领育国际高中数学课件:8-9 圆锥曲线综合问题
专题50圆锥曲线的综合应用问题范围与最值问题ppt课件
第1轮 ·数学
第八章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
解析几何
解 (1)设椭圆的半焦距长为c,
则由题设有ac= 36, a-c= 3- 2,
解得a= 3,c= 2,∴b2=1, 故椭圆C的方程为y32+x2=1.
第1轮 ·数学
第1轮 ·数学
第八章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
解析几何
考向1:建立函数关系利用基本不等式或二次函数求最值
(2019·山东滨州检测)已知椭圆C:x2+2y2=4. (1)求椭圆C的离心率; (2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长 度的最小值. 解 (1)由题意,椭圆C的标准方程为x42+y22=1, 所以a2=4,b2=2,从而c2=a2-b2=2. 因此a=2,c= 2.
综上所述,O→E·O→F的取值范围是[-8,2].
第1轮 ·数学
第八章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
解析几何
自主 完成
圆锥曲线中的最值问题是高考中的常考题型,难度一般较大,常常把不等式、 函数、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是函数思 想、数形结合思想、分类讨论思想的考查.
第1轮 ·数学
第八章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
解析几何
所以
O→E
·O→F
=x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4=
高考数学总复习 第八章第9课时 圆锥曲线的综合问题课件
【解】
(1)由题意知 m=2,椭圆方程
x2 2 为 +y =1,c= 4-1= 3, 4 ∴左、右焦点坐标分别为(- 3,0),( 3,0).
x2 2 (2)m=3,椭圆方程为 +y =1, 9 设 P(x,y),则
2 x |PA|2=(x-2)2+y2=(x-2)2+1- 9
8 92 1 = x- + (-3≤x≤3), 9 4 2 9 2 ∴当 x= 时,|PA|min= ;当 x=-3 时, 4 2 |PA|max=5.
【题后感悟】
求范围的方法同求最值及函
数的值域的方法类似.求最值常见的解法有
两种:代数法和几何法.若题目的条件和结
论能明显体现几何特征及意义,则考虑利用 图形性质来解决;若题目的条件和结论能体 现一种明确的函数关系,则可首先建立起目 标函数,再求这个函数的最值.圆锥曲线中
变式训练 1 .已知抛物线的方程为 y2 = 4x ,直线 l 过定 点 P( - 2,1) ,斜率为 k , k为何值时,直线 l 与 抛物线y2=4x只有一个公共点?
解: 由题意, 得直线 l 的方程为 y-1=k(x+2),
y-1=kx+2 由 2 y =4x
,
得 ky2-4y+4(2k+1)=0.(*) (1)当 k=0 时,由方程(*)得 y=1, 方程组有一个解, 此时,直线与抛物线只有一个公共点.
Δ>0⇔直线与圆锥曲线________; 相交 Δ=0⇔直线与圆锥曲线_________; 相切 Δ<0⇔直线与圆锥曲线__________ . 相离 若a=0,则直线与圆锥曲线相交,且有一个交
点.若曲线为双曲线,则直线与双曲线的
____________平行;若曲线为抛物线,则直线 渐近线 ___________平行. 与抛物线的 对称轴
第五节-圆锥曲线的综合问题课件
教材研读 栏目索引
5.(2017无锡普通高中高三调研)已知双曲线C: - =1(a>0,b>0)与椭圆 + =1的焦点重合,离心率互为倒数,设F1 ,F2 分别为双曲线C的左,右焦
点,P为右支上任意一点,则 的最小值为
.
答案 8
教材研读 栏目索引
解析 椭圆 + =1的焦点为(±2,0),离心率为 ,则a2+b2=c2=4,c=2,则 = =2,a=1,b= ,又点P在双曲线的右支上,所以|PF1 |-|PF2 |=2,且|PF2 |≥c-a
为 ,且过点P(2,- 1).
(1)求椭圆C的方程; (2)设点Q在椭圆C上,且PQ与x轴平行,过P点作两 条直线分别交椭圆C于两点A(x1 ,y1),B(x2 ,y2),若直线 PQ平分∠APB,求证:直线AB的斜率是定值,并求出 这个定值.
考点突破 栏目索引
解析 (1)因为椭圆C的离心率为 = ,所以
教材研读 栏目索引
2.最值问题
圆锥曲线中的最值问题是高中数学的重要内容,试题把代数、三角和几 何等有机结合起来,从而使问题具有高度的综合性和灵活性.常用的方 法有:(1)利用定义求解;(2)构造基本不等式求解;(3)利用数形结合求解; (4)构造函数求解.
教材研读 栏目索引
3.范围问题
求解析几何中的有关范围问题往往通过类比、联想、转化、合理地构 造函数,然后去分析、研究问题,转化问题和解决问题. 对于圆锥曲线上 的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而 使一些线段的长度与a,b,c,e之间构成函数关系,处理这类问题时常常用 到函数思想.
