (浦东2018期末7)如果21x y =⎧⎨=-⎩是方程22mx y xy +=的一个解,那么m=______.【答案】34-; 【解析】解:把方程的解21x y =⎧⎨=-⎩代入方程22mx y xy +=,可得4m+1=-2,∴4m=-3,解得m=34-.8. (奉贤2018期末12)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x ,那么可列方程:______ 【答案】100(1+x )2=179;【解析】解:设平均每次涨价的百分比为x ,那么可列方程: 100(1+x )2=179. 故答案为:100(1+x )2=179. 9.(浦东一署2018期中14)一项工程.乙队先单独做2天后,再由甲乙两队合作10天就能完成.已知乙队单独完成此工程比甲单独完成此工程少用5天.设甲队单独完成此工程需要x 天,那么根据题意可列出方程______. 【答案】121015x x+=- 【解析】解:设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x-5)天. 由题意,得121015x x +=-,故答案为:121015x x+=-.10.(浦东四署2019期中13)一列高铁与一列动车组在全长约为1318千米的京沪高速铁路上运行,已知高铁列车比动车列车平均速度每小时快105千米,且高铁列车比动车组列车全程运行时间少3小时,如果设高铁的平均速度是x 千米/小时,则根据题意可列方程: .【答案】131813183105x x-=-;【解析】高铁所用时间为1318x ,动车所用时间1318105x -,因为高铁列车比动车组列车全程运行时间少3小时,故得131813183105x x-=-.11.(崇明2018期中20)甲、乙二人加工某种零件,若单独工作,则乙比甲多用12天才能完成,若两人合作,则8天可以完成,设甲单独工作x 天完成,列方程得 .【答案】88112x x +=+; 【解析】甲的工作效率为1x ,乙的工作效率为112x +,因为合作8天完成,故得88112x x +=+.12.(闵行2018期末13)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x ,那么根据题意,列出的方程为 . 【答案】220(120%)(1)11.56x --=;【解析】解:设这辆车第二、三年的年折旧率为x ,有题意,得:220(120%)(1)11.56x --=. 三、解答题13.(金山2018期中21)解方程组:22312230x y x xy y +=⎧⎨--=⎩①②. 【答案】121266,26x x y y ==-⎧⎧⎨⎨==⎩⎩; 【解析】解:由②得:(3)()0x y x y -+=,即300x y x y -=+=或,所以原方程组可化为:312312300x y x y x y x y +=+=⎧⎧⎨⎨-=+=⎩⎩或,解得:121266,26x x y y ==-⎧⎧⎨⎨==⎩⎩,所以原方程组的解为121266,26x x y y ==-⎧⎧⎨⎨==⎩⎩.14. (黄浦2018期中20)解方程组:231437xy y y x ⎧-=⎨-=⎩①②.【答案】32x y =-⎧⎨=-⎩;【解析】解:由②得:y =7+3x ③,把③代入①得:3x (7+3x )-(7+3x )2=14,解得:x =-3,把x =-3代入③得:y =-2,所以原方程组的解为32x y =-⎧⎨=-⎩.15.(浦东四署2018期中21)解方程组:225602x xy y x y ⎧++=⎨+=⎩①②【答案】121234,12x x y y ==⎧⎧⎨⎨=-=-⎩⎩;【解析】解法1:由①得:(2)(3)0x y x y ++=,2030x y x y ∴+=+=或,故原方程组可化为203022x y x y x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩或,分别解这两个方程组,得121243,21x x y y ==⎧⎧⎨⎨=-=-⎩⎩. 解法2:由②得2y x =-③,把③代入①得225(2)6(2)0x x x x +-+-=,整理,得27120x x -+=,解得1234x x ==,,当13x =时,11y =-;当24x =时,22y =-;所以原方程组的解为121234,12x x y y ==⎧⎧⎨⎨=-=-⎩⎩.16. (杨浦2019期中22)解方程组:2223441x y x xy y +=⎧⎨-+=⎩①②. 【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩; 【解析】解:由方程②得:21x y -=±,因此原方程组可以化成新的方程组:23232121x y x y x y x y +=+=⎧⎧⎨⎨-=-=-⎩⎩或,解这两个方程组得:2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩,所以原方程组的解为:2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩.17. (浦东2018期末20)解方程组:223820x y x xy y +=⎧⎨+-=⎩.【答案】16282x x y y =-=⎧⎧⎨⎨==⎩⎩或;【解析】解:∵x2+xy-2y2=(x+2y )(x-y ),∴原方程组可化为:3838200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩或,解这两个方程组得原方程组的解为:16282x x y y =-=⎧⎧⎨⎨==⎩⎩或.18. (长宁2018期末20)解方程组:22211x xy y x y ⎧--=⎨-=⎩①②.