分别为F1 ,F2 ,A,B为椭圆上关于原点对称的两点,椭圆C的离心率为e.
2017届高三一轮:8.9《圆锥曲线的综合问题》ppt课件
∴x2+x-2=0,则 |AB|= 1+12· -12-4×-2 =3 2。 答案:C
y2 x· |x| 4.直线l:y=x+3与曲线 - =1交点的个数为( 9 4 A.0 B.1 C.2 D.3
)
y2 x2 y2 x2 解析:当x≥0时,曲线为 - =1;当x<0时,曲线为 + =1,如图所示, 9 4 9 4 y2 x2 3 直线l:y=x+3过(0,3),又由于双曲线 - =1的渐近线y= 9 4 2 3 y2 x2 x的斜率 >1,故直线l与曲线 - =1(x≥0)有两个交点,显然l与 2 9 4 y2 x2 半椭圆 + =1(x≤0)有两个交点,(0,3)记了两次,所以共3个交 9 4 点。 答案:D
通关特训1
x2 y2 设点A1,A2分别为椭圆 2 + 2 =1(a>b>0)的左、右顶点,若在 a b
椭圆上存在异于点A1、A2的点P,使得PO⊥PA2,其中O为坐标原点,则椭圆的离
2 ,1 2 。 心率e的取值范围是__________
解析:由题设知∠OPA2=90° ,设P(x,y)(x>0),以OA2为直径的圆的方程为
第八章 解析几何
第九节
圆锥曲线的综合问题
课前学案 基础诊断
课堂学案 考点通关
Hale Waihona Puke 高考模拟 备考套餐考纲 导学
1.掌握解决直线与椭圆、抛物线的位置关系的思想方法。 2.了解圆锥曲线的简单应用。 3.理解数形结合的思想。
课前学案
基础诊断
夯基固本 基础自测
1.直线与圆锥曲线的位置关系
仅有一个公共点 及 无公共点 1 ____________ 2 __________________ (1)从几何角度看,可分为三类: □ ,□
【数学课件】高二数学圆锥曲线的综合应用
2
4.若抛物线 y 2 x 上 A( x1 , y1 ), B( x2 , y2 )两点 1 y x m 关于直线 对称,且 x1 x2 , 2 则m的值为________
,直线 l : y 2 x b 在椭圆上是否存在两点关于直线l对称? 若存在,求出b的取值范围;若不存在 ,说明理由。 7 3 b 7 3
13 13
对称问题练习
1.已知椭圆C: 3x 4 y 12 试确定m的取 值范围,使得对于直线 l : y 4 x m 在椭圆上有不同的两点关于这条直线对 称。 y x 1 2.已知双曲线C: ,双曲线上存 3 在关于直线 l : y kx 4 对称的点,确定 k的取值范围。
M (1,1)
且被这点平分的弦AB所在直线的方程。
与圆锥曲线有关的最值问题
例3.P,Q,M,N四点都在椭圆 上,F为在y轴正半轴上的焦点。已知 PQ,MN相交于点F,且 PF MF 0 。求四边 形PMQN的面积的最小值和最大值。
2 y x2 1 2
圆锥曲线中的对称问题
x2 y2 1 例4.已知椭圆C: 16 9
2
圆锥曲线中的定点与定值问题
例5.已知椭圆C经过点 A(1, 3 ),两个焦点 2 为(1,0), (1,0) (1)求椭圆C的方程; (2)E、F是椭圆C上的两个动点,如果 直线AE的斜率与AF的斜率互为相反数, 证明直线EF的斜率为定值,并求出这个 定值。
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
高考数学一轮复习 第八章 平面解析几何 8.8 圆锥曲线的综合问题课件
p
已知抛物线y2=2px(p>0)的弦AB的中点M(x0,y0)(y0≠0) ,则kAB=⑧ yc0 . 若涉及直线过圆锥曲线焦点的问题,则一般利用圆锥曲线的定义去解决.
4.定点、定值问题 (1)求定值问题常见的方法 (i)从特殊入手,求出定值,再证明这个值与变量无关. (ii)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)定点问题的常见解法 (i)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该 方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解 为坐标的点即所求定点; (ii)从特殊位置入手,找出定点,再证明该点适合题意.
6.求定值、最值问题等圆锥曲线综合问题要四重视 (1)重视定义在解题中的作用; (2)重视平面几何知识在解题中的作用; (3)重视根与系数的关系在解题中的作用; (4)重视曲线的几何特征与方程的代数特征在解题中的作用. 7.存在性问题 一般采用“假设反证法”或“假设验证法”来解决存在性问题.
1.设抛物线y2=4x的焦点弦被焦点分为长是m和n的两部分,则m与n的关系 是( ) A.m+n=4 B.mn=4 C.m+n=mn D.m+n=2mn 答案 C 解法一:焦点为F(1,0),设焦点弦为AB,其中A(x1,y1),B(x2,y2),当直 线AB的斜率存在时,依题意设AB的方程为y=k(x-1)(k≠0). 由焦半径公式得AF=x1+1=m,BF=x2+1c =n,又 y2 4x,
1 k2
c
|y1-y2|(k≠0)
.