【答案】2112312,012x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩; 【解析】解:由②得x =y +1③, 把③代入①得:22(1)(1)21y y y y +-+-=,整理得:220y y -=,解得102y y ==或,将0y =代入③得1x =,将12y =代入③得32x =,故得2112312,012x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩,故原方程组的解为2112312,012x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩. 19.(闵行2018期末20)解方程组:2224490x xy y x xy ⎧++=⎪⎨+=⎪⎩.【答案】0303,,,1.53 1.53x x x x y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩;【解析】解:2224490x xy y x xy ⎧++=⎪⎨+=⎪⎩①②, 由①得:2(2)9x y +=,23x y ∴+=±;由②得:00x x y =+=或;所以原方程组可化为:23232323,,,0000x y x y x y x y x x y x x y +=+=+=-+=-⎧⎧⎧⎧⎨⎨⎨⎨=+==+=⎩⎩⎩⎩,解之得:0303,,,1.53 1.53x x x x y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩.所以原方程组的解为:0303,,,1.53 1.53x x x x y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩.20.(静安2019期末21)解方程组:22222303x xy y x xy y ⎧--=⎪⎨-+=⎪⎩①②. 【答案与解析】解:由①得:300x y x y -=+=或,原方程组化为22223033x y x y x xy y x xy y -=+=⎧⎧⎨⎨-+=-+=⎩⎩或, 解这两个方程组得原方程组的解为:1234341232132111,,,11212177x x x x y y y y ⎧⎧==-⎪⎪=-=⎧⎧⎪⎪⎨⎨⎨⎨==-⎩⎩⎪⎪==-⎪⎪⎩⎩.21.(浦东四署2019期末21)解方程组:2256012x xy y x y ⎧-+=⎨+=⎩.【答案】121289,43x x y y ==⎧⎧⎨⎨==⎩⎩; 【解析】解:2256012x xy y x y ⎧-+=⎨+=⎩①②,由①得20x y -=或x-3y=0,所以原方程组可化为:20301212x y x y x y x y -=-=⎧⎧⎨⎨+=+=⎩⎩或,解方程组得:121289,43x x y y ==⎧⎧⎨⎨==⎩⎩,所以原方程组的角为121289,43x x y y ==⎧⎧⎨⎨==⎩⎩.22. (黄浦2018期中22)某校青年老师准备捐款3600元为敬老院的老年人购买一台电脑,这笔钱大家平均承担.实际捐款时又多了2名教师,因为购买电脑所需的总费用不变,于是每人少捐90元.问共有多少人参加捐款?原计划每人捐款多少元?. 【答案】10人,450元;【解析】解:设实际共有x 人参加捐款,那么原来有(x -2)人参加捐款,实际每人捐款(元),原计划每人捐款(元),依据题意,得,即,两边同乘以x (x -2),再整理,得 x 2-2x -80=0,解得 x 1=10,x 2=-8,经检验,x 1=10,x 2=-8都是原方程的根,但人数不能为负数,所以取x =10,当x =10时,(元),答:共有10人参加捐款,原计划每人捐款450元.23. (黄浦2018期中25)如图,x 轴表示一条东西方向的道路,y 轴表示一条南北方向的道路,小丽和小明分别从十字路口O 点处同时出发,小丽沿着x 轴以4千米时的速度由西向东前进,小明沿着y 轴以5千米/时的速度由南向北前进.有一颗百年古树位于图中的P 点处,古树与x 轴、y 轴的距离分别是3千米和2千米.问:(1)离开路口后经过多少时间,两人与这棵古树的距离恰好相等?(2)离开路口经过多少时间,两人与这颗古树所处的位置恰好在一条直线上?【答案】(1)149;(2)1110;【解析】解:(1)设离开路口后经过x小时,两人与这棵古树的距离恰好相等.由题意P(2,3).A(4x,0),B(0,5x),∵PA=PB,∴(2-4x)2+32=22+(3-5x)2,解得149x=或(舍弃),答:经过149小时,两人与这棵古树的距离恰好相等.(2)设离开路口经过y小时,两人与这颗古树所处的位置恰好在一条直线上.作PE⊥OB于E,PF⊥OA于F.∵B,P,A共线,∴∠BPE=∠PAF,∴tan∠BPE=tan∠PAF,∴533242yy-=-,解得:1110y=或(舍去),答:离开路口经过1110小时,两人与这颗古树所处的位置恰好在一条直线上24. (杨浦2019期中26)甲、乙两城间的铁路路程为1600千米,经过技术改造,列车实施了提速,提速后比提速前速度增加了20千米/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有条件下安全行驶速度不得超过140千米/小时,请你用学过的知识说明在这条铁路的现有条件下列车是否还可以再提速。