3.已知弦AB的中点,研究AB的斜率和方程
(1)AB是椭圆
x2 a2
+
y2 b2
=1(a>b>0)的一条弦,AB中点M的坐标为(x0,y0)(y0≠0),
高中数学课件-第一部分 专题五 第二讲 圆锥曲线的综合问题(难点选讲)
题型·综合练
专题•限时训练-17-
类型二
类型三
类型四
类型五
解析:(1)由题意可设椭圆方程为xa22+by22=1(a>b>0), 则ac= 23,且a22+21b2=1,(2 分) 故 a=2,b=1. 所以椭圆的方程为x42+y2=1.(4 分)
专题五
第二讲 圆锥曲线的综合问题(难点选讲)
活用•经典结论 主观题•专项练 客观题·专项练
tan 2
专题五
第二讲 圆锥曲线的综合问题(难点选讲)
活用•经典结论
主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-3-
3.以抛物线 y2=2px(p>0)为例,设 AB 是抛物线的过焦点的一
条弦(焦点弦),F 是抛物线的焦点,A(x1,y1),B(x2,y2),A、 B 在准线上的射影为 A1、B1,则有以下结论: ①x1x2=p42,y1y2=-p2;
题型·综合练
专题•限时训练-16-
类型二
类型三
类型四
类型五
(1)求椭圆的方程; (2)设不过原点 O 的直线 l 与该椭圆交于 P,Q 两点,满足直线 OP,PQ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值 范围.
专题五
类型一
第二讲 圆锥曲线的综合问题(难点选讲)
活用•经典结论 主观题•专项练 客观题·专项练
解得 x=-2 或 x=-83k+2-4k62,
(2 分)
则|AM|= 1+k2|-83k+2-4k62+2|= 1+k2·3+124k2.(3 分)
专题五
类型一
第二讲 圆锥曲线的综合问题(难点选讲)
活用•经典结论 主观题•专项练 客观题·专项练
高考数学 第八章 第9课时 圆锥曲线的综合问题复习课件
【解】(1)由题意得,圆 C 的圆心坐标为(2,b),又圆过点 (1,0), 所以圆 C 被 x 轴截得的弦长为 2. 因为圆 C 被 x 轴和 y 轴所截得的弦长之比为 1∶ 6, 所以圆 C 被 y 轴截得的弦长为 2 6. 所以 r2=22+( 6)2=10,故 b= r2-1=3. 所以圆 C 的方程为(x-2)2+(y-3)2=10. (2)设 A(x1,y1),B(x2,y2).
直线与圆锥曲线的位置关系
(2012·高考广东卷)在平面直角坐标系 xOy 中,已知 椭圆 C1:ax22+yb22=1(a>b>0)的左焦点为 F1(-1,0),且点 P(0, 1)在 C1 上. (1)求椭圆 C1 的方程; (2)设直线 l 同时与椭圆 C1 和抛物线 C2:y2=4x 相切,求直 线 l 的方程. [课堂笔记]
1.已知中心在原点,焦点在 x 轴上的椭圆 C 的离心率为12, 其中一个顶点是抛物线 x2=-4 3y 的焦点. (1)求椭圆 C 的标准方程; (2)若过点 P(2,1)的直线 l 与椭圆 C 在第一象限相切于点 M, 求直线 l 的方程和点 M 的坐标.
【解】(1)设椭圆 C 的方程为xa22+yb22=1(a>b>0),
第八章 平面解析几何
第9课时 圆锥曲线的综合问题
1.直线与圆锥曲线的位置关系 判定直线与圆锥曲的位置关系,通常是将直线方程与曲线
方程联立,消去变量 y(或 x)得变量 x(或 y)的方程:ax2+bx +c=0(或 ay2+by+c=0). 若 a≠0,可考虑一元二次方程的判别式 Δ,有: Δ>0⇔直线与圆锥曲线___相__交___; Δ=0⇔直线与圆锥曲线___相__切___; Δ<0⇔直线与圆锥曲线__相__离____.
圆锥曲线的综合应用(PPT)
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
• ∴k=-b,此时Δ>0, • ∴直线l的方程为y=k(x-1), • 即直线l过定点(1,0).
第12课时
圆锥曲线的综合应用
第12课时
• • • • •
第12课时
圆锥曲线的综合应用
• (4)利用代数基本不等式,代数基本不等式的应 用,往往需要创造条件,并进行巧妙的构思. • (5)结合参数方程,利用三角函数的有界性.直线、 圆、椭圆的参数方程,它们的一个共同特点是 均含有三角式.因此,它们的应用价值在于: • ①通过参数θ简明地表示曲线上点的坐标; • ②利用三角函数的有界性及其变形公式来帮助 求解诸如最值或范围等问题. • (6)构造一个一元二次方程,利用判别式Δ≥0求 解.
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
• 预学2:圆锥曲线的定点、定值问题 • 定点、定值问题多以直线与圆锥曲线为背景, 常与函数与方程、向量等知识交汇,形成了 过定点、定值等问题的证明.解决问题的关键 是引进参变量表示所求问题,根据等式的恒 成立、数式变换等寻找不受参数影响的量.可 以先研究一下特殊情况,找出定点或定值, 再视具体情况进行研究.同时,也要掌握巧妙 利用特殊值解决相关的定点、定值问题,如 将过焦点的弦特殊化,变成垂直于对称轴的 弦来研究等.
高考数学总复习 8-9 圆锥曲线的综合问题课件 苏教版
5.
考向一
最值问题
2 y 已知 F1、F2 为椭圆 x2+ =1 的两个焦点,AB 是过焦点 F1 2
的一条动弦,求△ABF2 面积的最大值. 【解】 由题意,|F1F2|=2.设直线 AB 方程为 y=kx+1, 代入椭圆方程 2x2+y2=2,得(k2+2)x2+2kx-1=0, 2k 1 则 xA+xB=- 2 ,xA· xB=- 2 , k +2 k +2 8k2+1 ∴|xA-xB|= 2 . k +2
2.圆锥曲线的弦长 设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 相交于 A、 B 两点, A(x1, y1),B(x2,y2),则 |AB|= 1+k2|x1-x2| = 1+k2· x1+x22-4x1x2 = = 1 1+ 2· |y -y | k 1 2 1 1+ 2· y1+y22-4y1y2. k
Ax+By+C=0 即 Fx,y=0
消去 y 后得 ax2+bx+c=0.
(1)当 a≠0 时,设一元二次方程 ax2+bx+c=0 的判别式为 Δ, 则 Δ>0⇔直线与圆锥曲线 C相交 Δ=0⇔直线与圆锥曲线 C相切 Δ<0⇔直线与圆锥曲线 C相离
(2)当 a=0,b≠0 时,即得到一个一次方程,则直线 l 与圆锥曲 线 C 相交,且只有一个交点,此时,若 C 为双曲线,则直线 l 与双 曲线的渐近线的位置关系是平行 ;若 C 为抛物线,则直线 l 与抛物 线的对称轴的位置关系是 平行或重合 .
2
2.(课本改编题)若双曲线 x2+ky2=1 的离心率是 2,则实数 k 的值是________.
2 y 解析:双曲线方程为 x2- =1, 1 - k
a=1,c= c 离心率 e=a= 1 答案:- 3
高中数学 第9讲 圆锥曲线的综合问题
第9讲 圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知 识 梳 理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎨⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( ) (3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( )(4)如果直线x =ty +a 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |=1+t 2|y 1-y 2|.( )(5)若抛物线C 上存在关于直线l 对称的两点,则需满足直线l 与抛物线C 的方程联立消元后得到的一元二次方程的判别式Δ>0.( )解析 (2)因为直线l 与双曲线C 的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l 与抛物线C 的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.(5)应是以l 为垂直平分线的线段AB 所在的直线l ′与抛物线方程联立,消元后所得一元二次方程的判别式Δ>0. 答案 (1)√ (2)× (3)× (4)√ (5)×2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( ) A.相交B.相切C.相离D.不确定解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 答案 A3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23D.⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫23,+∞ 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.答案 C4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A.1条B.2条C.3条D.4条解析 过(0,1)与抛物线y 2=4x 相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.答案 C5.已知F 1,F 2是椭圆16x 2+25y 2=1 600的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________. 解析 由题意可得|PF 1|+|PF 2|=2a =20,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=144=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=202-2|PF 1|·|PF 2|,解得|PF 1|·|PF 2|=128,所以△F 1PF 2的面积为12|PF 1|·|PF 2|=12×128=64. 答案 646.(·嘉兴七校联考)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当m =________时,△F AB 的周长最大,此时△F AB 的面积是________. 解析 设椭圆x 24+y 23=1的右焦点为F ′,则F (-1,0),F ′(1,0).由椭圆的定义和性质易知,当直线x =m 过F ′(1,0)时△F AB 的周长最大,此时m =1,把x =1代入x 24+y 23=1得y 2=94,y =±32,S △F AB=12|F 1F 2||AB |=12×2×3=3. 答案 1 3第1课时 直线与圆锥曲线考点一 直线与圆锥曲线的位置关系【例1】 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 解 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b 2=1,得b =1,则a 2=b 2+c 2=2, 所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎨⎧y 2=4x ,y =kx +m消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.②综合①②,解得⎩⎨⎧k =22,m =2或⎩⎨⎧k =-22,m =- 2.所以直线l 的方程为y =22x +2或y =-22x - 2.规律方法 研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择、填空题要充分利用几何条件,用数形结合的方法求解.【训练1】 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解 (1)设点M (x ,y ),依题意|MF |=|x |+1, ∴(x -1)2+y 2=|x |+1,化简得y 2=2(|x |+x ), 故轨迹C 的方程为y 2=⎩⎨⎧4x (x ≥0),0(x <0).(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0);C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎨⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14. 故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1.②当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则 由y -1=k (x +2),令y =0,得x 0=-2k +1k .③(ⅰ)若⎩⎨⎧Δ<0,x 0<0,由②③解得k <-1,或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点. (ⅱ)若⎩⎨⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点. 考点二 弦长问题【例2】 (·四川卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. (1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1). (2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0), 由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎪⎨⎪⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝ ⎛⎭⎪⎫2-2m 3,1+2m 3.|PT |2=89m 2.设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322. 由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |=⎝ ⎛⎭⎪⎫2-2m 3-x 12+⎝ ⎛⎭⎪⎫1+2m 3-y 12=52⎪⎪⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 3-x 1⎝ ⎛⎭⎪⎫2-2m 3-x 2=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3⎝ ⎛⎭⎪⎫-4m 3+4m 2-123 =109m 2.故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.规律方法 有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.【训练2】 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,得|m |<52.(*)∴|CD |=21-d 2=21-45m 2=255-4m 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.