2018年中考数学真题知识分类练习试卷:方程(含答案)

2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

2019年全国各地中考数学试题分类汇编(第一期) 专题5 二元一次方程(组)及其应用(含解析)

2019年全国各地中考数学试题分类汇编(第一期) 专题5 二元一次方程(组)及其应用(含解析)

二元一次方程(组)及其应用一.选择题1. (2019•山东省德州市•4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )A.B.C.D.【考点】二元一次方程组【分析】本题的等量关系是:绳长①木长=4.5;木长①绳长=1,据此可列方程组求解.【解答】解:设绳长x尺,长木为y尺,依题意得,故选:B.【点评】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.2(2019•湖南长沙•3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.B.C.D.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A .【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.3.(2019•浙江嘉兴•3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A . B . C .D .【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:.故选:D .【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.4. ( 2019甘肃省兰州市) (4分)≪九章算术≫是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程为 ( ) A. B.⎩⎨⎧-=-=+x y y x y x 65165⎩⎨⎧+=+=+x y y x y x 65156 C.D.⎩⎨⎧+=+=+x y y x y x 54165⎩⎨⎧-=-=+x y y x y x 54156【答案】C .【考点】利用方程求解实际问题. 【考察能力】抽象概括能力. 【难度】中等【解析】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x +6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x +y =5y +x , 故选C. 5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元 B .30元 C .25元 D .19元 【分析】设每支玫瑰x 元,每支百合y 元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10①8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y①4,∴y=x+7,∴5x+3y+10①8x=5x+3(x+7)+10①8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6. (2019•湖南邵阳•3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是( )A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7(2019•湖北天门•3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( )A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵A.b均为整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.8. (2019•湖北孝感•3分)已知二元一次方程组,则的值是( )A.﹣5 B.5 C.﹣6 D.6【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019•浙江衢州•4分)已知实数m,n满足,则代数式m2-n2的值为________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程(组)及其应用
考点一、二元一次方程组(8~10分)
1、二元一次方程
含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(
2、二元一次方程的解
使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组
两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法
(1)代入法(2)加减法
6、三元一次方程
把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组
由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

一、选择题
例1.(2018·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()
A.20或16B.20
C.16D.以上答案均不对
1.(2018贵州毕节3分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1B.m=﹣1,n=1C.D.
2.(2018·辽宁丹东·3分)二元一次方程组的解为()
A.B.C.D.
3.(2018·四川宜宾)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()
A.4B.5C.6D.7
4.(2018·黑龙江龙东·3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.4
5.(2018·黑龙江齐齐哈尔·3分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()
A.1或2B.2或3C.3或4D.4或5
二、填空题
1.(2018·吉林·3分)某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元.设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为.
2.(2018·江西·6分)(1)解方程组:.
3.(2018·四川宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.4.(2018·山东省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9个零件.
三、解答题
1.(2018·四川攀枝花)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?。

相关文档
最新文档