考点三 中点弦问题【例3】 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x-3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0), 则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1), 显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合. 答案 (1)D (2)0或-8规律方法 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.【训练3】 设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点,可知⎩⎨⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0, 将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N=-1k 代入上式得k =-y 02. 又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m . 所以m =y 0+12k =34y 0.由点P ⎝ ⎛⎭⎪⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.[思想方法]1.有关弦的三个问题(1)涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;(2)涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;(3)涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解. 2.求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. [易错防范]判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行或重合时也相交于一点.基础巩固题组 (建议用时:40分钟)一、选择题1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( ) A.有且只有一条 B.有且只有两条 C.有且只有三条D.有且只有四条解析 ∵通径2p =2,又|AB |=x 1+x 2+p ,∴|AB |=3>2p ,故这样的直线有且只有两条. 答案 B2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( ) A.1B.2C.1或2D.0解析 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点. 答案 A3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O 为坐标原点,则OA →·OB →等于( ) A.-3B.-13C.-13或-3D.±13解析 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA→·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA→·OB →=-13.答案 B4.抛物线y =x 2到直线x -y -2=0的最短距离为( ) A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时, d min =728. 答案 B5.已知A ,B ,P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上不同的三点,且A ,B 连线经过坐标原点,若直线P A ,PB 的斜率乘积k P A ·k PB =23,则该双曲线的离心率为( ) A.52B.62C. 2D.153解析 设A (x 1,y 1),P (x 2,y 2)根据对称性,得B 点坐标为 (-x 1,-y 1),因为A ,P 在双曲线上,所以⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减,得k P A k PB =b 2a 2=23,所以e 2=a 2+b 2a 2=53,故e =153.答案 D 二、填空题6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析由题意得⎩⎪⎨⎪⎧c =2,b 2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案 x 24+y 22=17.已知抛物线y =ax 2(a >0)的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析 由题设知p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1. 联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6,∵直线过焦点F , ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案 88.(·金华月考)过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________;此弦的长为________.解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34.∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.由⎩⎪⎨⎪⎧3x +4y -13=0,x 216+y 24=1,消去y 整理得13x 2-78x +105=0,x 1+x 2=6,x 1x 2=10513,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫-342·62-4×10513=53913.答案 3x +4y -13=0 53913三、解答题9.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.解(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2.解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2,由|k |4+6k 21+2k 2=103,解得k =±1.能力提升题组 (建议用时:30分钟)11.已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A.1B. 2C.32D. 3解析 由椭圆的方程,可知长半轴长为a =2,由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3. 答案 D12.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.316B.38C.233D.433解析 ∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′⎝ ⎛⎭⎪⎫0,p 2.设M (x 0,y 0),则y 0=12p x 20. ∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433. 答案 D13.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=________.解析 直线AF 的方程为y =-3(x -2),联立⎩⎨⎧y =-3x +23,x =-2,得y =43,所以P (6,43).由抛物线的性质可知|PF |=6+2=8. 答案 814.(·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a.当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.15.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解 (1)设Q (x 0,4),代入y 2=2px 得x 0=8p . 所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3. 将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0. 设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m , y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝ ⎛⎭⎪⎫2m 2+2m 2+3,-2m ,|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |, 从而14|AB |2+|DE |2=14|MN |2, 即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4.化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.第2课时 定点、定值、范围、最值问题考点一 定点问题【例1】 (·枣庄模拟)已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,所以a 2=3.所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=my 1-1.同理由PN →=λ2NQ →知λ2=m y2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎨⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1.由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 规律方法 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】 (·杭州七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝ ⎛⎭⎪⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1. (2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169;当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎨⎧x 2+⎝ ⎛⎭⎪⎫y +132=169,x 2+y 2=1,得⎩⎨⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0,Δ=144k 2+64(9+18k 2)>0, x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9,QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0,∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).考点二 定值问题【例2】 (·山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值. ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1. (2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3m x 0.此时k ′k =-3.所以k ′k 为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线P A 的方程为y =kx +m .则直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0,由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”. 故此时2m -m 4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62.规律方法 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【训练2】 (·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1. 当x 0≠0时,直线P A 方程为y =y 0x 0-2(x -2), 令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1.令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值. 考点三 范围问题【例3】 (·天津卷)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.解 (1)设F (c ,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF→·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k 212k .设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64.所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64或⎣⎢⎡⎭⎪⎫64,+∞.规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练3】 (·威海模拟)已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解 (1)由题意知2c =2,所以c =1. 因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1. (2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k2=1,即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1.(3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2,由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23.考点四 最值问题【例4】 (·浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为 y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1mx +b 消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.规律方法 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练4】 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2, 从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 20+y 20+4y 2x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.[思想方法]1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系的思想找出定点. (2)从特殊情况入手,先探求定点,再证明与变量无关. 3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [易错防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.3.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.4.解决定值、定点问题,不要忘记特值法.基础巩固题组 (建议用时:40分钟)一、选择题1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 答案 C2.(·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM→·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B. 答案 B3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( ) A.2B.2 2C.8D.2 3解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =2 2. 答案 B4.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b a x ,与抛物线方程联立消去y 得x2±ba x +2=0.∵渐近线与抛物线有交点, ∴Δ=b 2a 2-8≥0,求得b 2≥8a 2, ∴c =a 2+b 2≥3a ,∴e =ca≥3.答案 A5.(·丽水调研)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A.2B.455C.4105D.8105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎨⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105. 答案 C 二、填空题6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________. 解析 由条件知双曲线的焦点为(4,0), 所以⎩⎪⎨⎪⎧a 2+b 2=16,b a =3,解得a =2,b =23,故双曲线方程为x 24-y 212=1. 答案 x 24-y 212=17.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM→|的最小值是________. 解析 ∵PM→·AM →=0,∴AM →⊥PM →.∴|PM→|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小,故|AP →|min =2,∴|PM →|min = 3. 答案38.(·杭州调研)若双曲线x 2-y 2b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________;与圆相切时渐近线的方程为________.解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b 2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2.当渐近线与圆相切时,b 2=3,a 2=1,∴渐近线方程为y =±3x .答案 (1,2] y =±3x 三、解答题9.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC→·PD →=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 方程为x 24+y 22=1. (2)当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +1, A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).。
高考数学 第八章 第九节 第二课时 圆锥曲线的综合应用课件 理 新人教A
=8
16k2+16m 2-4m-16k+16.
∵m=-2k+2,
∴|MN|=4
k-12+1 2· |k-1|
(1)求抛物线 C 的标准方程; (2)过直线 l:y=x-2 上的动点 P(除(2,0))作抛物
=4 2
1+k-1 12.
线 C 的两条切线,切抛物线于 A,B 两点. ①求证:直线 AB 过定点 Q,并求出点 Q 的坐
由 y=xy11x, y=x-2,
⇒xM=x12-x1y1=4-8 x1,
(1)求抛物线 C 的标准方程;
同理得 xN=x22-x2y2=4-8 x2.
(2)过直线 l:y=x-2 上的动点 P(除(2,0))作抛物 ∴|MN|= 2|xM-xN|
线 C 的两条切线,切抛物线于 A,B 两点. ①求证:直线 AB 过定点 Q,并求出点 Q 的坐 标; ②若直线 OA,OB 分别交直线 l 于 M,N 两点, 求△QMN 的面积 S 的取值范围.
上页 下页
考点二
试题
解析
典题悟法 演练冲关
2.已知椭圆xa22+by22=1(a>b>0) 的左焦点 F1(-1,0),长轴长与 短轴长的比是 2∶ 3. (1)求椭圆的方程; (2)过 F1 作两直线 m,n 交椭圆 于 A,B,C,D 四点,若 m⊥ n,求证:|A1B|+|C1D|为定值.
y=kx+1, 由x42+y32=1,
第九节 第二课时 圆锥曲线的综合应用
考点一
研考向 考点研究 课时 跟踪检测
试题
解析
上页 下页
典题悟法 演练冲关
(2015·高考浙江卷) 已知椭圆x22+y2=1 上两个 不同的点 A,B 关于直线 y =mx+12对称.
圆锥曲线的综合问题 经典课件(最新)
则 y1=k(x1-1),y2=k(x2-1),
高中数学课件
x1+x2=1+4k22k2,x1x2=21k+2-2k42,
所以|MN|= (x2-x1)2+(y2-y1)2
= 1+k2 (x1+x2)2-4x1x2
=2
(1+k2)(4+6k2)
1+2k2
.
又因为点 A(2,0)到直线 y=k(x-1)的距离 d= 1|+k| k2, 所以△AMN 的面积 S=12|MN|·d=|k|1+4+2k62k2. 由|k|1+4+2k62k2= 310,解得 k=±1.
高中数学课件
【反思·升华】 求中点弦的直线方程,一般用“点差法”求直线的斜率.一般过程 是:设弦两端点的坐标为 A(x1,y1),B(x2,y2),将其代入圆锥曲线方程,并将两式相减, 得到的式子中含有 x1+x2,y1+y2,yx11- -yx22三个未知量,借助式子中的结构特征及其几何 意义,就建立了“弦的中点”和“弦所在直线的斜率”一个关系式,这样中点和直线的 斜率就可以相互转化了.但是也要去检验,保证直线与圆锥曲线相交,只有相交,“弦中 点”才有存在的前提.
高中数学课件
解:(1)设点 F 的坐标为(-c,0). 由ac=12,p2=a,a-c=12, 解得 a=1,c=12,p=2, 于是 b2=a2-c2=34. 所以,椭圆的方程为 x2+43y2=1, 抛物线的方程为 y2=4x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消去y整理得
x-y+m=0,
3x2+4mx+2m2-2=0。
则Δ=16m2-12(2m2-2)=8(-m2+3)>0,
解得- 3<m< 3。① 设A(x1,y1),B(x2,y2),则x1+x2=-34m,
y1+y2=x1+x2+2m=-34m+2m=23m,
即AB的中点为-23m,m3 。 又∵AB的中点不在圆x2+y2=59内, ∴4m9 2+m92=5m9 2≥59,解得m≤-1或m≥1。② 由①②得,- 3<m≤-1或1≤m< 3。 故m的取值范围为(- 3,-1]∪[1, 3)。
x-18
2-
81 16
,其中x≥1。因此,当x=1时,
→ PA1
→ ·PF2
取得最小值-2。
答案:A
课堂学案 考点通关
考点例析 通关特训
考点一
圆锥曲线中的范围问题
【例1】
已知椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)上的任意一点到它的两个焦点(-
c,0),(c,0)的距离之和为2 2,且它的焦距为2。
y=x+n, 由x62+y32=1,
得3x2+4nx+2n2-6=0。
于是x3,4=-2n± 329-n2。 因为直线CD的斜率为1, 所以|CD|= 2|x4-x3|=43 9-n2。 由已知,四边形ACBD的面积 S=12|CD|·|AB|=8 9 6 9-n2。 当n=0时,S取得最大值,最大值为83 6。 所以四边形ACBD面积的最大值为83 6。
【例2】
平面直角坐标系xOy中,过椭圆M:
x2 a2
+
y2 b2
=1(a>b>0)右焦点的直线
x+y- 3=0交M于A,B两点,P为AB的中点,且OP的斜率为12。
(1)求M的方程;
解析:(1)设A(x1,y1),B(x2,y2),P(x0,y0), 则ax212+by212=1,ax222+by222=1,yx22- -yx11=-1, 由此可得ba22xy22+ +xy11=-yx22- -yx11=1。 因为x1+x2=2x0,y1+y2=2y0,xy00=12,所以a2=2b2。 又由题意知,M的右焦点为( 3,0),故a2-b2=3。 因此a2=6,b2=3。 所以M的方程为x62+y32=1。
第九节 圆锥曲线的综合问题
课前学案 基础诊断
课堂学案 考点通关
高考模拟 备考套餐
考纲 导学
1.掌握解决直线与椭圆、抛物线的位置关系的思想方法。 2.了解圆锥曲线的简单应用。 3.理解数形结合的思想。
课前学案 基础诊断
夯基固本 基础自测
1.直线与圆锥曲线的位置关系
(1)从几何角度看,可分为三类: □1 __无__公__共__点____, □2 __仅__有__一__个__公__共__点____及
(2)斜率不存在时,可求出交点坐标,直接运算(利用坐标系中两点间距离公 式)。
3.圆锥曲线的中点弦问题
遇到弦中点问题常用“根与系数的关系”或“点差法”求解。
□ ___-__在ba_22椭_bxy_002x圆_0____ax_22__;+在双by22曲线=ax122中-,by22以=P1(中x0,,以y0)P为(x中0,点y的0)为弦中所点在的直弦线所的在斜直率线k=的斜率9k □ = 10 _a_2y_0_______;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜 □ 率 11 __k_=__yp_0__________。在使用根与系数关系时,要注意使用条件是Δ≥0。
由于以F为圆心、|FM|为半径的圆与准线相交,又圆心F到准线的距离为4,故 4<y0+2,∴y0>2。
答案:C
2.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,
B两点,且AB的中点为N(-12,-15),则E的方程为( ) A.x32-y62=1 B.x42-y52=1 C.x62-y32=1 D.x52-y42=1
通关特训1
设点A1,A2分别为椭圆
x2 a2
+
y2 b2
=1(a>b>0)的左、右顶点,若在
椭圆上存在异于点A1、A2的点P,使得PO⊥PA2,其中O为坐标原点,则椭圆的离 心率e的取值范围是___22_,__1____。
解析:由题设知∠OPA2=90°,设P(x,y)(x>0),以OA2为直径的圆的方程为
3.已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则 |AB|等于( )
A.3 B.4 C.3 2 D.4 2
解析:设直线AB的方程为y=x+b。
y=-x2+3, 由y=x+b
⇒x2+x+b-3=0⇒x1+x2=-1,
得AB的中点M-12,-12+b。 又M-12,-12+b在直线x+y=0上,可求出b=1, ∴x2+x-2=0,则
►名师点拨 圆锥曲线中常见最值问题及解题方法 (1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直 线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问 题。 (2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意 义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确 的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式 法、配方法及导数法求解。
答案:A
考点三
圆锥曲线中的定点问题
【例3】 已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8。
(1)求动圆圆心的轨迹C的方程;
解析:(1)如图,设动圆圆心 O1(x,y),由题意,|O1A|=|O1M|,
当 O1 不在 y 轴上时,
过 O1 作 O1H⊥MN 交 MN 于 H, 则 H 是 MN 的中点, ∴|O1M|= x2+42。 又∵|O1A|= x-42+y2, ∴ x-42+y2= x2+42, 化简得 y2=8x(x≠0)。 又当 O1 在 y 轴上时,O1 与 O 重合, 点 O1 的坐标(0,0)也满足方程 y2=8x, ∴动圆圆心的轨迹 C 的方程为 y2=8x。
2种方法——求定值问题常见的两种方法
(1)从特殊入手,求出定值,再证明这个值与变量无关; (2)直接推理、计算,并在此过程中消去变量,从而得到定值。
4个重视——求定值、最值等圆锥曲线综合问题要四重视
(1)重视定义在解题中的作用; (2)重视平面几何知识在解题中的作用; (3)重视根与系数的关系在解题中的作用; (4)重视曲线的几何特征与方程的代数特征在解题中的作用。
A.-2 B.-8116 C.1 D.0
解析:设点P(x,y),其中x≥1。
依题意得A1(-1,0),F2(2,0), 由双曲线方程得y2=3(x2-1)。
→→ PA1 ·PF2 =(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+y2-x-2=x2+
3(x2-1)-x-2=4x2-x-5=4
|AB|= 1+12· -12-4×-2 =3 2。 答案:C
4.直线l:y=x+3与曲线y92-x·4|x|=1交点的个数为(
)
A.0 B.1 C.2 D.3
解析:当x≥0时,曲线为y92-x42=1;当x<0时,曲线为y92+x42=1,如图所示,
直线l:y=x+3过(0,3),又由于双曲线y92
2.直线与圆锥曲线相交时的弦长问题
(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长:
|P1P2|= 1+k2[x1+x22-4x1x2]
= 1+k2·|x1-x2|
=
1+k12[y1+y22-4y1y2]
□ = 8 _______1_+__k1_2|_y1_-__y_2_| _________。
解析:∵kAB=03++1152=1,∴直线AB的方程为y=x-3。 由于双曲线的焦点为F(3,0),∴c=3,c2=9。 设双曲线的标准方程为ax22-by22=1(a>0,b>0), 则ax22-x-b232=1。整理,得 (b2-a2)x2+6a2x-9a2-a2b2=0。 设A(x1,y1),B(x2,y2),则x1+x2=a26-a2b2=2×(-12),∴a2=-4a2+4b2, ∴5a2=4b2。又a2+b2=9,∴a2=4,b2=5,∴双曲线E的方程为x42-y52=1。 答案:B
有两个□3 _相__异__的__公__共__点_。
(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一 元二次方程解的情况来判断。设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x, y)=0。
由Afxx+,Byy=+0C,=0, 消元, (如消去y)得ax2+bx+c=0。
1.设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆
心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( )
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
解析:∵x2=8y,∴焦点F的坐标为(0,2),准线方程为y=-2。由抛物线的定 义知|MF|=y0+2。
它们的离心率分别为e1,e2, 则|PF1|=a+m,|PF2|=a-m,
在△PF1F2中,4c2=(a+m)2+(a-m)2-2(a+m)(a-m)cos
π 3
⇒a2+3m2=4c2⇒ac
2
+3mc 2=4,
则ac2+3mc 21+13≥ac+mc 2⇒e11+e12=ac+mc ≤4 3 3, 当且仅当a=3m时,等号成立,故选A。
►名师点拨 解决圆锥曲线中的取值范围问题的五方面考虑 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范 围。 (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参 数之间的等量关系。 (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围。 (4)利用已知的不等关系构造不等式,从而求出参数的取值范围。 (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而 确定参数的取值范围。